1
|
Roozbahani GM, Colosi PL, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live-cell nuclei. SCIENCE ADVANCES 2024; 10:eadn9423. [PMID: 38968349 PMCID: PMC11225781 DOI: 10.1126/sciadv.adn9423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - P. L. Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Kröll S, Niemeyer CM. Nucleic Acid-based Enzyme Cascades-Current Trends and Future Perspectives. Angew Chem Int Ed Engl 2024; 63:e202314452. [PMID: 37870888 DOI: 10.1002/anie.202314452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The natural micro- and nanoscale organization of biomacromolecules is a remarkable principle within living cells, allowing for the control of cellular functions by compartmentalization, dimensional diffusion and substrate channeling. In order to explore these biological mechanisms and harness their potential for applications such as sensing and catalysis, molecular scaffolding has emerged as a promising approach. In the case of synthetic enzyme cascades, developments in DNA nanotechnology have produced particularly powerful scaffolds whose addressability can be programmed with nanometer precision. In this minireview, we summarize recent developments in the field of biomimetic multicatalytic cascade reactions organized on DNA nanostructures. We emphasize the impact of the underlying design principles like DNA origami, efficient strategies for enzyme immobilization, as well as the importance of experimental design parameters and theoretical modeling. We show how DNA nanostructures have enabled a better understanding of diffusion and compartmentalization effects at the nanometer length scale, and discuss the challenges and future potential for commercial applications.
Collapse
Affiliation(s)
- Sandra Kröll
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1, Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1, Hermann-von-Helmholtz-Platz 1, 76344, Karlsruhe, Germany
| |
Collapse
|
3
|
Roozbahani GM, Colosi P, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live cell nuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573746. [PMID: 38260628 PMCID: PMC10802371 DOI: 10.1101/2023.12.30.573746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
DNA origami (DO) are promising tools for in vitro or in vivo applications including drug delivery; biosensing, detecting biomolecules; and probing chromatin sub-structures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing visualizing and controlling important biological processes in live cells. Here we present an approach to deliver DO strucures into live cell nuclei. We show that labelled DOs do not undergo detectable structural degradation in cell culture media or human cell extracts for 24 hr. To deliver DO platforms into the nuclei of human U2OS cells, we conjugated 30 nm long DO nanorods with an antibody raised against the largest subunit of RNA Polymerase II (Pol II), a key enzyme involved in gene transcription. We find that DOs remain structurally intact in cells for 24hr, including within the nucleus. Using fluorescence microscopy we demonstrate that the electroporated anti-Pol II antibody conjugated DOs are efficiently piggybacked into nuclei and exihibit sub-diffusive motion inside the nucleus. Our results reveal that functionalizing DOs with an antibody raised against a nuclear factor is a highly effective method for the delivery of nanodevices into live cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Patricia Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch, 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch, 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Rossi-Gendron C, El Fakih F, Bourdon L, Nakazawa K, Finkel J, Triomphe N, Chocron L, Endo M, Sugiyama H, Bellot G, Morel M, Rudiuk S, Baigl D. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures. NATURE NANOTECHNOLOGY 2023; 18:1311-1318. [PMID: 37524905 PMCID: PMC10656289 DOI: 10.1038/s41565-023-01468-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
Thermal annealing is usually needed to direct the assembly of multiple complementary DNA strands into desired entities. We show that, with a magnesium-free buffer containing NaCl, complex cocktails of DNA strands and proteins can self-assemble isothermally, at room or physiological temperature, into user-defined nanostructures, such as DNA origamis, single-stranded tile assemblies and nanogrids. In situ, time-resolved observation reveals that this self-assembly is thermodynamically controlled, proceeds through multiple folding pathways and leads to highly reconfigurable nanostructures. It allows a given system to self-select its most stable shape in a large pool of competitive DNA strands. Strikingly, upon the appearance of a new energy minimum, DNA origamis isothermally shift from one initially stable shape to a radically different one, by massive exchange of their constitutive staple strands. This method expands the repertoire of shapes and functions attainable by isothermal self-assembly and creates a basis for adaptive nanomachines and nanostructure discovery by evolution.
Collapse
Affiliation(s)
- Caroline Rossi-Gendron
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Farah El Fakih
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Laura Bourdon
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Koyomi Nakazawa
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Julie Finkel
- Centre de Biologie Structurale, Université Montpellier, CNRS, Inserm, Montpellier, France
| | - Nicolas Triomphe
- Centre de Biologie Structurale, Université Montpellier, CNRS, Inserm, Montpellier, France
- Université Grenoble Alpes, CEA, Leti,, Grenoble, France
| | - Léa Chocron
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Masayuki Endo
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Kyoto, Japan
| | - Gaëtan Bellot
- Centre de Biologie Structurale, Université Montpellier, CNRS, Inserm, Montpellier, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
5
|
Oh CY, Henderson ER. In vitro transcription of self-assembling DNA nanoparticles. Sci Rep 2023; 13:12961. [PMID: 37563161 PMCID: PMC10415316 DOI: 10.1038/s41598-023-39777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Nucleic acid nanoparticles are playing an increasingly important role in biomolecular diagnostics and therapeutics as well as a variety of other areas. The unique attributes of self-assembling DNA nanoparticles provide a potentially valuable addition or alternative to the lipid-based nanoparticles that are currently used to ferry nucleic acids in living systems. To explore this possibility, we have assessed the ability of self-assembling DNA nanoparticles to be constructed from complete gene cassettes that are capable of gene expression in vitro. In the current report, we describe the somewhat counter-intuitive result that despite extensive crossovers (the stereochemical analogs of Holliday junctions) and variations in architecture, these DNA nanoparticles are amenable to gene expression as evidenced by T7 RNA polymerase-driven transcription of a reporter gene in vitro. These findings, coupled with the vastly malleable architecture and chemistry of self-assembling DNA nanoparticles, warrant further investigation of their utility in biomedical genetics.
Collapse
Affiliation(s)
- Chang Yong Oh
- Department of Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Eric R Henderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
6
|
Prasad PK, Eizenshtadt N, Goliand I, Fellus-Alyagor L, Oren R, Golani O, Motiei L, Margulies D. Chemically programmable bacterial probes for the recognition of cell surface proteins. Mater Today Bio 2023; 20:100669. [PMID: 37334185 PMCID: PMC10275978 DOI: 10.1016/j.mtbio.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Common methods to label cell surface proteins (CSPs) involve the use of fluorescently modified antibodies (Abs) or small-molecule-based ligands. However, optimizing the labeling efficiency of such systems, for example, by modifying them with additional fluorophores or recognition elements, is challenging. Herein we show that effective labeling of CSPs overexpressed in cancer cells and tissues can be obtained with fluorescent probes based on chemically modified bacteria. The bacterial probes (B-probes) are generated by non-covalently linking a bacterial membrane protein to DNA duplexes appended with fluorophores and small-molecule binders of CSPs overexpressed in cancer cells. We show that B-probes are exceptionally simple to prepare and modify because they are generated from self-assembled and easily synthesized components, such as self-replicating bacterial scaffolds and DNA constructs that can be readily appended, at well-defined positions, with various types of dyes and CSP binders. This structural programmability enabled us to create B-probes that can label different types of cancer cells with distinct colors, as well as generate very bright B-probes in which the multiple dyes are spatially separated along the DNA scaffold to avoid self-quenching. This enhancement in the emission signal enabled us to label the cancer cells with greater sensitivity and follow the internalization of the B-probes into these cells. The potential to apply the design principles underlying B-probes in therapy or inhibitor screening is also discussed here.
Collapse
Affiliation(s)
- Pragati K. Prasad
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Noa Eizenshtadt
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Inna Goliand
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| |
Collapse
|
7
|
Freitag JS, Möser C, Belay R, Altattan B, Grasse N, Pothineni BK, Schnauß J, Smith DM. Integration of functional peptides into nucleic acid-based nanostructures. NANOSCALE 2023; 15:7608-7624. [PMID: 37042085 DOI: 10.1039/d2nr05429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In many applications such as diagnostics and therapy development, small peptide fragments consisting of only a few amino acids are often attractive alternatives to bulky proteins. This is due to factors such as the ease of scalable chemical synthesis and numerous methods for their discovery. One drawback of using peptides is that their activity can often be negatively impacted by the lack of a rigid, 3D stabilizing structure provided by the rest of the protein. In many cases, this can be alleviated by different methods of rational templating onto nanomaterials, which provides additional possibilities to use concepts of multivalence or rational nano-engineering to enhance or even create new types of function or structure. In recent years, nanostructures made from the self-assembly of DNA strands have been used as scaffolds to create functional arrangements of peptides, often leading to greatly enhanced biological activity or new material properties. This review will give an overview of nano-templating approaches based on the combination of DNA nanotechnology and peptides. This will include both bioengineering strategies to control interactions with cells or other biological systems, as well as examples where the combination of DNA and peptides has been leveraged for the rational design of new functional materials.
Collapse
Affiliation(s)
- Jessica S Freitag
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Christin Möser
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Robel Belay
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Basma Altattan
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Nico Grasse
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | | | - Jörg Schnauß
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
- Unconventional Computing Lab, UWE, Bristol, BS16 1QY, UK
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig Medical Faculty, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Huang J, Gambietz S, Saccà B. Self-Assembled Artificial DNA Nanocompartments and Their Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202253. [PMID: 35775957 DOI: 10.1002/smll.202202253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization is the strategy evolved by nature to control reactions in space and time. The ability to emulate this strategy through synthetic compartmentalization systems has rapidly evolved in the past years, accompanied by an increasing understanding of the effects of spatial confinement on the thermodynamic and kinetic properties of the guest molecules. DNA nanotechnology has played a pivotal role in this scientific endeavor and is still one of the most promising approaches for the construction of nanocompartments with programmable structural features and nanometer-scaled addressability. In this review, the design approaches, bioapplications, and theoretical frameworks of self-assembled DNA nanocompartments are surveyed. From DNA polyhedral cages to virus-like capsules, the construction principles of such intriguing architectures are illustrated. Various applications of DNA nanocompartments, including their use for programmable enzyme scaffolding, single-molecule studies, biosensing, and as artificial nanofactories, ending with an ample description of DNA nanocages for biomedical purposes, are then reported. Finally, the theoretical hypotheses that make DNA nanocompartments, and nanosystems in general, a topic of great interest in modern science, are described and the progresses that have been done until now in the comprehension of the peculiar phenomena that occur within nanosized environments are summarized.
Collapse
Affiliation(s)
- Jing Huang
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Sabrina Gambietz
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Barbara Saccà
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
9
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
10
|
Wang Z, St Iago-Mcrae E, Ebrahimimojarad A, Won Oh S, Fu J. Modulation of Enzyme Cascade Activity by Local Substrate Enrichment and Exclusion on DNA Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12594-12601. [PMID: 36194827 DOI: 10.1021/acs.langmuir.2c02064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Substrate confinement and channeling play a critical role in multienzyme pathways and are considered to impact the catalytic efficiency and specificity of biomimetic and artificial nanoreactors. Here we reported a modulation of a multienzyme system with the cascade activity impacted by the surface affinity binding to substrate molecules. A DNA origami modified with aptamers was used to bind and enrich ATP molecules in the local area of immobilized enzymes, thereby enhancing the activity of an enzyme cascade by more than 2-fold. Alternatively, DNA nanostructure modified with blocked aptamers does not bind with ATP, thereby reducing the activity of the enzyme cascade. The Michaelis-Menten kinetics showed decreased apparent KM values (∼3-fold lower) for enzyme nanostructures modified with aptamers, suggesting the higher effective substrate concentration near enzymes due to the local enrichment of substrates. Conversely, increased apparent KM values (∼2-fold higher) were observed for enzyme nanostructures modified with blocked aptamers, possibly due to the exclusion of substrates approaching the surface. The similar concept of this modified surface-substrate interaction should be applicable to other multienzyme systems immobilized on nanostructures, which could be useful in the development of biomimetic nanoreactors.
Collapse
Affiliation(s)
- Zhicheng Wang
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, New Jersey08102, United States
| | - Ezry St Iago-Mcrae
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
| | - Alireza Ebrahimimojarad
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
| | - Sung Won Oh
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, New Jersey08102, United States
| | - Jinglin Fu
- Center for Computational and Integrative Biology, Rutgers University-Camden, 201 Broadway, Camden, New Jersey08103, United States
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, New Jersey08102, United States
| |
Collapse
|
11
|
Cervantes-Salguero K, Freeley M, Gwyther REA, Jones DD, Chávez JL, Palma M. Single molecule DNA origami nanoarrays with controlled protein orientation. BIOPHYSICS REVIEWS 2022; 3:031401. [PMID: 38505279 PMCID: PMC10903486 DOI: 10.1063/5.0099294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 03/21/2024]
Abstract
The nanoscale organization of functional (bio)molecules on solid substrates with nanoscale spatial resolution and single-molecule control-in both position and orientation-is of great interest for the development of next-generation (bio)molecular devices and assays. Herein, we report the fabrication of nanoarrays of individual proteins (and dyes) via the selective organization of DNA origami on nanopatterned surfaces and with controlled protein orientation. Nanoapertures in metal-coated glass substrates were patterned using focused ion beam lithography; 88% of the nanoapertures allowed immobilization of functionalized DNA origami structures. Photobleaching experiments of dye-functionalized DNA nanostructures indicated that 85% of the nanoapertures contain a single origami unit, with only 3% exhibiting double occupancy. Using a reprogrammed genetic code to engineer into a protein new chemistry to allow residue-specific linkage to an addressable ssDNA unit, we assembled orientation-controlled proteins functionalized to DNA origami structures; these were then organized in the arrays and exhibited single molecule traces. This strategy is of general applicability for the investigation of biomolecular events with single-molecule resolution in defined nanoarrays configurations and with orientational control of the (bio)molecule of interest.
Collapse
Affiliation(s)
- K. Cervantes-Salguero
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - M. Freeley
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - R. E. A. Gwyther
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - D. D. Jones
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - J. L. Chávez
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433-7901, USA
| | - M. Palma
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Dass M, Kuen L, Posnjak G, Burger S, Liedl T. Visible wavelength spectral tuning of absorption and circular dichroism of DNA-assembled Au/Ag core-shell nanorod assemblies. MATERIALS ADVANCES 2022; 3:3438-3445. [PMID: 35665317 PMCID: PMC9017759 DOI: 10.1039/d1ma01211h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic nanoparticles have unique properties which can be harnessed to manipulate light at the nanoscale. With recent advances in synthesis protocols that increase their stability, gold-silver core-shell nanoparticles have become suitable building blocks for plasmonic nanostructures to expand the range of attainable optical properties. Here we tune the plasmonic response of gold-silver core-shell nanorods over the visible spectrum by varying the thickness of the silver shell. Through the chiral arrangement of the nanorods with the help of various DNA origami designs, the spectral tunability of the plasmon resonance frequencies is transferred into circular dichroism signals covering the spectrum from 400 nm to 700 nm. Our approach could aid in the construction of better sensors as well as metamaterials with a tunable optical response in the visible region.
Collapse
Affiliation(s)
- Mihir Dass
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Lilli Kuen
- Computational Nano Optics, Zuse Institute Berlin 14195 Berlin Germany
| | - Gregor Posnjak
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Sven Burger
- Computational Nano Optics, Zuse Institute Berlin 14195 Berlin Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University Geschwister-Scholl-Platz 1 80539 Munich Germany
| |
Collapse
|
13
|
MacCulloch T, Novacek A, Stephanopoulos N. Proximity-enhanced synthesis of DNA-peptide-DNA triblock molecules. Chem Commun (Camb) 2022; 58:4044-4047. [PMID: 35260875 DOI: 10.1039/d1cc04970d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a proximity-enhanced method to synthesize a peptide flanked by two different oligonucleotide handles. Our method relies on sequential bioorthogonal reactions, and partial hybridization of the second handle to the first. We demonstrate the synthesis of a protease-responsive DNA "latch" and a cyclic bioactive peptide using this method.
Collapse
Affiliation(s)
- Tara MacCulloch
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. .,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Alexandra Novacek
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. .,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. .,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Hu X, Tang L, Zheng M, Liu J, Zhang Z, Li Z, Yang Q, Xiang S, Fang L, Ren Q, Liu X, Huang CZ, Mao C, Zuo H. Structure-Guided Designing Pre-Organization in Bivalent Aptamers. J Am Chem Soc 2022; 144:4507-4514. [PMID: 35245025 DOI: 10.1021/jacs.1c12593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multivalent interaction is often used in molecular design and leads to engineered multivalent ligands with increased binding avidities toward target molecules. The resulting binding avidity relies critically on the rigid scaffold that joins multiple ligands as the scaffold controls the relative spatial positions and orientations toward target molecules. Currently, no general design rules exist to construct a simple and rigid DNA scaffold for properly joining multiple ligands. Herein, we report a crystal structure-guided strategy for the rational design of a rigid bivalent aptamer with precise control over spatial separation and orientation. Such a pre-organization allows the two aptamer moieties simultaneously to bind to the target protein at their native conformations. The bivalent aptamer binding has been extensively characterized, and an enhanced binding has been clearly observed. This strategy, we believe, could potentially be generally applicable to design multivalent aptamers.
Collapse
Affiliation(s)
- Xiaoli Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Linlin Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mengxi Zheng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jian Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Quan Yang
- Department of Cardiology, The Fourth People's Hospital of Sichuan Province, Chengdu 610016, China
| | - Shoubo Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liang Fang
- Department of Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Qiao Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Xu Z, Huang Y, Yin H, Zhu X, Tian Y, Min Q. DNA origami-based protein manipulation systems: From function regulation to biological application. Chembiochem 2021; 23:e202100597. [PMID: 34958167 DOI: 10.1002/cbic.202100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Indexed: 11/07/2022]
Abstract
Proteins directly participate in tremendous physiological processes and mediate a variety of cellular functions. However, precise manipulation of proteins with predefined relative position and stoichiometry for understanding protein-protein interactions and guiding cellular behaviors are still challenging. With superior programmability of DNA molecules, DNA origami technology is able to construct arbitrary nanostructures that can accurately control the arrangement of proteins with various functionalities to solve these problems. Herein, starting from the classification of DNA origami nanostructures and the category of assembled proteins, we summarize the existing DNA origami-based protein manipulation systems (PMSs), review the advances on the regulation of their functions, and discuss their applications in cellular behavior modulation and disease therapy. Moreover, the limitations and potential directions of DNA origami-based PMSs are also presented, which may offer guidance for rational construction and ingenious application.
Collapse
Affiliation(s)
- Ziqi Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yide Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hao Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xurong Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Heuer-Jungemann A, Linko V. Engineering Inorganic Materials with DNA Nanostructures. ACS CENTRAL SCIENCE 2021; 7:1969-1979. [PMID: 34963890 PMCID: PMC8704036 DOI: 10.1021/acscentsci.1c01272] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 05/25/2023]
Abstract
Nucleic acid nanotechnology lays a foundation for the user-friendly design and synthesis of DNA frameworks of any desirable shape with extreme accuracy and addressability. Undoubtedly, such features make these structures ideal modules for positioning and organizing molecules and molecular components into complex assemblies. One of the emerging concepts in the field is to create inorganic and hybrid materials through programmable DNA templates. Here, we discuss the challenges and perspectives of such DNA nanostructure-driven materials science engineering and provide insights into the subject by introducing various DNA-based fabrication techniques including metallization, mineralization, lithography, casting, and hierarchical self-assembly of metal nanoparticles.
Collapse
Affiliation(s)
- Amelie Heuer-Jungemann
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center
for Nanoscience, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
17
|
Ji W, Li X, Xiao M, Sun Y, Lai W, Zhang H, Pei H, Li L. DNA-Scaffolded Disulfide Redox Network for Programming Drug-Delivery Kinetics. Chemistry 2021; 27:8745-8752. [PMID: 33778987 DOI: 10.1002/chem.202100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/11/2022]
Abstract
In response to specific stimuli, dynamic covalent materials enable the generation of new structures by reversibly forming/breaking chemical bonds, thus showing great potential for application in controlled drug release. However, using dynamic covalent chemistry to program drug-delivery kinetics remains challenging. Herein, an in situ polymerization-generated DNA-scaffolded disulfide redox network (DdiSRN) is reported in which nucleic acids are used as a scaffold for dynamic disulfide bonds. The constructed DdiSRN allows selective release of loading cargos inside cancer cells in response to redox stimuli. Moreover, the density of disulfide bonds in network can be tuned by precise control over their position and number on DNA scaffolds. As a result, drug-delivery kinetics can be programmed with a half-life, t1/2 , decreasing from 8.3 to 4.4 h, thus facilitating keeping an adequate drug concentration within the therapeutic window. Both in vitro and in vivo studies confirm that co-delivery of DOX and siRNA in combination with fast drug release inside cells using this DdiSRN enhances the therapeutic effect on multidrug-resistant cancer. This nontrivial therapeutic platform enabling kinetic control provides a good paradigm for precision cancer medicine.
Collapse
Affiliation(s)
- Wei Ji
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xiaodan Li
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Mingshu Xiao
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yueyang Sun
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Wei Lai
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademic University, 20520, Turku, Finland
| | - Hao Pei
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Li Li
- Department Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
18
|
Strategies to Build Hybrid Protein-DNA Nanostructures. NANOMATERIALS 2021; 11:nano11051332. [PMID: 34070149 PMCID: PMC8158336 DOI: 10.3390/nano11051332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Proteins and DNA exhibit key physical chemical properties that make them advantageous for building nanostructures with outstanding features. Both DNA and protein nanotechnology have growth notably and proved to be fertile disciplines. The combination of both types of nanotechnologies is helpful to overcome the individual weaknesses and limitations of each one, paving the way for the continuing diversification of structural nanotechnologies. Recent studies have implemented a synergistic combination of both biomolecules to assemble unique and sophisticate protein-DNA nanostructures. These hybrid nanostructures are highly programmable and display remarkable features that create new opportunities to build on the nanoscale. This review focuses on the strategies deployed to create hybrid protein-DNA nanostructures. Here, we discuss strategies such as polymerization, spatial directing and organizing, coating, and rigidizing or folding DNA into particular shapes or moving parts. The enrichment of structural DNA nanotechnology by incorporating protein nanotechnology has been clearly demonstrated and still shows a large potential to create useful and advanced materials with cell-like properties or dynamic systems. It can be expected that structural protein-DNA nanotechnology will open new avenues in the fabrication of nanoassemblies with unique functional applications and enrich the toolbox of bionanotechnology.
Collapse
|
19
|
Sprenger J, Carey J, Schulz A, Drouard F, Lawson CL, von Wachenfeldt C, Linse S, Lo Leggio L. Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallogr D Struct Biol 2021; 77:471-485. [PMID: 33825708 PMCID: PMC8025882 DOI: 10.1107/s2059798321001078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022] Open
Abstract
Soaking small molecules into the solvent channels of protein crystals is the most common method of obtaining crystalline complexes with ligands such as substrates or inhibitors. The solvent channels of some protein crystals are large enough to allow the incorporation of macromolecules, but soaking of protein guests into protein crystals has not been reported. Such protein host crystals (here given the name hostals) incorporating guest proteins may be useful for a wide range of applications in biotechnology, for example as cargo systems or for diffraction studies analogous to the crystal sponge method. The present study takes advantage of crystals of the Escherichia coli tryptophan repressor protein (ds-TrpR) that are extensively domain-swapped and suitable for incorporating guest proteins by diffusion, as they are robust and have large solvent channels. Confocal fluorescence microscopy is used to follow the migration of cytochrome c and fluorophore-labeled calmodulin into the solvent channels of ds-TrpR crystals. The guest proteins become uniformly distributed in the crystal within weeks and enriched within the solvent channels. X-ray diffraction studies on host crystals with high concentrations of incorporated guests demonstrate that diffraction limits of ∼2.5 Å can still be achieved. Weak electron density is observed in the solvent channels, but the guest-protein structures could not be determined by conventional crystallographic methods. Additional approaches that increase the ordering of guests in the host crystal are discussed that may support protein structure determination using the hostal system in the future. This host system may also be useful for biotechnological applications where crystallographic order of the guest is not required.
Collapse
Affiliation(s)
- Janina Sprenger
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Fleur Drouard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Sara Linse
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
20
|
DNA Nanodevices as Mechanical Probes of Protein Structure and Function. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology has reported a wide range of structurally tunable scaffolds with precise control over their size, shape and mechanical properties. One promising application of these nanodevices is as probes for protein function or determination of protein structure. In this perspective we cover several recent examples in this field, including determining the effect of ligand spacing and multivalency on cell activation, applying forces at the nanoscale, and helping to solve protein structure by cryo-EM. We also highlight some future directions in the chemistry necessary for integrating proteins with DNA nanoscaffolds, as well as opportunities for computational modeling of hybrid protein-DNA nanomaterials.
Collapse
|
21
|
|
22
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
23
|
Lanphere C, Offenbartl-Stiegert D, Dorey A, Pugh G, Georgiou E, Xing Y, Burns JR, Howorka S. Design, assembly, and characterization of membrane-spanning DNA nanopores. Nat Protoc 2020; 16:86-130. [PMID: 33349702 DOI: 10.1038/s41596-020-0331-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/06/2020] [Indexed: 01/08/2023]
Abstract
DNA nanopores are bio-inspired nanostructures that control molecular transport across lipid bilayer membranes. Researchers can readily engineer the structure and function of DNA nanopores to synergistically combine the strengths of DNA nanotechnology and nanopores. The pores can be harnessed in a wide range of areas, including biosensing, single-molecule chemistry, and single-molecule biophysics, as well as in cell biology and synthetic biology. Here, we provide a protocol for the rational design of nanobarrel-like DNA pores and larger DNA origami nanopores for targeted applications. We discuss strategies for the pores' chemical modification with lipid anchors to enable them to be inserted into membranes such as small unilamellar vesicles (SUVs) and planar lipid bilayers. The procedure covers the self-assembly of DNA nanopores via thermal annealing, their characterization using gel electrophoresis, purification, and direct visualization with transmission electron microscopy and atomic force microscopy. We also describe a gel assay to determine pore-membrane binding and discuss how to use single-channel current recordings and dye flux assays to confirm transport through the pores. We expect this protocol to take approximately 1 week to complete for DNA nanobarrel pores and 2-3 weeks for DNA origami pores.
Collapse
Affiliation(s)
- Conor Lanphere
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Daniel Offenbartl-Stiegert
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Genevieve Pugh
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Elena Georgiou
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Yongzheng Xing
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Jonathan R Burns
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
24
|
Insights into the Structure and Energy of DNA Nanoassemblies. Molecules 2020; 25:molecules25235466. [PMID: 33255286 PMCID: PMC7727707 DOI: 10.3390/molecules25235466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Since the pioneering work of Ned Seeman in the early 1980s, the use of the DNA molecule as a construction material experienced a rapid growth and led to the establishment of a new field of science, nowadays called structural DNA nanotechnology. Here, the self-recognition properties of DNA are employed to build micrometer-large molecular objects with nanometer-sized features, thus bridging the nano- to the microscopic world in a programmable fashion. Distinct design strategies and experimental procedures have been developed over the years, enabling the realization of extremely sophisticated structures with a level of control that approaches that of natural macromolecular assemblies. Nevertheless, our understanding of the building process, i.e., what defines the route that goes from the initial mixture of DNA strands to the final intertwined superstructure, is, in some cases, still limited. In this review, we describe the main structural and energetic features of DNA nanoconstructs, from the simple Holliday junction to more complicated DNA architectures, and present the theoretical frameworks that have been formulated until now to explain their self-assembly. Deeper insights into the underlying principles of DNA self-assembly may certainly help us to overcome current experimental challenges and foster the development of original strategies inspired to dissipative and evolutive assembly processes occurring in nature.
Collapse
|
25
|
Keller A, Linko V. Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angew Chem Int Ed Engl 2020; 59:15818-15833. [PMID: 32112664 PMCID: PMC7540699 DOI: 10.1002/anie.201916390] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Indexed: 01/12/2023]
Abstract
DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer-level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real-world applications of DNA-based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions.
Collapse
Affiliation(s)
- Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Veikko Linko
- Biohybrid MaterialsDepartment of Bioproducts and BiosystemsAalto UniversityP. O. Box 1610000076AaltoFinland
- HYBER CentreDepartment of Applied PhysicsAalto UniversityP. O. Box 1510000076AaltoFinland
| |
Collapse
|
26
|
Obuobi S, Mayandi V, Nor NAM, Lee BJ, Lakshminarayanan R, Ee PLR. Nucleic acid peptide nanogels for the treatment of bacterial keratitis. NANOSCALE 2020; 12:17411-17425. [PMID: 32794541 DOI: 10.1039/d0nr03095c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cage-shaped nucleic acid nanocarriers are promising molecular scaffolds for the organization of polypeptides. However, there is an unmet need for facile loading strategies that truly emulate nature's host-guest systems to drive encapsulation of antimicrobial peptides (AMPs) without loss of biological activity. Herein, we develop DNA nanogels with rapid in situ loading of L12 peptide during the thermal annealing process. By leveraging the binding affinity of L12 to the polyanionic core, we successfully confine the AMPs within the DNA nanogel. We report that the thermostability of L12 in parallel with the high encapsulation efficiency, low toxicity and sustained drug release of the pre-loaded L12 nanogels can be translated into significant antimicrobial activity. Using an S. aureus model of infectious bacterial keratitis, we observe fast resolution of clinical symptoms and significant reduction of bacterial bioburden. Collectively, this study paves the way for the development of DNA nanocarriers for caging AMPs with immense significance to address the rise of resistance.
Collapse
Affiliation(s)
- Sybil Obuobi
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| | | | | | | | | | | |
Collapse
|
27
|
Peri-Naor R, Pode Z, Lahav-Mankovski N, Rabinkov A, Motiei L, Margulies D. Glycoform Differentiation by a Targeted, Self-Assembled, Pattern-Generating Protein Surface Sensor. J Am Chem Soc 2020; 142:15790-15798. [PMID: 32786755 DOI: 10.1021/jacs.0c05644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A method for generating targeted, pattern-generating, protein surface sensors via the self-assembly of modified oligodeoxynucleotides (ODNs) is described. The simplicity by which these systems can be created enabled the development of a sensor that can straightforwardly discriminate between distinct glycoform populations. By using this sensor to identify glycosylation states of a therapeutic protein, we demonstrate the diagnostic potential of this approach as well as the feasibility of integrating a wealth of supramolecular receptors and sensors into higher-order molecular analytical devices with advanced properties. For example, the facile device integration was used to attach the well-known anthracene-boronic acid (An-BA) probe to a biomimetic DNA scaffold and consequently, to use the unique photophysical properties of An-BA to improve glycoform differentiation. In addition, the noncovalent assembly enabled us to modify the sensor with a trinitrilotriacetic acid (tri-NTA)-Ni2+ complex, which endows it with selectivity toward a hexa-histidine tag (His-tag). The selective responses of the system to diverse His-tag-labeled proteins further demonstrate the potential applicability of such sensors and validate the mechanism underlying their function.
Collapse
Affiliation(s)
- Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zohar Pode
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aharon Rabinkov
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
28
|
Rossetti M, Bertucci A, Patiño T, Baranda L, Porchetta A. Programming DNA-Based Systems through Effective Molarity Enforced by Biomolecular Confinement. Chemistry 2020; 26:9826-9834. [PMID: 32428310 DOI: 10.1002/chem.202001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The fundamental concept of effective molarity is observed in a variety of biological processes, such as protein compartmentalization within organelles, membrane localization and signaling paths. To control molecular encountering and promote effective interactions, nature places biomolecules in specific sites inside the cell in order to generate a high, localized concentration different from the bulk concentration. Inspired by this mechanism, scientists have artificially recreated in the lab the same strategy to actuate and control artificial DNA-based functional systems. Here, it is discussed how harnessing effective molarity has led to the development of a number of proximity-induced strategies, with applications ranging from DNA-templated organic chemistry and catalysis, to biosensing and protein-supported DNA assembly.
Collapse
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Tania Patiño
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Lorena Baranda
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
29
|
Aghebat Rafat A, Sagredo S, Thalhammer M, Simmel FC. Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities. Nat Chem 2020; 12:852-859. [PMID: 32661410 DOI: 10.1038/s41557-020-0504-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/05/2020] [Indexed: 01/15/2023]
Abstract
Simultaneous binding of molecules by multiple binding partners is known to strongly reduce the apparent dissociation constant of the corresponding molecular complexes, and can be used to achieve strong, non-covalent molecular interactions. Based on this principle, efficient binding of proteins to DNA nanostructures has been achieved previously by placing several aptamers in close proximity to each other onto DNA scaffolds. Here, we develop an approach for exploring design parameters, such as the geometric arrangement or the nanomechanical properties of the binding sites, that use two-dimensional DNA origami-based nanocavities that bear aptamers with known mechanical properties at defined distances and orientations. The origami structures are labelled with barcodes, which enables large numbers of binding cavities to be investigated in parallel and under identical conditions, and facilitates a direct and reliable quantitative comparison of their binding yields. We demonstrate that binding geometry and mechanical properties have a dramatic effect on origami-based multivalent binding sites, and that optimization of linker spacings and flexibilities can improve the effective binding strength of the sites substantially.
Collapse
Affiliation(s)
- Ali Aghebat Rafat
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Sandra Sagredo
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Melissa Thalhammer
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Friedrich C Simmel
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany.
| |
Collapse
|
30
|
Hu Y, Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Peng D, Liu Z, Liu Y. Dynamic DNA Assemblies in Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000557. [PMID: 32714763 PMCID: PMC7375253 DOI: 10.1002/advs.202000557] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/07/2020] [Indexed: 05/13/2023]
Abstract
Deoxyribonucleic acid (DNA) has been widely used to construct homogeneous structures with increasing complexity for biological and biomedical applications due to their powerful functionalities. Especially, dynamic DNA assemblies (DDAs) have demonstrated the ability to simulate molecular motions and fluctuations in bionic systems. DDAs, including DNA robots, DNA probes, DNA nanochannels, DNA templates, etc., can perform structural transformations or predictable behaviors in response to corresponding stimuli and show potential in the fields of single molecule sensing, drug delivery, molecular assembly, etc. A wave of exploration of the principles in designing and usage of DDAs has occurred, however, knowledge on these concepts is still limited. Although some previous reviews have been reported, systematic and detailed reviews are rare. To achieve a better understanding of the mechanisms in DDAs, herein, the recent progress on the fundamental principles regarding DDAs and their applications are summarized. The relative assembly principles and computer-aided software for their designing are introduced. The advantages and disadvantages of each software are discussed. The motional mechanisms of the DDAs are classified into exogenous and endogenous stimuli-triggered responses. The special dynamic behaviors of DDAs in biomedical applications are also summarized. Moreover, the current challenges and future directions of DDAs are proposed.
Collapse
Affiliation(s)
- Yaqin Hu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Ying Wang
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Nachuan Wen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Shundong Cai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Qunye He
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Dongming Peng
- Department of Medicinal ChemistrySchool of PharmacyHunan University of Chinese MedicineChangshaHunan410013P. R. China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan410013P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| |
Collapse
|
31
|
Keller A, Linko V. Herausforderungen und Perspektiven von DNA‐Nanostrukturen in der Biomedizin. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adrian Keller
- Technische und Makromolekulare Chemie Universität Paderborn Warburger Straße 100 33098 Paderborn Deutschland
| | - Veikko Linko
- Biohybrid Materials Department of Bioproducts and Biosystems Aalto University P. O. Box 16100 00076 Aalto Finnland
- HYBER Centre Department of Applied Physics Aalto University P. O. Box 15100 00076 Aalto Finnland
| |
Collapse
|
32
|
Zhao D, Kong Y, Zhao S, Xing H. Engineering Functional DNA–Protein Conjugates for Biosensing, Biomedical, and Nanoassembly Applications. Top Curr Chem (Cham) 2020; 378:41. [DOI: 10.1007/s41061-020-00305-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
|
33
|
Fu J, Wang Z, Liang XH, Oh SW, St Iago-McRae E, Zhang T. DNA-Scaffolded Proximity Assembly and Confinement of Multienzyme Reactions. Top Curr Chem (Cham) 2020; 378:38. [PMID: 32248317 PMCID: PMC7127875 DOI: 10.1007/s41061-020-0299-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Cellular functions rely on a series of organized and regulated multienzyme cascade reactions. The catalytic efficiencies of these cascades depend on the precise spatial organization of the constituent enzymes, which is optimized to facilitate substrate transport and regulate activities. Mimicry of this organization in a non-living, artificial system would be very useful in a broad range of applications—with impacts on both the scientific community and society at large. Self-assembled DNA nanostructures are promising applications to organize biomolecular components into prescribed, multidimensional patterns. In this review, we focus on recent progress in the field of DNA-scaffolded assembly and confinement of multienzyme reactions. DNA self-assembly is exploited to build spatially organized multienzyme cascades with control over their relative distance, substrate diffusion paths, compartmentalization and activity actuation. The combination of addressable DNA assembly and multienzyme cascades can deliver breakthroughs toward the engineering of novel synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA. .,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA.
| | - Zhicheng Wang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA.,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Xiao Hua Liang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ezry St Iago-McRae
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, 08102, USA
| | - Ting Zhang
- Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA
| |
Collapse
|
34
|
McCluskey JB, Clark DS, Glover DJ. Functional Applications of Nucleic Acid-Protein Hybrid Nanostructures. Trends Biotechnol 2020; 38:976-989. [PMID: 32818445 DOI: 10.1016/j.tibtech.2020.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/09/2023]
Abstract
Combining the diverse chemical functionality of proteins with the predictable structural assembly of nucleic acids has enabled the creation of hybrid nanostructures for a range of biotechnology applications. Through the attachment of proteins onto or within nucleic acid nanostructures, materials with dynamic capabilities can be created that include switchable enzyme activity, targeted drug delivery, and multienzyme cascades for biocatalysis. Investigations of difficult-to-study biological mechanisms have also been aided by using DNA-protein assemblies that mimic natural processes in a controllable manner. Furthermore, advances that enable the recombinant production and intracellular assembly of hybrid nanostructures have the potential to overcome the significant manufacturing cost that has limited the use of DNA and RNA nanotechnology.
Collapse
Affiliation(s)
- Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
35
|
Lahav-Mankovski N, Prasad PK, Oppenheimer-Low N, Raviv G, Dadosh T, Unger T, Salame TM, Motiei L, Margulies D. Decorating bacteria with self-assembled synthetic receptors. Nat Commun 2020; 11:1299. [PMID: 32157077 PMCID: PMC7064574 DOI: 10.1038/s41467-020-14336-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The responses of cells to their surroundings are mediated by the binding of cell surface proteins (CSPs) to extracellular signals. Such processes are regulated via dynamic changes in the structure, composition, and expression levels of CSPs. In this study, we demonstrate the possibility of decorating bacteria with artificial, self-assembled receptors that imitate the dynamic features of CSPs. We show that the local concentration of these receptors on the bacterial membrane and their structure can be reversibly controlled using suitable chemical signals, in a way that resembles changes that occur with CSP expression levels or posttranslational modifications (PTMs), respectively. We also show that these modifications can endow the bacteria with programmable properties, akin to the way CSP responses can induce cellular functions. By programming the bacteria to glow, adhere to surfaces, or interact with proteins or mammalian cells, we demonstrate the potential to tailor such biomimetic systems for specific applications. Cell surface proteins mediate the interactions between cells and their extracellular environment. Here the authors design synthetic biomemetic receptor-like sensors that facilitate programmable interactions between bacteria and their target.
Collapse
Affiliation(s)
- Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Pragati Kishore Prasad
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Oppenheimer-Low
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gal Raviv
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tamar Unger
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
36
|
|
37
|
Gao Y, Li Q, Zhang J, Wu C, Shen Z, Xue C, Chang HT, Wu ZS. Bead-String-Shaped DNA Nanowires with Intrinsic Structural Advantages and Their Potential for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3341-3353. [PMID: 31878778 DOI: 10.1021/acsami.9b16249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to high programmability and good biocompatibility, DNA has been recognized as a powerful building block for engineering of sophisticated nanostructures for different purposes. Herein, we present the first example of a bead-string-shaped DNA nanowire (BS-nanow) with long-range structural order for in vivo bioimaging and targeted drug delivery. BS-nanow is assembled from DNA tetrahedron units with precise nanometer-scale spatial control, capable of accommodating chemotherapeutic agents with high payload capacity (1204 binding sites) as well as possessing a 60-fold enhanced binding affinity for target cells. Confocal fluorescence imaging and in vivo experiments on CEM subcutaneous tumor-bearing mice show that specific bioimaging of living cells and even systemic delivery of drugs into internal tumor organs and tissues were accomplished, thereby achieving an efficient inhibition of tumor growth in the xenograft model without systemic toxicity. BS-nanow's show potential in vivo applications in accurate diagnosis and targeted therapy for human cancer.
Collapse
Affiliation(s)
- Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Qian Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Jingjing Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Chengwei Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| | - Huan-Tsung Chang
- Department of Chemistry , National Taiwan University , Roosevelt Road , Taipei 10617 , Taiwan
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350002 , China
| |
Collapse
|
38
|
Jaekel A, Stegemann P, Saccà B. Manipulating Enzymes Properties with DNA Nanostructures. Molecules 2019; 24:molecules24203694. [PMID: 31615123 PMCID: PMC6832416 DOI: 10.3390/molecules24203694] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids and proteins are two major classes of biopolymers in living systems. Whereas nucleic acids are characterized by robust molecular recognition properties, essential for the reliable storage and transmission of the genetic information, the variability of structures displayed by proteins and their adaptability to the environment make them ideal functional materials. One of the major goals of DNA nanotechnology-and indeed its initial motivation-is to bridge these two worlds in a rational fashion. Combining the predictable base-pairing rule of DNA with chemical conjugation strategies and modern protein engineering methods has enabled the realization of complex DNA-protein architectures with programmable structural features and intriguing functionalities. In this review, we will focus on a special class of biohybrid structures, characterized by one or many enzyme molecules linked to a DNA scaffold with nanometer-scale precision. After an initial survey of the most important methods for coupling DNA oligomers to proteins, we will report the strategies adopted until now for organizing these conjugates in a predictable spatial arrangement. The major focus of this review will be on the consequences of such manipulations on the binding and kinetic properties of single enzymes and enzyme complexes: an interesting aspect of artificial DNA-enzyme hybrids, often reported in the literature, however, not yet entirely understood and whose full comprehension may open the way to new opportunities in protein science.
Collapse
Affiliation(s)
- Andreas Jaekel
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| | - Pierre Stegemann
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| | - Barbara Saccà
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| |
Collapse
|
39
|
Wang W, Yu S, Huang S, Bi S, Han H, Zhang JR, Lu Y, Zhu JJ. Bioapplications of DNA nanotechnology at the solid-liquid interface. Chem Soc Rev 2019; 48:4892-4920. [PMID: 31402369 PMCID: PMC6746594 DOI: 10.1039/c8cs00402a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA nanotechnology engineered at the solid-liquid interface has advanced our fundamental understanding of DNA hybridization kinetics and facilitated the design of improved biosensing, bioimaging and therapeutic platforms. Three research branches of DNA nanotechnology exist: (i) structural DNA nanotechnology for the construction of various nanoscale patterns; (ii) dynamic DNA nanotechnology for the operation of nanodevices; and (iii) functional DNA nanotechnology for the exploration of new DNA functions. Although the initial stages of DNA nanotechnology research began in aqueous solution, current research efforts have shifted to solid-liquid interfaces. Based on shape and component features, these interfaces can be classified as flat interfaces, nanoparticle interfaces, and soft interfaces of DNA origami and cell membranes. This review briefly discusses the development of DNA nanotechnology. We then highlight the important roles of structural DNA nanotechnology in tailoring the properties of flat interfaces and modifications of nanoparticle interfaces, and extensively review their successful bioapplications. In addition, engineering advances in DNA nanodevices at interfaces for improved biosensing both in vitro and in vivo are presented. The use of DNA nanotechnology as a tool to engineer cell membranes to reveal protein levels and cell behavior is also discussed. Finally, we present challenges and an outlook for this emerging field.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fuentes I, Pujols J, Viñas C, Ventura S, Teixidor F. Dual Binding Mode of Metallacarborane Produces a Robust Shield on Proteins. Chemistry 2019; 25:12820-12829. [DOI: 10.1002/chem.201902796] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Isabel Fuentes
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB 08193 Bellaterra, Barcelona Spain
| | - Jordi Pujols
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de Barcelona 08193 Bellaterra, Barcelona Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de Barcelona 08193 Bellaterra, Barcelona Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB 08193 Bellaterra, Barcelona Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de Barcelona 08193 Bellaterra, Barcelona Spain
- Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de Barcelona 08193 Bellaterra, Barcelona Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB 08193 Bellaterra, Barcelona Spain
| |
Collapse
|
41
|
Jiang Q, Zhao S, Liu J, Song L, Wang ZG, Ding B. Rationally designed DNA-based nanocarriers. Adv Drug Deliv Rev 2019; 147:2-21. [PMID: 30769047 DOI: 10.1016/j.addr.2019.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/08/2019] [Accepted: 02/08/2019] [Indexed: 01/01/2023]
Abstract
Nanomaterials employed for enhanced drug delivery and therapeutic effects have been extensively investigated in the past decade. The outcome of current anticancer treatments based on conventional nanoparticles is suboptimal, due to the lack of biocompatibility, the deficient tumor targeting, the limited drug accumulation in the diseased region, etc. Alternatively, DNA-based nanocarriers have emerged as a novel and versatile platform to integrate the advantages of nanotechnologies and biological sciences, which shows great promise in addressing the key issues for biomedical studies. Rather than a genetic information carrier, DNA molecules can work as building blocks to fabricate programmable and bio-functional nanostructures based on Watson Crick base-pairing rules. The DNA-based materials have demonstrated unique properties, such as uniform sizes and shapes, pre-designable and programmable nanostructures, site-specific surface functionality and excellent biocompatibility. These intrigue features allow DNA nanostructures to carry functional moieties to realize precise tumor recognition, customized therapeutic functions and stimuli-responsive drug release, making them highly attractive in many aspects of cancer treatment. In this review, we focus on the recent progress in DNA-based self-assembled materials for the biomedical applications, such as molecular imaging, drug delivery for in vitro or in vivo cancer treatments. We introduce the general strategies and essential requirements for fabricating DNA-based nanocarriers. We summarize the advances of DNA-based nanocarriers according to their functionalities and structural properties for cancer diagnosis and therapy. Finally, we discuss the challenges and future perspectives regarding the detailed in vivo parameters of DNA materials and the design of intelligent DNA nanomedicine for individualized cancer therapy.
Collapse
|
42
|
Zhou K, Dong J, Zhou Y, Dong J, Wang M, Wang Q. Toward Precise Manipulation of DNA-Protein Hybrid Nanoarchitectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804044. [PMID: 30645016 DOI: 10.1002/smll.201804044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Nucleic acids and proteins are the two primary building materials of living organisms. Over the past decade, artificial DNA-protein hybrid structures have been pursued for a wide range of applications. DNA nanotechnology, in particular, has dramatically expanded nanoscale molecule engineering and contributed to the spatial arrangement of protein components. Strategies for designing site-specific coupling of DNA oligomers to proteins are needed in order to allow for precise control over stoichiometry and position. Efforts have also been focused on coassembly of protein-DNA complexes by engineering their fundamental molecular recognition interactions. This Concept focuses on the precise manipulation of DNA-protein nanoarchitectures. Particular attention is paid to site-selectivity within DNA-protein conjugates, regulation of protein orientation using DNA scaffolds, and coassembly principles upon unique structural motifs. Current challenges and future directions are also discussed in the design and application of DNA-protein nanoarchitectures.
Collapse
Affiliation(s)
- Kun Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jinchen Dong
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Meng Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
43
|
Fu J, Oh SW, Monckton K, Arbuckle-Keil G, Ke Y, Zhang T. Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900256. [PMID: 30884139 DOI: 10.1002/smll.201900256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Indexed: 05/28/2023]
Abstract
The behaviors of living cells are governed by a series of regulated and confined biochemical reactions. The design and successful construction of synthetic cellular reactors can be useful in a broad range of applications that will bring significant scientific and economic impact. Over the past few decades, DNA self-assembly has enabled the design and fabrication of sophisticated 1D, 2D, and 3D nanostructures, and is applied to organizing a variety of biomolecular components into prescribed 2D and 3D patterns. In this Concept, the recent and exciting progress in DNA-scaffolded compartmentalizations and their applications in enzyme encapsulation, lipid membrane assembly, artificial transmembrane nanopores, and smart drug delivery are in focus. Taking advantage of these features promises to deliver breakthroughs toward the attainment of new synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Kristin Monckton
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Georgia Arbuckle-Keil
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ting Zhang
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| |
Collapse
|
44
|
Stephanopoulos N. Peptide-Oligonucleotide Hybrid Molecules for Bioactive Nanomaterials. Bioconjug Chem 2019; 30:1915-1922. [PMID: 31082220 DOI: 10.1021/acs.bioconjchem.9b00259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptides and oligonucleotides are two of the most interesting molecular platforms for making bioactive materials. Peptides provide bioactivity that can mimic that of proteins, whereas oligonucleotides like DNA can be used as scaffolds to immobilize other molecules with nanoscale precision. In this Topical Review, we discuss covalent conjugates of peptides and DNA for creating bioactive materials that can interface with cells. In particular, we focus on two areas. The first is multivalent presentation of peptides on a DNA scaffold, both linear assemblies and more complex nanostructures. The second is the reversible tuning of the extracellular environment-like ligand presentation, stiffness, and hierarchical morphology-in peptide-DNA biomaterials. These examples highlight the potential for creating highly potent materials with benefits not possible with either molecule alone, and we outline a number of future directions and applications for peptide-DNA conjugates.
Collapse
|
45
|
Wamhoff EC, Banal JL, Bricker WP, Shepherd TR, Parsons MF, Veneziano R, Stone MB, Jun H, Wang X, Bathe M. Programming Structured DNA Assemblies to Probe Biophysical Processes. Annu Rev Biophys 2019; 48:395-419. [PMID: 31084582 PMCID: PMC7035826 DOI: 10.1146/annurev-biophys-052118-115259] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1-100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - William P Bricker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Tyson R Shepherd
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Molly F Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Rémi Veneziano
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Matthew B Stone
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Hyungmin Jun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Xiao Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
46
|
Liu X, Zhao Y, Liu P, Wang L, Lin J, Fan C. Biomimetische DNA‐Nanoröhren: Gezielte Synthese und Anwendung nanoskopischer Kanäle. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoguo Liu
- School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 201240 China
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yan Zhao
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Pi Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin 300353 China
- Biodesign CenterTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin 300353 China
- Biodesign CenterTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 201240 China
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
47
|
Liu X, Zhao Y, Liu P, Wang L, Lin J, Fan C. Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. Angew Chem Int Ed Engl 2019; 58:8996-9011. [PMID: 30290046 DOI: 10.1002/anie.201807779] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/25/2018] [Indexed: 01/04/2023]
Abstract
Biomacromolecular nanotubes play important physiological roles in transmembrane ion/molecule channeling, intracellular transport, and inter-cellular communications. While genetically encoded protein nanotubes are prevalent in vivo, the in vitro construction of biomimetic DNA nanotubes has attracted intense interest with the rise of structural DNA nanotechnology. The abiotic use of DNA assembly provides a powerful bottom-up approach for the rational construction of complex materials with arbitrary size and shape at the nanoscale. More specifically, a typical DNA nanotube can be assembled either with parallel-aligned DNA duplexes or by closing DNA tile lattices. These artificial DNA nanotubes can be tailored and site-specifically modified to realize biomimetic functions including ionic or molecular channeling, bioreactors, drug delivery, and biomolecular sensing. In this Minireview, we aim to summarize recent advances in design strategies, including the characterization and applications of biomimetic DNA nanotubes.
Collapse
Affiliation(s)
- Xiaoguo Liu
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201240, China.,Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yan Zhao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Pi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University, Tianjin, 300353, China.,Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University, Tianjin, 300353, China.,Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201240, China.,Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
48
|
Whitehouse WL, Noble JE, Ryadnov MG, Howorka S. Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures. Bioconjug Chem 2019; 30:1836-1844. [PMID: 30821443 DOI: 10.1021/acs.bioconjchem.9b00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA nanostructures constitute a rapidly advancing tool-set for exploring cell-membrane functions and intracellular sensing or advancing delivery of biomolecular cargo into cells. Chemical conjugation with lipid anchors can mediate binding of DNA nanostructures to synthetic lipid bilayers, yet how such structures interact with biological membranes and internalize cells has not been shown. Here, an archetypal 6-duplex nanobundle is used to investigate how lipid conjugation influences DNA cell binding and internalization kinetics. Cellular interactions of DNA nanobundles modified with one and three cholesterol anchors were assessed using flow cytometry and confocal microscopy. Nuclease digestion was used to distinguish surface-bound DNA, which is nuclease accessible, from internalized DNA. Three cholesterol anchors were found to enhance cellular association by up to 10-fold when compared with unmodified DNA. The bundles were endocytosed efficiently within 24 h. The results can help design controlled DNA binding and trafficking into cells.
Collapse
Affiliation(s)
- William L Whitehouse
- Department of Chemistry, Institute of Structural and Molecular Biology , University College London , London WC1H 0AJ , United Kingdom
| | - James E Noble
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Stefan Howorka
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| |
Collapse
|
49
|
Abstract
The predictable nature of DNA interactions enables the programmable assembly of highly advanced 2D and 3D DNA structures of nanoscale dimensions. The access to ever larger and more complex structures has been achieved through decades of work on developing structural design principles. Concurrently, an increased focus has emerged on the applications of DNA nanostructures. In its nature, DNA is chemically inert and nanostructures based on unmodified DNA mostly lack function. However, functionality can be obtained through chemical modification of DNA nanostructures and the opportunities are endless. In this review, we discuss methodology for chemical functionalization of DNA nanostructures and provide examples of how this is being used to create functional nanodevices and make DNA nanostructures more applicable. We aim to encourage researchers to adopt chemical modifications as part of their work in DNA nanotechnology and inspire chemists to address current challenges and opportunities within the field.
Collapse
Affiliation(s)
- Mikael Madsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Burgahn T, Garrecht R, Rabe KS, Niemeyer CM. Solid-Phase Synthesis and Purification of Protein-DNA Origami Nanostructures. Chemistry 2019; 25:3483-3488. [PMID: 30609150 DOI: 10.1002/chem.201805506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Indexed: 12/13/2022]
Abstract
We present a facile method for the combined synthesis and purification of protein-decorated DNA origami nanostructures (DONs). DONs bearing reductively cleavable biotin groups in addition to ligands for ligation of recombinant proteins are bound to magnetic beads. Protein immobilization is conducted with a large protein excess to achieve high ligation yields. Subsequent to cleavage from the solid support, pure sample solutions are obtained which are suitable for direct AFM analysis of occupation patterns. We demonstrate the method's utility using three different orthogonal ligation methods, the "halo-based oligonucleotide binder" (HOB), a variant of Halo-tag, the "SpyTag/SpyCatcher" (ST/SC) system, and the enzymatic "ybbR tag" coupling. We find surprisingly low efficiency for ST/SC ligation, presumably due to electrostatic repulsion and steric hindrance, whereas the ybbR method, despite its ternary nature, shows good ligation yields. Our method is particularly useful for the development of novel ligation methods and the synthesis of mechanically fragile DONs that present protein patterns for surface-based cell assays.
Collapse
Affiliation(s)
- Teresa Burgahn
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ruben Garrecht
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|