1
|
Liao Y, Kong Y, Chen H, Xia J, Zhao J, Zhou Y. Unraveling the priming phase of NLRP3 inflammasome activation: Molecular insights and clinical relevance. Int Immunopharmacol 2025; 146:113821. [PMID: 39674000 DOI: 10.1016/j.intimp.2024.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
The NLRP3 inflammasome plays a pivotal role in the innate immune response. Its activation involves a two-step mechanism that consists of priming and activation. The priming of the NLRP3 inflammasome is a vital initial phase necessary for its activation and subsequent involvement in the immune response, though its understanding varies across studies. Recent research has identified key proteins that influence the priming process, revealing a sophisticated regulatory network. This review provides a comprehensive review of the priming phase of NLRP3 inflammasome activation, with a particular focus on the underlying molecular mechanisms, including transcriptional regulation, orchestration of the phosphorylation status, deubiquitination and the relationships with the inflammation-associated diseases. Understanding the intricacies of NLRP3 inflammasome priming not only elucidates fundamental aspects of immune regulation, but also provides potential avenues for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China
| | - Yueyao Kong
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Hongyu Chen
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jing Xia
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, 402460 Chongqing, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China.
| |
Collapse
|
2
|
Wang Y, Ni S, Liu F, Guo L, Han C. Causal relationships between immune cells, inflammatory factors, and preeclampsia: A two-step, two-sample mendelian randomization study. J Reprod Immunol 2025; 168:104428. [PMID: 39864339 DOI: 10.1016/j.jri.2025.104428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Preeclampsia (PE) is a complex hypertensive disorder that occurs during pregnancy, with the immune system playing a key role. Although immune modulation is implicated in PE progression, the roles of specific immune cells and inflammatory mediators remain unclear. METHODS We conducted a two-sample, two-step Mendelian randomization (MR) analysis, primarily using the inverse-variance weighted method, to investigate the causal effect of immune cell traits on PE. Additionally, we assessed the potential mediation effects of inflammatory factors. RESULTS The MR analyses revealed that 22 immune cell traits exert protective effects against PE, whereas 19 are associated with an increased risk. Additionally, four inflammatory factors were suggested to be linked to PE. Mediation analysis identified the absolute count (AC) of CD33 + HLA DR+ cells, including the CD14 - subset, as causally related to PE. Both the total effect of the CD33 + HLA DR+ AC (odds ratio [OR] = 0.977, 95 % confidence interval [CI], 0.960-0.994; P = 0.010) and the effect of CD33 + HLA DR+ CD14 - cells (OR = 0.977, 95 % CI, 0.963-0.991; P = 0.001) were significant. These effects were partially mediated by STAM-binding protein levels, contributing 16.7 % and 15.0 % to the total effects of the CD33 + HLA DR+ AC and CD33 + HLA DR+ CD14 - AC, respectively. CONCLUSION This study establishes a causal relationship between specific immune cells and PE, potentially mediated by inflammatory factors, highlighting the importance of these traits in PE pathogenesis. Further research is needed to validate these findings based on larger, more diverse cohorts.
Collapse
Affiliation(s)
- Yuxiu Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shijun Ni
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Liu W, Yang S, Li Y, Tenzing D, Shi R, Jiang Y, Deng H, Mao E, Chen Y, Wang Y. Exploring lipidome mediated inflammatory pathways in acute pancreatitis using mendelian randomization. Sci Rep 2025; 15:1248. [PMID: 39774240 PMCID: PMC11707253 DOI: 10.1038/s41598-025-85354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is a severe gastrointestinal condition with an increasing incidence of hyperlipidemic etiology. The investigation employed a two-sample, bidirectional Mendelian randomization method to investigate potential causal relationship between lipidome profiles, inflammatory mediators, and AP. Exploration of genetic variants across the genome in a study population of 10,630 AP cases and 844,679 non-AP individuals revealed multiple lipidome entities significantly associated with AP risk. The study identified 23 lipid species with unidirectional causal effects on AP after accounting for heterogeneity, pleiotropy, and potential reverse causation. Additionally, five inflammatory factors (CD5, IL-13, MMP-1, STAMBP, TNFRSF9) showed significant potential causal relationship with AP. Further analysis elucidated the intricate interplay between specific lipid species and inflammatory mediators in influencing AP incidence. Notably, Sterol ester (27:1/20:4) and several phosphatidylcholine species, including PC (17:0_20:4), PC (18:0_20:4), PC (18:0_20:5), and PC (O-18:2_20:4), were negatively associated with AP risk. This protective effect was partially mediated through decreased levels of inflammatory markers, particularly STAMBP and MMP-1. The study found that these phosphatidylcholines and sterol esters significantly reduced the levels of these pro-inflammatory factors, thereby potentially mitigating AP risk. Conversely, Phosphatidylinositol (16:0_18:1) demonstrated a positive association with AP risk. This detrimental effect was partially mediated by increased levels of MMP-1 and STAMBP, suggesting a pro-inflammatory mechanism. The study provides evidence that this specific phosphatidylinositol species may exacerbate AP risk by promoting inflammatory pathways. These findings elucidate the complex interplay between lipid metabolites, inflammation, and AP pathogenesis, potentially informing novel therapeutic strategies. The study highlights the utility of Mendelian randomization in uncovering potential causal relationship in AP. It underscores the requirement for further study into the molecular mechanisms underlying lipid-mediated inflammation in AP, particularly the roles of phosphatidylcholines and sterol esters in modulating inflammatory responses. Further studies are warranted to confirm our observations in laboratory models and assess their translational value in developing AP preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dava Tenzing
- Department of Emergency, People's Hospital of Shigatse City, Shigatse, China
| | - Ruizi Shi
- Shanghai Institute of Aviation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Deng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Emergency, People's Hospital of Shigatse City, Shigatse, China.
| |
Collapse
|
4
|
Pandey A, Li Z, Gautam M, Ghosh A, Man SM. Molecular mechanisms of emerging inflammasome complexes and their activation and signaling in inflammation and pyroptosis. Immunol Rev 2025; 329:e13406. [PMID: 39351983 PMCID: PMC11742652 DOI: 10.1111/imr.13406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Inflammasomes are multi-protein complexes that assemble within the cytoplasm of mammalian cells in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), driving the secretion of the pro-inflammatory cytokines IL-1β and IL-18, and pyroptosis. The best-characterized inflammasome complexes are the NLRP3, NAIP-NLRC4, NLRP1, AIM2, and Pyrin canonical caspase-1-containing inflammasomes, and the caspase-11 non-canonical inflammasome. Newer inflammasome sensor proteins have been identified, including NLRP6, NLRP7, NLRP9, NLRP10, NLRP11, NLRP12, CARD8, and MxA. These inflammasome sensors can sense PAMPs from bacteria, viruses and protozoa, or DAMPs in the form of mitochondrial damage, ROS, stress and heme. The mechanisms of action, physiological relevance, consequences in human diseases, and avenues for therapeutic intervention for these novel inflammasomes are beginning to be realized. Here, we discuss these emerging inflammasome complexes and their putative activation mechanisms, molecular and signaling pathways, and physiological roles in health and disease.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Zheyi Li
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Manjul Gautam
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Aritra Ghosh
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
| |
Collapse
|
5
|
Satitsuksanoa P, van de Veen W, Tan G, Lopez J, Wirz O, Jansen K, Sokolowska M, Mirer D, Globinska A, Boonpiyathad T, Schneider SR, Barletta E, Spits H, Chang I, Babayev H, Tahralı İ, Deniz G, Yücel EÖ, Kıykım A, Boyd SD, Akdis CA, Nadeau K, Akdis M. Allergen-specific B cell responses in oral immunotherapy-induced desensitization, remission, and natural outgrowth in cow's milk allergy. Allergy 2025; 80:161-180. [PMID: 38989779 PMCID: PMC11724240 DOI: 10.1111/all.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Antigen-specific memory B cells play a key role in the induction of desensitization and remission to food allergens in oral immunotherapy and in the development of natural tolerance (NT). Here, we characterized milk allergen Bos d 9-specific B cells in oral allergen-specific immunotherapy (OIT) and in children spontaneously outgrowing cow's milk allergy (CMA) due to NT. METHODS Samples from children with CMA who received oral OIT (before, during, and after), children who naturally outgrew CMA (NT), and healthy individuals were received from Stanford biobank. Bos d 9-specific B cells were isolated by flow cytometry and RNA-sequencing was performed. Protein profile of Bos d 9-specific B cells was analyzed by proximity extension assay. RESULTS Increased frequencies of circulating milk allergen Bos d 9-specific B cells were observed after OIT and NT. Milk-desensitized subjects showed the partial acquisition of phenotypic features of remission, suggesting that desensitization is an earlier stage of remission. Within these most significantly expressed genes, IL10RA and TGFB3 were highly expressed in desensitized OIT patients. In both the remission and desensitized groups, B cell activation-, Breg cells-, BCR-signaling-, and differentiation-related genes were upregulated. In NT, pathways associated with innate immunity characteristics, development of marginal zone B cells, and a more established suppressor function of B cells prevail that may play a role in long-term tolerance. The analyses of immunoglobulin heavy chain genes in specific B cells demonstrated that IgG2 in desensitization, IgG1, IgA1, IgA2, IgG4, and IgD in remission, and IgD in NT were predominating. Secreted proteins from allergen-specific B cells revealed higher levels of regulatory cytokines, IL-10, and TGF-β after OIT and NT. CONCLUSION Allergen-specific B cells are essential elements in regulating food allergy towards remission in OIT-received and naturally resolved individuals.
Collapse
Affiliation(s)
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Functional Genomics Center Zürich, ETH ZürichZürichSwitzerland
| | - Juan‐Felipe Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Oliver Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Department of PathologyStanford UniversityStanfordCaliforniaUSA
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Christine Kühne–Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Stephan R. Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Swiss Institute of BioinformaticsLaussaneSwitzerland
| | - Hergen Spits
- Department of Experimental ImmunologyAcademic Medical Center of the University of AmsterdamAmsterdamthe Netherlands
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma ResearchStanfordCaliforniaUSA
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| | - İlhan Tahralı
- Department of ImmunologyAziz Sancar Institute of Experimental Medicine, Istanbul UniversityIstanbulTurkey
| | - Gunnur Deniz
- Department of ImmunologyAziz Sancar Institute of Experimental Medicine, Istanbul UniversityIstanbulTurkey
| | - Esra Özek Yücel
- Division of Pediatrics, Department of Pediatric Allergy and Immunology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical FacultyIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ayca Kıykım
- Department of Pediatric Allergy and Immunology, Cerrahpasa Medical FacultyIstanbul University‐CerrahpasaIstanbulTurkey
| | - Scott D. Boyd
- Department of PathologyStanford UniversityStanfordCaliforniaUSA
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
- Christine Kühne–Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma ResearchStanfordCaliforniaUSA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of ZürichDavosSwitzerland
| |
Collapse
|
6
|
Zhang W, Xu Z, Du Y, Liu T, Xiong Z, Hu J, Chen L, Peng X, Zhou F. Identification of STAM-binding protein as a target for the treatment of gemcitabine resistance pancreatic cancer in a nutrient-poor microenvironment. Cell Death Dis 2024; 15:657. [PMID: 39242557 PMCID: PMC11379802 DOI: 10.1038/s41419-024-07048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Pancreatic cancer (PC) is a highly malignant solid tumor whose resistance to gemcitabine (GEM) chemotherapy is a major cause of poor patient prognosis. Although PC is known to thrive on malnutrition, the mechanism underlying its chemotherapy resistance remains unclear. The current study analyzed clinical tissue sample databases using bioinformatics tools and observed significantly upregulated expression of the deubiquitinase STAMBP in PC tissues. Functional experiments revealed that STAMBP knockdown remarkably increases GEM sensitivity in PC cells. Multiple omics analyses suggested that STAMBP enhances aerobic glycolysis and suppresses mitochondrial respiration to increase GEM resistance in PC both in vitro and in vivo. STAMBP knockdown decreased PDK1 levels, an essential regulator of the aerobic glycolytic process, in several cancers. Mechanistically, STAMBP promoted the PDK1-mediated Warburg effect and chemotherapy resistance by modulating E2F1 via direct binding to E2F1 and suppressing its degradation and ubiquitination. High-throughput compound library screening using three-dimensional protein structure analysis and drug screening identified the FDA drug entrectinib as a potent GEM sensitizer and STAMBP inhibitor, augmenting the antitumor effect of GEM in a patient-derived xenograft (PDX) model. Overall, we established a novel mechanism, via the STAMBP-E2F1-PDK1 axis, by which PC cells become chemoresistant in a nutrient-poor tumor microenvironment.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China
| | - Zheng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China
| | - Yunyan Du
- Department of Pharmacology, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, PR China
| | - Tiande Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China
| | - Zhijuan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, PR China
| | - Junwen Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China.
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, PR China.
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China.
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, PR China.
| |
Collapse
|
7
|
Gu B, Le GH, Herrera S, Blair SJ, Meissner TB, Strominger JL. HLA-C expression in extravillous trophoblasts is determined by an ELF3-NLRP2/NLRP7 regulatory axis. Proc Natl Acad Sci U S A 2024; 121:e2404229121. [PMID: 39052836 PMCID: PMC11295039 DOI: 10.1073/pnas.2404229121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
The distinct human leukocyte antigen (HLA) class I expression pattern of human extravillous trophoblasts (EVT) endows them with unique tolerogenic properties that enable successful pregnancy. Nevertheless, how this process is elaborately regulated remains elusive. Previously, E74 like ETS transcription factor 3 (ELF3) was identified to govern high-level HLA-C expression in EVT. In the present study, ELF3 is found to bind to the enhancer region of two adjacent NOD-like receptor (NLR) genes, NLR family pyrin domain-containing 2 and 7 (NLRP2, NLRP7). Notably, our analysis of ELF3-deficient JEG-3 cells, a human choriocarcinoma cell line widely used to study EVT biology, suggests that ELF3 transactivates NLRP7 while suppressing the expression of NLRP2. Moreover, we find that NLRP2 and NLRP7 have opposing effects on HLA-C expression, thus implicating them in immune evasion at the maternal-fetal interface. We confirmed that NLRP2 suppresses HLA-C levels and described a unique role for NLRP7 in promoting HLA-C expression in JEG-3. These results suggest that these two NLR genes, which arose via gene duplication in primates, are fine-tuned by ELF3 yet have acquired divergent functions to enable proper expression levels of HLA-C in EVT, presumably through modulating the degradation kinetics of IkBα. Targeting the ELF3-NLRP2/NLRP7-HLA-C axis may hold therapeutic potential for managing pregnancy-related disorders, such as recurrent hydatidiform moles and fetal growth restriction, and thus improve placental development and pregnancy outcomes.
Collapse
Affiliation(s)
- Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Gia-Han Le
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Sebastian Herrera
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Steven J. Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Torsten B. Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA02115
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Jack L. Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
8
|
Zheng Q, Lin R, Wang D, Zheng C, Xu W. Effects of circulating inflammatory proteins on spinal degenerative diseases: Evidence from genetic correlations and Mendelian randomization study. JOR Spine 2024; 7:e1346. [PMID: 38895179 PMCID: PMC11183170 DOI: 10.1002/jsp2.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Background Numerous investigations have suggested links between circulating inflammatory proteins (CIPs) and spinal degenerative diseases (SDDs), but causality has not been proven. This study used Mendelian randomization (MR) to investigate the causal associations between 91 CIPs and cervical spondylosis (CS), prolapsed disc/slipped disc (PD/SD), spinal canal stenosis (SCS), and spondylolisthesis/spondylolysis. Methods Genetic variants data for CIPs and SDDs were obtained from the genome-wide association studies (GWAS) database. We used inverse variance weighted (IVW) as the primary method, analyzing the validity and robustness of the results through pleiotropy and heterogeneity tests and performing reverse MR analysis to test for reverse causality. Results The IVW results with Bonferroni correction indicated that beta-nerve growth factor (β-NGF), C-X-C motif chemokine 6 (CXCL6), and interleukin-6 (IL-6) can increase the risk of CS. Fibroblast growth factor 19 (FGF19), sulfotransferase 1A1 (SULT1A1), and tumor necrosis factor-beta (TNF-β) can increase PD/SD risk, whereas urokinase-type plasminogen activator (u-PA) can decrease the risk of PD/SD. FGF19 and TNF can increase SCS risk. STAM binding protein (STAMBP) and T-cell surface glycoprotein CD6 isoform (CD6 isoform) can increase the risk of spondylolisthesis/spondylolysis, whereas monocyte chemoattractant protein 2 (MCP2) and latency-associated peptide transforming growth factor beta 1 (LAP-TGF-β1) can decrease spondylolisthesis/spondylolysis risk. Conclusions MR analysis indicated the causal associations between multiple genetically predicted CIPs and the risk of four SDDs (CS, PD/SD, SCS, and spondylolisthesis/spondylolysis). This study provides reliable genetic evidence for in-depth exploration of the involvement of CIPs in the pathogenic mechanism of SDDs and provides novel potential targets for SDDs.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Rongjie Lin
- Department of Orthopedic SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People's HospitalBeijingChina
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Weihong Xu
- Department of Spinal SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
9
|
Giordano R, Ghafouri B, Arendt-Nielsen L, Petersen KKS. Inflammatory biomarkers in patients with painful knee osteoarthritis: exploring the potential link to chronic postoperative pain after total knee arthroplasty-a secondary analysis. Pain 2024; 165:337-346. [PMID: 37703399 DOI: 10.1097/j.pain.0000000000003042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Total knee arthroplasty (TKA) is the end-stage treatment of knee osteoarthritis (OA), and approximately 20% of patients experience chronic postoperative pain. Studies indicate that inflammatory biomarkers might be associated with pain in OA and potentially linked to the development of chronic postoperative pain after TKA. This study aimed to (1) evaluate preoperative serum levels of inflammatory biomarkers in patients with OA and healthy control subjects, (2) investigate preoperative differences of inflammatory biomarker profiles in subgroups of patients, and (3) compare subgroups of patients with and without postoperative pain 12 months after surgery. Serum samples from patients with OA scheduled for TKA (n = 127) and healthy participants (n = 39) were analyzed. Patients completed the Knee-injury-and-Osteoarthritis-Outcome-Score (KOOS) questionnaire and rated their clinical pain intensity using a visual analog scale (VAS) before and 12 months after TKA. Hierarchical cluster analysis and Orthogonal Partial Least Squares Discriminant Analysis were used to compare groups (patients vs control subjects) and to identify subgroups of patients in relation to postoperative outcomes. Difference in preoperative and postoperative VAS and KOOS scores were compared across subgroups. Twelve inflammatory markers were differentially expressed in patients when compared with control subjects. Cluster analysis identified 2 subgroups of patients with 23 proteins being significantly different ( P < 0.01). The 12-months postoperative VAS and KOOS scores were significantly different between subgroups of patients ( P < 0.05). This study identified differences in specific inflammatory biomarker profiles when comparing patients with OA and control subjects. Cluster analysis identified 2 subgroups of patients with OA, with one subgroup demonstrating comparatively worse 12-month postoperative pain intensity and function scores.
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Liu F, Gao C. Regulation of the Inflammasome Activation by Ubiquitination Machinery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:123-134. [PMID: 39546140 DOI: 10.1007/978-981-97-7288-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammasomes are multiprotein complexes that assemble in response to the detection of stress- or infection-associated stimuli and lead to the activation of caspase-1 and consequent maturation of caspase-1 target molecules such as interleukin (IL)-1β and IL-18. Although inflammasome is the essential component of the innate immunity system to defense against insults, inappropriate or prolonged activation of inflammasome may be harmful and is associated with various diseases, e.g., gout, atherosclerosis, diabetes, and Alzheimer's disease. Therefore, regulating inflammasome activation is crucial for maintaining immune homeostasis. Studies have found that post-translational modifications (PTMs), e.g., ubiquitination and phosphorylation, are critical for inflammasome activation. Ubiquitination is an important form of post-translational modification of proteins that plays a pivotal role in various cellular functions. In recent years, its function in regulating inflammasome assembly has been a hot topic of interest. This study discussed the function and mechanism of the ubiquitin system controlling inflammasome activation and highlighted the challenges of this research area.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
11
|
Jiang W, Li M, Peng S, Hu T, Long Y, Zhang J, Peng D, Shen Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol Res 2023; 71:800-813. [PMID: 37291329 DOI: 10.1007/s12026-023-09400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Mengling Li
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Siyuan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Tian Hu
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yan Long
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Jiayi Zhang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Dan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China.
| |
Collapse
|
12
|
Angerfors A, Brännmark C, Lagging C, Tai K, Månsby Svedberg R, Andersson B, Jern C, Stanne TM. Proteomic profiling identifies novel inflammation-related plasma proteins associated with ischemic stroke outcome. J Neuroinflammation 2023; 20:224. [PMID: 37794467 PMCID: PMC10548608 DOI: 10.1186/s12974-023-02912-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The inflammatory response to cerebral ischemia is complex; however, most clinical studies of stroke outcome focus on a few selected proteins. We, therefore, aimed to profile a broad range of inflammation-related proteins to: identify proteins associated with ischemic stroke outcome that are independent of established clinical predictors; identify proteins subsets for outcome prediction; and perform sex and etiological subtype stratified analyses. METHODS Acute-phase plasma levels of 65 inflammation-related proteins were measured in 534 ischemic stroke cases. Logistic regression was used to estimate associations to unfavorable 3-month functional outcome (modified Rankin Scale score > 2) and LASSO regressions to identify proteins with independent effects. RESULTS Twenty proteins were associated with outcome in univariable models after correction for multiple testing (FDR < 0.05), and for 5 the association was independent of clinical variables, including stroke severity (TNFSF14 [LIGHT], OSM, SIRT2, STAMBP, and 4E-BP1). LASSO identified 9 proteins that could best separate favorable and unfavorable outcome with a predicted diagnostic accuracy (AUC) of 0.81; three associated with favorable (CCL25, TRAIL [TNFSF10], and Flt3L) and 6 with unfavorable outcome (CSF-1, EN-RAGE [S100A12], HGF, IL-6, OSM, and TNFSF14). Finally, we identified sex- and etiologic subtype-specific associations with the best discriminative ability achieved for cardioembolic, followed by cryptogenic stroke. CONCLUSIONS We identified candidate blood-based protein biomarkers for post-stroke functional outcome involved in, e.g., NLRP3 inflammasome regulation and signaling pathways, such as TNF, JAK/STAT, MAPK, and NF-κB. These proteins warrant further study for stroke outcome prediction as well as investigations into the putative causal role for stroke outcome.
Collapse
Affiliation(s)
- Annelie Angerfors
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Brännmark
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Research, Development, Education and Innovation, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Lagging
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kara Tai
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Månsby Svedberg
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics and Data Center, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tara M Stanne
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
13
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Jayaprakash Demirel K, Wu R, Neves Guimaraes A, Demirel I. The role of NLRP3 in regulating gingival epithelial cell responses evoked by Aggregatibacter actinomycetemcomitans. Cytokine 2023; 169:156316. [PMID: 37541072 DOI: 10.1016/j.cyto.2023.156316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) has myriads of virulence factors among which leukotoxin provides A. actinomycetemcomitans with the advantage to thrive in the surrounding hostile environment and evade host immune defences. The NLRP3 inflammasome has been associated with periodontal disease development. However, our understanding of the involvement of caspase-1, caspase-4, and NLRP3 in the release of IL-1β and other inflammatory mediators from gingival epithelial cells during a A. actinomycetemcomitans infection is limited. The aim of this study was to investigate how the inflammasome-associated proteins caspase-1, caspase-4 and NLRP3 regulate the immune response of gingival epithelial cells during a A. actinomycetemcomitans infection. Human gingival epithelial cells (Ca9-22) deficient in NLRP3, caspase-1 or caspase-4 were created using CRISPR/Cas9. Gingival epithelial cells were stimulated with the A. actinomycetemcomitans low-leukotoxic strain NCTC9710 or the highly leukotoxic JP2 strain HK 165 for 6, 12 and 24 h. The results showed that the JP2 strain HK1651 induced higher IL-1β and IL-1RA release and mediated more epithelial cell death compared to the NCTC9710 strain. These findings were found to be capsase-1, caspase-4 and NLRP3-dependant. A targeted protein analysis of inflammation-related proteins showed that the expression of 37 proteins were identified as being significantly altered after HK1651 infection compared to unstimulated Cas9 and NLRP3-deficient cells. Of the 37 proteins, 23 of these inflammation-related proteins released by NLRP3-deficient cells differed significantly compared to Cas9 cells after infection. This suggests that NLRP3 has a broad effect on the inflammatory response in gingival epithelial cells.
Collapse
Affiliation(s)
- Kartheyaene Jayaprakash Demirel
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alessandra Neves Guimaraes
- Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Periodontology and Implantology, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
15
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
16
|
Tang JQ, Marchand MM, Veggiani G. Ubiquitin Engineering for Interrogating the Ubiquitin-Proteasome System and Novel Therapeutic Strategies. Cells 2023; 12:2117. [PMID: 37626927 PMCID: PMC10453149 DOI: 10.3390/cells12162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.
Collapse
Affiliation(s)
- Jason Q. Tang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Mary M. Marchand
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023; 12:1766. [PMID: 37443800 PMCID: PMC10340308 DOI: 10.3390/cells12131766] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| |
Collapse
|
18
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
19
|
Li X, Jiang Q, Song G, Barkestani MN, Wang Q, Wang S, Fan M, Fang C, Jiang B, Johnson J, Geirsson A, Tellides G, Pober JS, Jane-Wit D. A ZFYVE21-Rubicon-RNF34 signaling complex promotes endosome-associated inflammasome activity in endothelial cells. Nat Commun 2023; 14:3002. [PMID: 37225719 PMCID: PMC10209169 DOI: 10.1038/s41467-023-38684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Internalization of complement membrane attack complexes (MACs) assembles NLRP3 inflammasomes in endothelial cells (EC) and promotes IL-β-mediated tissue inflammation. Informed by proteomics analyses of FACS-sorted inflammasomes, we identify a protein complex modulating inflammasome activity on endosomes. ZFVYE21, a Rab5 effector, partners with Rubicon and RNF34, forming a "ZRR" complex that is stabilized in a Rab5- and ZFYVE21-dependent manner on early endosomes. There, Rubicon competitively disrupts inhibitory associations between caspase-1 and its pseudosubstrate, Flightless I (FliI), while RNF34 ubiquitinylates and degradatively removes FliI from the signaling endosome. The concerted actions of the ZRR complex increase pools of endosome-associated caspase-1 available for activation. The ZRR complex is assembled in human tissues, its associated signaling responses occur in three mouse models in vivo, and the ZRR complex promotes inflammation in a skin model of chronic rejection. The ZRR signaling complex reflects a potential therapeutic target for attenuating inflammasome-mediated tissue injury.
Collapse
Affiliation(s)
- Xue Li
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Guiyu Song
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Mahsa Nouri Barkestani
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Qianxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shaoxun Wang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT, USA
| | - Caodi Fang
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Dept of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Justin Johnson
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arnar Geirsson
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Dept of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jordan S Pober
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dan Jane-Wit
- VA Connecticut Healthcare System, West Haven, CT, USA.
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Bao XH, Chen BF, Liu J, Tan YH, Chen S, Zhang F, Lu HS, Li JC. Olink proteomics profiling platform reveals non-invasive inflammatory related protein biomarkers in autism spectrum disorder. Front Mol Neurosci 2023; 16:1185021. [PMID: 37293545 PMCID: PMC10244537 DOI: 10.3389/fnmol.2023.1185021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Background Owing to the lack of valid biomarkers, the diagnosis of autism spectrum disorder (ASD) diagnosis relies solely on the behavioral phenotypes of children. Several researchers have suggested an association between ASD and inflammation; however, the complex relationship between the two is unelucidated to date. Therefore, the current study aims to comprehensively identify novel circulating ASD inflammatory biomarkers. Methods Olink proteomics was applied to compare the plasma inflammation-related protein changes in a group of the healthy children (HC, n = 33) and another with ASD (n = 31). The areas under the receiver operating characteristic curves (AUCs) of the differentially expressed proteins (DEPs) were calculated. The functional analysis of the DEPs was performed using Gene Ontology and Kyoto Encyclopedia Genes and Genomes. Pearson correlation tests were used employed to analyze the correlation between the DEPs and clinical features. Results A total of 13 DEPs were significantly up-regulated in the ASD group compared with the HC group. The four proteins, namely, STAMBP, ST1A1, SIRT2, and MMP-10 demonstrated good diagnostic accuracy with the corresponding AUCs (95% confidence interval, CI) of 0.7218 (0.5946-0.8489), 0.7107 (0.5827-0.8387), 0.7016 (0.5713-0.8319), and 0.7006 (0.568-0.8332). Each panel of STAMBP and any other differential protein demonstrated a better classification performance [AUC values from 0.7147 (0.5858-0.8436, STAMBP/AXIN1) to 0.7681 (0.6496-0.8867, STAMBP/MMP-10)]. These DEP profiles were enriched in immune and inflammatory response pathways, including TNF and NOD-like receptor signaling pathways. The interaction between STAMBP and SIRT2 (R = 0.97, p = 8.52 × 10-39) was found to be the most significant. In addition, several DEPs related to clinical features in patients with ASD, particularly AXIN1 (R = 0.36, p = 0.006), SIRT2 (R = 0.34, p = 0.010) and STAMBP (R = 0.34, p = 0.010), were positively correlated with age and parity, indicating that older age and higher parity may be the inflammation-related clinical factors in ASD. Conclusion Inflammation plays a crucial role in ASD, and the up-regulated inflammatory proteins may serve as potential early diagnostic biomarkers for ASD.
Collapse
Affiliation(s)
- Xiao-Hong Bao
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Bao-Fu Chen
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Jun Liu
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Yu-Hua Tan
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Shu Chen
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Fan Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Hong-Sheng Lu
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Ji-Cheng Li
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Cell Biology, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
21
|
Bednash JS, Johns F, Farkas D, Elhance A, Adair J, Cress K, Yount JS, Kenney AD, Londino JD, Mallampalli RK. Inhibiting the Deubiquitinase UCHL1 Reduces SARS-CoV-2 Viral Uptake by ACE2. Am J Respir Cell Mol Biol 2023; 68:566-576. [PMID: 36730646 PMCID: PMC10174169 DOI: 10.1165/rcmb.2022-0331oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a significant public health burden with limited treatment options. Many β-coronaviruses, including SARS-CoV-2, gain entry to host cells through the interaction of SARS-CoV-2 spike protein with membrane-bound ACE2 (angiotensin-converting enzyme 2). Given its necessity for SARS-CoV-2 infection, ACE2 represents a potential therapeutic target in COVID-19. However, early attempts focusing on ACE2 in COVID-19 have not validated it as a druggable target nor identified other ACE2-related novel proteins for therapeutic intervention. Here, we identify a mechanism for ACE2 protein modulation by the deubiquitinase (DUB) enzyme UCHL1 (ubiquitin carboxyl-terminal hydrolase isozyme L1). ACE2 is constitutively ubiquitinated and degraded by the proteasome in lung epithelia. SARS-CoV-2 spike protein cellular internalization increased ACE2 protein abundance by decreasing its degradation. Using an siRNA library targeting 96 human DUBs, we identified UCHL1 as a putative regulator of ACE2 function as a viral receptor. Overexpressed UCHL1 preserved ACE2 protein abundance, whereas silencing of the DUB in cells destabilized ACE2 through increased polyubiquitination. A commercially available small molecule inhibitor of UCHL1 DUB activity decreased ACE2 protein concentrations coupled with inhibition of SARS-CoV-2 infection in epithelial cells. These findings describe a unique pathway of ACE2 regulation uncovering UCHL1 as a potential therapeutic target to modulate COVID-19 viral entry as a platform for future small molecule design and testing.
Collapse
Affiliation(s)
- Joseph S. Bednash
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Finny Johns
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Daniela Farkas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Ajit Elhance
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Jessica Adair
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Kirstin Cress
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| | - James D. Londino
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Rama K. Mallampalli
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| |
Collapse
|
22
|
The expression and clinical significance of STAMBP in breast cancer. Mol Biol Rep 2023; 50:899-906. [PMID: 36309616 DOI: 10.1007/s11033-022-07964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Breast cancer is the leading cause of death from cancer in women worldwide. STAMBP functions as a JAMM family deubiquitinating enzyme that modulates the stability of substrate proteins in cells by cleaving ubiquitin moieties. The expression of STAMBP and its clinical significance in breast cancer remain unclear. METHODS AND RESULTS The level of the STAMBP protein in noncancerous and tumor tissues of breast cancer patients was examined by immunohistochemical staining. The expression of STAMBP mRNA in tissues based on healthy individual and breast cancer patient data in the TCGA database was evaluated. The association between the expression of STAMBP mRNA and clinical features and prognosis was evaluated using TCGA database. Cell growth was assessed by Cell Counting Kit-8 (CCK-8) assay, and cell migration and invasion were assessed by wound healing and Transwell assays. Activation of the ERK signaling was detected by Western blotting. The expression of STAMBP was markedly upregulated in the cytoplasm of tumor cells from breast cancer patients. The level of STAMBP was closely associated with the tumor subtype and size and the TNM stage of the breast cancer patients. Importantly, high expression of STAMBP predicted poor overall survival (OS) for breast cancer patients. Furthermore, knockdown of STAMBP expression reduced cell mobility and invasion of breast cancer cells. Notably, the phosphorylation of EGFR and ERK was markedly reduced in STAMBP-knockdown cells. CONCLUSION STAMBP plays a critical role in the progression of breast cancer and may serve as a biomarker to monitor the progression of the disease.
Collapse
|
23
|
Hai B, Mao T, Du C, Jia F, Liu Y, Song Q, Pan X, Liu X, Zhu B. USP14 promotes pyroptosis of human annulus fibrosus cells derived from patients with intervertebral disc degeneration through deubiquitination of NLRP3. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1720 - 1730. [PMID: 36514221 PMCID: PMC9828310 DOI: 10.3724/abbs.2022171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a general disorder that results in low back pain and disability among many affected individuals. However, the current treatments for IVDD are limited to relieving the symptoms but do not solve the fundamental issue. In this study, the role of USP14 in mediating the activation of the NLRP3 inflammasome and the pyroptosis of AF cells from IVDD patients is determined in vitro, and gain- and loss-of-function assays of USP14 and the NLRP3 inflammasome are conducted. Pyroptosis of AF cells is detected by flow cytometry. The inflammatory cytokines (IL-1β and IL-18) and protein levels of NLRP3, active Caspase-1, Aggrecan, MMP3 and ADAMTS-5 are determined by ELISA and western blot analysis, respectively. The correlation between USP14 and NLRP3 is measured by coimmunoprecipitation and ubiquitination analysis. Upregulation of USP14 is accompanied by increased level of the NLRP3 inflammasome in AF cells from IVDD patients; furthermore, a positive correlation between them is observed. USP14 knockdown inhibits pyroptosis in AF cells by inducing ubiquitination of NLRP3, while overexpression of USP14 has the opposite effect, which is inhibited by the NLRP3 inflammasome inhibitor INF39. USP14 exerts its positive regulatory effect on AF cell pyroptosis by modulating the NLRP3/Caspase-1/IL-1β and IL-18 signaling axes.
Collapse
Affiliation(s)
- Bao Hai
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Tianli Mao
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Chuanchao Du
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Fei Jia
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Yu Liu
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Qingpeng Song
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Xiaoyu Pan
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Xiaoguang Liu
- Department of OrthopedicsPeking University Third HospitalBeijing100191China
| | - Bin Zhu
- Department of OrthopedicsBeijing Friendship HospitalCapital Medical UniversityBeijing100191China
| |
Collapse
|
24
|
The deubiquitinating enzyme STAMBP is a newly discovered driver of triple-negative breast cancer progression that maintains RAI14 protein stability. Exp Mol Med 2022; 54:2047-2059. [PMID: 36434041 PMCID: PMC9723177 DOI: 10.1038/s12276-022-00890-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous malignancy in women. It is associated with poor prognosis, aggressive malignant behavior, and limited treatment options. In the ubiquitin‒proteasome system (UPS), deubiquitinases (DUBs) are potential therapeutic targets for various tumors. In this study, by performing unbiased siRNA screening, we identified STAMBP, a JAMM metalloprotease in the DUB family, as a driver of human TNBC tumor growth. Functionally, the knockdown of STAMBP inhibited the proliferation, migration, and invasion of multiple TNBC cell lines. Immunoprecipitation-mass spectrometry combined with functional and morphological analysis verified the interaction between STAMBP and the actin-binding protein RAI14. Mechanistically, STAMBP stabilized the RAI14 protein by suppressing the K48-linked ubiquitination of RAI14 and thus prevented its proteasomal degradation. Therefore, knocking down STAMBP resulted in the reduction in RAI14 protein levels and suppression of tumor growth in vitro and in vivo. Importantly, high levels of STAMBP were correlated with poor prognosis in TNBC patients. In summary, we reveal a previously unrecognized DUB pathway that promotes TNBC progression and provides a rationale for potential therapeutic interventions for the treatment of TNBC.
Collapse
|
25
|
Yu S, E C, Yang J. STAM binding protein regulated by hsa_circ_0007334 exerts oncogenic potential in pancreatic cancer. Pancreatology 2022; 22:1003-1012. [PMID: 36089485 DOI: 10.1016/j.pan.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly aggressive and metastatic malignancy. The molecular events related to PC have not yet been fully elucidated. The STAM binding protein (STAMBP), a deubiquitinase, contributes to carcinogenesis in several types of cancer. Our study aims to investigate the function of STAMBP in the progression of PC. METHODS Fifteen pairs of tumor and tumor-adjacent tissues were obtained from PC patients. Human pancreatic cancer cell lines, SW 1990 and BxPC-3, were transfected with short hairpin RNA targeting STAMBP or/and vectors overexpressing wild-type STAMBP or STAMBP D348A mutants (inactive mutants of STAMBP). SW 1990 cells were co-transfected with vectors overexpressing STAMBP and small interfering RNA targeting hsa_circ_0007334. RESULTS STAMBP was overexpressed in the tumor tissues as compared with the tumor-adjacent tissues from PC patients. Higher STAMBP expression in the tumor tissues showed worse prognosis. Loss/gain-of-function experiments revealed that STAMBP promoted the malignant behaviors of PC cells in vitro and xenograft tumor growth in vivo. Activation of NF-κB in PC cells was triggered by STAMBP. However, inactive mutants of STAMBP lost these biological functions in PC. hsa_circ_0007334, an oncogene in PC progression, was found to up-regulate STAMBP expression in PC cells. STAMBP up-regulation reversed the effects of hsa_circ_0007334 silencing on cell mobility. CONCLUSIONS These results indicated that STAMBP depended on its deubiquitinase activities to induce the malignant behaviors of PC cells and was involved in the regulatory mechanism of hsa_circ_0007334 on PC cell mobility. Our findings provide a novel insight into the molecular mechanism of PC.
Collapse
Affiliation(s)
- Shan Yu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Changyong E
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
26
|
Lara-Reyna S, Caseley EA, Topping J, Rodrigues F, Jimenez Macias J, Lawler SE, McDermott MF. Inflammasome activation: from molecular mechanisms to autoinflammation. Clin Transl Immunology 2022; 11:e1404. [PMID: 35832835 PMCID: PMC9262628 DOI: 10.1002/cti2.1404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammasomes are assembled by innate immune sensors that cells employ to detect a range of danger signals and respond with pro-inflammatory signalling. Inflammasomes activate inflammatory caspases, which trigger a cascade of molecular events with the potential to compromise cellular integrity and release the IL-1β and IL-18 pro-inflammatory cytokines. Several molecular mechanisms, working in concert, ensure that inflammasome activation is tightly regulated; these include NLRP3 post-translational modifications, ubiquitination and phosphorylation, as well as single-domain proteins that competitively bind to key inflammasome components, such as the CARD-only proteins (COPs) and PYD-only proteins (POPs). These diverse regulatory systems ensure that a suitable level of inflammation is initiated to counteract any cellular insult, while simultaneously preserving tissue architecture. When inflammasomes are aberrantly activated can drive excessive production of pro-inflammatory cytokines and cell death, leading to tissue damage. In several autoinflammatory conditions, inflammasomes are aberrantly activated with subsequent development of clinical features that reflect the degree of underlying tissue and organ damage. Several of the resulting disease complications may be successfully controlled by anti-inflammatory drugs and/or specific cytokine inhibitors, in addition to more recently developed small-molecule inhibitors. In this review, we will explore the molecular processes underlying the activation of several inflammasomes and highlight their role during health and disease. We also describe the detrimental effects of these inflammasome complexes, in some pathological conditions, and review current therapeutic approaches as well as future prospective treatments.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Institute of Microbiology and Infection University of Birmingham Birmingham UK
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences University of Leeds Leeds UK
| | - Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| | - François Rodrigues
- AP-HP, Hôpital Tenon, Sorbonne Université, Service de Médecine interne Centre de Référence des Maladies Auto-inflammatoires et des Amyloses d'origine inflammatoire (CEREMAIA) Paris France
| | - Jorge Jimenez Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Sean E Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| |
Collapse
|
27
|
Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease. Biomolecules 2022; 12:biom12070910. [PMID: 35883466 PMCID: PMC9313428 DOI: 10.3390/biom12070910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are a group of proteases that are important for maintaining cell homeostasis by regulating the balance between ubiquitination and deubiquitination. As the only known metalloproteinase family of DUBs, JAB1/MPN/Mov34 metalloenzymes (JAMMs) are specifically associated with tumorigenesis and immunological and inflammatory diseases at multiple levels. The far smaller numbers and distinct catalytic mechanism of JAMMs render them attractive drug targets. Currently, several JAMM inhibitors have been successfully developed and have shown promising therapeutic efficacy. To gain greater insight into JAMMs, in this review, we focus on several key proteins in this family, including AMSH, AMSH-LP, BRCC36, Rpn11, and CSN5, and emphatically discuss their structural basis, diverse functions, catalytic mechanism, and current reported inhibitors targeting JAMMs. These advances set the stage for the exploitation of JAMMs as a target for the treatment of various diseases.
Collapse
|
28
|
Nanda SK, Vollmer S, Perez-Oliva AB. Posttranslational Regulation of Inflammasomes, Its Potential as Biomarkers and in the Identification of Novel Drugs Targets. Front Cell Dev Biol 2022; 10:887533. [PMID: 35800898 PMCID: PMC9253692 DOI: 10.3389/fcell.2022.887533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we have summarized classical post-translational modifications (PTMs) such as phosphorylation, ubiquitylation, and SUMOylation of the different components of one of the most studied NLRP3, and other emerging inflammasomes. We will highlight how the discovery of these modifications have provided mechanistic insight into the biology, function, and regulation of these multiprotein complexes not only in the context of the innate immune system but also in adaptive immunity, hematopoiesis, bone marrow transplantation, as well and their role in human diseases. We have also collected available information concerning less-studied modifications such as acetylation, ADP-ribosylation, nitrosylation, prenylation, citrullination, and emphasized their relevance in the regulation of inflammasome complex formation. We have described disease-associated mutations affecting PTMs of inflammasome components. Finally, we have discussed how a deeper understanding of different PTMs can help the development of biomarkers and identification of novel drug targets to treat diseases caused by the malfunctioning of inflammasomes.
Collapse
Affiliation(s)
- Sambit K. Nanda
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology (R&I), Gaithersburg, MD, United States
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), Gothenburg, Sweden
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Ana B. Perez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| |
Collapse
|
29
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
30
|
Guo Y, Liu Q, Mallette E, Caba C, Hou F, Fux J, LaPlante G, Dong A, Zhang Q, Zheng H, Tong Y, Zhang W. Structural and functional characterization of ubiquitin variant inhibitors for the JAMM-family deubiquitinases STAMBP and STAMBPL1. J Biol Chem 2021; 297:101107. [PMID: 34425109 PMCID: PMC8449267 DOI: 10.1016/j.jbc.2021.101107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a crucial posttranslational protein modification involved in a myriad of biological pathways. This modification is reversed by deubiquitinases (DUBs) that deconjugate the single ubiquitin (Ub) moiety or poly-Ub chains from substrates. In the past decade, tremendous efforts have been focused on targeting DUBs for drug discovery. However, most chemical compounds with inhibitory activity for DUBs suffer from mild potency and low selectivity. To overcome these obstacles, we developed a phage display-based protein engineering strategy for generating Ub variant (UbV) inhibitors, which was previously successfully applied to the Ub-specific protease (USP) family of cysteine proteases. In this work, we leveraged the UbV platform to selectively target STAMBP, a member of the JAB1/MPN/MOV34 (JAMM) metalloprotease family of DUB enzymes. We identified two UbVs (UbVSP.1 and UbVSP.3) that bind to STAMBP with high affinity but differ in their selectivity for the closely related paralog STAMBPL1. We determined the STAMBPL1-UbVSP.1 complex structure by X-ray crystallography, revealing hotspots of the JAMM-UbV interaction. Finally, we show that UbVSP.1 and UbVSP.3 are potent inhibitors of STAMBP isopeptidase activity, far exceeding the reported small-molecule inhibitor BC-1471. This work demonstrates that UbV technology is suitable to develop molecules as tools to target metalloproteases, which can be used to further understand the cellular function of JAMM family DUBs.
Collapse
Affiliation(s)
- Yusong Guo
- Fisheries College, Guangdong Ocean University, Guangdong, China; Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Qi Liu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Evan Mallette
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Feng Hou
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Julia Fux
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Qi Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada.
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Canada; CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
31
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
33
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
34
|
NLRP3 Ubiquitination-A New Approach to Target NLRP3 Inflammasome Activation. Int J Mol Sci 2021; 22:ijms22168780. [PMID: 34445484 PMCID: PMC8395773 DOI: 10.3390/ijms22168780] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
In response to diverse pathogenic and danger signals, the cytosolic activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing (3)) inflammasome complex is a critical event in the maturation and release of some inflammatory cytokines in the state of an inflammatory response. After activation of the NLRP3 inflammasome, a series of cellular events occurs, including caspase 1-mediated proteolytic cleavage and maturation of the IL-1β and IL-18, followed by pyroptotic cell death. Therefore, the NLRP3 inflammasome has become a prime target for the resolution of many inflammatory disorders. Since NLRP3 inflammasome activation can be triggered by a wide range of stimuli and the activation process occurs in a complex, it is difficult to target the NLRP3 inflammasome. During the activation process, various post-translational modifications (PTM) of the NLRP3 protein are required to form a complex with other components. The regulation of ubiquitination and deubiquitination of NLRP3 has emerged as a potential therapeutic target for NLRP3 inflammasome-associated inflammatory disorders. In this review, we discuss the ubiquitination and deubiquitination system for NLRP3 inflammasome activation and the inhibitors that can be used as potential therapeutic agents to modulate the activation of the NLRP3 inflammasome.
Collapse
|
35
|
Abstract
OBJECTIVES Osteoarthritis (OA) is known to be a slowly progressive disease that alters all tissue compartments of the joint involved with a characteristic degradation of the cartilage, bone remodeling, and inflammation. One of the prominent symptoms in OA patients is pain, but a few radiologic, inflammatory, or structurally related biomarkers have shown few if any associations with pain. This study aimed to assess serum levels of 92 markers involved in inflammatory pathways in patients with knee osteoarthritis (KOA) and evaluate their possible associations with the clinical pain intensity. MATERIALS AND METHODS Serum samples were collected from 127 KOA patients and 39 healthy participants with no knee pain. Each serum sample was analyzed for 92 inflammatory markers using the Proximity Extension Array (PEA) technology. Clinical pain intensity was assessed using a Visual Analog Scale, and patients completed the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire. RESULTS Fifteen markers were significantly different when comparing KOA patients and healthy participants. Two markers, fibroblast growth factor-21 and Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), correlated positively with pain intensity (R=0.235, P=0.008; R=0.233, P=0.008). Moreover, a linear regression model showed interleukin-6, macrophage colony-stimulating factor 1, fibroblast growth factor-21, and tumor necrosis factor superfamily member 12 (TWEAK) as significant independent parameters for pain intensity. DISCUSSION The associations between specific cytokines and KOA pain intensities provide new insights into the understanding of the underlying factors driving the pain in OA.
Collapse
|
36
|
Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease. Immunology 2021; 163:363-376. [PMID: 34021586 DOI: 10.1111/imm.13372] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat (LRR)-containing receptors or NOD-like receptors (NLRs) are cytosolic pattern recognition receptors, which sense conserved microbial patterns and host-derived danger signals to elicit innate immune responses. The activation of several prototypic NLRs, including NLR and pyrin domain (PYD) containing (NLRP) 1, NLRP3 and NLR and caspase recruitment domain (CARD) containing (NLRC) 4, results in the assembly of inflammasomes, which are large, cytoplasmic multiprotein signalling platforms responsible for the maturation and release of the pro-inflammatory cytokines IL-1β and IL-18, and for the induction of a specialized form of inflammatory cell death called pyroptosis. However, the function of other members of the NLR family, including NLRP7, are less well understood. NLRP7 has been linked to innate immune signalling, but its precise role is still controversial as it has been shown to positively and negatively affect inflammasome responses. Inflammasomes are essential for homeostasis and host defence, but inappropriate inflammasome responses due to hereditary mutations and somatic mosaicism in inflammasome components and defective regulation have been linked to a broad spectrum of human diseases. A compelling connection between NLRP7 mutations and reproductive diseases, and in particular molar pregnancy, has been established. However, the molecular mechanisms by which NLRP7 mutations contribute to reproductive diseases are largely unknown. In this review, we focus on NLRP7 and discuss the current evidence of its role in inflammasome regulation and its implication in human reproductive diseases.
Collapse
Affiliation(s)
- Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
37
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
38
|
Xu H, Yang X, Xuan X, Wu D, Zhang J, Xu X, Zhao Y, Ma C, Li D. STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway. Neoplasia 2021; 23:607-623. [PMID: 34102455 PMCID: PMC8190130 DOI: 10.1016/j.neo.2021.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Tumor metastasis is a leading cause of death in lung adenocarcinoma (LUAD) patients, but the molecular events that regulate metastasis have not been completely elucidated. STAMBP is a deubiquitinating enzyme of the Jab1/MPN metalloenzyme family that regulates the stability of substrates in cells by specifically removing ubiquitin molecules. We found that STAMBP expression was increased in the cytoplasm of tumor cells from LUAD patients. The STAMBP level was closely associated with tumor size, lymph node invasion and neoplasm disease stage. A high STAMBP level predicted poor overall survival and disease-free survival in LUAD patients. STAMBP overexpression promoted cell migration and invasion, whereas STAMBP knockdown attenuated these processes in LUAD cells after epidermal growth factor treatment. Mechanistically, increased STAMBP expression promoted the stabilization of Epidermal growth factor receptor (EGFR), whereas STAMBP knockdown induced the degradation of EGFR. STAMBP may deubiquitinate EGFR by localizing in early endosomes and increase EGFR membrane localization in LUAD cells. The overexpression of STAMBP triggered the activation of MAPK signaling after epidermal growth factor treatment. In contrast, this activation was attenuated in STAMBP knockdown cells. Small molecule inhibitors of EGFR and MAPK signaling pathway may block STAMBP-induced cell mobility and invasion as well as ERK activation in cells. Importantly, STAMBP knockdown suppressed LUAD tumor growth and metastasis by regulating the EGFR-mediated ERK activation in a xenograft mouse model. Our findings identified STAMBP as a novel potential target for LUAD therapy.
Collapse
Affiliation(s)
- Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaomei Yang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaofeng Xuan
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Di Wu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Jieru Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xinchun Xu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of Ultrasound, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Yuanjie Zhao
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China.
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China; Lead Contact.
| |
Collapse
|
39
|
Li B, Qi ZP, He DL, Chen ZH, Liu JY, Wong MW, Zhang JW, Xu EP, Shi Q, Cai SL, Sun D, Yao LQ, Zhou PH, Zhong YS. NLRP7 deubiquitination by USP10 promotes tumor progression and tumor-associated macrophage polarization in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:126. [PMID: 33838681 PMCID: PMC8035766 DOI: 10.1186/s13046-021-01920-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
Background NOD-like receptors affect multiple stages of cancer progression in many malignancies. NACHT, LRR, and PYD domain-containing protein 7 (NLRP7) is a member of the NOD-like receptor family, although its role in tumorigenesis remains unclear. By analyzing clinical samples, we found that NLRP7 protein levels were upregulated in colorectal cancer (CRC). We proposed the hypothesis that a high level of NLRP7 in CRC may promote tumor progression. Here, we further investigated the role of NLRP7 in CRC and the underlying mechanism. Methods NLRP7 expression in human CRC and adjacent non-tumorous tissues was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. The effect of NLRP7 in CRC progression was investigated in vitro and in vivo. Proteins interacting with NLRP7 were identified by immunoprecipitation and mass spectrometry analysis while immunofluorescence staining revealed the cellular location of the proteins. Cellular ubiquitination and protein stability assays were applied to demonstrate the ubiquitination effect on NLRP7. Cloning and mutagenesis were used to identify a lysine acceptor site that mediates NLRP7 ubiquitination. Cytokines/chemokines affected by NLRP7 were identified by RNA sequencing, qRT-PCR, and enzyme-linked immunosorbent assay. Macrophage phenotypes were determined using qRT-PCR, flow cytometry, and immunohistochemistry. Results NLRP7 protein levels, but not mRNA levels, were upregulated in CRC, and increased NLRP7 protein expression was associated with poor survival. NLRP7 promoted tumor cell proliferation and metastasis in vivo and in vitro and interacted with ubiquitin-specific protease 10, which catalyzed its deubiquitination in CRC cells. NLRP7 stability and protein levels in CRC cells were modulated by ubiquitination and deubiquitination, and NLRP7 was involved in the ubiquitin-specific protease 10 promotion of tumor progression and metastasis in CRC. K379 was an important lysine acceptor site that mediates NLRP7 ubiquitination in CRC cells. In CRC, NLRP7 promoted the polarization of pro-tumor M2-like macrophages by inducing the secretion of C-C motif chemokine ligand 2. Furthermore, NLRP7 promoted NF-κB nuclear translocation and activation of C-C motif chemokine ligand 2 transcription. Conclusions We showed that NLRP7 promotes CRC progression and revealed an as-yet-unidentified mechanism by which NLRP7 induces the polarization of pro-tumor M2-like macrophages. These results suggest that NLRP7 could serve as a biomarker and novel therapeutic target for the treatment of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01920-y.
Collapse
Affiliation(s)
- Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Zhi-Peng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Dong-Li He
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, 20031, People's Republic of China.,Department of Gastroenterology, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, 20031, People's Republic of China
| | - Zhang-Han Chen
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Jing-Yi Liu
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Meng-Wai Wong
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, 20031, People's Republic of China
| | - Jia-Wei Zhang
- Department of Gastroenterology, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, 20031, People's Republic of China
| | - En-Pan Xu
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Shi-Lun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Di Sun
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Li-Qing Yao
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China
| | - Ping-Hong Zhou
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China. .,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China.
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 20032, People's Republic of China. .,Endoscopy Research Institute of Fudan University, Shanghai, 20032, People's Republic of China.
| |
Collapse
|
40
|
Bednash JS, Johns F, Patel N, Smail TR, Londino JD, Mallampalli RK. The deubiquitinase STAMBP modulates cytokine secretion through the NLRP3 inflammasome. Cell Signal 2021; 79:109859. [PMID: 33253913 DOI: 10.1016/j.cellsig.2020.109859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/16/2023]
Abstract
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a multimeric, cytoplasmic, protein complex that regulates maturation and secretion of interleukin (IL)-1β, a potent pro-inflammatory cytokine. Critical to host defense against pathogens, IL-1β amplifies early innate immune responses by activating transcription of numerous other cytokines and chemokines. Excessive IL-1β is associated with poor outcomes in inflammatory illnesses, such as sepsis and the acute respiratory distress syndrome (ARDS). Tight regulation of this signaling axis is vital, but little is known about mechanisms to limit excessive inflammasome activity. Here we identify the deubiquitinase STAM-binding protein (STAMBP) as a negative regulator of the NLRP3 inflammasome. In monocytes, knockout of STAMBP by CRISPR/Cas9 gene editing increased expression of numerous cytokines and chemokines in response to Toll-like receptor (TLR) agonists or bacterial lipopolysaccharide (LPS). This exaggerated inflammatory response was dependent on IL-1β signaling, and STAMBP knockout directly increased release of IL-1β with TLR ligation. While STAMBP does not modulate NLRP3 protein abundance, cellular depletion of the deubiquitinase increased NLRP3 K63 chain polyubiquitination resulting in increased NLRP3 inflammasome activation. These findings describe a unique mechanism of non-degradative ubiquitination of NLRP3 by STAMBP to limit excessive inflammasome activation and to reduce injurious IL-1β signaling.
Collapse
Affiliation(s)
- Joseph S Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Finny Johns
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Niharika Patel
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Taylor R Smail
- Department of Internal Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - James D Londino
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Negative Effects of SIGIRR on TRAF6 Ubiquitination in Acute Lung Injury In Vitro. J Immunol Res 2020; 2020:5097920. [PMID: 33123603 PMCID: PMC7584944 DOI: 10.1155/2020/5097920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the effects of single immunoglobin IL-1 receptor-related protein (SIGIRR) on tumor necrosis factor- (TNF-) receptor-associated factor 6 (TRAF6) ubiquitination in acute lung injury (ALI) were evaluated in both alveolar epithelial cells and alveolar macrophage cells in vitro. Our results found that SIGIRR negatively regulated TRAF6 ubiquitination and such SIGIRR inhibition could enhance the TRAF6 expression in both alveolar epithelial cells (AECs) and alveolar macrophage cells (AMCs). SIGIRR knockdown may increase NF-κB activity via TRAF6 regulation by the classical but not the nonclassical NF-κB signaling pathway. Such modulation between TRAF6 and SIGIRR could affect cytokine secretion and exacerbate the immune response; the IL-8, NFKB1, and NFKBIA mRNA levels were reduced after SIGIRR overexpression. The current study reveals the molecular mechanisms of the negative regulatory roles of SIGIRR on the innate immune response related to the LPS/TLR-4 signaling pathway and provides evidence for strategies to clinically treat inflammatory diseases.
Collapse
|
42
|
Gangoda L, Phan TK, Anand S, Hulett MD, Mathivanan S. Deubiquitinase enzyme STAMBP plays a broad role in both Toll-like and Nod-like receptor mediated inflammation. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220960844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The innate immune system in mammals include pattern recognition receptors (PRRs), which initiate immune responses to microbial infection via several mechanisms. These PRRs include cell surface Toll-like receptors (TLRs) and cytosolic Nod-like receptors (NLRs) that recognizes extracellular and intracellular danger signals respectively. NLRs are poised to respond specifically to pathogens that access the host cell cytosol. The molecular mechanisms by which NLRs are activated to form inflammasomes and exert downstream inflammatory responses remain poorly understood. Additionally, very little is known about the regulation of cytosolic pathogen sensory NLR family members, except for NLRP3. Recently a deubiquitinase known as STAMBP has been implicated as a regulator of NLRP7 inflammasome assembly. We have investigated the role of STAMBP in regulation of other inflammasome components and its broader role in inflammation using genetic removal of STAMBP protein from cells using CRISPR/Cas9 gene editing and challenging these gene edited cells with an inflammatory stimuli. Our study demonstrated that STAMBP has a critical role in inflammation both in the context of NLR pathway, through NLRP stabilization and TLR pathway, through JNK signaling and downstream cytokine production. The findings indicate that STAMBP has a wider role in inflammation than previously thought to be the case.
Collapse
Affiliation(s)
- Lahiru Gangoda
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sushma Anand
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Li T, Zou C. The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E4842. [PMID: 32650621 PMCID: PMC7402294 DOI: 10.3390/ijms21144842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.
Collapse
Affiliation(s)
| | - Chunbin Zou
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
44
|
Wu HQ, Baker D, Ovaa H. Small molecules that target the ubiquitin system. Biochem Soc Trans 2020; 48:479-497. [PMID: 32196552 PMCID: PMC7200645 DOI: 10.1042/bst20190535] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Eukaryotic life depends upon the interplay between vast networks of signaling pathways composed of upwards of 109-1010 proteins per cell. The integrity and normal operation of the cell requires that these proteins act in a precise spatial and temporal manner. The ubiquitin system is absolutely central to this process and perturbation of its function contributes directly to the onset and progression of a wide variety of diseases, including cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infectious diseases, and muscle dystrophies. Whilst the individual components and the overall architecture of the ubiquitin system have been delineated in some detail, how ubiquitination might be successfully targeted, or harnessed, to develop novel therapeutic approaches to the treatment of disease, currently remains relatively poorly understood. In this review, we will provide an overview of the current status of selected small molecule ubiquitin system inhibitors. We will further discuss the unique challenges of targeting this ubiquitous and highly complex machinery, and explore and highlight potential ways in which these challenges might be met.
Collapse
Affiliation(s)
- Hai Qiu Wu
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Huib Ovaa
- Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
45
|
Lopez‐Castejon G. Control of the inflammasome by the ubiquitin system. FEBS J 2020; 287:11-26. [PMID: 31679183 PMCID: PMC7138099 DOI: 10.1111/febs.15118] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Inflammation is the body's response to danger. One of the first immune cell types to encounter danger is the macrophage. Macrophages sense danger signals such as extracellular ATP or bacterial toxins, derived from tissue damage or infection, and initiate the activation of an intracellular molecular complex called the inflammasome. The inflammasome consists of a cytosolic pattern recognition receptor, an adaptor molecule ASC (apoptosis-associated speck-like protein containing a CARD) and the protease caspase-1. Assembly of the complex leads to the cleavage and activation of caspase-1 that triggers processing and release of the cytokines interleukin (IL)-1β and IL-18, and ultimately cell death via the process of pyroptosis. The ability to sense and respond to danger appropriately is critical for maintaining immune homeostasis. Dysregulation of inflammasomes contributes to the progression of chronic diseases prevalent in the ageing population, such as Alzheimer's disease, COPD and metabolic disease; hence, it is critical that activation of the inflammatory response and inflammasome activation are tightly regulated. Post-translational modifications (PTMs) such as ubiquitination have recently emerged as important regulators of inflammasome assembly. However, the mechanisms by which PTMs regulate the inflammasome are still not understood. This review aims to summarize our knowledge to date on how the ubiquitin system controls inflammasome activation and where this area of research is heading.
Collapse
Affiliation(s)
- Gloria Lopez‐Castejon
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthLydia Becker Institute of Immunology and InflammationManchester Collaborative Centre for Inflammation ResearchManchester Academic Health Science CentreUniversity of ManchesterUK
| |
Collapse
|
46
|
Schauer NJ, Magin RS, Liu X, Doherty LM, Buhrlage SJ. Advances in Discovering Deubiquitinating Enzyme (DUB) Inhibitors. J Med Chem 2019; 63:2731-2750. [DOI: 10.1021/acs.jmedchem.9b01138] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nathan J. Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Robert S. Magin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura M. Doherty
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
47
|
Li L, Wei J, Li S, Jacko AM, Weathington NM, Mallampalli RK, Zhao J, Zhao Y. The deubiquitinase USP13 stabilizes the anti-inflammatory receptor IL-1R8/Sigirr to suppress lung inflammation. EBioMedicine 2019; 45:553-562. [PMID: 31204278 PMCID: PMC6642080 DOI: 10.1016/j.ebiom.2019.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The Single immunoglobin interleukin-1 (IL-1)-related receptor (Sigirr), also known as IL-1R8, has been shown to exhibit broad anti-inflammatory effects against inflammatory diseases including acute lung injury, while molecular regulation of IL-1R8/Sigirr protein stability has not been reported. This study is designed to determine whether stabilization of IL-1R8/Sigirr by a deubiquitinating enzyme (DUB) is sufficient to suppress inflammatory responses and lessen lung inflammation. METHODS A molecular signature of ubiquitination and degradation of IL-1R8/Sigirr was determined using a receptor ligation chase model. The anti-inflammatory effects on USP13 were investigated. USP13 knockout mice were evaluated for stabilization of IL-1R8/Sigirr and disease phenotype in an acute lung injury model. FINDINGS IL-1R8/Sigirr degradation is mediated by the ubiquitin-proteasome system, through site-specific ubiquitination. This effect was antagonized by the DUB USP13. USP13 levels correlate directly with IL-1R8/Sigirr, and both proteins were reduced in cells and tissue from mice subjected to inflammatory injury by the TLR4 agonist lipopolysaccharide (LPS). Knockdown of USP13 in cells increased IL-1R8/Sigirr poly-ubiquitination and reduced its stability, which enhanced LPS-induced TLR4 signaling and cytokine release. Likewise, USP13-deficient mice were highly susceptible to LPS or Pseudomonas aeruginosa models of inflammatory lung injury. IL-1R8/Sigirr overexpression in cells or by pulmonary viral transduction attenuated the inflammatory phenotype conferred by the USP13-/- genotype. INTERPRETATION Stabilization of IL-1R8/Sigirr by USP13 describes a novel anti-inflammatory pathway in diseases that could provide a new strategy to modulate immune activation. FUND: This study was supported by the US National Institutes of Health (R01HL131665, HL136294 to Y.Z., R01 GM115389 to J.Z.).
Collapse
Affiliation(s)
- Lian Li
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA,Department of Respiration Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianxin Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shuang Li
- Department of Surgery, The first affiliated hospital of Dalian Medical University, Dalian, China
| | - Anastasia M. Jacko
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Rama K. Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA,Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA,Department of Internal Medicine, The Ohio State University, Columbus, OH, USA,Corresponding author at: Department of Physiology and Cell Biology, The Ohio State University, 2166E, 333 W 10th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Iwakami Y, Yokoyama S, Watanabe K, Hayakawa Y. STAM-binding protein regulates melanoma metastasis through SLUG stabilization. Biochem Biophys Res Commun 2018; 507:484-488. [DOI: 10.1016/j.bbrc.2018.11.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
|
49
|
Abstract
PURPOSE OF REVIEW ARDS is a severe pulmonary disease characterized by inflammation. However, inflammation-directed therapies have yet failed to improve the outcome in ARDS patients. One of the reasons may be the underestimated complexity of inflammation. Here, we summarize recent insights into the complex interrelations between inflammatory circuits. RECENT FINDINGS Gene expression analysis from animal models or from patients with ARDS, sepsis or trauma show an enormous number of differentially expressed genes with highly significant overlaps between the various conditions. These similarities, however, should not obscure the complexity of inflammation. We suggest to consider inflammation in ARDS as a system controlled by scale-free networks of genome-wide molecular interaction with hubs (e.g. NFκB, C/EBPβ, ATF3), exhibiting nonlinear emergence and the ability to adapt, meaning for instance that mild and life-threatening inflammation in ARDS are distinct processes. In order to comprehend this complex system, it seems necessary to combine model-driven simulations, data-driven modelling and hypothesis-driven experimental studies. Recent experimental studies have illustrated how several regulatory circuits interact during pulmonary inflammation, including the resolution of inflammation, the inflammasome, autophagy and apoptosis. SUMMARY We suggest that therapeutic interventions in ARDS should be based on a systems approach to inflammation.
Collapse
|
50
|
Xiao S, Zhang W, Chen H, Fang B, Qiu Y, Chen X, Chen L, Shu S, Zhang Y, Zhao Y, Liu Z, Liang G. Design, synthesis, and structure-activity relationships of 2-benzylidene-1-indanone derivatives as anti-inflammatory agents for treatment of acute lung injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:887-899. [PMID: 29719375 PMCID: PMC5914570 DOI: 10.2147/dddt.s160314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purpose The purpose of this study was to design and synthesize novel 2-benzylidene-1-indanone derivatives for treatment of acute lung injury. Methods A series of 39 novel 2-benzylidene-indanone structural derivatives were synthesized and evaluated for anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine primary macrophages. Results Most of the obtained compounds effectively inhibited the LPS-induced expression of IL-6 and TNF-α. The most active compound, 8f, was found to significantly reduce LPS-induced pulmonary inflammation, as reflected by reductions in the concentration of total protein, inflammatory cell count, as well as the lung wet/dry ratio in bronchoalveolar lavage (BAL) fluid. Furthermore, 8f effectively inhibited mRNA expression of several inflammatory cytokines after LPS challenge in vitro and in vivo. Administration of 8f also blocked LPS-induced activation of the proinflammatory NF-κB/MAPK signaling pathway. Conclusion The simple synthetic preparation and biological properties of these derivatives make these 2-benzylidene-indanone scaffolds promising new entities for the development of anti-inflammatory therapeutics for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Siyang Xiao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinda Qiu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Xianxin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sheng Shu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|