1
|
Chacko AN, Miller ADC, Dhanabalan KM, Mukherjee A. Exploring the potential of water channels for developing genetically encoded reporters and biosensors for diffusion-weighted MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107743. [PMID: 39053029 DOI: 10.1016/j.jmr.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Genetically encoded reporters for magnetic resonance imaging (MRI) offer a valuable technology for making molecular-scale measurements of biological processes within living organisms with high anatomical resolution and whole-organ coverage without relying on ionizing radiation. However, most MRI reporters rely on synthetic contrast agents, typically paramagnetic metals and metal complexes, which often need to be supplemented exogenously to create optimal contrast. To eliminate the need for synthetic contrast agents, we previously introduced aquaporin-1, a mammalian water channel, as a new reporter gene for the fully autonomous detection of genetically labeled cells using diffusion-weighted MRI. In this study, we aimed to expand the toolbox of diffusion-based genetic reporters by modulating aquaporin membrane trafficking and harnessing the evolutionary diversity of water channels across species. We identified a number of new water channels that functioned as diffusion-weighted reporter genes. In addition, we show that loss-of-function variants of yeast and human aquaporins can be leveraged to design first-in-class diffusion-based sensors for detecting the activity of a model protease within living cells.
Collapse
Affiliation(s)
- Asish N Chacko
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080, USA
| | - Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106-5080, USA
| | - Kaamini M Dhanabalan
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106-5080, USA; Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106-5080, USA; Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA; Department of Bioengineering, University of California, Santa Barbara, CA 93106-5080, USA.
| |
Collapse
|
2
|
Ohlendorf R, Li N, Phi Van VD, Schwalm M, Ke Y, Dawson M, Jiang Y, Das S, Stallings B, Zheng WT, Jasanoff A. Imaging bioluminescence by detecting localized haemodynamic contrast from photosensitized vasculature. Nat Biomed Eng 2024; 8:775-786. [PMID: 38730257 DOI: 10.1038/s41551-024-01210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/30/2024] [Indexed: 05/12/2024]
Abstract
Bioluminescent probes are widely used to monitor biomedically relevant processes and cellular targets in living animals. However, the absorption and scattering of visible light by tissue drastically limit the depth and resolution of the detection of luminescence. Here we show that bioluminescent sources can be detected with magnetic resonance imaging by leveraging the light-mediated activation of vascular cells expressing a photosensitive bacterial enzyme that causes the conversion of bioluminescent emission into local changes in haemodynamic contrast. In the brains of rats with photosensitized vasculature, we used magnetic resonance imaging to volumetrically map bioluminescent xenografts and cell populations virally transduced to express luciferase. Detecting bioluminescence-induced haemodynamic signals from photosensitized vasculature will extend the applications of bioluminescent probes.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Max Planck Institute for Biological Cybernetics, Tubingen, Germany
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Advanced Imaging Research Center and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valerie Doan Phi Van
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuting Ke
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miranda Dawson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ying Jiang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sayani Das
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brenna Stallings
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Ting Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. J Biol Eng 2024; 18:30. [PMID: 38649904 PMCID: PMC11035135 DOI: 10.1186/s13036-024-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Bioengineering, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemistry, University of California, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
4
|
Miller ADC, Chowdhury SP, Hanson HW, Linderman SK, Ghasemi HI, Miller WD, Morrissey MA, Richardson CD, Gardner BM, Mukherjee A. Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566095. [PMID: 37986852 PMCID: PMC10659288 DOI: 10.1101/2023.11.07.566095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
Collapse
Affiliation(s)
- Austin D C Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Soham P Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hadley W Hanson
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Sarah K Linderman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hannah I Ghasemi
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wyatt D Miller
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Chris D Richardson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Brooke M Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Bioengineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Barandov A, Ghosh S, Jasanoff A. Probing nitric oxide signaling using molecular MRI. Free Radic Biol Med 2022; 191:241-248. [PMID: 36084790 PMCID: PMC10204116 DOI: 10.1016/j.freeradbiomed.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Collapse
Affiliation(s)
- Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Reporter Genes for Brain Imaging Using MRI, SPECT and PET. Int J Mol Sci 2022; 23:ijms23158443. [PMID: 35955578 PMCID: PMC9368793 DOI: 10.3390/ijms23158443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The use of molecular imaging technologies for brain imaging can not only play an important supporting role in disease diagnosis and treatment but can also be used to deeply study brain functions. Recently, with the support of reporter gene technology, optical imaging has achieved a breakthrough in brain function studies at the molecular level. Reporter gene technology based on traditional clinical imaging modalities is also expanding. By benefiting from the deeper imaging depths and wider imaging ranges now possible, these methods have led to breakthroughs in preclinical and clinical research. This article focuses on the applications of magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) reporter gene technologies for use in brain imaging. The tracking of cell therapies and gene therapies is the most successful and widely used application of these techniques. Meanwhile, breakthroughs have been achieved in the research and development of reporter genes and their imaging probe pairs with respect to brain function research. This paper introduces the imaging principles and classifications of the reporter gene technologies of these imaging modalities, lists the relevant brain imaging applications, reviews their characteristics, and discusses the opportunities and challenges faced by clinical imaging modalities based on reporter gene technology. The conclusion is provided in the last section.
Collapse
|
8
|
Desai M, Sharma J, Slusarczyk AL, Chapin AA, Ohlendorf R, Wisniowska A, Sur M, Jasanoff A. Hemodynamic molecular imaging of tumor-associated enzyme activity in the living brain. eLife 2021; 10:e70237. [PMID: 34931988 PMCID: PMC8691830 DOI: 10.7554/elife.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular imaging could have great utility for detecting, classifying, and guiding treatment of brain disorders, but existing probes offer limited capability for assessing relevant physiological parameters. Here, we describe a potent approach for noninvasive mapping of cancer-associated enzyme activity using a molecular sensor that acts on the vasculature, providing a diagnostic readout via local changes in hemodynamic image contrast. The sensor is targeted at the fibroblast activation protein (FAP), an extracellular dipeptidase and clinically relevant biomarker of brain tumor biology. Optimal FAP sensor variants were identified by screening a series of prototypes for responsiveness in a cell-based bioassay. The best variant was then applied for quantitative neuroimaging of FAP activity in rats, where it reveals nanomolar-scale FAP expression by xenografted cells. The activated probe also induces robust hemodynamic contrast in nonhuman primate brain. This work thus demonstrates a potentially translatable strategy for ultrasensitive functional imaging of molecular targets in neuromedicine.
Collapse
Affiliation(s)
- Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jitendra Sharma
- Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Adrian L Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ashley A Chapin
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Agata Wisniowska
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Mriganka Sur
- Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Nuclear Science & Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
9
|
Vaughan HJ, Green JJ. Recent Advances in Gene Therapy for Cancer Theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100300. [PMID: 34738046 PMCID: PMC8562678 DOI: 10.1016/j.cobme.2021.100300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is great interest in developing gene therapies for many disease indications, including cancer. However, successful delivery of nucleic acids to tumor cells is a major challenge, and in vivo efficacy is difficult to predict. Cancer theranostics is an approach combining anti-tumor therapy with imaging or diagnostic capabilities, with the goal of monitoring successful delivery and efficacy of a therapeutic agent in a tumor. Successful theranostics must maintain a high degree of anticancer targeting and efficacy while incorporating high-contrast imaging agents that are nontoxic and compatible with clinical imaging modalities. This review highlights recent advancements in theranostic strategies, including imaging technologies and genetic engineering approaches. Graphical Abstract.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
10
|
Wei H, Frey AM, Jasanoff A. Molecular fMRI of neurochemical signaling. J Neurosci Methods 2021; 364:109372. [PMID: 34597714 DOI: 10.1016/j.jneumeth.2021.109372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging (MRI) is the most widely applied technique for brain-wide measurement of neural function in humans and animals. In conventional functional MRI (fMRI), brain signaling is detected indirectly, via localized activity-dependent changes in regional blood flow, oxygenation, and volume, to which MRI contrast can be readily sensitized. Although such hemodynamic fMRI methods are powerful tools for analysis of brain activity, they lack specificity for the many molecules and cell types that play functionally distinct roles in neural processing. A suite of techniques collectively known to as "molecular fMRI," addresses this limitation by permitting MRI-based detection of specific molecular processes in deep brain tissue. This review discusses how molecular fMRI is coming to be used in the study of neurochemical dynamics that mediate intercellular communication in the brain. Neurochemical molecular fMRI is a potentially powerful approach for mechanistic analysis of brain-wide function, but the techniques are still in early stages of development. Here we provide an overview of the major advances and results that have been achieved to date, as well as directions for further development.
Collapse
Affiliation(s)
- He Wei
- Department of Biological Engineering, Massachusetts Institute of Technology, United States
| | - Abigail M Frey
- Department of Chemical Engineering, Massachusetts Institute of Technology, United States
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, United States.
| |
Collapse
|
11
|
Djorgbenoo R, Rubio MMM, Yin Z, Moore KJ, Jayapalan A, Fiadorwu J, Collins BE, Velasco B, Allado K, Tsuruta JK, Gorman CB, Wei J, Johnson KA, He P. Amphiphilic phospholipid-iodinated polymer conjugates for bioimaging. Biomater Sci 2021; 9:5045-5056. [PMID: 34127999 DOI: 10.1039/d0bm02098b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amphiphilic phospholipid-iodinated polymer conjugates were designed and synthesized as new macromolecular probes for a highly radiopaque and biocompatible imaging technology. Bioconjugation of PEG 2000-phospholipids and iodinated polyesters by click chemistry created amphiphilic moieties with hydrophobic polyesters and hydrophilic PEG units, which allowed their self-assemblies into vesicles or spiked vesicles. More importantly, the conjugates exhibited high radiopacity and biocompatibility in in vitro X-ray and cell viability measurements. This new type of bioimaging contrast agent with a Mn value of 11 289 g mol-1 was found to have a significant X-ray signal at 3.13 mg mL-1 of iodine equivalent than baseline and no cytotoxicity after 48 hours incubation of with HEK and 3T3 cells at 20 μM (20 picomoles) concentration of conjugates per well. The potential of adopting the described macromolecular probes for bioimaging was demonstrated, which could further promote the development of a field-friendly and highly sensitive bioimaging contrast agent for point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Richmond Djorgbenoo
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Mac Michael M Rubio
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - Keyori J Moore
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Anitha Jayapalan
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - Joshua Fiadorwu
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| | - Boyce E Collins
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA
| | - Brian Velasco
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | - Kokougan Allado
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - James K Tsuruta
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | - Christopher B Gorman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| | - Kennita A Johnson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | - Peng He
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27411, USA.
| |
Collapse
|
12
|
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG. Genetically encodable materials for non-invasive biological imaging. NATURE MATERIALS 2021; 20:585-592. [PMID: 33526879 PMCID: PMC8606175 DOI: 10.1038/s41563-020-00883-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felix Sigmund
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Heiles B, Terwiel D, Maresca D. The Advent of Biomolecular Ultrasound Imaging. Neuroscience 2021; 474:122-133. [PMID: 33727074 DOI: 10.1016/j.neuroscience.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Ultrasound imaging is one of the most widely used modalities in clinical practice, revealing human prenatal development but also arterial function in the adult brain. Ultrasound waves travel deep within soft biological tissues and provide information about the motion and mechanical properties of internal organs. A drawback of ultrasound imaging is its limited ability to detect molecular targets due to a lack of cell-type specific acoustic contrast. To date, this limitation has been addressed by targeting synthetic ultrasound contrast agents to molecular targets. This molecular ultrasound imaging approach has proved to be successful but is restricted to the vascular space. Here, we introduce the nascent field of biomolecular ultrasound imaging, a molecular imaging approach that relies on genetically encoded acoustic biomolecules to interface ultrasound waves with cellular processes. We review ultrasound imaging applications bridging wave physics and chemical engineering with potential for deep brain imaging.
Collapse
Affiliation(s)
- Baptiste Heiles
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Dion Terwiel
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - David Maresca
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
14
|
Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021; 10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Understanding the detailed tumor microenvironment (TME) is essential to achieve effective treatment of tumor, because TME has an extremely profound influence on the occurrence, development, invasion, and metastasis of tumor. It is of great significance to realize accurate diagnosis of the TME by using functional computed tomography (CT) contrast nanoagents (FCTNAs). Here, an overview of FCTNAs that respond to the overexpressed receptors, acidic microenvironment, overexpressed glutathione and enzymes, and hypoxia in tumor is provided, and also prospects the advance of novel spectral CT technique to detect the TME precisely. Utilizing FCTNAs is expected to achieve accurate monitoring of the TME and further provide guidance for the effective personalized tumor treatment in clinic.
Collapse
Affiliation(s)
- Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
15
|
Zou W, Wang J, Hu D, Pan X. Bayesian reconstruction of fluorescent molecular tomography via iteration of measurements. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:174-180. [PMID: 33690527 DOI: 10.1364/josaa.398996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent molecular tomography (FMT) is an important molecular imaging technique for medical diagnosis and treatment. In FMT, a typical forward model is the diffusion approximation. However, this approximation is not valid in biological tissues with low-scattering regions. To overcome this problem, a Bayesian method in combination with the model error is proposed. Further, an iteration method of boundary measurements is incorporated into the reconstruction process to improve the efficiency of reconstruction for FMT. Simulation results obtained demonstrate that the proposed approach can effectively improve the quality of the reconstructed results and speed up the reconstruction process.
Collapse
|
16
|
Shapiro MG. Reporter Genes for Ultrasound and MRI. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Lehman LL, Bruccoleri R, Danehy A, Swanson J, Mrakotsky C, Smith E, Orbach DB, Burstein R. Adverse effects of erenumab on cerebral proliferative angiopathy: A case report. Cephalalgia 2020; 41:122-126. [PMID: 32814432 DOI: 10.1177/0333102420950484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cerebral proliferative angiopathy is a vascular malformation associated with compromised blood-brain barrier and with migraine-like headache. Treating blood-brain barrier-compromised patients with erenumab, an anti-calcitonin gene-related peptide receptor monoclonal antibody, may be risky. CASE We describe a case of a 22-year-old chronic migraine patient with cerebral proliferative angiopathy who presented to our hospital in status epilepticus 2 d after his first dose of erenumab. Serial magnetic resonance imaging (MRI) studies demonstrated progressive areas of diffusion restriction including the brain tissue adjacent to the cerebral proliferative angiopathy, bilateral white matter and hippocampi. His 6-month post-presentation magnetic resonance imaging was notable for white matter injury, encephalomalacia surrounding cerebral proliferative angiopathy and bilateral hippocampal sclerosis. He remains clinically affected with residual symptoms, including refractory epilepsy and cognitive deficits. CONCLUSION The evidence presented in this case supports further investigation into potential deleterious side effects of erenumab in patients with compromised blood-brain barrier, such as individuals with intracranial vascular malformations.
Collapse
Affiliation(s)
- Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rebecca Bruccoleri
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Amy Danehy
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Julie Swanson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Christine Mrakotsky
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA
| | - Edward Smith
- Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Darren B Orbach
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Rami Burstein
- Harvard Medical School, Boston, MA, USA.,Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Ohlendorf R, Wiśniowska A, Desai M, Barandov A, Slusarczyk AL, Li N, Jasanoff A. Target-responsive vasoactive probes for ultrasensitive molecular imaging. Nat Commun 2020; 11:2399. [PMID: 32404879 PMCID: PMC7220906 DOI: 10.1038/s41467-020-16118-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Agata Wiśniowska
- Harvard-MIT Health Sciences & Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Adrian L Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Rm. 16-561, Cambridge, MA, 02139, USA.
| |
Collapse
|
19
|
Xu C, Zhang Y, Xu K, Nie JJ, Yu B, Li S, Cheng G, Li Y, Du J, Xu FJ. Multifunctional cationic nanosystems for nucleic acid therapy of thoracic aortic dissection. Nat Commun 2019; 10:3184. [PMID: 31320641 PMCID: PMC6639375 DOI: 10.1038/s41467-019-11068-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023] Open
Abstract
Thoracic aortic dissection (TAD) is an aggressive vascular disease that requires early diagnosis and effective treatment. However, due to the particular vascular structure and narrowness of lesion location, there are no effective drug delivery systems for the therapy of TAD. Here, we report a multifunctional delivery nanosystem (TP-Gd/miRNA-ColIV) composed of gadolinium-chelated tannic acid (TA), low-toxic cationic PGEA (ethanolamine-aminated poly(glycidyl methacrylate)) and type IV collagen targeted peptide (ColIV) for targeted nucleic acid therapy, early diagnosis and noninvasive monitoring of TAD. Such targeted therapy with miR-145 exhibits impressive performances in stabilizing the vascular structures and preventing the deterioration of TAD. After the treatment with TP-Gd/miR-145-ColIV, nearly no dissection occurs in the thoracic aortic arches of the mice with TAD model. Moreover, TP-Gd/miRNA-ColIV also demonstrates good magnetic resonance imaging (MRI) ability and can be used to noninvasively monitor the development conditions of TAD.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhenzi Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Ke Xu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Jing-Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Shanxi, 030001, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yulin Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Russo AF. CGRP-based Migraine Therapeutics: How Might They Work, Why So Safe, and What Next? ACS Pharmacol Transl Sci 2019; 2:2-8. [PMID: 31559394 PMCID: PMC6761833 DOI: 10.1021/acsptsci.8b00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/20/2023]
Abstract
Migraine is a debilitating neurological condition that involves the neuropeptide calcitonin gene-related peptide (CGRP). An exciting development is the recent FDA approval of the first in an emerging class of CGRP-targeted drugs designed to prevent migraine. Yet despite this efficacy, there are some fundamental unanswered questions, such as where and how CGRP works in migraine. Preclinical data suggest that CGRP acts via both peripheral and central mechanisms. The relevance of peripheral sites is highlighted by the clinical efficacy of CGRP-blocking antibodies, even though they do not appreciably cross the blood-brain barrier. The most likely sites of action are within the dura and trigeminal ganglia. Furthermore, it would be foolish to ignore perivascular actions in the dura since CGRP is the most potent vasodilatory peptide. Ultimately, the consequence of blocking CGRP or its receptor is reduced peripheral neural sensitization. Underlying their efficacy is the question of why the antibodies have such an excellent safety profile so far. This may be due to the presence of a second CGRP receptor and vesicular release of a large bolus of peptides. Finally, despite the promise of these drugs, there are unmet gaps because they do not work for all patients; so what next? We can expect advances on several fronts, including CGRP receptor structures that may help development of centrally-acting antagonists, combinatorial treatments that integrate other therapies, and development of drugs that target other neuropeptides. This is truly an exciting time for CGRP and the migraine field with many more discoveries on the horizon.
Collapse
Affiliation(s)
- Andrew F. Russo
- Departments
of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, Iowa 52242, United States
- Center
for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, Iowa 52246, United States
| |
Collapse
|
21
|
Sigmund F, Massner C, Erdmann P, Stelzl A, Rolbieski H, Desai M, Bricault S, Wörner TP, Snijder J, Geerlof A, Fuchs H, Hrabĕ de Angelis M, Heck AJR, Jasanoff A, Ntziachristos V, Plitzko J, Westmeyer GG. Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nat Commun 2018; 9:1990. [PMID: 29777103 PMCID: PMC5959871 DOI: 10.1038/s41467-018-04227-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/16/2018] [Indexed: 01/06/2023] Open
Abstract
We genetically controlled compartmentalization in eukaryotic cells by heterologous expression of bacterial encapsulin shell and cargo proteins to engineer enclosed enzymatic reactions and size-constrained metal biomineralization. The shell protein (EncA) from Myxococcus xanthus auto-assembles into nanocompartments inside mammalian cells to which sets of native (EncB,C,D) and engineered cargo proteins self-target enabling localized bimolecular fluorescence and enzyme complementation. Encapsulation of the enzyme tyrosinase leads to the confinement of toxic melanin production for robust detection via multispectral optoacoustic tomography (MSOT). Co-expression of ferritin-like native cargo (EncB,C) results in efficient iron sequestration producing substantial contrast by magnetic resonance imaging (MRI) and allowing for magnetic cell sorting. The monodisperse, spherical, and iron-loading nanoshells are also excellent genetically encoded reporters for electron microscopy (EM). In general, eukaryotically expressed encapsulins enable cellular engineering of spatially confined multicomponent processes with versatile applications in multiscale molecular imaging, as well as intriguing implications for metabolic engineering and cellular therapy. Artificial compartments have been expressed in prokaryotes and yeast, but similar capabilities have been missing for mammalian cell engineering. Here the authors use bacterial encapsulins to engineer genetically controlled multifunctional orthogonal compartments in mammalian cells.
Collapse
Affiliation(s)
- Felix Sigmund
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Nuclear Medicine, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany
| | - Christoph Massner
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Department of Nuclear Medicine, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany
| | - Philipp Erdmann
- Department of Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Anja Stelzl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Hannes Rolbieski
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA
| | - Sarah Bricault
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.,Snijder Bioscience, Spijkerstraat 114-4, Arnhem, 6828 DN, The Netherlands
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA.,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA.,Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, Massachusetts, USA
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Chair for Biological Imaging, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany
| | - Jürgen Plitzko
- Department of Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Gil G Westmeyer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany. .,Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany. .,Department of Nuclear Medicine, Technical University of Munich, Ismaninger Straße 22, Munich, 81675, Germany.
| |
Collapse
|
22
|
Close LN, Eftekhari S, Wang M, Charles AC, Russo AF. Cortical spreading depression as a site of origin for migraine: Role of CGRP. Cephalalgia 2018; 39:428-434. [PMID: 29695168 DOI: 10.1177/0333102418774299] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PREMISE Migraine is a complex neurologic disorder that leads to significant disability, yet remains poorly understood. PROBLEM One potential triggering mechanism in migraine with aura is cortical spreading depression, which can activate the trigeminal nociceptive system both peripherally and centrally in animal models. A primary neuropeptide of the trigeminal system is calcitonin gene-related peptide, which is a potent vasodilatory peptide and is currently a major therapeutic target for migraine treatment. Despite the importance of both cortical spreading depression and calcitonin gene-related peptide in migraine, the relationship between these two players has been relatively unexplored. However, recent data suggest several potential vascular and neural connections between calcitonin gene-related peptide and cortical spreading depression. CONCLUSION This review will outline calcitonin gene-related peptide-cortical spreading depression connections and propose a model in which cortical spreading depression and calcitonin gene-related peptide act at the intersection of the vasculature and cortical neurons, and thus contribute to migraine pathophysiology.
Collapse
Affiliation(s)
- Liesl N Close
- 1 Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sajedeh Eftekhari
- 2 UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Minyan Wang
- 3 Centre for Neuroscience, Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), SIP, Suzhou, China
| | - Andrew C Charles
- 2 UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Andrew F Russo
- 4 Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,5 Department of Neurology, University of Iowa, Iowa City, IA, USA.,6 Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
23
|
Ghosh S, Harvey P, Simon JC, Jasanoff A. Probing the brain with molecular fMRI. Curr Opin Neurobiol 2018; 50:201-210. [PMID: 29649765 DOI: 10.1016/j.conb.2018.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
Abstract
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people.
Collapse
Affiliation(s)
- Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Peter Harvey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Jacob C Simon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States.
| |
Collapse
|
24
|
Russo AF. Overview of Neuropeptides: Awakening the Senses? Headache 2018; 57 Suppl 2:37-46. [PMID: 28485842 DOI: 10.1111/head.13084] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
Humans have a diverse collection of neuropeptides that can influence a multitude of activities. There are now over 100 known neuropeptides and probably many more yet to be identified from the over 1000 predicted peptides encoded in the genome. While diverse, peptides generally share three common characteristics: (1) post-translational processing and release from vesicles, (2) activation of cell-surface receptors over a relatively large distance, and (3) modulation of target cells that are often in the brain and periphery. Within the brain, neuropeptides can modulate the activity of co-released neurotransmitters to either increase or decrease the strength of synaptic signaling. Within the periphery, neuropeptides can function similar to peptide hormones and modulate nearly all bodily functions. Given the clear involvement of the neuropeptide CGRP in migraine and the emerging evidence for other peptides, it seems likely that neuropeptides may help "awaken" the senses and contribute to the heightened sensory state of migraine.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.,Veterans Affairs Medical Center, Iowa City, IA, 52246, USA
| |
Collapse
|
25
|
Vallianatou T, Strittmatter N, Nilsson A, Shariatgorji M, Hamm G, Pereira M, Källback P, Svenningsson P, Karlgren M, Goodwin RJA, Andrén PE. A mass spectrometry imaging approach for investigating how drug-drug interactions influence drug blood-brain barrier permeability. Neuroimage 2018; 172:808-816. [PMID: 29329980 DOI: 10.1016/j.neuroimage.2018.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
There is a high need to develop quantitative imaging methods capable of providing detailed brain localization information of several molecular species simultaneously. In addition, extensive information on the effect of the blood-brain barrier on the penetration, distribution and efficacy of neuroactive compounds is required. Thus, we have developed a mass spectrometry imaging method to visualize and quantify the brain distribution of drugs with varying blood-brain barrier permeability. With this approach, we were able to determine blood-brain barrier transport of different drugs and define the drug distribution in very small brain structures (e.g., choroid plexus) due to the high spatial resolution provided. Simultaneously, we investigated the effect of drug-drug interactions by inhibiting the membrane transporter multidrug resistance 1 protein. We propose that the described approach can serve as a valuable analytical tool during the development of neuroactive drugs, as it can provide physiologically relevant information often neglected by traditional imaging technologies.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Nicole Strittmatter
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Anna Nilsson
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Mohammadreza Shariatgorji
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Gregory Hamm
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Marcela Pereira
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Patrik Källback
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala, SE-751 23, Sweden
| | - Richard J A Goodwin
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Per E Andrén
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala, Sweden.
| |
Collapse
|
26
|
Mukherjee A, Davis HC, Ramesh P, Lu GJ, Shapiro MG. Biomolecular MRI reporters: Evolution of new mechanisms. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:32-42. [PMID: 29157492 PMCID: PMC5726449 DOI: 10.1016/j.pnmrs.2017.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a powerful technique for observing the function of specific cells and molecules inside living organisms. However, compared to optical microscopy, in which fluorescent protein reporters are available to visualize hundreds of cellular functions ranging from gene expression and chemical signaling to biomechanics, to date relatively few such reporters are available for MRI. Efforts to develop MRI-detectable biomolecules have mainly focused on proteins transporting paramagnetic metals for T1 and T2 relaxation enhancement or containing large numbers of exchangeable protons for chemical exchange saturation transfer. While these pioneering developments established several key uses of biomolecular MRI, such as imaging of gene expression and functional biosensing, they also revealed that low molecular sensitivity poses a major challenge for broader adoption in biology and medicine. Recently, new classes of biomolecular reporters have been developed based on alternative contrast mechanisms, including enhancement of spin diffusivity, interactions with hyperpolarized nuclei, and modulation of blood flow. These novel reporters promise to improve sensitivity and enable new forms of multiplexed and functional imaging.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pradeep Ramesh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
27
|
Gilad AA, Shapiro MG. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging. Mol Imaging Biol 2017; 19:373-378. [PMID: 28213833 PMCID: PMC6058969 DOI: 10.1007/s11307-017-1062-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.
Collapse
Affiliation(s)
- Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Heritage Medical Research Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
28
|
|