1
|
Zhao Y, Chen H, Sun H, Yang F. In the Qaidam Basin, Soil Nutrients Directly or Indirectly Affect Desert Ecosystem Stability under Drought Stress through Plant Nutrients. PLANTS (BASEL, SWITZERLAND) 2024; 13:1849. [PMID: 38999689 PMCID: PMC11244565 DOI: 10.3390/plants13131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
The low nutrient content of soil in desert ecosystems results in unique physiological and ecological characteristics of plants under long-term water and nutrient stress, which is the basis for the productivity and stability maintenance of the desert ecosystem. However, the relationship between the soil and the plant nutrient elements in the desert ecosystem and its mechanism for maintaining ecosystem stability is still unclear. In this study, 35 sampling sites were established in an area with typical desert vegetation in the Qaidam Basin, based on a drought gradient. A total of 90 soil samples and 100 plant samples were collected, and the soil's physico-chemical properties, as well as the nutrient elements in the plant leaves, were measured. Regression analysis, redundancy analysis (RDA), the Theil-Sen Median and Mann-Kendall methods, the structural equation model (SEM), and other methods were employed to analyze the distribution characteristics of the soil and plant nutrient elements along the drought gradient and the relationship between the soil and leaf nutrient elements and its impact on ecosystem stability. The results provided the following conclusions: Compared with the nutrient elements in plant leaves, the soil's nutrient elements had a more obvious regularity of distribution along the drought gradient. A strong correlation was observed between the soil and leaf nutrient elements, with soil organic carbon and alkali-hydrolyzed nitrogen identified as important factors influencing the leaf nutrient content. The SEM showed that the soil's organic carbon had a positive effect on ecosystem stability by influencing the leaf carbon, while the soil's available phosphorus and the mean annual temperature had a direct positive effect on stability, and the soil's total nitrogen had a negative effect on stability. In general, the soil nutrient content was high in areas with a low mean annual temperature and high precipitation, and the ecosystem stability in the area distribution of typical desert vegetation in the Qaidam Basin was low. These findings reveal that soil nutrients affect the stability of desert ecosystems directly or indirectly through plant nutrients in the Qaidam Basin, which is crucial for maintaining the stability of desert ecosystems with the background of climate change.
Collapse
Affiliation(s)
| | - Hui Chen
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.Z.); (H.S.); (F.Y.)
| | | | | |
Collapse
|
2
|
Zhao T, Suo R, Alemu AW, Zheng J, Zhang F, Iwaasa AD, Guo J, Zhao M, Zhang B. Mowing increased community stability in semiarid grasslands more than either fencing or grazing. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2985. [PMID: 38772563 DOI: 10.1002/eap.2985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 05/23/2024]
Abstract
A substantial body of empirical evidence suggests that anthropogenic disturbance can affect the structure and function of grassland ecosystems. Despite this, few studies have elucidated the mechanisms through which grazing and mowing, the two most widespread land management practices, affect the stability of natural grassland communities. In this study, we draw upon 9 years of field data from natural grasslands in northern China to investigate the effects of gazing and mowing on community stability, specifically focusing on community aboveground net primary productivity (ANPP) and dominance, which are two major biodiversity mechanisms known to characterize community fluctuations. We found that both grazing and mowing reduced ANPP in comparison to areas enclosed by fencing. Grazing reduced community stability by increasing the likelihood of single-species dominance and decreasing the relative proportion of nondominant species. In contrast, mowing reduced the productivity of the dominant species but increased the productivity of nondominant species. As a consequence, mowing improved the overall community stability by increasing the stability of nondominant species. Our study provides novel insight into understanding of the relationship between community species fluctuation-stability, with implications for ecological research and ecosystem management in natural grasslands.
Collapse
Affiliation(s)
- Tianqi Zhao
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Rongzhen Suo
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Aklilu W Alemu
- Agriculture and Agri-Food Canada, Swift Current Research and Development Center, Swift Current, Saskatchewan, Canada
| | - Jiahua Zheng
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Alan D Iwaasa
- Agriculture and Agri-Food Canada, Swift Current Research and Development Center, Swift Current, Saskatchewan, Canada
| | - Jianying Guo
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, China
| | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
Tan Z, Chen X, Wang Y, Wang S, Wang R, Yao B, Yang Y, Kong Y, Qu J. The impact of the Qinghai-Tibet highway on plant community and diversity. FRONTIERS IN PLANT SCIENCE 2024; 15:1392924. [PMID: 39006959 PMCID: PMC11240119 DOI: 10.3389/fpls.2024.1392924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Roads are an increasingly prevalent form of human activity that drives the decrease in plant community functions and threatens global biodiversity. However, few studies have focused on the changes in the function and diversity of alpine meadows caused by road infrastructure in the Tibetan Plateau. In this study, the changes in species diversity, functional diversity, and community stability were examined at different distances from the Qinghai-Tibet highway. The results showed that the road intensified the degradation of vegetation, which significantly altered species diversity and community structure. This effect gradually decreased from near to far from the highway. Plant community cover and species diversity were highest at intermediate distances (50-100 m) from the roadway; species diversity and stability were lowest in the grassland most disturbed by the road (0 m), and species diversity and functional diversity tended to stabilize farther away from the road (250 m). Our findings indicate that changes in species diversity are synchronized with changes in functional diversity, which largely determines the outcome of degraded grassland community diversity and stability. Our results provide a reference point for restoring degraded alpine areas and mitigating the ecological impacts of roads.
Collapse
Affiliation(s)
- ZhaoXian Tan
- School of Life Science, Qinghai Normal University, Xining, China
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Beijing, China
| | - XuePing Chen
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - Yun Wang
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - Suqin Wang
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Rong Wang
- School of Life Science, Qinghai Normal University, Xining, China
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Beijing, China
| | - BaoHui Yao
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - YanGang Yang
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - YaPing Kong
- Research Center for Environment Protection and Water and Soil Conservation, China Academy of Transportation Sciences, Beijing, China
| | - JiaPeng Qu
- School of Life Science, Qinghai Normal University, Xining, China
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, Beijing, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
4
|
Sasaki T, Berdugo M, Kinugasa T, Batdelger G, Baasandai E, Eisenhauer N. Aridity-dependent shifts in biodiversity-stability relationships but not in underlying mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17365. [PMID: 38864217 DOI: 10.1111/gcb.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Climate change will affect the way biodiversity influences the stability of plant communities. Although biodiversity, associated species asynchrony, and species stability could enhance community stability, the understanding of potential nonlinear shifts in the biodiversity-stability relationship across a wide range of aridity (measured as the aridity index, the precipitation/potential evapotranspiration ratio) gradients and the underlying mechanisms remain limited. Using an 8-year dataset from 687 sites in Mongolia, which included 5496 records of vegetation and productivity, we found that the temporal stability of plant communities decreased more rapidly in more arid areas than in less arid areas. The result suggests that future aridification across terrestrial ecosystems may adversely affect community stability. Additionally, we identified nonlinear shifts in the effects of species richness and species synchrony on temporal community stability along the aridity gradient. Species synchrony was a primary driver of community stability, which was consistently negatively affected by species richness while being positively affected by the synchrony between C3 and C4 species across the aridity gradient. These results highlight the crucial role of C4 species in stabilizing communities through differential responses to interannual climate variations between C3 and C4 species. Notably, species richness and the synchrony between C3 and C4 species independently regulated species synchrony, ultimately affecting community stability. We propose that maintaining plant communities with a high diversity of C3 and C4 species will be key to enhancing community stability across Mongolian grasslands. Moreover, species synchrony, species stability, species richness and the synchrony between C3 and C4 species across the aridity gradient consistently mediated the impacts of aridity on community stability. Hence, strategies aimed at promoting the maintenance of biological diversity and composition will help ecosystems adapt to climate change or mitigate its adverse effects on ecosystem stability.
Collapse
Affiliation(s)
- Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| | - Miguel Berdugo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Gantsetseg Batdelger
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Erdenetsetseg Baasandai
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| |
Collapse
|
5
|
Sun H, Wang WJ, Liu Z, Wang L, Bao SG, Ba S, Cong Y. Woody encroachment induced earlier and extended growing season in boreal wetland ecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1413896. [PMID: 38812732 PMCID: PMC11133685 DOI: 10.3389/fpls.2024.1413896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Woody plant encroachment (WPE), a widespread ecological phenomenon globally, has significant impacts on ecosystem structure and functions. However, little is known about how WPE affects phenology in wetland ecosystems of middle and high latitudes. Here, we investigated the regional-scale effects of WPE on the start (SOS), peak (POS), end (EOS), and length (GSL) of the growing season in boreal wetland ecosystems, and their underlying mechanisms, using remote sensing dataset during 2001-2016. Our results showed that WPE advanced the annual SOS and POS, while delaying EOS and extending GSL in boreal wetlands with these impacts increasing over time. When boreal wetland ecosystems were fully encroached by woody plants, the SOS and POS were advanced by 12.17 and 5.65 days, respectively, the EOS was postponed by 2.74 days, and the GSL was extended by 15.21 days. We also found that the impacts of WPE on wetland SOS were predominantly attributed to the increased degree of WPE (α), while climatic factors played a more significant role in controlling the POS and EOS responses to WPE. Climate change not only directly influenced phenological responses of wetlands to WPE but also exerted indirect effects by regulating soil moisture and α. Winter precipitation and spring temperature primarily determined the effects of WPE on SOS, while its impacts on POS were mainly controlled by winter precipitation, summer temperature, and precipitation, and the effects on EOS were mainly determined by winter precipitation, summer temperature, and autumn temperature. Our findings offer new insights into the understanding of the interaction between WPE and wetland ecosystems, emphasizing the significance of considering WPE effects to ensure accurate assessments of phenology changes.
Collapse
Affiliation(s)
- Hongchao Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, College of Resources and Environment, Beijing, China
| | - Wen J. Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhihua Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Lei Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Suri G. Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, College of Resources and Environment, Beijing, China
| | - Shengjie Ba
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Yu Cong
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
6
|
Huang Y, Chen XS, Zhu L. Differential responses of ecosystem stability to climatic and anthropogenic factors in connected and isolated lake basins on the Yangtze River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121014. [PMID: 38704954 DOI: 10.1016/j.jenvman.2024.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Maintaining optimal ecological security in the Yangtze River-connected and isolated lake basins is of great significance to national projects involving Yangtze River protection. Ecosystem stability and associated factors are important components of ecological security in these basins. However, few studies have focused on ecosystem stability and its driving factors over long periods in the Yangtze River Basin. In this study, a remote sensing index was used to analyze the spatiotemporal variation in the ecosystem stability of the Dongting Lake Basin (DTL), Poyang Lake Basin (PYL), and the isolated Chaohu Lake Basin (CHL) and Taihu Lake Basin (THL) in the Yangtze River over the period 2000-2022 to determine the potential affecting factors. The results showed fluctuations in the ecosystem stability of the DTL and PYL, while a V-shape was observed for the CHL and THL during the same period; the closer to the lake, the weaker the stability of the ecosystem, especially in the DTL and PYL. Moreover, the ecosystem stability was greater in the DTL and PYL than in the CHL and THL. The spillover effect of anthropogenic activities on the ecosystem stability of the four basins and the direct effect of temperature have the greatest effect on the ecosystem stability. Specifically, the ecosystem stability index for the area around the DTL and PYL decreased with increasing human interference, whereas the opposite was observed in the CHL and THL. The effect of temperature was negative for the ecosystem stability of DTL and PYL and significantly positive for CHL and THL, at a level of 0.01 %. The findings of this study provide significant information for targeted ecological restoration of the Yangtze River Basin.
Collapse
Affiliation(s)
- Ying Huang
- College of Economics and Management, Hunan Institute of Science and Technology, Yueyang 414000, China
| | - Xin-Sheng Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Lianlian Zhu
- School of Earth Sciences and Spatial Information Engineering, Institute of Subtropical Agriculture, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
7
|
Cui Z, Sun J, Wu GL. Plant diversity increases spatial stability of aboveground productivity in alpine grasslands. Oecologia 2024; 205:27-38. [PMID: 38652294 DOI: 10.1007/s00442-024-05552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Plant diversity can significantly affect the grassland productivity and its stability. However, it remains unclear how plant diversity affects the spatial stability of natural grassland productivity, especially in alpine regions that are sensitive to climate change. We analyzed the interaction between plant (species richness and productivity, etc.) and climatic factors (precipitation, temperature, and moisture index, etc.) of alpine natural grassland on the Qinghai-Tibetan Plateau. In addition, we tested the relationship between plant diversity and spatial stability of grassland productivity. Results showed that an increase in plant diversity significantly enhanced community productivity and its standard deviation, while reducing the coefficient of variation in productivity. The influence of plant diversity on productivity and the reciprocal of productivity variability coefficient was not affected by vegetation types. The absolute values of the regression slopes between climate factors and productivity in alpine meadow communities with higher plant diversity were smaller than those in alpine meadow communities with lower plant diversity. In other words, alpine meadow communities with higher plant diversity exhibited a weaker response to climatic factors in terms of productivity, whereas those with lower plant diversity showed a stronger response. Our results indicate that high plant diversity buffers the impact of ambient pressure (e.g., precipitation, temperature) on alpine meadow productivity, and significantly enhanced the spatial stability of grassland productivity. This finding provides a theoretical basis for maintaining the stability of grassland ecosystems and scientifically managing alpine grasslands under the continuous climate change.
Collapse
Affiliation(s)
- Zeng Cui
- State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A & F University, Yangling, 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gao-Lin Wu
- State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A & F University, Yangling, 712100, China.
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
8
|
Zhang L, Gao J, Zhao R, Wang J, Hao L, Wang M. Forb stability, dwarf shrub stability and species asynchrony regulate ecosystem stability along an experimental precipitation gradient in a semi-arid desert grassland. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:378-389. [PMID: 38442014 DOI: 10.1111/plb.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/18/2023] [Indexed: 03/07/2024]
Abstract
Precipitation pattern changes may affect plant biodiversity, which could impact ecosystem stability. However, the effects of changes in precipitation regime on ecosystem stability and their potential mechanisms are still unclear. We conducted a 3-year field manipulation experiment with five precipitation treatments (-40%, -20%, 0% (CK), +20% and +40% of ambient growing season precipitation) in a semi-arid desert grassland to examine the effects of precipitation alterations on functional group stability, species asynchrony, and diversity, and the underlying mchanisms of ecosystem stability using structural equation modelling. Alterations in precipitation had different effects on community biomass and functional group biomass. Moreover, ecosystem stability was mainly driven by forb stability (path coefficient = 0.79). Changes in precipitation had significant effects on soil dissolved inorganic N (P < 0.01) further affecting ecosystem stability through species asynchrony (path coefficient = 0.25). Dwarf shrubs had a stabilizing effect on ecosystem stability (path coefficient = 0.32), mainly via deep roots. Ecosystem stability tended to be lower in the -40% (4.72) and +40% (2.74) precipitation treatments. The common reduction in species asynchrony and stability of forb and dwarf shrub functional groups resulted in lower ecosystem stability under the -40% treatment. The lower stability under the +40% treatment might be ascribed to unimproved dwarf shrub stability. Higher dwarf shrub and forb stability contributed to higher ecosystem stability under normal precipitation changes (±20% treatments) and CK. Species diversity was not a crucial driver of ecosystem stability. Our results indicate that precipitation alteration can regulate ecosystem stability via functional group stability (e.g. forb stability, dwarf shrub stability) and species asynchrony in a semiarid desert grassland.
Collapse
Affiliation(s)
- L Zhang
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Northwest Normal University, Lanzhou, Gansu Province, China
| | - J Gao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - R Zhao
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Northwest Normal University, Lanzhou, Gansu Province, China
| | - J Wang
- College of Grassland Agriculture, Northwest A & F University, Yangling, China
| | - L Hao
- School of Water and Environment, Chang'an University, Xi'an, China
| | - M Wang
- College of Geography and Environment Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Northwest Normal University, Lanzhou, Gansu Province, China
| |
Collapse
|
9
|
Ma F, Yan Y, Svenning JC, Quan Q, Peng J, Zhang R, Wang J, Tian D, Zhou Q, Niu S. Opposing effects of warming on the stability of above- and belowground productivity in facing an extreme drought event. Ecology 2024; 105:e4193. [PMID: 37882140 DOI: 10.1002/ecy.4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Climate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community- and ecosystem-level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought. We found warming decreased resistance and recovery of aboveground net primary productivity (ANPP) and structural resistance but increased resistance and recovery of belowground net primary productivity (BNPP), overall net primary productivity (NPP), and structural recovery. The findings highlight the importance of jointly considering above- and belowground processes when evaluating ecosystem stability under global warming and extreme climate events. The stability of dominant species, rather than species richness and species asynchrony, was identified as a key predictor of ecosystem functional resistance and recovery, except for BNPP recovery. In addition, structural resistance of common species contributed strongly to the resistance changes in BNPP and NPP. Importantly, community structural resistance and recovery dominated the resistance and recovery of BNPP and NPP, but not for ANPP, suggesting the different mechanisms underlie the maintenance of stability of above- versus belowground productivity. This study is among the first to explain that warming modulates ecosystem stability in the face of extreme drought and lay stress on the need to investigate ecological stability at the community level for a more mechanistic understanding of ecosystem stability in response to climate extremes.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Liu C, Zhang F, Jim CY, Johnson VC, Tan ML, Shi J, Lin X. Controlled and driving mechanism of the SPM variation of shallow Brackish Lakes in arid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163127. [PMID: 37001663 DOI: 10.1016/j.scitotenv.2023.163127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Suspended particulate matter (SPM) in the brackish Ebinur Lake of arid northwest China profoundly affect its water quality and watershed habitat quality. However, the actual driving mechanisms of the Lake's SPM changes remain unclear. Therefore, the purpose of this study is to explore the controlling factors driving the variability of SPM in the Ebinur Lake. This study constructed month-by-month SPM maps of Ebinur Lake based on time-series remote-sensing imageries and SPM inversion model. Thirty-four factors that might influence SPM changes were extracted, and the Partial Least Squares Structural Equation Modeling (PLS-SEM), suitable for complex relationships and factor interactions, was applied to identify the relative influence of each factor quantitatively. The results showed: (1) a clear increasing trend of SPM concentration in Ebinur Lake from 2011 to 2020; (2) that SPM changes were influenced by external and internal factors, explaining 48.2 % and 46.9 % of the changes, respectively; (3) that, to the external factors, meteorological factors exerted the greatest influence on SPM (relative contribution of 38.9 %); that, to the internal factors, water salinity imposed the greatest influence on SPM (relative contribution of 43.3 %); (4) that, among the meteorological factors, the measured variable Alashankou wind speed expressed the most significant positive effect on SPM (weighting coefficient of 0.894), and sulfate generated the strongest positive effect on SPM (weighting coefficient of 0.791) among the water salinity factors. Hence, the quantitative identification of drivers of SPM changes in Ebinur Lake could provide a new perspective to investigate the driving mechanisms of lake water quality in arid areas and inform their sustainable restoration and management.
Collapse
Affiliation(s)
- Changjiang Liu
- Xinjiang Institute of Technology, Aksu 843000, China; College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
| | - Fei Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China.
| | - Chi-Yung Jim
- Department of Social Sciences, Education University of Hong Kong, Lo Ping Road, Tai Po 999077, Hong Kong
| | - Verner Carl Johnson
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Mou Leong Tan
- GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Jingchao Shi
- Departments of Earth Sciences, the University of Memphis, Memphis, TN 38152, USA
| | - Xingwen Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
11
|
Guo H, Quan Q, Niu S, Li T, He Y, Fu Y, Li J, Wang J, Zhang R, Li Z, Tian D. Shifting biomass allocation and light limitation co-regulate the temporal stability of an alpine meadow under eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160411. [PMID: 36574548 DOI: 10.1016/j.scitotenv.2022.160411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Eutrophication generally promotes but destabilizes grassland productivity. Under eutrophication, plants tend to decrease biomass allocation to roots but increase aboveground allocation and light limitation, likely affecting community stability. However, it remains unclear to understand how shifting plant biomass allocation and light limitation regulate grassland stability in response to eutrophication. Here, using a 5-yr multiple nutrient addition experiment in an alpine meadow, we explored the role of changes in plant biomass allocation and light limitation on its community stability under eutrophication as well as traditionally established mechanisms (i.e., plant Shannon diversity, species asynchrony and grass subcommunity stability). Our results showed that nitrogen (N) addition, rather than phosphorus (P) or potassium (K) addition, significantly reduced the temporal stability of the alpine meadow. In accordance with previous studies, we found that N addition decreased plant Shannon diversity, species asynchrony and grass subcommunity stability, further destabilizing meadow community productivity. In addition, we also found the decrease in biomass allocation to belowground by N addition, further weakening its community stability. Moreover, this shifts in plant biomass allocation from below- to aboveground, intensifying plant light limitation. Further, the light limitation reduced plant species asynchrony, which finally weakened its community stability. Overall, in addition to traditionally established mechanisms, this study highlights the role of plant biomass allocation shifting from belowground to aboveground in determining grassland community stability. These "unseen" mechanisms might improve our understanding of grassland stability in the context of ongoing eutrophication.
Collapse
Affiliation(s)
- Hongbo Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Yicheng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiwen Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Environmental Mapping and Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Jiapu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Zhaolei Li
- College of Resources and Environment and Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
He S, Xiong K, Song S, Chi Y, Fang J, He C. Research Progress of Grassland Ecosystem Structure and Stability and Inspiration for Improving Its Service Capacity in the Karst Desertification Control. PLANTS (BASEL, SWITZERLAND) 2023; 12:770. [PMID: 36840118 PMCID: PMC9959505 DOI: 10.3390/plants12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The structure and stability of grassland ecosystems have a significant impact on biodiversity, material cycling and productivity for ecosystem services. However, the issue of the structure and stability of grassland ecosystems has not been systematically reviewed. Based on the Web of Science (WOS) and China National Knowledge Infrastructure (CNKI) databases, we used the systematic-review method and screened 133 papers to describe and analyze the frontiers of research into the structure and stability of grassland ecosystems. The research results showed that: (1) The number of articles about the structure and stability of grassland ecosystems is gradually increasing, and the research themes are becoming increasingly diverse. (2) There is a high degree of consistency between the study area and the spatial distribution of grassland. (3) Based on the changes in ecosystem patterns and their interrelationships with ecosystem processes, we reviewed the research progress and landmark results on the structure, stability, structure-stability relationship and their influencing factors of grassland ecosystems; among them, the study of structure is the main research focus (51.12%), followed by the study of the influencing factors of structure and stability (37.57%). (4) Key scientific questions on structural optimization, stability enhancement and harmonizing the relationship between structure and stability are explored. (5) Based on the background of karst desertification control (KDC) and its geographical characteristics, three insights are proposed to optimize the spatial allocation, enhance the stability of grassland for rocky desertification control and coordinate the regulation mechanism of grassland structure and stability. This study provided some references for grassland managers and relevant policy makers to optimize the structure and enhance the stability of grassland ecosystems. It also provided important insights to enhance the service capacity of grassland ecosystems in KDC.
Collapse
Affiliation(s)
- Shuyu He
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Shuzhen Song
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Yongkuan Chi
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Jinzhong Fang
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| | - Chen He
- School of Karst Science, Guizhou Normal University, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control of China, 116 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|
13
|
Zong N, Hou G, Shi P, Song M. Winter warming alleviates the severely negative effects of nitrogen addition on ecosystem stability in a Tibetan alpine grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158923. [PMID: 36165909 DOI: 10.1016/j.scitotenv.2022.158923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many recent studies have explored how global warming and increased nitrogen (N) deposition affect the structure and function of natural ecosystems. However, how ecosystems respond to the combination of warming and N enrichment remains unexplored, especially under asymmetric seasonal warming scenarios. We conducted a decade-long field experiment in an alpine grassland to investigate the effects of warming (ambient condition (NW), winter-only (WW), and year-round (YW) warming) and N addition on the temporal stability of communities. Although N addition significantly reduced community temporal stability in NW, WW, and YW, WW relieved the severely negative effects of N addition compared to NW and YW (from 47.7 % in NW and 76.1 % in YW to 18.6 % in WW under 80 kg N hm-2 year-1). The most remarkable finding is that the main factors driving community stability shifted with warming patterns. The increase in community dominance under NW was a significant driver of the decreased temporal stability in the community. However, the decrease in community stability caused by N addition was ascribed to the decreased stability of both dominant and common species under WW. In contrast, N addition decreased community temporal stability mainly via a decrease in species asynchrony under YW. Our results suggested that warming patterns can modulate the effects of N enhancement on community stability. To predict the effects of climate change on alpine grasslands accurately, the idiosyncratic effects of asymmetric seasonal warming under future climate change scenarios should be considered.
Collapse
Affiliation(s)
- Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Song
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Zhou T, Zhang J, Qin Y, Zhou G, Wang C, Xu Y, Fei Y, Qiao X, Jiang M. Species Asynchrony and Large Trees Jointly Drive Community Stability in a Montane Subtropical Forest. Ecosystems 2022. [DOI: 10.1007/s10021-022-00790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Li H, Luo P, Yang H, Luo C, Xie W, Jia H, Cheng Y, Huang Y. Assessing the effect of roads on mountain plant diversity beyond species richness. FRONTIERS IN PLANT SCIENCE 2022; 13:985673. [PMID: 36226279 PMCID: PMC9549253 DOI: 10.3389/fpls.2022.985673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive understanding of the effects of mountain roads on plant diversity is critical to finding the most effective solutions for managing this particular driver. Little is known, however, about the simultaneous effects that road have on the multiple facets of biodiversity, although roads are considered to be one of the major disturbances in the Qionglai mountain range. In this study, we analyzed the impact of roads on the multiple facets of plant diversity (taxonomic, functional and phylogenetic diversity) in the study area using Hill numbers by comparing plant diversity between roadside and interior plots at the landscape scale, then, we used linear mixed models to analyze the effect of mountain roads on the multiple facets of plant diversity along an elevational gradient. The results showed that the roadside plots lacked 29.45% of the total number of species with particular functional traits (such as a relatively high specific leaf area (SLA), a relatively low leaf dry matter content (LDMC) and relatively old clades) and exclusively contained 14.62% of the total number of species. Compared with the interior community, the taxonomic, functional and phylogenetic diversity of roadside community decreased by no more than 26.78%, 24.90% and 16.62%, respectively. Taxonomic and functional diversity of dominant and common species showed greater changes to road disturbances, while rare species showed the greatest change in phylogenetic diversity. Taxonomic homogenization of roadside communities was accompanied by functional and phylogenetic homogenization. Additionally, the impact of roads on these three facets of plant diversity showed the characteristics of peak clipping along the elevation gradient. Our findings highlight the negative impact of roads on the taxonomic, functional and phylogenetic diversity of the Qionglai mountain range, as roads promote communities that are more similar in taxonomic, functional, and phylogenetic composition, and to a greater extent contributed to compositional evenness. These effects tend to be functionally and phylogenetically non-random, and species in some clades or with some functional traits are at higher risk of loss. Our results are important for the conservation and management of nature reserves, especially for local governments aiming to create new infrastructure to connect natural mountainous areas.
Collapse
Affiliation(s)
- Honglin Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Luo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chuan Luo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Honghong Jia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Cheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Hidalgo-Galvez MD, Barkaoui K, Volaire F, Matías L, Cambrollé J, Fernández-Rebollo P, Carbonero MD, Pérez-Ramos IM. Can trees buffer the impact of climate change on pasture production and digestibility of Mediterranean dehesas? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155535. [PMID: 35489515 DOI: 10.1016/j.scitotenv.2022.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sustainability and functioning of silvopastoral ecosystems are being threatened by the forecasted warmer and drier environments in the Mediterranean region. Scattered trees of these ecosystems could potentially mitigate the impact of climate change on herbaceous plant community but this issue has not yet tested experimentally. We carried out a field manipulative experiment of increased temperature (+2-3 °C) using Open Top Chambers and rainfall reduction (30%) through rain-exclusion shelters to evaluate how net primary productivity and digestibility respond to climate change over three consecutive years, and to test whether scattered trees could buffer the effects of higher aridity in Mediterranean dehesas. First, we observed that herbaceous communities located beneath tree canopy were less productive (351 g/m2) than in open grassland (493 g/m2) but had a higher digestibility (44% and 41%, respectively), likely promoted by tree shade and the higher soil fertility of this habitat. Second, both habitats responded similarly to climate change in terms of net primary productivity, with a 33% increase under warming and a 13% decrease under reduced rainfall. In contrast, biomass digestibility decreased under increased temperatures (-7.5%), since warming enhanced the fiber and lignin content and decreased the crude protein content of aerial biomass. This warming-induced effect on biomass digestibility only occurred in open grasslands, suggesting a buffering role of trees in mitigating the impact of climate change. Third, warming did not only affect these ecosystem processes in a direct way but also indirectly via changes in plant functional composition. Our findings suggest that climate change will alter both the quantity and quality of pasture production, with expected warmer conditions increasing net primary productivity but at the expense of reducing digestibility. This negative effect of warming on digestibility might be mitigated by scattered trees, highlighting the importance of implementing strategies and suitable management to control tree density in these ecosystems.
Collapse
Affiliation(s)
- Maria Dolores Hidalgo-Galvez
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012 Seville, Spain; Integrated Biology Doctoral Program, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France; ABSys, University of Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - Florence Volaire
- Centre d'Écologie Fontionnelle et Évolutive de Montpellier (CEFE-CNRS), 1919 Route de Mende, 34293 Montpellier cedex 5, France.
| | - Luis Matías
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Jesús Cambrollé
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Pilar Fernández-Rebollo
- Department of Forestry Engineering ETSIAM, School of Agricultural and Forestry Engineering ETSIAM, University of Córdoba, 14071 Córdoba, Spain.
| | - Maria Dolores Carbonero
- Department of Agricultural Production, Institute of Agricultural and Fishing Research and Education (IFAPA), km. 15, El Viso Road, 14270 Hinojosa del Duque, Córdoba, Spain.
| | - Ignacio Manuel Pérez-Ramos
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012 Seville, Spain.
| |
Collapse
|
17
|
Huang M, Wang S, Liu X, Nie M, Zhou S, Hautier Y. Intra‐ and interspecific variability of specific leaf area mitigate the reduction of community stability in response to warming and nitrogen addition. OIKOS 2022. [DOI: 10.1111/oik.09207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengjiao Huang
- National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Inst. of Biodiversity Science, School of Life Sciences, Fudan Univ. Shanghai China
| | - Shaopeng Wang
- Inst. of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking Univ. Beijing China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro‐Ecosystems&Inst. Innovation Ecology, Lanzhou Univ. Lanzhou China
| | - Ming Nie
- National Observation and Research Station for Shanghai Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Inst. of Biodiversity Science, School of Life Sciences, Fudan Univ. Shanghai China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan Univ. Haikou China
| | - Yann Hautier
- Dept of Biology, Utrecht Univ. Utrecht the Netherlands
| |
Collapse
|
18
|
Xu F, Li J, Wu L, Su J, Wang Y, Chen D, Bai Y. Linking leaf traits to the temporal stability of above- and belowground productivity under global change and land use scenarios in a semi-arid grassland of Inner Mongolia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151858. [PMID: 34822882 DOI: 10.1016/j.scitotenv.2021.151858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The biotic drivers for the temporal stability of aboveground net productivity (ANPP) in natural ecosystems are well understood. However, knowledge gaps still exist regarding the relative importance of biotic and abiotic drivers regulating the temporal stability of aboveground productivity (ANPP), belowground net productivity (BNPP), and community net productivity (NPP) under global change and land use scenarios. Thus, in this study, we aimed to study the effects of increased water and nitrogen availability on temporal stability of ANPP, BNPP, and NPP and underlying mechanisms at sites with different long-term grazing histories in typical grasslands of the Inner Mongolia. The results suggested that resource addition affected the ANPP stability, but it did not change the stability of BNPP and NPP, which were all mediated by grazing histories. Most importantly, our study further indicated that species asynchrony, primarily contributed to the stability of ANPP and NPP by weakening their variation, and species asynchrony was regulated directly by plant diversity-related variables and indirectly by soil variables which were affected by resource addition and grazing history. In addition, an increase of ANPP stimulated under resource addition was a secondary contributor to ANPP stability. Specifically, the community-weighted mean of specific leaf area (CWM SLA) regulated the ANPP stability indirectly by promoting species asynchrony, while functional diversity of leaf area and SLA both directly controlled the BNPP stability. Findings of our study demonstrate that different mechanisms drove temporal stability of above- and belowground productivity. Our study has important implications for maintaining the temporal stability of community productivity and for establishing sustainable management practices of semi-arid grasslands under global change and land use scenarios.
Collapse
Affiliation(s)
- Fengwei Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Research Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Grassland Research Center, National Forestry and Grassland Administration, Beijing 100091, China.
| | - Jianjun Li
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liji Wu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Jishuai Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dima Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
19
|
Wang C, Wang J, Zhang F, Yang Y, Luo F, Li Y, Li J. Stability response of alpine meadow communities to temperature and precipitation changes on the Northern Tibetan Plateau. Ecol Evol 2022; 12:e8592. [PMID: 35222964 PMCID: PMC8848471 DOI: 10.1002/ece3.8592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Biomass temporal stability plays a key role in maintaining sustainable ecosystem functions and services of grasslands, and climate change has exerted a profound impact on plant biomass. However, it remains unclear how the community biomass stability in alpine meadows responds to changes in some climate factors (e.g., temperature and precipitation). Long-term field aboveground biomass monitoring was conducted in four alpine meadows (Haiyan [HY], Henan [HN], Gande [GD], and Qumalai [QML]) on the Qinghai-Tibet Plateau. We found that climate factors and ecological factors together affected the community biomass stability and only the stability of HY had a significant decrease over the study period. The community biomass stability at each site was positively correlated with both the stability of the dominant functional group and functional groups asynchrony. The effect of dominant functional groups on community stability decreased with the increase of the effect of functional groups asynchrony on community stability and there may be a 'trade-off' relationship between the effects of these two factors on community stability. Climatic factors directly or indirectly affect community biomass stability by influencing the stability of the dominant functional group or functional groups asynchrony. Air temperature and precipitation indirectly affected the community stability of HY and HN, but air temperature in the growing season and nongrowing season had direct negative and direct positive effects on the community stability of GD and QML, respectively. The underlying mechanisms varied between community composition and local climate conditions. Our findings highlighted the role of dominant functional group and functional groups asynchrony in maintaining community biomass stability in alpine meadows and we highlighted the importance of the environmental context when exploring the stability influence mechanism. Studies of community stability in alpine meadows along with different precipitation and temperature gradients are needed to improve our comprehensive understanding of the mechanisms controlling alpine meadow stability.
Collapse
Affiliation(s)
- Chunyu Wang
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junbang Wang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchNational Ecosystem Science Data CenterChinese Academy of SciencesBeijingChina
| | - Fawei Zhang
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Yongsheng Yang
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Fanglin Luo
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Yingnian Li
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Jiexia Li
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| |
Collapse
|
20
|
Sun B, Jiang M, Han G, Zhang L, Zhou J, Bian C, Du Y, Yan L, Xia J. Experimental warming reduces ecosystem resistance and resilience to severe flooding in a wetland. SCIENCE ADVANCES 2022; 8:eabl9526. [PMID: 35080980 PMCID: PMC8791607 DOI: 10.1126/sciadv.abl9526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Climate warming and extreme hydrological events are threatening the sustainability of wetlands across the globe. However, whether climate warming will amplify or diminish the impact of extreme flooding on wetland ecosystems is unknown. Here, we show that climate warming significantly reduced wetland resistance and resilience to a severe flooding event via a 6-year warming experiment. We first found that warming rapidly altered plant community structure by increasing the dominance of low-canopy species. Then, we showed that warming reduced the resistance and resilience of vegetation productivity to a 72-cm flooding event. Last, we detected slower postflooding carbon processes, such as gross ecosystem productivity, soil respiration, and soil methane emission, under the warming treatment. Our results demonstrate how severe flooding can destabilize wetland vegetation structure and ecosystem function under climate warming. These findings indicate an enhanced footprint of extreme hydrological events in wetland ecosystems in a warmer climate.
Collapse
Affiliation(s)
- Baoyu Sun
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200000, China
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, China
| | - Ming Jiang
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200000, China
| | - Guangxuan Han
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Liwen Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jian Zhou
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200000, China
- Research Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai 200000, China
| | - Chenyu Bian
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200000, China
- Research Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai 200000, China
| | - Ying Du
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200000, China
- Research Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai 200000, China
| | - Liming Yan
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200000, China
- Research Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai 200000, China
| | - Jianyang Xia
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200000, China
- Research Center for Global Change and Complex Ecosystems, East China Normal University, Shanghai 200000, China
- Corresponding author.
| |
Collapse
|
21
|
Jung CG, Xu X, Shi Z, Niu S, Xia J, Sherry R, Jiang L, Zhu K, Hou E, Luo Y. Warmer and wetter climate promotes net primary production in
C
4
grassland with additional enhancement by hay harvesting. Ecosphere 2022. [DOI: 10.1002/ecs2.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chang Gyo Jung
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
- Department of Biology University of Central Florida Orlando Florida USA
| | - Xia Xu
- College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Zheng Shi
- Department of Ecology and Evolutionary Biology University of California Irvine Irvine California USA
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- Department of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Jianyang Xia
- Tiantong National Forest Ecosystem Observation and Research Station School of Ecological and Environmental Sciences, East China Normal University Shanghai China
- Research Center for Global Change and Ecological Forecasting East China Normal University Shanghai China
| | - Rebecca Sherry
- Department of Microbiology and Plant Biology University of Oklahoma Norman Oklahoma USA
| | - Lifen Jiang
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
| | - Kai Zhu
- Department of Environmental Studies University of California Santa Cruz California USA
| | - Enqing Hou
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
| | - Yiqi Luo
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona USA
- Center for Ecosystem Science and Society Northern Arizona University Flagstaff Arizona USA
| |
Collapse
|
22
|
Liu P, Lv W, Sun J, Luo C, Zhang Z, Zhu X, Lin X, Duan J, Xu G, Chang X, Hu Y, Lin Q, Xu B, Guo X, Jiang L, Wang Y, Piao S, Wang J, Niu H, Shen L, Zhou Y, Li B, Zhang L, Hong H, Wang Q, Wang A, Zhang S, Xia L, Dorji T, Li Y, Cao G, Peñuelas J, Zhao X, Wang S. Ambient climate determines the directional trend of community stability under warming and grazing. GLOBAL CHANGE BIOLOGY 2021; 27:5198-5210. [PMID: 34228871 DOI: 10.1111/gcb.15786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Changes in ecological processes over time in ambient treatments are often larger than the responses to manipulative treatments in climate change experiments. However, the impacts of human-driven environmental changes on the stability of natural grasslands have been typically assessed by comparing differences between manipulative plots and reference plots. Little is known about whether or how ambient climate regulates the effects of manipulative treatments and their underlying mechanisms. We collected two datasets, one a 36-year long-term observational dataset from 1983 to 2018, and the other a 10-year manipulative asymmetric warming and grazing experiment using infrared heaters with moderate grazing from 2006 to 2015 in an alpine meadow on the Tibetan Plateau. The 36-year observational dataset shows that there was a nonlinear response of community stability to ambient temperature with a positive relationship between them due to an increase in ambient temperature in the first 25 years and then a decrease in ambient temperature thereafter. Warming and grazing decreased community stability with experiment duration through an increase in legume cover and a decrease in species asynchrony, which was due to the decreasing background temperature through time during the 10-year experiment period. Moreover, the temperature sensitivity of community stability was higher under the ambient treatment than under the manipulative treatments. Therefore, our results suggested that ambient climate may control the directional trend of community stability while manipulative treatments may determine the temperature sensitivity of the response of community stability to climate relative to the ambient treatment. Our study emphasizes the importance of the context dependency of the response of community stability to human-driven environmental changes.
Collapse
Affiliation(s)
- Peipei Liu
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wangwang Lv
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianping Sun
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Caiyun Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biotac, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhenhua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biotac, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xiaoxue Zhu
- College of Biological Resources and Food Engineering, Qujing Normal University, Qujing City, Yunnan, China
| | - Xingwu Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jichuang Duan
- Binhai Research Institute in Tianjin, Tianjin, China
| | - Guangping Xu
- Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region-Chinese Academy of Sciences, Guangxi, China
| | - Xiaofeng Chang
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Yigang Hu
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
| | - Qiaoyan Lin
- Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, China
| | - Burenbayin Xu
- Central China Normal University, Wuhan, Hubei, China
| | - Xiaowei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biotac, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lili Jiang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- University of the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Science of the Chinese Academy of Sciences, Beijing, China
| | - Shilong Piao
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Science of the Chinese Academy of Sciences, Beijing, China
| | - Jinzhi Wang
- Institute of Wetland, Chinese Academy of Forestry, Beijing, China
| | - Haishan Niu
- University of the Chinese Academy of Sciences, Beijing, China
| | - Liyong Shen
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bowen Li
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lirong Zhang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Huan Hong
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - A Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Suren Zhang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lu Xia
- College of Science, Tibet University, Lhasa, China
| | - Tsechoe Dorji
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Science of the Chinese Academy of Sciences, Beijing, China
| | - Yingnian Li
- Key Laboratory of Adaptation and Evolution of Plateau Biotac, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Guangming Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biotac, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Josep Peñuelas
- CREAF, Barcelona, Catalonia, Spain
- Global Ecology Unit CREAF-CEAB-CSIC-UAB, CSIC, Barcelona, Catalonia, Spain
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biotac, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shiping Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Science of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Li C, Lai C, Peng F, Xue X, You Q, Liu F, Guo P, Liao J, Wang T. Dominant Plant Functional Group Determine the Response of the Temporal Stability of Plant Community Biomass to 9-Year Warming on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2021; 12:704138. [PMID: 34539698 PMCID: PMC8446532 DOI: 10.3389/fpls.2021.704138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Ecosystem stability characterizes ecosystem responses to natural and anthropogenic disturbance and affects the feedback between ecosystem and climate. A 9-year warming experiment (2010-2018) was conducted to examine how climatic warming and its interaction with the soil moisture condition impact the temporal stability of plant community aboveground biomass (AGB) of an alpine meadow in the central Qinghai-Tibetan Plateau (QTP). Under a warming environment, the AGB percentage of grasses and forbs significantly increased but that of sedges decreased regardless of the soil water availability in the experimental plots. The warming effects on plant AGB varied with annual precipitation. In the dry condition, the AGB showed no significant change under warming in the normal and relatively wet years, but it significantly decreased in relatively drought years (16% in 2013 and 12% in 2015). In the wet condition, the AGB showed no significant change under warming in the normal and relatively drought years, while it significantly increased in relatively wet years (12% in 2018). Warming significantly decreased the temporal stability of AGB of plant community and sedges. Species richness remained stable even under the warming treatment in both the dry and wet conditions. The temporal stability of AGB of sedges (dominant plant functional group) explained 66.69% variance of the temporal stability of plant community AGB. Our findings highlight that the temporal stability of plant community AGB is largely regulated by the dominant plant functional group of alpine meadow that has a relatively low species diversity.
Collapse
Affiliation(s)
- Chengyang Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Chimin Lai
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Peng
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- Arid Land Research Center, Tottori University, Tottori, Japan
- Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment, State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Xian Xue
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Quangang You
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Feiyao Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Pinglin Guo
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Drylands Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Jie Liao
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Tao Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
24
|
Louthan AM, Peterson ML, Shoemaker LG. Climate sensitivity across latitude: scaling physiology to communities. Trends Ecol Evol 2021; 36:931-942. [PMID: 34275657 DOI: 10.1016/j.tree.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 11/25/2022]
Abstract
While we know climate change will impact individuals, populations, and communities, we lack a cross-scale synthesis for understanding global variation in climate change impacts and predicting their ecological effects. Studies of latitudinal variation in individuals' thermal responses have developed primarily in isolation from studies of natural populations' warming responses. Further, it is unclear whether latitudinal variation in temperature-dependent population responses will manifest into latitudinal patterns in community stability. Integrating across scales, we discuss the key drivers of latitudinal variation in climate change effects, with the goal of identifying key pieces of information necessary to predict warming effects in natural communities. We propose two experimental approaches synthesizing latitudinal variability in climate change impacts across scales of biological organization.
Collapse
Affiliation(s)
- Allison M Louthan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Megan L Peterson
- Plant Biology Department, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
25
|
Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc Natl Acad Sci U S A 2021; 118:2025321118. [PMID: 34131077 DOI: 10.1073/pnas.2025321118] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Permafrost degradation may induce soil carbon (C) loss, critical for global C cycling, and be mediated by microbes. Despite larger C stored within the active layer of permafrost regions, which are more affected by warming, and the critical roles of Qinghai-Tibet Plateau in C cycling, most previous studies focused on the permafrost layer and in high-latitude areas. We demonstrate in situ that permafrost degradation alters the diversity and potentially decreases the stability of active layer microbial communities. These changes are associated with soil C loss and potentially a positive C feedback. This study provides insights into microbial-mediated mechanisms responsible for C loss within the active layer in degraded permafrost, aiding in the modeling of C emission under future scenarios.
Collapse
|
26
|
Yang X, Mariotte P, Guo J, Hautier Y, Zhang T. Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143137. [PMID: 33121784 DOI: 10.1016/j.scitotenv.2020.143137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Global change alters how terrestrial ecosystems function and makes them less stable over time. Global change can also suppress the development and effectiveness of arbuscular mycorrhizal fungi (AMF). This is concerning, as AMF have been shown to alleviate the negative influence of global changes on plant growth and maintain species coexistence. However, how AMF and global change interact and influence community temporal stability remains poorly understood. Here, we conducted a 4-year field experiment and used structural equation modeling (SEM) to explore the influence of elevated temperature, nitrogen (N) addition and AMF suppression on community temporal stability (quantified as the ratio of the mean community productivity to its standard deviation) in a temperate meadow in northern China. We found that elevated temperature and AMF suppression independently decreased the community temporal stability but that N addition had no impact. Community temporal stability was mainly driven by elevated temperature, N addition and AMF suppression that modulated the dominant species stability; to a lesser extent by the elevated temperature and AMF suppression that modulated AMF richness associated with community asynchrony; and finally by the N addition and AMF suppression that modulated mycorrhizal colonization. In addition, although N addition, AMF suppression and elevated temperature plus AMF suppression reduced plant species richness, there was no evidence that changes in community temporal stability were linked to changes in plant richness. SEM further showed that elevated temperature, N addition and AMF suppression regulated community temporal stability by influencing both the temporal mean and variation in community productivity. Our results suggest that global environmental changes may have appreciable consequences for the stability of temperate meadows while also highlighting the role of belowground AMF status in the responses of plant community temporal stability to global change.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Pierre Mariotte
- Grazing Systems, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Jixun Guo
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| | - Tao Zhang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
27
|
Complementary mechanisms stabilize national food production. Sci Rep 2021; 11:4922. [PMID: 33649430 PMCID: PMC7921096 DOI: 10.1038/s41598-021-84272-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 12/04/2022] Open
Abstract
Ensuring the temporal stability of national food production is crucial for avoiding sharp drops in domestic food availability. The average stability of individual crop yields and asynchrony among crop yield fluctuations are two candidate mechanisms to stabilize national food production. However, the quantification of their respective influence on the stability of national food production is lacking, as is the identification of the factors regulating both mechanisms. Using yield data for 138 crops and 115 countries over a 50-year period, we first show that the stability of total national yield mostly relies on the fluctuations of the yield of crops covering the largest share of cropland. The average yield stability of these crops exert a stabilizing effect on national food production that is twice as important as the one of the asynchronous yield fluctuations among them. Climate variability reduces the stability of national food production by synchronizing yield fluctuations among crops and destabilizing the yield of individual crops. However, our results suggest that increasing crop diversity can counteract the synchronizing effects of climate variability by enhancing asynchronous dynamics among crops. Irrigation can promote the average stability of individual crop yields but cannot compensate for the destabilizing effect of climate variability. Considering both the response of each crop to climatic variations and the dynamics emerging from crop baskets will help agricultural policies to ensure stable food supply at the national level.
Collapse
|
28
|
Xia J, Wang J, Niu S. Research challenges and opportunities for using big data in global change biology. GLOBAL CHANGE BIOLOGY 2020; 26:6040-6061. [PMID: 32799353 DOI: 10.1111/gcb.15317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Global change biology has been entering a big data era due to the vast increase in availability of both environmental and biological data. Big data refers to large data volume, complex data sets, and multiple data sources. The recent use of such big data is improving our understanding of interactions between biological systems and global environmental changes. In this review, we first explore how big data has been analyzed to identify the general patterns of biological responses to global changes at scales from gene to ecosystem. After that, we investigate how observational networks and space-based big data have facilitated the discovery of emergent mechanisms and phenomena on the regional and global scales. Then, we evaluate the predictions of terrestrial biosphere under global changes by big modeling data. Finally, we introduce some methods to extract knowledge from big data, such as meta-analysis, machine learning, traceability analysis, and data assimilation. The big data has opened new research opportunities, especially for developing new data-driven theories for improving biological predictions in Earth system models, tracing global change impacts across different organismic levels, and constructing cyberinfrastructure tools to accelerate the pace of model-data integrations. These efforts will uncork the bottleneck of using big data to understand biological responses and adaptations to future global changes.
Collapse
Affiliation(s)
- Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jing Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Castillioni K, Wilcox K, Jiang L, Luo Y, Jung CG, Souza L. Drought mildly reduces plant dominance in a temperate prairie ecosystem across years. Ecol Evol 2020; 10:6702-6713. [PMID: 32724543 PMCID: PMC7381580 DOI: 10.1002/ece3.6400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 11/11/2022] Open
Abstract
Shifts in dominance and species reordering can occur in response to global change. However, it is not clear how altered precipitation and disturbance regimes interact to affect species composition and dominance.We explored community-level diversity and compositional similarity responses, both across and within years, to a manipulated precipitation gradient and annual clipping in a mixed-grass prairie in Oklahoma, USA. We imposed seven precipitation treatments (five water exclusion levels [-20%, -40%, -60%, -80%, and -100%], water addition [+50%], and control [0% change in precipitation]) year-round from 2016 to 2018 using fixed interception shelters. These treatments were crossed with annual clipping to mimic hay harvest.We found that community-level responses were influenced by precipitation across time. For instance, plant evenness was enhanced by extreme drought treatments, while plant richness was marginally promoted under increased precipitation.Clipping promoted species gain resulting in greater richness within each experimental year. Across years, clipping effects further reduced the precipitation effects on community-level responses (richness and evenness) at both extreme drought and added precipitation treatments. Synthesis: Our results highlight the importance of studying interactive drivers of change both within versus across time. For instance, clipping attenuated community-level responses to a gradient in precipitation, suggesting that management could buffer community-level responses to drought. However, precipitation effects were mild and likely to accentuate over time to produce further community change.
Collapse
Affiliation(s)
- Karen Castillioni
- Oklahoma Biological SurveyDepartment of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| | - Kevin Wilcox
- Ecosystem Science and ManagementUniversity of WyomingLaramieWYUSA
| | - Lifen Jiang
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZUSA
| | - Yiqi Luo
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZUSA
| | - Chang Gyo Jung
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZUSA
| | - Lara Souza
- Oklahoma Biological SurveyDepartment of Microbiology and Plant BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
30
|
Prather RM, Castillioni K, Welti EAR, Kaspari M, Souza L. Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology 2020; 101:e03033. [PMID: 32112407 DOI: 10.1002/ecy.3033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 11/07/2022]
Abstract
Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant-arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed-grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.
Collapse
Affiliation(s)
- Rebecca M Prather
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Karen Castillioni
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Ellen A R Welti
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Kaspari
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lara Souza
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
31
|
Chi Y, Xu Z, Zhou L, Yang Q, Zheng S, Li S. Differential roles of species richness versus species asynchrony in regulating community stability along a precipitation gradient. Ecol Evol 2019; 9:14244-14252. [PMID: 31938515 PMCID: PMC6953564 DOI: 10.1002/ece3.5857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Plant community may provide products and services to humans. However, patterns and drivers of community stability along a precipitation gradient remain unclear. A regional-scale transect survey was conducted over a 3-year period from 2013 to 2015, along a precipitation gradient from 275 to 555 mm and spanning 440 km in length from west to east in a temperate semiarid grassland of northern China, a central part of the Eurasian steppe. Our study provided regional-scale evidence that the community stability increased with increasing precipitation in the semiarid ecosystem. The patterns of community stability along a precipitation gradient were ascribed to community composition and community dynamics, such as species richness and species asynchrony, rather than the abiotic effect of precipitation. Species richness regulated the temporal mean (μ) of aboveground net primary productivity (ANPP), while species asynchrony regulated the temporal standard deviation (σ) of ANPP, which in turn contributed to community stability. Our findings highlight the crucial role of community composition and community dynamics in regulating community stability under climate change.
Collapse
Affiliation(s)
- Yonggang Chi
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Resources and Environmental Information SystemInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Zhuwen Xu
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Lei Zhou
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Qingpeng Yang
- Key Laboratory of Forest Ecology and ManagementInstitute of Applied EcologyChinese Academy of SciencesShenyangChina
| | - Shuxia Zheng
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Shao‐peng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research StationSchool of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐Chongming (IEC)ShanghaiChina
| |
Collapse
|
32
|
Huang K, Xia J. High ecosystem stability of evergreen broadleaf forests under severe droughts. GLOBAL CHANGE BIOLOGY 2019; 25:3494-3503. [PMID: 31276270 DOI: 10.1111/gcb.14748] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or land carbon sink is mainly driven by non-evergreen ecosystems, such as semiarid grasslands, croplands, and boreal forests. Thus, we hypothesize that EBFs have higher stability than other biomes under the increasingly extreme droughts. Here we use long-term Standardized Precipitation and Evaporation Index (SPEI) data and satellite-derived Enhanced Vegetation Index (EVI) products to quantify the temporal stability (ratio of mean annual EVI to its SD), resistance (ability to maintain its original levels during droughts), and resilience (rate of EVI recovering to pre-drought levels) at biome and global scales. We identified significantly increasing trends of annual drought severity (SPEI range: -0.08 to -1.80), area (areal fraction range: 2%-19%), and duration (month range: 7.9-9.1) in the EBF biome over 2000-2014. However, EBFs showed the highest resistance of EVI to droughts, but no significant differences in resilience of EVI to droughts were found among biomes (forests, grasslands, savannas, and shrublands). Global resistance and resilience of EVI to droughts were largely affected by temperature and solar radiation. These findings suggest that EBFs have higher stability than other biomes despite the greater drought exposure. Thus, the conservation of EBFs is critical for stabilizing global vegetation productivity and land carbon sink under more-intense climate extremes in the future.
Collapse
Affiliation(s)
- Kun Huang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Center for Global Change and Ecological Forecasting, East China Normal University, Shanghai, China
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
33
|
Stuble KL, Ma S, Liang J, Luo Y, Classen AT, Souza L. Long‐term impacts of warming drive decomposition and accelerate the turnover of labile, not recalcitrant, carbon. Ecosphere 2019. [DOI: 10.1002/ecs2.2715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Katharine L. Stuble
- The Holden Arboretum Kirtland Ohio 44094 USA
- The Oklahoma Biological Survey Norman Oklahoma 73019 USA
| | - Shuang Ma
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| | - Junyi Liang
- Department of Microbiology and Plant Biology University of Oklahoma Norman Ohio 73019 USA
| | - Yiqi Luo
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
- Department of Microbiology and Plant Biology University of Oklahoma Norman Ohio 73019 USA
| | - Aimée T. Classen
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont 05405 USA
- The Gund Institute for Environment The University of Vermont Burlington Vermont 05405 USA
| | - Lara Souza
- The Oklahoma Biological Survey Norman Oklahoma 73019 USA
- Department of Microbiology and Plant Biology University of Oklahoma Norman Ohio 73019 USA
| |
Collapse
|
34
|
van der Plas F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev Camb Philos Soc 2019; 94:1220-1245. [PMID: 30724447 DOI: 10.1111/brv.12499] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
Abstract
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non-manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real-world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well-being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.
Collapse
Affiliation(s)
- Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Shi Z, Lin Y, Wilcox KR, Souza L, Jiang L, Jiang J, Jung CG, Xu X, Yuan M, Guo X, Wu L, Zhou J, Luo Y. Successional change in species composition alters climate sensitivity of grassland productivity. GLOBAL CHANGE BIOLOGY 2018; 24:4993-5003. [PMID: 29851205 DOI: 10.1111/gcb.14333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8-year long-term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C3 -dominant plant community to a perennial C4 -dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from -17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time-dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change.
Collapse
Affiliation(s)
- Zheng Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma
| | - Yang Lin
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California
| | - Kevin R Wilcox
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma
| | - Lara Souza
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma
| | - Lifen Jiang
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
| | - Jiang Jiang
- Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Chang Gyo Jung
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
| | - Xia Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Mengting Yuan
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma
| | - Xue Guo
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Liyou Wu
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma
| | - Jizhong Zhou
- Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
36
|
Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N, Byun C, Catford JA, Cerabolini BEL, Cornelissen JHC, Craine JM, De Luca E, Ebeling A, Griffin JN, Hector A, Hines J, Jentsch A, Kattge J, Kreyling J, Lanta V, Lemoine N, Meyer ST, Minden V, Onipchenko V, Polley HW, Reich PB, van Ruijven J, Schamp B, Smith MD, Soudzilovskaia NA, Tilman D, Weigelt A, Wilsey B, Manning P. Multiple facets of biodiversity drive the diversity–stability relationship. Nat Ecol Evol 2018; 2:1579-1587. [DOI: 10.1038/s41559-018-0647-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022]
|
37
|
Climate mediates the biodiversity-ecosystem stability relationship globally. Proc Natl Acad Sci U S A 2018; 115:8400-8405. [PMID: 30061405 DOI: 10.1073/pnas.1800425115] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The insurance hypothesis, stating that biodiversity can increase ecosystem stability, has received wide research and political attention. Recent experiments suggest that climate change can impact how plant diversity influences ecosystem stability, but most evidence of the biodiversity-stability relationship obtained to date comes from local studies performed under a limited set of climatic conditions. Here, we investigate how climate mediates the relationships between plant (taxonomical and functional) diversity and ecosystem stability across the globe. To do so, we coupled 14 years of temporal remote sensing measurements of plant biomass with field surveys of diversity in 123 dryland ecosystems from all continents except Antarctica. Across a wide range of climatic and soil conditions, plant species pools, and locations, we were able to explain 73% of variation in ecosystem stability, measured as the ratio of the temporal mean biomass to the SD. The positive role of plant diversity on ecosystem stability was as important as that of climatic and soil factors. However, we also found a strong climate dependency of the biodiversity-ecosystem stability relationship across our global aridity gradient. Our findings suggest that the diversity of leaf traits may drive ecosystem stability at low aridity levels, whereas species richness may have a greater stabilizing role under the most arid conditions evaluated. Our study highlights that to minimize variations in the temporal delivery of ecosystem services related to plant biomass, functional and taxonomic plant diversity should be particularly promoted under low and high aridity conditions, respectively.
Collapse
|
38
|
Climate warming reduces the temporal stability of plant community biomass production. Nat Commun 2017; 8:15378. [PMID: 28488673 PMCID: PMC5436222 DOI: 10.1038/ncomms15378] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic climate change has emerged as a critical environmental problem, prompting frequent investigations into its consequences for various ecological systems. Few studies, however, have explored the effect of climate change on ecological stability and the underlying mechanisms. We conduct a field experiment to assess the influence of warming and altered precipitation on the temporal stability of plant community biomass in an alpine grassland located on the Tibetan Plateau. We find that whereas precipitation alteration does not influence biomass temporal stability, warming lowers stability through reducing the degree of species asynchrony. Importantly, biomass temporal stability is not influenced by plant species diversity, but is largely determined by the temporal stability of dominant species and asynchronous population dynamics among the coexisting species. Our findings suggest that ongoing and future climate change may alter stability properties of ecological communities, potentially hindering their ability to provide ecosystem services for humanity. Temporal stability of plant communities is driven by several mechanisms and may be influenced by climate change. Here it is shown that warming, but not precipitation, reduces species asynchrony in an alpine grassland, leading to lower biomass temporal stability.
Collapse
|