1
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2025; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
2
|
Ferreras-Gutiérrez M, Mínguez-Toral M, Ibáñez de Opakua A, Martín-Santamaría S, García-Marcos M, Medrano FJ, Blanco FJ. Integrated NMR-crystallography-computational approach for molecular recognition studies of human Gαi3 protein by a small molecule inhibitor. Int J Biol Macromol 2024; 290:138977. [PMID: 39706421 DOI: 10.1016/j.ijbiomac.2024.138977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The small molecule IGGi-11 targets Gαi subunits of heterotrimeric guanine nucleotide-binding proteins. Gα subunits are activated by G-protein-coupled receptors in response to extracellular stimuli by accelerating the exchange of GDP for GTP, but they are also activated by intracellular proteins like GIV, of which elevated levels correlate with increased cell migration and cancer metastasis. IGGi-11 disrupts the interaction of Gαi proteins with GIV and inhibits pro-invasive traits of metastatic breast cancer cells without interfering with GPCR signaling. IGGi-11 is a competitive inhibitor but binds Gαi3 with a 10-fold lower affinity than GIV. To guide the design of higher affinity inhibitors, we aimed at obtaining high-resolution structural data on the complex. To facilitate its crystallization, we have removed the most flexible residues at the chain ends of Gαi3, identified by NMR. While Gαi3 crystals grown with excess IGGi-11 did not show the bound compound, computational docking and molecular dynamics simulations identified the interactions driving the molecular recognition. This approach revealed heterogeneous binding due to the symmetry of IGGi-11 chemical structure and to the elongated shape and flexibility of the binding site. Our results suggest that chemical modifications breaking IGGi-11 symmetry might yield inhibitors with higher affinity and potential as antimetastatic drugs.
Collapse
Affiliation(s)
| | - Marina Mínguez-Toral
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | | | | | - Mikel García-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| | - Francisco J Medrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Blanco
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia 46010, Spain; Centro de Investigación Príncipe Felipe, Unidad Asociada a IBV, Valencia 46012, Spain.
| |
Collapse
|
3
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Pepanian A, Binbay FA, Pei D, Imhof D. Design, synthesis, and analysis of macrobicyclic peptides for targeting the Gαi protein. J Pept Sci 2024; 30:e3565. [PMID: 38232955 PMCID: PMC11065574 DOI: 10.1002/psc.3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Bicyclic peptides are important chemical tools that can function, for example, as bioactive ligands switching on/off signaling pathways mediated by guanine nucleotide-binding proteins as bicycles are more broadly applicable. Despite their relevance in medicinal chemistry, the synthesis of such peptides is challenging, and the final yield is highly dependent on the chemical composition and physicochemical properties of the scaffold. We recently discovered novel, state-specific peptide modulators targeting the Gαi protein, namely, GPM-2/GPM-3, by screening a one-bead-two-compound combinatorial library. A more detailed analysis, including sequence alignments and computer-assisted conformational studies based on the hit compounds, revealed the new peptide 10 as a potential macrobicyclic Gαi ligand sharing high sequence similarity to the known Gαi modulators. The Gαs protein was included in this study for comparison and to unravel the criteria for the specificity of modulator binding to Gαi versus Gαs. This work provides in-depth computer-assisted experimental studies for the analysis of novel macrobicyclic, library-derived Gαi protein ligands. The sequence and structural comparison of 10 with the lead compounds GPM-2 and GPM-3 reveals the importance of the size and amino acid composition of one ring of the bicyclic system and suggests features enhancing the binding affinity of the peptides to the Gαi protein.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F. Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, OH 43210, USA
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
5
|
Shewani K, Madhu MK, Murarka RK. Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway. Biophys Chem 2024; 309:107234. [PMID: 38603989 DOI: 10.1016/j.bpc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of Gα that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce Gα activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the Gαi3, a subtype of Gα-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix αF, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated Gαi3. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.
Collapse
Affiliation(s)
- Kunal Shewani
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
6
|
Garcia-Marcos M. Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif. J Biol Chem 2024; 300:105756. [PMID: 38364891 PMCID: PMC10943482 DOI: 10.1016/j.jbc.2024.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotrimeric G proteins (Gαβγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk. Cell Rep 2024; 43:113595. [PMID: 38117654 PMCID: PMC10844890 DOI: 10.1016/j.celrep.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.
Collapse
Affiliation(s)
| | - Guoqing Xiang
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexandra B Fall
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Piia Kohtala
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Daegeon Kim
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joshua Levitz
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA.
| |
Collapse
|
8
|
Pepanian A, Binbay FA, Roy S, Nubbemeyer B, Koley A, Rhodes CA, Ammer H, Pei D, Ghosh P, Imhof D. Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators. J Med Chem 2023; 66:12396-12406. [PMID: 37587416 PMCID: PMC11000586 DOI: 10.1021/acs.jmedchem.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Hermann Ammer
- Institute of Pharmacology Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, Munich 80539, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| |
Collapse
|
9
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555210. [PMID: 37693535 PMCID: PMC10491144 DOI: 10.1101/2023.08.28.555210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Collapse
|
10
|
Park JC, Luebbers A, Dao M, Semeano A, Nguyen AM, Papakonstantinou MP, Broselid S, Yano H, Martemyanov KA, Garcia-Marcos M. Fine-tuning GPCR-mediated neuromodulation by biasing signaling through different G protein subunits. Mol Cell 2023; 83:2540-2558.e12. [PMID: 37390816 PMCID: PMC10527995 DOI: 10.1016/j.molcel.2023.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαβγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gβγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gβγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gβγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gβγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Maria Dao
- U.F. Scripps Biomedical Research, University of Florida, Jupiter, FL 33458, USA
| | - Ana Semeano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Anh Minh Nguyen
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Maria P Papakonstantinou
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Stefan Broselid
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Zhao J, DiGiacomo V, Ferreras-Gutierrez M, Dastjerdi S, Ibáñez de Opakua A, Park JC, Luebbers A, Chen Q, Beeler A, Blanco FJ, Garcia-Marcos M. Small-molecule targeting of GPCR-independent noncanonical G-protein signaling in cancer. Proc Natl Acad Sci U S A 2023; 120:e2213140120. [PMID: 37098067 PMCID: PMC10160980 DOI: 10.1073/pnas.2213140120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 03/06/2023] [Indexed: 04/26/2023] Open
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class small-molecule inhibitor of noncanonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking noncanonical G-protein signaling in tumor cells and inhibiting proinvasive traits of metastatic cancer cells. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable noncanonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.
Collapse
Affiliation(s)
- Jingyi Zhao
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Vincent DiGiacomo
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | | | - Shiva Dastjerdi
- Department of Chemistry, Boston University, College of Arts & Sciences, Boston, MA02115
| | | | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Qingyan Chen
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Aaron Beeler
- Department of Chemistry, Boston University, College of Arts & Sciences, Boston, MA02115
| | - Francisco J. Blanco
- Centro de Investigaciones Biológicas-Centro Superior de Investigaciones Cientificas, Madrid, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA02115
| |
Collapse
|
12
|
Zhao J, DiGiacomo V, Ferreras-Gutierrez M, Dastjerdi S, de Opakua AI, Park JC, Luebbers A, Chen Q, Beeler A, Blanco FJ, Garcia-Marcos M. Small-molecule targeting of GPCR-independent non-canonical G protein signaling inhibits cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529092. [PMID: 36824907 PMCID: PMC9949157 DOI: 10.1101/2023.02.18.529092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically-approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class smallmolecule inhibitor of non-canonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking non-canonical G-protein signaling in tumor cells, and inhibiting pro-invasive traits of metastatic cancer cells in vitro and in mice. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable non-canonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.
Collapse
|
13
|
Kaur G, Verma SK, Singh D, Singh NK. Role of G-Proteins and GPCRs in Cardiovascular Pathologies. Bioengineering (Basel) 2023; 10:bioengineering10010076. [PMID: 36671648 PMCID: PMC9854459 DOI: 10.3390/bioengineering10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cell signaling is a fundamental process that enables cells to survive under various ecological and environmental contexts and imparts tolerance towards stressful conditions. The basic machinery for cell signaling includes a receptor molecule that senses and receives the signal. The primary form of the signal might be a hormone, light, an antigen, an odorant, a neurotransmitter, etc. Similarly, heterotrimeric G-proteins principally provide communication from the plasma membrane G-protein-coupled receptors (GPCRs) to the inner compartments of the cells to control various biochemical activities. G-protein-coupled signaling regulates different physiological functions in the targeted cell types. This review article discusses G-proteins' signaling and regulation functions and their physiological relevance. In addition, we also elaborate on the role of G-proteins in several cardiovascular diseases, such as myocardial ischemia, hypertension, atherosclerosis, restenosis, stroke, and peripheral artery disease.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Shailendra Kumar Verma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Deepak Singh
- Lloyd Institute of Engineering and Technology, Greater Noida 201306, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
14
|
Akturk A, Day M, Tarchini B. RGS12 polarizes the GPSM2-GNAI complex to organize and elongate stereocilia in sensory hair cells. SCIENCE ADVANCES 2022; 8:eabq2826. [PMID: 36260679 PMCID: PMC9581478 DOI: 10.1126/sciadv.abq2826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/31/2022] [Indexed: 06/10/2023]
Abstract
Inhibitory G proteins (GNAI/Gαi) bind to the scaffold G protein signaling modulator 2 (GPSM2) to form a conserved polarity complex that regulates cytoskeleton organization. GPSM2 keeps GNAI in a guanosine diphosphate (GDP)-bound state, but how GPSM2-GNAI is generated or relates to heterotrimeric G protein signaling remains unclear. We find that RGS12, a GTPase-activating protein (GAP), is required to polarize GPSM2-GNAI at the hair cell apical membrane and to organize mechanosensory stereocilia in rows of graded heights. Accordingly, RGS12 and the guanine nucleotide exchange factor (GEF) DAPLE are asymmetrically co-enriched at the hair cell apical junction, and Rgs12 mouse mutants are deaf. GPSM2 and RGS12 share GoLoco motifs that stabilize GNAI(GDP), and GPSM2 outcompetes RGS12 to bind GNAI. Our results suggest that polarized GEF/GAP junctional activity might dissociate heterotrimeric G proteins, generating free GNAI(GDP) for GPSM2 at the adjacent apical membrane. GPSM2-GNAI(GDP), in turn, imparts asymmetry to the forming stereocilia to enable sensory function in hair cells.
Collapse
Affiliation(s)
- Anil Akturk
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Matthew Day
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- School of Medicine, Tufts University, Boston, MA 02111, USA
- Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME 04469, USA
| |
Collapse
|
15
|
Marivin A, Ho RXY, Garcia-Marcos M. DAPLE orchestrates apical actomyosin assembly from junctional polarity complexes. J Biophys Biochem Cytol 2022; 221:213115. [PMID: 35389423 PMCID: PMC8996326 DOI: 10.1083/jcb.202111002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Establishment of apicobasal polarity and the organization of the cytoskeleton must operate coordinately to ensure proper epithelial cell shape and function. However, the precise molecular mechanisms by which polarity complexes directly instruct the cytoskeletal machinery to determine cell shape are poorly understood. Here, we define a mechanism by which the PAR polarity complex (PAR3–PAR6–aPKC) at apical cell junctions leads to efficient assembly of the apical actomyosin network to maintain epithelial cell morphology. We found that the PAR polarity complex recruits the protein DAPLE to apical cell junctions, which in turn triggers a two-pronged mechanism that converges upon assembly of apical actomyosin. More specifically, DAPLE directly recruits the actin-stabilizing protein CD2AP to apical junctions and, concomitantly, activates heterotrimeric G protein signaling in a GPCR-independent manner to favor RhoA-myosin activation. These observations establish DAPLE as a direct molecular link between junctional polarity complexes and the formation of apical cytoskeletal assemblies that support epithelial cell shape.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Rachel Xi-Yeen Ho
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
16
|
Nubbemeyer B, George AAP, Kühl T, Pepanian A, Beck MS, Maghraby R, Boushehri MS, Muehlhaupt M, Pfeil EM, Annala SK, Ammer H, Imhof D, Pei D. Targeting Gαi/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chem Biol 2022; 17:463-473. [PMID: 35042325 PMCID: PMC11002716 DOI: 10.1021/acschembio.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical probes that specifically modulate the activity of heterotrimeric G proteins provide excellent tools for investigating G protein-mediated cell signaling. Herein, we report a family of selective peptidyl Gαi/s modulators derived from peptide library screening and optimization. Conjugation to a cell-penetrating peptide rendered the peptides cell-permeable and biologically active in cell-based assays. The peptides exhibit potent guanine-nucleotide exchange modulator-like activity toward Gαi and Gαs. Molecular docking and dynamic simulations revealed the molecular basis of the protein-ligand interactions and their effects on GDP binding. This study demonstrates the feasibility of developing direct Gαi/s modulators and provides a novel chemical probe for investigating cell signaling through GPCRs/G proteins.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
- BioSolveIT GmbH, An der Ziegelei 79, 53757, Sankt Augustin, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Rahma Maghraby
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maryam Shetab Boushehri
- Pharmaceutical Technology and Biopharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Maximilian Muehlhaupt
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Suvi Katariina Annala
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Hermann Ammer
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biosciences Building, 484 W 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
18
|
Ghosh P, Mullick M. Building unconventional G protein-coupled receptors, one block at a time. Trends Pharmacol Sci 2021; 42:514-517. [PMID: 33985816 DOI: 10.1016/j.tips.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The structure, function, and dynamics of canonical activation of heterotrimeric G proteins by the seven-transmembrane G protein-coupled receptors (GPCRs) have been illustrated in detail. However, emerging studies during the past decade have started to shed light on how the same G proteins may also be accessed and modulated by a diverse family of receptors that are not conventional GPCRs. Can we learn about common themes and variations in how cells assemble these atypical GPCRs?
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Medicine, University of California, San Diego, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA.
| | - Madhubanti Mullick
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
| |
Collapse
|
19
|
Garcia-Marcos M. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. eLife 2021; 10:65620. [PMID: 33787494 PMCID: PMC8034979 DOI: 10.7554/elife.65620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
20
|
Ham D, Ahn D, Ashim J, Cho Y, Kim HR, Yu W, Chung KY. Conformational switch that induces GDP release from Gi. J Struct Biol 2021; 213:107694. [PMID: 33418033 DOI: 10.1016/j.jsb.2020.107694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, β, and γ subunits. Gα switches between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active states, and Gβγ interacts with the GDP-bound state. The GDP-binding regions are composed of two sites: the phosphate-binding and guanine-binding regions. The turnover of GDP and GTP is induced by guanine nucleotide-exchange factors (GEFs), including G protein-coupled receptors (GPCRs), Ric8A, and GIV/Girdin. However, the key structural factors for stabilizing the GDP-bound state of G proteins and the direct structural event for GDP release remain unclear. In this study, we investigated structural factors affecting GDP release by introducing point mutations in selected, conserved residues in Gαi3. We examined the effects of these mutations on the GDP/GTP turnover rate and the overall conformation of Gαi3 as well as the binding free energy between Gαi3 and GDP. We found that dynamic changes in the phosphate-binding regions are an immediate factor for the release of GDP.
Collapse
Affiliation(s)
- Donghee Ham
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Janbolat Ashim
- Department of Brain and Cognitive Sciences, DGIST, 333 Techno jungang-daero, Daegu 42988, Republic of Korea
| | - Yejin Cho
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, 333 Techno jungang-daero, Daegu 42988, Republic of Korea; Core Protein Resources Center, DGIST, 333 Techno jungang-daero, Daegu 42988, Republic of Korea.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
21
|
Ear J, Abd El-Hafeez AA, Roy S, Ngo T, Rajapakse N, Choi J, Khandelwal S, Ghassemian M, McCaffrey L, Kufareva I, Sahoo D, Ghosh P. A long isoform of GIV/Girdin contains a PDZ-binding module that regulates localization and G-protein binding. J Biol Chem 2021; 296:100493. [PMID: 33675748 PMCID: PMC8042451 DOI: 10.1016/j.jbc.2021.100493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
PDZ domains are one of the most abundant protein domains in eukaryotes and are frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and fine-tune cellular signaling. However, how such interaction affects protein function is difficult to predict and must be solved empirically. Here we describe a long isoform of the guanine nucleotide exchange factor GIV/Girdin (CCDC88A) that we named GIV-L, which is conserved throughout evolution, from invertebrates to vertebrates, and contains a PBM. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes onto cell junctions and has a PDZ interactome (as shown through annotating Human Cell Map and BioID-proximity labeling studies), which impacts GIV-L's ability to bind and activate trimeric G-protein, Gαi, through its guanine-nucleotide exchange modulator (GEM) module. This GEM module is found exclusively in vertebrates. We propose that the two functional modules in GIV may have evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analysis in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how regulation in GIV/CCDC88A transcript helps to achieve protein modularity, which allows the protein to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).
Collapse
Affiliation(s)
- Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Biological Sciences Department, California State Polytechnic University, Pomona, California, USA.
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Julie Choi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Soni Khandelwal
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Department of Medicine, University of California San Diego, La Jolla, California, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, California, USA; Veterans Affairs Medical Center, La Jolla, California, USA.
| |
Collapse
|
22
|
Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the interdomain cleft of Gαi. Proc Natl Acad Sci U S A 2020; 117:28763-28774. [PMID: 33139573 DOI: 10.1073/pnas.2004699117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•βγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.
Collapse
|
23
|
Ear J, Ali Abd El-hafeez A, Roy S, Ngo T, Rajapakse N, Choi J, Khandelwal S, Ghassemian M, Mccaffrey L, Kufareva I, Sahoo D, Ghosh P. Evolution of Modularity, Interactome and Functions of GIV/Girdin (CCDC88A) from Invertebrates to Vertebrates.. [DOI: 10.1101/2020.09.28.317172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractPDZ domains are one of the most abundant protein domains in eukaryotes and frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and finetune cellular signaling. Here we describe the presence of a PBM on GIV/Girdin (CCDC88A) that is conserved throughout evolution, from invertebrates to vertebrates, and is generated as a long isoform-variant in humans, which we named GIV-L. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes to the cell junctions, and has a unique PDZ-interactome, which impacts GIV-L’s ability to bind and activate trimeric G-protein, Gi through its guanine-nucleotide exchange modulator (GEM) module; the GEM module is found exclusively in vertebrates. Thus, the two functional modules in GIV evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analyses in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how GIV/CCDC88A in humans displays evolutionary flexibility in modularity, which allows the resultant isoforms to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).
Collapse
|
24
|
Garcia-Marcos M, Parag-Sharma K, Marivin A, Maziarz M, Luebbers A, Nguyen LT. Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein. eLife 2020; 9:60155. [PMID: 32936073 PMCID: PMC7515630 DOI: 10.7554/elife.60155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
Heterotrimeric G-proteins are signal transducers involved in mediating the action of many natural extracellular stimuli and many therapeutic agents. Non-invasive approaches to manipulate the activity of G-proteins with high precision are crucial to understand their regulation in space and time. Here, we developed LOV2GIVe, an engineered modular protein that allows the activation of heterotrimeric G-proteins with blue light. This optogenetic construct relies on a versatile design that differs from tools previously developed for similar purposes, that is metazoan opsins, which are light-activated G-protein-coupled receptors (GPCRs). Instead, LOV2GIVe consists of the fusion of a G-protein activating peptide derived from a non-GPCR regulator of G-proteins to a small plant protein domain, such that light uncages the G-protein activating module. Targeting LOV2GIVe to cell membranes allowed for light-dependent activation of Gi proteins in different experimental systems. In summary, LOV2GIVe expands the armamentarium and versatility of tools available to manipulate heterotrimeric G-protein activity.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Kshitij Parag-Sharma
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex Luebbers
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
25
|
Wilz AM, Wernecke K, Appel L, Kahrs J, Dore R, Jöhren O, Lehnert H, Schulz C. Endogenous NUCB2/Nesfatin-1 Regulates Energy Homeostasis Under Physiological Conditions in Male Rats. Horm Metab Res 2020; 52:676-684. [PMID: 32722818 DOI: 10.1055/a-1196-2059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is the proteolytic cleavage product of Nucleobindin 2, which is expressed both in a number of brain nuclei (e. g., the paraventricular nucleus of the hypothalamus) and peripheral tissues. While Nucleobindin 2 acts as a calcium binding protein, nesfatin-1 was shown to affect energy homeostasis upon central nervous administration by decreasing food intake and increasing thermogenesis. In turn, Nucleobindin 2 mRNA expression is downregulated in starvation and upregulated in the satiated state. Still, knowledge about the physiological role of endogenous Nucleobindin 2/nesfatin-1 in the control of energy homeostasis is limited and since its receptor has not yet been identified, rendering pharmacological blockade impossible. To overcome this obstacle, we tested and successfully established an antibody-based experimental model to antagonize the action of nesfatin-1. This model was then employed to investigate the physiological role of endogenous Nucleobindin 2/nesfatin-1. To this end, we applied nesfatin-1 antibody into the paraventricular nucleus of satiated rats to antagonize the presumably high endogenous Nucleobindin 2/nesfatin-1 levels in this feeding condition. In these animals, nesfatin-1 antibody administration led to a significant decrease in thermogenesis, demonstrating the important role of endogenous Nucleobindin 2/nesfatin-1in the regulation of energy expenditure. Additionally, food and water intake were significantly increased, confirming and complementing previous findings. Moreover, neuropeptide Y was identified as a major downstream target of endogenous Nucleobindin 2/nesfatin-1.
Collapse
Affiliation(s)
- Anna-Maria Wilz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Kerstin Wernecke
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Lena Appel
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Johanna Kahrs
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Srivastava D, Artemyev NO. Ric-8A, a GEF, and a Chaperone for G Protein α-Subunits: Evidence for the Two-Faced Interface. Bioessays 2020; 42:e1900208. [PMID: 31967346 PMCID: PMC7034654 DOI: 10.1002/bies.201900208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Resistance to inhibitors of cholinesterase 8A (Ric-8A) is a prominent non-receptor GEF and a chaperone of G protein α-subunits (Gα). Recent studies shed light on the structure of Ric-8A, providing insights into the mechanisms underlying its interaction with Gα. Ric-8A is composed of a core armadillo-like domain and a flexible C-terminal tail. Interaction of a conserved concave surface of its core domain with the Gα C-terminus appears to mediate formation of the initial Ric-8A/GαGDP intermediate, followed by the formation of a stable nucleotide-free complex. The latter event involves a large-scale dislocation of the Gα α5-helix that produces an extensive primary interface and disrupts the nucleotide-binding site of Gα. The distal portion of the C-terminal tail of Ric-8A forms a smaller secondary interface, which ostensibly binds the switch II region of Gα, facilitating binding of GTP. The two-site Gα interface of Ric-8A is distinct from that of GPCRs, and might have evolved to support the chaperone function of Ric-8A.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Nikolai O. Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
27
|
Marivin A, Maziarz M, Zhao J, DiGiacomo V, Olmos Calvo I, Mann EA, Ear J, Blanco-Canosa JB, Ross EM, Ghosh P, Garcia-Marcos M. DAPLE protein inhibits nucleotide exchange on Gα s and Gα q via the same motif that activates Gαi. J Biol Chem 2020; 295:2270-2284. [PMID: 31949046 DOI: 10.1074/jbc.ra119.011648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Besides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE (Dvl-associating protein with a high frequency of leucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the Gi/o family (Gαi) over other families (such as Gs, Gq/11, or G12/13), and promoting nucleotide exchange in vitro However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gαs and inhibits nucleotide exchange. The G-protein specificity of DAPLE and how it might affect nucleotide exchange on G proteins besides Gαi remain to be investigated. Here, we show that DAPLE's GBA motif, in addition to Gαi, binds efficiently to members of the Gs and Gq/11 families (Gαs and Gαq, respectively), but not of the G12/13 family (Gα12) in the absence of post-translational phosphorylation. We pinpointed Met-1669 as the residue in the GBA motif of DAPLE that diverges from that in GIV and enables better binding to Gαs and Gαq Unlike the nucleotide-exchange acceleration observed for Gαi, DAPLE inhibited nucleotide exchange on Gαs and Gαq These findings indicate that GBA motifs have versatility in their G-protein-modulating effect, i.e. they can bind to Gα subunits of different classes and either stimulate or inhibit nucleotide exchange depending on the G-protein subtype.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jingyi Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Isabel Olmos Calvo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Emily A Mann
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jason Ear
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain 08034
| | - Elliott M Ross
- Department of Pharmacology, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pradipta Ghosh
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
28
|
Subramanian A, Capalbo A, Iyengar NR, Rizzo R, di Campli A, Di Martino R, Lo Monte M, Beccari AR, Yerudkar A, Del Vecchio C, Glielmo L, Turacchio G, Pirozzi M, Kim SG, Henklein P, Cancino J, Parashuraman S, Diviani D, Fanelli F, Sallese M, Luini A. Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell 2020; 176:1461-1476.e23. [PMID: 30849374 DOI: 10.1016/j.cell.2019.01.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/30/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.
Collapse
Affiliation(s)
- Advait Subramanian
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy.
| | - Anita Capalbo
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Namrata Ravi Iyengar
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Antonella di Campli
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy; Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, Center for Research on Ageing and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rosaria Di Martino
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Matteo Lo Monte
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Andrea R Beccari
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy; Dompé Farmaceutici SpA, Milan, Italy
| | - Amol Yerudkar
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Carmen Del Vecchio
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Luigi Glielmo
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Petra Henklein
- Institut fur Biochemie, Charite Universitätsmedizin, Berlin, Germany
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | | | - Dario Diviani
- Université de Lausanne, Département de Pharmacologie et Toxicologie, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sallese
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, Center for Research on Ageing and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy.
| |
Collapse
|
29
|
Ghosh P, Garcia-Marcos M. Do All Roads Lead to Rome in G-Protein Activation? Trends Biochem Sci 2019; 45:182-184. [PMID: 31753703 DOI: 10.1016/j.tibs.2019.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/15/2022]
Abstract
High-resolution structural studies on G-protein-coupled receptors (GPCRs) have flourished recently, providing long-sought insights into the dynamic process of guanine nucleotide-binding protein (G-protein) activation. In parallel, analogous studies are starting to shed light on how the same G-proteins are activated by non-GPCR proteins. Can we learn about common themes and variations in G-protein activation from them?
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA.
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
30
|
Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proc Natl Acad Sci U S A 2019; 116:16394-16403. [PMID: 31363053 DOI: 10.1073/pnas.1906658116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterotrimeric G proteins are key molecular switches that control cell behavior. The canonical activation of G proteins by agonist-occupied G protein-coupled receptors (GPCRs) has recently been elucidated from the structural perspective. In contrast, the structural basis for GPCR-independent G protein activation by a novel family of guanine-nucleotide exchange modulators (GEMs) remains unknown. Here, we present a 2.0-Å crystal structure of Gαi in complex with the GEM motif of GIV/Girdin. Nucleotide exchange assays, molecular dynamics simulations, and hydrogen-deuterium exchange experiments demonstrate that GEM binding to the conformational switch II causes structural changes that allosterically propagate to the hydrophobic core of the Gαi GTPase domain. Rearrangement of the hydrophobic core appears to be a common mechanism by which GPCRs and GEMs activate G proteins, although with different efficiency. Atomic-level insights presented here will aid structure-based efforts to selectively target the noncanonical G protein activation.
Collapse
|
31
|
Marivin A, Garcia-Marcos M. DAPLE and MPDZ bind to each other and cooperate to promote apical cell constriction. Mol Biol Cell 2019; 30:1900-1910. [PMID: 31268831 PMCID: PMC6727773 DOI: 10.1091/mbc.e19-02-0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dishevelled-Associating Protein with a high frequency of LEucines (DAPLE) belongs to a group of unconventional activators of heterotrimeric G-proteins that are cytoplasmic factors rather than membrane proteins of the G-protein–coupled receptor superfamily. During neurulation, DAPLE localizes to apical junctions of neuroepithelial cells and promotes apical cell constriction via G-protein activation. While junctional localization of DAPLE is necessary for this function, the factors it associates with at apical junctions or how they contribute to DAPLE-mediated apical constriction are unknown. MPDZ is a multi-PDZ (PSD95/DLG1/ZO-1) domain scaffold present at apical cell junctions whose mutation in humans is linked to nonsyndromic congenital hydrocephalus (NSCH). DAPLE contains a PDZ-binding motif (PBM) and is also mutated in human NSCH, so we investigated the functional relationship between both proteins. DAPLE colocalized with MPDZ at apical cell junctions and bound directly to the PDZ3 domain of MPDZ via its PBM. Much like DAPLE, MPDZ is induced during neurulation in Xenopus and is required for apical constriction of neuroepithelial cells and subsequent neural plate bending. MPDZ depletion also blunted DAPLE-mediated apical constriction of cultured cells. These results show that DAPLE and MPDZ, two factors genetically linked to NSCH, function as cooperative partners at apical junctions and are required for proper tissue remodeling during early stages of neurodevelopment.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
32
|
Marivin A, Morozova V, Walawalkar I, Leyme A, Kretov DA, Cifuentes D, Dominguez I, Garcia-Marcos M. GPCR-independent activation of G proteins promotes apical cell constriction in vivo. J Cell Biol 2019; 218:1743-1763. [PMID: 30948426 PMCID: PMC6504902 DOI: 10.1083/jcb.201811174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Heterotrimeric G proteins are signaling switches that control organismal morphogenesis across metazoans. In invertebrates, specific GPCRs instruct G proteins to promote collective apical cell constriction in the context of epithelial tissue morphogenesis. In contrast, tissue-specific factors that instruct G proteins during analogous processes in vertebrates are largely unknown. Here, we show that DAPLE, a non-GPCR protein linked to human neurodevelopmental disorders, is expressed specifically in the neural plate of Xenopus laevis embryos to trigger a G protein signaling pathway that promotes apical cell constriction during neurulation. DAPLE localizes to apical cell-cell junctions in the neuroepithelium, where it activates G protein signaling to drive actomyosin-dependent apical constriction and subsequent bending of the neural plate. This function is mediated by a Gα-binding-and-activating (GBA) motif that was acquired by DAPLE in vertebrates during evolution. These findings reveal that regulation of tissue remodeling during vertebrate development can be driven by an unconventional mechanism of heterotrimeric G protein activation that operates in lieu of GPCRs.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Veronika Morozova
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Isha Walawalkar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
33
|
Maziarz M, Broselid S, DiGiacomo V, Park JC, Luebbers A, Garcia-Navarrete L, Blanco-Canosa JB, Baillie GS, Garcia-Marcos M. A biochemical and genetic discovery pipeline identifies PLCδ4b as a nonreceptor activator of heterotrimeric G-proteins. J Biol Chem 2018; 293:16964-16983. [PMID: 30194280 DOI: 10.1074/jbc.ra118.003580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.
Collapse
Affiliation(s)
- Marcin Maziarz
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Stefan Broselid
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Vincent DiGiacomo
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Jong-Chan Park
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Alex Luebbers
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Lucia Garcia-Navarrete
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Juan B Blanco-Canosa
- the Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain, and
| | - George S Baillie
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| |
Collapse
|
34
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
35
|
DiGiacomo V, Marivin A, Garcia-Marcos M. When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation. Biochemistry 2017; 57:255-257. [PMID: 29035513 DOI: 10.1021/acs.biochem.7b00845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| |
Collapse
|
36
|
Maziarz M, Garcia-Marcos M. Fluorescence polarization assays to measure interactions between Gα subunits of heterotrimeric G proteins and regulatory motifs. Methods Cell Biol 2017; 142:133-143. [PMID: 28964332 DOI: 10.1016/bs.mcb.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Fluorescence polarization (FP) is a simple and sensitive method allowing for the quantification of interactions between proteins and fluorescently tagged small molecules like peptides. Heterotrimeric G proteins are critical signal transducing molecules and their activity is controlled by a complex network of regulatory proteins. Some of these regulators have defined short motifs (<40 amino acids) that are sufficient to bind G proteins and subsequently modulate their activity. For these cases, FP represents a robust and quantitative method to characterize the G protein regulator interaction. Here we describe FP assays in a 384-well plate format to quantify interactions between Gα subunits of heterotrimeric G proteins and peptides corresponding to the Gα binding and activating (GBA) or GoLoco motifs, which are present in some proteins with guanine nucleotide exchange factor (GEF) (e.g., GIV/Girdin) or guanine nucleotide dissociation inhibitor (GDI) (e.g., RGS12) activity, respectively. This assay can be used to determine equilibrium dissociation constants, characterize the impact of single amino acid point mutations on the Gα-peptide interaction, and is suitable for high-throughput screening.
Collapse
Affiliation(s)
- Marcin Maziarz
- Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
37
|
DiGiacomo V, de Opakua AI, Papakonstantinou MP, Nguyen LT, Merino N, Blanco-Canosa JB, Blanco FJ, Garcia-Marcos M. The Gαi-GIV binding interface is a druggable protein-protein interaction. Sci Rep 2017; 7:8575. [PMID: 28819150 PMCID: PMC5561080 DOI: 10.1038/s41598-017-08829-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Heterotrimeric G proteins are usually activated by the guanine-nucleotide exchange factor (GEF) activity of GPCRs. However, some non-receptor proteins are also GEFs. GIV (a.k.a Girdin) was the first non-receptor protein for which the GEF activity was ascribed to a well-defined protein sequence that directly binds Gαi. GIV expression promotes metastasis and disruption of its binding to Gαi blunts the pro-metastatic behavior of cancer cells. Although this suggests that inhibition of the Gαi-GIV interaction is a promising therapeutic strategy, protein-protein interactions (PPIs) are considered poorly "druggable" targets requiring case-by-case validation. Here, we set out to investigate whether Gαi-GIV is a druggable PPI. We tested a collection of >1,000 compounds on the Gαi-GIV PPI by in silico ligand screening and separately by a chemical high-throughput screening (HTS) assay. Two hits, ATA and NF023, obtained in both screens were confirmed in secondary HTS and low-throughput assays. The binding site of NF023, identified by NMR spectroscopy and biochemical assays, overlaps with the Gαi-GIV interface. Importantly, NF023 did not disrupt Gαi-Gβγ binding, indicating its specificity toward Gαi-GIV. This work establishes the Gαi-GIV PPI as a druggable target and sets the conceptual and technical framework for the discovery of novel inhibitors of this PPI.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | | | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | - Juan B Blanco-Canosa
- Department of Chemistry and Molecular Pharmacology, IRB Barcelona, Barcelona, Spain
| | - Francisco J Blanco
- CIC-BioGune, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, USA.
| |
Collapse
|