1
|
Meng XZ, Duan Y, Bai Y, Zhang W, Zhang C, Wang KJ, Chen F. Litopeidin 28-51, a novel antimicrobial peptide from Litopenaeus vannamei, combats white spot syndrome virus infection through direct virus lysis and immunomodulatory effects. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110243. [PMID: 40032210 DOI: 10.1016/j.fsi.2025.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
White spot syndrome virus (WSSV) poses a critical threat to crustacean aquaculture, particularly shrimp, causing widespread pandemics. In crustaceans, hemocytes function as a key component of the innate immune system and play a pivotal role in both cellular and humoral immune responses by producing various immune factors, such as antimicrobial peptides (AMPs), to defend against pathogenic microorganisms. In this study, an uncharacterized functional gene named Litopeidin was identified in Pacific white shrimp (Litopenaeus vannamei). It exhibited heightened expression in hemocytes and demonstrated a significant response to WSSV infection. Further, a truncated peptide, Litopeidin28-51, derived from this gene, was characterized and identified as a novel AMP with robust antibacterial and antifungal properties, especially against common aquatic pathogens, including Vibrio spp. Moreover, Litopeidin28-51 significantly suppressed the expression of viral genes (IE1 and VP28, WSSV replication-related genes) and the VP28 protein, as well as reduced viral copy numbers in hematopoietic tissue (Hpt) cells following WSSV infection. Mechanistic studies revealed that Litopeidin28-51 exhibited a direct virucidal effect on WSSV and significantly upregulated immune-related gene expression (including Relish, ALF, Crustin, and LYZ1) in Hpt cells. Notably, in Cherax quadricarinatus and L. vannamei, either co- or pre-treatment with Litopeidin28-51 markedly reduced animal mortality and viral replication in tissues. Collectively, the findings suggest that Litopeidin28-51, a newly identified AMP with potent antibacterial activity, effectively inhibits WSSV replication by disrupting the viral envelope and regulating the cellular antiviral responses, making it a promising candidate for developing anti-infective agents or immunostimulants in aquaculture.
Collapse
Affiliation(s)
- Xin-Zhan Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yingyi Duan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuqi Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weibin Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chang Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Santos D, Carrijo Oliveira N, Costa ECA, Ramalho Paes MV, Beltrão-Braga B, Castanha AG, Beltrão-Braga PCB. Modeling potential drugs for Zika virus in animal and in vitro platforms: what is the current state of the art? Expert Opin Drug Discov 2025; 20:585-597. [PMID: 40251755 DOI: 10.1080/17460441.2025.2496461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION The Zika virus (ZIKV) poses a significant public health threat due to its association with congenital Zika syndrome (CZS) and severe neurological disorders. Since its discovery, ZIKV has transitioned from sporadic outbreaks to a major epidemic in Brazil in 2015, which highlighted the urgent need for effective therapies, especially for vulnerable groups like pregnant women and newborns. AREAS COVERED This review provides a comprehensive overview of recent advancements in ZIKV drug discovery and their current stage of development, with a particular focus on those tested in animal models from 2018 to date, excluding vaccine candidates. Repurposed drugs, such as molnupiravir and sofosbuvir, have shown the potential to inhibit viral replication and mitigate disease. Novel compounds targeting viral proteins and host-directed therapies are also discussed. Furthermore, advanced in vitro models, including brain organoids, have offered critical insights into therapeutic efficacy. EXPERT OPINION Although some preclinical models have identified potential drugs ready for human translation, no protocol has yet been established for treating ZIKV infection. Currently, the treatment involves supportive care, managing symptoms, and preventing complications, especially for pregnant women. Ongoing research aims to develop specific antiviral therapies and vaccines; however, no such options are currently available.
Collapse
Affiliation(s)
- Debora Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathalia Carrijo Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
| | | | - Maria Vitória Ramalho Paes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrelissa Gorete Castanha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Wang L, Mu Q, Zhang W, Zheng W, Zhu X, Yu Y, Wang Y, Xu W, Lu Z, Han X. Placental targeted drug delivery: a review of recent progress. NANOSCALE 2025; 17:8316-8335. [PMID: 40070242 DOI: 10.1039/d4nr05338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The placenta plays a crucial role in mediating nutrient and gas exchange between the mother and fetus during pregnancy. Targeting therapeutic agents to the placenta presents significant opportunities for treating placental disorders and enhancing fetal outcomes. However, the unique structural complexity and selective permeability of the placenta pose substantial challenges for effective drug delivery. This review provides a comprehensive overview of current strategies for placental targeting, including lipid nanoparticle (LNP) delivery systems, targeted peptide modifications, specific antibody targeting of placental receptors, and the use of viral vectors. We critically analyze the advantages and limitations of each approach, emphasizing recent advancements in enhancing targeting specificity and delivery efficiency. By consolidating the latest research developments, this review aims to foster further innovation in placental drug delivery methods and contribute significantly to the advancement of therapeutic strategies for placental disorders, ultimately improving outcomes for both mother and fetus.
Collapse
Affiliation(s)
- Linjian Wang
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Qiuqiu Mu
- Third Affliated Hospital of Wenzhou Medical University, WanSong Road No. 108, Ruian, Wenzhou, Zhejiang, 325200, China
| | - Wenjing Zhang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Weiqian Zheng
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Ying Yu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - YuPeng Wang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Wenli Xu
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Zhimin Lu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiujun Han
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
4
|
Xing L, Liu Z, Wang X, Liu Q, Xu W, Mao Q, Zhang X, Hao A, Xia S, Liu Z, Sun L, Zhang G, Wang Q, Chen Z, Jiang S, Sun L, Lu L. Early fusion intermediate of ACE2-using coronavirus spike acting as an antiviral target. Cell 2025; 188:1297-1314.e24. [PMID: 39889696 DOI: 10.1016/j.cell.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Coronavirus fusion with and entry into the host cell depends on viral spike, which acts as a crucial component of viral infection. However, the lack of receptor-activated spike intermediate conformation has hindered a comprehensive understanding of spike-induced membrane fusion. Here, we captured an angiotensin-converting enzyme 2 (ACE2)-induced early fusion intermediate conformation (E-FIC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in which heptad repeat 1 (HR1) in S2 has ejected while S1 remains attached. This E-FIC can transition to the late FIC after S2' cleavage. Leveraging this discovery, we designed an E-FIC-targeted dual-functional antiviral protein, AL5E. AL5E effectively inactivated ACE2-using coronaviruses and inhibited their infection, outperforming a mono-functional antiviral in protecting animals against these coronaviruses. This study has identified the E-FIC and used it as a target for the development of a dual-functional antiviral for the prevention and treatment of ACE2-using coronavirus infection.
Collapse
Affiliation(s)
- Lixiao Xing
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Zhimin Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Xinling Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qianying Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Xu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qiyu Mao
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Xiang Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Aihua Hao
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Shuai Xia
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Zezhong Liu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Lujia Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Guangxu Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Zhenguo Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| | - Lei Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Hu W, Gao H, Cui C, Wang L, Wang Y, Li Y, Li F, Zheng Y, Xia T, Wang S. Harnessing engineered symbionts to combat concurrent malaria and arboviruses transmission. Nat Commun 2025; 16:2104. [PMID: 40025068 PMCID: PMC11873228 DOI: 10.1038/s41467-025-57343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
Concurrent malaria and arbovirus infections pose significant public health challenges in tropical and subtropical regions, demanding innovative control strategies. Here, we describe a strategy that employs multifunctional engineered symbiotic bacteria to suppress concurrent transmission of malaria parasites, dengue, and Zika viruses by various vector mosquitoes. The symbiotic bacterium Serratia AS1, which efficiently spreads through Anopheles and Aedes populations, is engineered to simultaneously produce anti-Plasmodium and anti-arbovirus effector proteins controlled by a selected blood-induced promoter. Laboratory and outdoor field-cage studies show that the multifunctional engineered symbiotic strains effectively inhibit Plasmodium infection in Anopheles mosquitoes and arbovirus infection in Aedes mosquitoes. Our findings provide the foundation for the use of engineered symbiotic bacteria as a powerful tool to combat the concurrent transmission of malaria and arbovirus diseases.
Collapse
Affiliation(s)
- Wenqian Hu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Han Gao
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chunlai Cui
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Shanghai Institute of Wildlife Epidemics, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lihua Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yiguan Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Li
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yitong Zheng
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Xia
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
7
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
8
|
Owliaee I, Khaledian M, Shojaeian A, Madanchi H, Yarani R, Boroujeni AK, Shoushtari M. Antimicrobial Peptides Against Arboviruses: Mechanisms, Challenges, and Future Directions. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10430-0. [PMID: 39776036 DOI: 10.1007/s12602-024-10430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This review delves into the potential of antimicrobial peptides (AMPs) as promising candidates for combating arboviruses, focusing on their mechanisms of antiviral activity, challenges, and future directions. AMPs have shown promise in preventing arbovirus attachment to host cells, inducing interferon production, and targeting multiple viral stages, illustrating their multifaceted impact on arbovirus infections. Structural elucidation of AMP-viral complexes is explored to deepen the understanding of molecular determinants governing viral neutralization, paving the way for structure-guided design. Furthermore, this review highlights the potential of AMP-based combination therapies to create synergistic effects that enhance overall treatment outcomes while minimizing the likelihood of resistance development. Challenges such as susceptibility to proteases, toxicity, and scalable production are discussed alongside strategies to address these limitations. Additionally, the expanding applications of AMPs as vaccine adjuvants and antiviral delivery systems are emphasized, underscoring their versatility beyond direct antiviral functions.
Collapse
Affiliation(s)
- Iman Owliaee
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Mehran Khaledian
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99442, Iran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shoushtari
- Department of Virology, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
9
|
de Moraes JFC, Rechenchoski DZ, Dyna AL, Cunha AP, Ricardo NMPS, de Farias SS, de Morais SM, Yamauchi LM, Faccin-Galhardi LC. Characterization and Promising in vitro Antiherpetic Effect of Galactomannan from Delonix regia Seeds. Curr Microbiol 2024; 81:375. [PMID: 39317904 DOI: 10.1007/s00284-024-03903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Herpes simplex virus (HSV) infections can occur throughout life, thereby allowing transmission to new hosts, with an impact on public health. Acyclovir remains the treatment of choice for these infections; however, an increase in resistant strains in recent years has been observed. In this study, the activity of a native Delonix regia galactomannan (NDr) against HSV-1 was investigated in vitro. NDr was characterized using infrared spectroscopy and NMR. Evaluation of cytotoxicity and the antiviral effect was determined, respectively, by MTT and plaque reduction assays. The NDr concentrations that inhibited cell viability (CC50) and viral infection (IC50) by 50% were above 2000 and 64 μg/mL, respectively. Thus, the polysaccharide showed a high selectivity index (> 31.25). When NDr was added at different stages of HSV-1 replication, a strong inhibitory effect was found by direct interaction with the virus (71-67%, virucidal effect) or previously with the cell, 6 h before infection (99.8-68.4%, prophylactic effect) at concentrations from 200 to 50 μg/mL. NDr showed similar effects in prophylactic 1 h (52%) and adsorption inhibition (55%) assays at 200 μg/mL. A reduction in the antiherpetic effect was observed after infection. These results suggest that NDr is effective in the early stages of HSV-1 infection and is a promising agent for controlling herpetic infections.
Collapse
Affiliation(s)
| | | | - André Luiz Dyna
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, CEP 86057-970, Brazil
| | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica E Inorgânica, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | | | - Silvana Silveira de Farias
- Programa Rede Nordeste de Biotecnologia, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | - Selene Maia de Morais
- Programa Rede Nordeste de Biotecnologia, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, CEP 86057-970, Brazil
| | | |
Collapse
|
10
|
Haddad H, Tangy F, Ouahchi I, Sahtout W, Ouni B, Zaïri A. Evaluation of the antiviral activity of new dermaseptin analogs against Zika virus. Biochem Biophys Rep 2024; 39:101747. [PMID: 38939125 PMCID: PMC11208914 DOI: 10.1016/j.bbrep.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders such as microcephaly and Guillain-Barré syndrome affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of new molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations Expect for dermaseptin B2 and its derivative which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/ml , unlike the native B2 and its derivative which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as novel lead structures for the development of potent antiviral agents against Zika virus infections.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, LR14ES06, The Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, Monastir, 5000, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015, Paris, France
| | - Ines Ouahchi
- Cytogenetics and Reproductive Biology department, Farhat Hached University Teaching Hospital, University of Sousse, 4000, Sousse, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
- Research Laboratory LR12SP11, Biochemistry Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology Department, Faculty of Medicine, University of Sousse, 4002, ousse, Tunisia
| | - Amira Zaïri
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| |
Collapse
|
11
|
Chen Y, Li Y, Lu L, Zou P. Zafirlukast, as a viral inactivator, potently inhibits infection of several flaviviruses, including Zika virus, dengue virus, and yellow fever virus. Antimicrob Agents Chemother 2024; 68:e0016824. [PMID: 38809067 PMCID: PMC11232407 DOI: 10.1128/aac.00168-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Zika virus (ZIKV) is one of the mosquito-borne flaviviruses that exhibits a unique tropism to nervous systems and is associated with Guillain-Barre syndrome and congenital Zika syndrome (CZS). Dengue virus (DENV) and yellow fever virus (YFV), the other two mosquito-borne flaviviruses, have also been circulating for a long time and cause severe diseases, such as dengue hemorrhagic fever and yellow fever, respectively. However, there are no safe and effective antiviral drugs approved for the treatment of infections or coinfections of these flaviviruses. Here, we found that zafirlukast, a pregnancy-safe leukotriene receptor antagonist, exhibited potent antiviral activity against infections of ZIKV strains from different lineages in different cell lines, as well as against infections of DENV-2 and YFV 17D. Mechanistic studies demonstrated that zafirlukast directly and irreversibly inactivated these flaviviruses by disrupting the integrity of the virions, leading to the loss of viral infectivity, hence inhibiting the entry step of virus infection. Considering its efficacy against flaviviruses, its safety for pregnant women, and its neuroprotective effect, zafirlukast is a promising candidate for prophylaxis and treatment of infections or coinfections of ZIKV, DENV, and YFV, even in pregnant women.
Collapse
Affiliation(s)
- Yongkang Chen
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Cao N, Cai Y, Huang X, Jiang H, Huang Z, Xing L, Lu L, Jiang S, Xu W. Inhibition of influenza A virus and SARS-CoV-2 infection or co-infection by griffithsin and griffithsin-based bivalent entry inhibitor. mBio 2024; 15:e0074124. [PMID: 38587427 PMCID: PMC11077956 DOI: 10.1128/mbio.00741-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.
Collapse
Affiliation(s)
- Najing Cao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanxing Cai
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hanxiao Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziqi Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhou S, Li J, Ling X, Dong S, Zhang Z, Li M. Conessine inhibits enveloped viruses replication through up-regulating cholesterol level. Virus Res 2023; 338:199234. [PMID: 37802295 PMCID: PMC10590996 DOI: 10.1016/j.virusres.2023.199234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Dengue virus (DENV) is one of the most prevalent arthropod-borne diseases. It may cause dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), while no effective vaccines and drugs are available. Our study demonstrated that conessine exhibits broad antiviral activity against several enveloped viruses, including DENV, vesicular stomatitis virus, and herpes simplex virus. In addition, conessine has no direct destructive effect on the integrity or infectivity of virions. Both pre-treatment and post-treatment with conessine significantly reduce DENV replication. Pre-treatment with conessine disrupts the endocytosis of enveloped viruses, while post-treatment disturbs DENV RNA replication or translation at an early stage. Through screening differentially expressed genes by transcriptome sequencing, we found that conessine may affect cholesterol biosynthesis, metabolism or homeostasis. Finally, we confirmed that conessine inhibits virus replication through up-regulating cholesterol levels. Our work suggests that conessine could be developed as a prophylactic and therapeutic treatment for infectious diseases caused by enveloped viruses.
Collapse
Affiliation(s)
- Shili Zhou
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Xiaomei Ling
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Shirui Dong
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Zhen Zhang
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Ming Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China.
| |
Collapse
|
14
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
15
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
16
|
Strizzi S, Bernardo L, D'Ursi P, Urbinati C, Bianco A, Limanaqi F, Manconi A, Milanesi M, Macchi A, Di Silvestre D, Cavalleri A, Pareschi G, Rusnati M, Clerici M, Mauri P, Biasin M. An innovative strategy to investigate microbial protein modifications in a reliable fast and sensitive way: A therapy oriented proof of concept based on UV-C irradiation of SARS-CoV-2 spike protein. Pharmacol Res 2023; 194:106862. [PMID: 37479104 DOI: 10.1016/j.phrs.2023.106862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The characterization of modifications of microbial proteins is of primary importance to dissect pathogen lifecycle mechanisms and could be useful in identifying therapeutic targets. Attempts to solve this issue yielded only partial and non-exhaustive results. We developed a multidisciplinary approach by coupling in vitro infection assay, mass spectrometry (MS), protein 3D modelling, and surface plasma resonance (SPR). As a proof of concept, the effect of low UV-C (273 nm) irradiation on SARS-CoV-2 spike (S) protein was investigated. Following UV-C exposure, MS analysis identified, among other modifications, the disruption of a disulphide bond within the conserved S2 subunit of S protein. Computational analyses revealed that this bond breakage associates with an allosteric effect resulting in the generation of a closed conformation with a reduced ability to bind the ACE2 receptor. The UV-C-induced reduced affinity of S protein for ACE2 was further confirmed by SPR analyses and in vitro infection assays. This comprehensive approach pinpoints the S2 domain of S protein as a potential therapeutic target to prevent SARS-CoV-2 infection. Notably, this workflow could be used to screen a wide variety of microbial protein domains, resulting in a precise molecular fingerprint and providing new insights to adequately address future epidemics.
Collapse
Affiliation(s)
- Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Letizia Bernardo
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Chiara Urbinati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianco
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Andrea Manconi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Maria Milanesi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Macchi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, IRCCS Foundation, Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milan, Italy
| | - Giovanni Pareschi
- Italian National Institute for Astrophysics (INAF) - Brera Astronomical Observatory, Via E. Bianchi, 46, Merate, 23807 Lecco, Italy
| | - Marco Rusnati
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, íItaly
| | - PierLuigi Mauri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, MI, Italy; Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, 56127 Pisa, Italy.
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| |
Collapse
|
17
|
Castro-Amarante MFD, Pereira SS, Pereira LR, Santos LS, Venceslau-Carvalho AA, Martins EG, Balan A, Souza Ferreira LCD. The Anti-Dengue Virus Peptide DV2 Inhibits Zika Virus Both In Vitro and In Vivo. Viruses 2023; 15:v15040839. [PMID: 37112820 PMCID: PMC10143277 DOI: 10.3390/v15040839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The C-terminal portion of the E protein, known as stem, is conserved among flaviviruses and is an important target to peptide-based antiviral strategies. Since the dengue (DENV) and Zika (ZIKV) viruses share sequences in the stem region, in this study we evaluated the cross-inhibition of ZIKV by the stem-based DV2 peptide (419–447), which was previously described to inhibit all DENV serotypes. Thus, the anti-ZIKV effects induced by treatments with the DV2 peptide were tested in both in vitro and in vivo conditions. Molecular modeling approaches have demonstrated that the DV2 peptide interacts with amino acid residues exposed on the surface of pre- and postfusion forms of the ZIKA envelope (E) protein. The peptide did not have any significant cytotoxic effects on eukaryotic cells but efficiently inhibited ZIKV infectivity in cultivated Vero cells. In addition, the DV2 peptide reduced morbidity and mortality in mice subjected to lethal challenges with a ZIKV strain isolated in Brazil. Taken together, the present results support the therapeutic potential of the DV2 peptide against ZIKV infections and open perspectives for the development and clinical testing of anti-flavivirus treatments based on synthetic stem-based peptides.
Collapse
|
18
|
Sun N, Zhang RR, Song GY, Cai Q, Aliyari SR, Nielsen-Saines K, Jung JU, Yang H, Cheng G, Qin CF. SERTAD3 induces proteasomal degradation of ZIKV capsid protein and represents a therapeutic target. J Med Virol 2023; 95:e28451. [PMID: 36594413 PMCID: PMC9975044 DOI: 10.1002/jmv.28451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. While flavivirus replication is known to occur in the cytoplasm, a significant portion of the viral capsid protein localizes to the nucleus during infection. However, the role of the nuclear capsid is less clear. Herein, we demonstrated SERTA domain containing 3 (SERTAD3) as an antiviral interferon stimulatory gene product had an antiviral ability to ZIKV but not JEV. Mechanistically, we found that SERTAD3 interacted with the capsid protein of ZIKV in the nucleolus and reduced capsid protein abundance through proteasomal degradation. Furthermore, an eight amino acid peptide of SERTAD3 was identified as the minimum motif that binds with ZIKV capsid protein. Remarkably, the eight amino acids synthetic peptide from SERTAD3 significantly prevented ZIKV infection in culture and pregnant mouse models. Taken together, these findings not only reveal the function of SERTAD3 in promoting proteasomal degradation of a specific viral protein but also provide a promising host-targeted therapeutic strategy against ZIKV infection.
Collapse
Affiliation(s)
- Nina Sun
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guang-Yuan Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Qiaomei Cai
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Saba R. Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Karin Nielsen-Saines
- Division of Pediatric Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Heng Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Basic Medicine, Anhui Medical University, Hefei, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Fan Y, Zhang Q, Zhang W, Lai Y, Long H, Huang H, Zhan S, Liu X, Lai J, Zhang Z, Pan P, Su Z, Li G. Inhibitory effects of Patchouli alcohol on the early lifecycle stages of influenza A virus. Front Microbiol 2023; 13:938868. [PMID: 36817112 PMCID: PMC9928722 DOI: 10.3389/fmicb.2022.938868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Background The antiviral activity and underlying mechanism of Patchouli alcohol remain unclear. Methods This study evaluated the cytotoxicity, optimal methods for drug administration, anti-influenza A activity of Patchouli alcohol. The antiviral mechanism of Patchouli alcohol was also assessed via qRT-PCR, western blot, hemagglutination inhibiting (HAI) assay, and hemolysis inhibiting assay. Results Patchouli alcohol was shown to have low cytotoxicity and its strongest antiviral effect was associated with premixed administration. Patchouli alcohol inhibited virus replication during the early lifecycle stages of influenza A virus infection and specifically prevented expression of the viral proteins, HA and NP. In both the HAI and hemolysis inhibiting assays, Patchouli alcohol was able to block HA2-mediated membrane fusion under low pH conditions. Patchouli alcohol had lower binding energy with HA2 than HA1. Conclusion These findings suggest that Patchouli alcohol could be a promising membrane fusion inhibitor for the treatment of influenza A infection.
Collapse
Affiliation(s)
- Yaohua Fan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China,Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | | | - Wen Zhang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- Department of Pneumology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- Department of Pneumology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- Department of Pneumology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jielan Lai
- Cancer Prevention and Treatment Center, Sun Yat-sen University, Guangzhou, China
| | - Zhongde Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, The First Affiliated Hospital of Jinan University, Guangzhou, China,Pan Pan,
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou, China,Ziren Su,
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Geng Li,
| |
Collapse
|
20
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Yu Y, Chen Y, Wang J, Fan X, He Z, Qiao S, Hou S, Zou P. A peptide derived from the N-terminal of NS2A for the preparation of ZIKV NS2A recognition polyclonal antibody. J Immunol Methods 2023; 512:113396. [PMID: 36463933 DOI: 10.1016/j.jim.2022.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Zika virus non-structural protein NS2A participates in viral replication, organization, and budding, as well as escaping host immunity. NS2A also involved in the induction of microcephaly by ZIKV. However, the above studies were mainly performed through NS2A with a tag due to the lack of available antibodies against NS2A. ZIKV NS2A is a multiplex transmembrane protein, which leads to difficulties in the preparation of its recognition antibodies, thus seriously affecting the study of ZIKV NS2A. In this study, we found that a peptide (GSTDHMDHFSLGVLC) derived from the N-terminal of ZIKV NS2A coupled to KLH induced antibodies recognizing ZIKV NS2A in rabbits. The purified polyclonal antibody recognized ZIKV NS2A in ZIKV-infected cells with high efficiency and specificity, as detected by western blot and immunofluorescence assay. Our study has important implications for the preparation of ZIKV NS2A antibodies and the in-depth study of ZIKV NS2A.
Collapse
Affiliation(s)
- Yufeng Yu
- Shanxi Provincial Key Laboratory for Functional Proteins, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China.
| | - Yongkang Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jian Wang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, China
| | - Xiuling Fan
- Shanxi Provincial Key Laboratory for Functional Proteins, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Zhenrui He
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, China
| | - Shaojun Qiao
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, China
| | - Shishi Hou
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| |
Collapse
|
22
|
Structural Basis of Peptide-Based Antimicrobial Inhibition of a Resistance-Nodulation-Cell Division Multidrug Efflux Pump. Microbiol Spectr 2022; 10:e0299022. [PMID: 36121287 PMCID: PMC9603588 DOI: 10.1128/spectrum.02990-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacterial efflux pumps in the resistance-nodulation-cell division (RND) family of Gram-negative bacteria contribute significantly to the development of antimicrobial resistance by many pathogens. In this study, we selected the MtrD transporter protein of Neisseria gonorrhoeae as it is the sole RND pump possessed by this strictly human pathogen and can export multiple antimicrobials, including antibiotics, bile salts, detergents, dyes, and antimicrobial peptides. Using knowledge from our previously published structures of MtrD in the presence or absence of bound antibiotics as a model and the known ability of MtrCDE to export cationic antimicrobial peptides, we hypothesized that cationic peptides could be accommodated within MtrD binding sites. Furthermore, we thought that MtrD-bound peptides lacking antibacterial action could sensitize bacteria to an antibiotic normally exported by the MtrCDE efflux pump or other similar RND-type pumps possessed by different Gram-negative bacteria. We now report the identification of a novel nonantimicrobial cyclic cationic antimicrobial peptide, which we termed CASP (cationic antibiotic-sensitizing peptide). By single-particle cryo-electron microscopy, we found that CASP binds within the periplasmic cleft region of MtrD using overlapping and distinct amino acid contact sites that interact with another cyclic peptide (colistin) or a linear human cationic antimicrobial peptide derived from human LL-37. While CASP could not sensitize Neisseria gonorrhoeae to an antibiotic (novobiocin) that is a substrate for RND pumps, it could do so against multiple Gram-negative, rod-shaped bacteria. We propose that CASP (or future derivatives) could serve as an adjuvant for the antibiotic treatment of certain Gram-negative infections previously thwarted by RND transporters. IMPORTANCE RND efflux pumps can export numerous antimicrobials that enter Gram-negative bacteria, and their action can reduce the efficacy of antibiotics and provide decreased susceptibility to various host antimicrobials. Here, we identified a cationic antibiotic-sensitizing peptide (CASP) that binds within the periplasmic cleft of an RND transporter protein (MtrD) produced by Neisseria gonorrhoeae. Surprisingly, CASP was able to render rod-shaped Gram-negative bacteria, but not gonococci, susceptible to an antibiotic that is a substrate for the gonococcal MtrCDE efflux pump. CASP (or its future derivatives) could be used as an adjuvant to treat infections for which RND efflux contributes to multidrug resistance.
Collapse
|
23
|
Zoladek J, Burlaud-Gaillard J, Chazal M, Desgraupes S, Jeannin P, Gessain A, Pardigon N, Hubert M, Roingeard P, Jouvenet N, Afonso PV. Human Claudin-Derived Peptides Block the Membrane Fusion Process of Zika Virus and Are Broad Flavivirus Inhibitors. Microbiol Spectr 2022; 10:e0298922. [PMID: 36040168 PMCID: PMC9603178 DOI: 10.1128/spectrum.02989-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged in the Pacific islands in 2007 and spread to the Americas in 2015. The infection remains asymptomatic in most cases but can be associated with severe neurological disorders. Despite massive efforts, no specific drug or vaccine against ZIKV infection is available to date. Claudins are tight-junction proteins that favor the entry of several flaviviruses, including ZIKV. In this study, we identified two peptides derived from the N-terminal sequences of claudin-7 and claudin-1, named CL7.1 and CL1.1, respectively, that inhibited ZIKV infection in a panel of human cell lines. Using cell-to-cell fusion assays, we demonstrated that these peptides blocked the ZIKV E-mediated membrane fusion. A comparison of the antiviral efficacy of CL1.1 and CL7.1 pointed to the importance of the peptide amphipathicity. Electron microscopic analysis revealed that CL1.1 altered the ultrastructure of the viral particles likely by binding the virus lipid envelope. However, amphipathicity could not fully explain the antiviral activity of CL1.1. In silico docking simulations suggested that CL1.1 may also interact with the E protein, near its stem region. Overall, our data suggested that claudin-derived peptides inhibition may be linked to simultaneous interaction with the E protein and the viral lipid envelope. Finally, we found that CL1.1 also blocked infection by yellow fever and Japanese encephalitis viruses but not by HIV-1 or SARS-CoV-2. Our results provide a basis for the future development of therapeutics against a wide range of endemic and emerging flaviviruses. IMPORTANCE Zika virus (ZIKV) is a flavivirus transmitted by mosquito bites that have spread to the Pacific Islands and the Americas over the past decade. The infection remains asymptomatic in most cases but can cause severe neurological disorders. ZIKV is a major public health threat in areas of endemicity, and there is currently no specific antiviral drug or vaccine available. We identified two antiviral peptides deriving from the N-terminal sequences of claudin-7 and claudin-1 with the latter being the most effective. These peptides block the envelope-mediated membrane fusion. Our data suggested that the inhibition was likely achieved by simultaneously interacting with the viral lipid envelope and the E protein. The peptides also inhibited other flaviviruses. These results could provide the basis for the development of therapies that might target a wide array of flaviviruses from current epidemics and possibly future emergences.
Collapse
Affiliation(s)
- Jim Zoladek
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Julien Burlaud-Gaillard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Maxime Chazal
- Unité Signalisation Antivirale, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Sophie Desgraupes
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Patricia Jeannin
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Antoine Gessain
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Nathalie Pardigon
- Groupe Arbovirus, Unité Environnement et Risques Infectieux, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu Hubert
- Unité Virus et Immunité, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Nolwenn Jouvenet
- Unité Signalisation Antivirale, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Philippe V. Afonso
- Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| |
Collapse
|
24
|
Zika Virus Infection and Development of Drug Therapeutics. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) is an emerging flavivirus that is associated with neurological complications, such as neuroinflammatory Guillain Barré Syndrome in adults and microcephaly in newborns, and remains a potentially significant and international public health concern. The World Health Organization is urging the development of novel antiviral therapeutic strategies against ZIKV, as there are no clinically approved vaccines or drugs against this virus. Given the public health crisis that is related to ZIKV cases in the last decade, efficient strategies should be identified rapidly to combat or treat ZIKV infection. Several promising strategies have been reported through drug repurposing studies, de novo design, and the high-throughput screening of compound libraries in only a few years. This review summarizes the genome and structure of ZIKV, viral life cycle, transmission cycle, clinical manifestations, cellular and animal models, and antiviral drug developments, with the goal of increasing our understanding of ZIKV and ultimately defeating it.
Collapse
|
25
|
Wang J, Jiang B, Wang K, Dai J, Dong C, Wang Y, Zhang P, Li M, Xu W, Wei L. A cathelicidin antimicrobial peptide from Hydrophis cyanocinctus inhibits Zika virus infection by downregulating expression of a viral entry factor. J Biol Chem 2022; 298:102471. [PMID: 36089062 PMCID: PMC9530963 DOI: 10.1016/j.jbc.2022.102471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) is a re-emerging flavivirus that causes conditions such as microcephaly and testis damage. The spread of ZIKV has become a major public health concern. Recent studies indicated that antimicrobial peptides are an ideal source for screening antiviral candidates with broad-spectrum antiviral activities, including against ZIKV. We herein found that Hc-CATH, a cathelicidin antimicrobial peptide identified from the sea snake Hydrophis cyanocinctus in our previous work, conferred protection against ZIKV infection in host cells and showed preventative efficacy and therapeutic efficacy in C57BL/6J mice, Ifnar1−/− mice, and pregnant mice. Intriguingly, we revealed that Hc-CATH decreased the susceptibility of host cells to ZIKV by downregulating expression of AXL, a TAM (TYRO3, AXL and MERTK) family kinase receptor that mediates ZIKV infection, and subsequently reversed the negative regulation of AXL on host’s type I interferon response. Furthermore, we showed that the cyclo-oxygenase-2/prostaglandin E2/adenylyl cyclase/protein kinase A pathway was involved in Hc-CATH-mediated AXL downregulation, and Hc-CATH in addition directly inactivated ZIKV particles by disrupting viral membrane. Finally, while we found Hc-CATH did not act on the late stage of ZIKV infection, structure–function relationship studies revealed that α-helix and phenylalanine residues are key structural requirements for its protective efficacy against initial ZIKV infection. In summary, we demonstrate that Hc-CATH provides prophylactic and therapeutic efficacy against ZIKV infection via downregulation of AXL, as well as inactivating the virion. Our findings reveal a novel mechanism of cathelicidin against viral infection and highlight the potential of Hc-CATH to prevent and treat ZIKV infection.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Bingyan Jiang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kezhen Wang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianfeng Dai
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yipeng Wang
- Department of Biopharmaceuticals, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Zhang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
26
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
27
|
Zhou S, Lin Q, Huang C, Luo X, Tian X, Liu C, Zhang P. Rottlerin plays an antiviral role at early and late steps of Zika virus infection. Virol Sin 2022; 37:685-694. [PMID: 35934227 PMCID: PMC9583117 DOI: 10.1016/j.virs.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Infection of Zika virus (ZIKV) may cause microcephaly and other neurological disorders, while no vaccines and drugs are available. Our study revealed that rottlerin confers a broad antiviral activity against several enveloped viruses, including ZIKV, vesicular stomatitis virus, and herpes simplex virus, but not against two naked viruses (enterovirus 71 and encephalomyocarditis virus). Rottlerin does not have a direct virucidal effect on the virions, and its antiviral effect is independent of its regulation on PKCδ or ATP. Both pretreatment and post-treatment of rottlerin effectively reduce the viral replication of ZIKV. The pretreatment of rottlerin disturbs the endocytosis of enveloped viruses, while the post-treatment of rottlerin acts at a late stage through disturbing the maturation of ZIKV. Importantly, administration of rottlerin in neonatal mice significantly decreased the ZIKV replication in vivo, and alleviated the neurological symptoms caused by ZIKV. Our work suggests that rottlerin exerts an antiviral activity at two distinct steps of viral infection, and can be potentially developed as a prophylactic and therapeutic agent. Rottlerin confers an antiviral activity against several enveloped viruses including Zika virus. Rottlerin interferes with the endocytosis and maturation step of Zika virus. Rottlerin inhibits the ZIKV replication in vivo, and alleviates the neurological symptoms caused by Zika virus.
Collapse
|
28
|
Design and evaluation of neutralizing and fusion inhibitory peptides to Crimean-Congo hemorrhagic fever virus. Antiviral Res 2022; 207:105401. [DOI: 10.1016/j.antiviral.2022.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
29
|
Wang X, Chen Y, Shi H, Zou P. Erythromycin Estolate Is a Potent Inhibitor Against HCoV-OC43 by Directly Inactivating the Virus Particle. Front Cell Infect Microbiol 2022; 12:905248. [PMID: 35873167 PMCID: PMC9301004 DOI: 10.3389/fcimb.2022.905248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
In addition to antibacterial effects, macrolide antibiotics exhibit other extensive pharmacological effects, such as anti-inflammatory and antiviral activities. Erythromycin estolate, one of the macrolide antibiotics, was previously investigated to effectively inhibit infections of various flaviviruses including Zika virus, dengue virus, and yellow fever virus, but its antiviral effect against human coronavirus remains unknown. Thus, the current study was designed to evaluate the antiviral efficacy of erythromycin estolate against human coronavirus strain OC43 (HCoV-OC43) and to illustrate the underlying mechanisms. Erythromycin estolate effectively inhibited HCoV-OC43 infection in different cell types and significantly reduced virus titers at safe concentration without cell cytotoxicity. Furthermore, erythromycin estolate was identified to inhibit HCoV-OC43 infection at the early stage and to irreversibly inactivate virus by disrupting the integrity of the viral membrane whose lipid component might be the target of action. Together, it was demonstrated that erythromycin estolate could be a potential therapeutic drug for HCoV-OC43 infection.
Collapse
Affiliation(s)
- Xiaohuan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongkang Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Peng Zou,
| |
Collapse
|
30
|
Gao Y, Tai W, Wang X, Jiang S, Debnath AK, Du L, Chen S. A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biol 2022; 20:143. [PMID: 35706035 PMCID: PMC9202104 DOI: 10.1186/s12915-022-01344-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background Zika virus (ZIKV) and dengue virus (DENV) cause microcephaly and dengue hemorrhagic fever, respectively, leading to severe problems. No effective antiviral agents are approved against infections of these flaviviruses, calling for the need to develop potent therapeutics. We previously identified gossypol as an effective inhibitor against ZIKV and DENV infections, but this compound is toxic and not suitable for in vivo treatment. Results In this study, we showed that gossypol derivative ST087010 exhibited potent and broad-spectrum in vitro inhibitory activity against infections of at least ten ZIKV strains isolated from different hosts, time periods, and countries, as well as DENV-1-4 serotypes, and significantly reduced cytotoxicity compared to gossypol. It presented broad-spectrum in vivo protective efficacy, protecting ZIKV-infected Ifnar1−/− mice from lethal challenge, with increased survival and reduced weight loss. Ifnar1−/− mice treated with this gossypol derivative decreased viral titers in various tissues, including the brain and testis, after infection with ZIKV at different human isolates. Moreover, ST087010 potently blocked ZIKV vertical transmission in pregnant Ifnar1−/− mice, preventing ZIKV-caused fetal death, and it was safe for pregnant mice and their pups. It also protected DENV-2-challenged Ifnar1−/− mice against viral replication by reducing the viral titers in the brain, kidney, heart, and sera. Conclusions Overall, our data indicate the potential for further development of this gossypol derivative as an effective and safe broad-spectrum therapeutic agent to treat ZIKV and DENV diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01344-w.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Xinyi Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
31
|
Qian X, Qi Z. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Viruses 2022; 14:v14061226. [PMID: 35746697 PMCID: PMC9229039 DOI: 10.3390/v14061226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Mosquito-borne flavivirus infections affect approximately 400 million people worldwide each year and are global threats to public health. The common diseases caused by such flaviviruses include West Nile, yellow fever, dengue, Zika infection and Japanese encephalitis, which may result in severe symptoms and disorders of multiple organs or even fatal outcomes. Till now, no specific antiviral agents are commercially available for the treatment of the diseases. Numerous strategies have been adopted to develop novel and promising inhibitors against mosquito-borne flaviviruses, including drugs targeting the critical viral components or essential host factors during infection. Research advances in antiflaviviral therapy might optimize and widen the treatment options for flavivirus infection. This review summarizes the current developmental progresses and involved molecular mechanisms of antiviral agents against mosquito-borne flaviviruses.
Collapse
|
32
|
Parra ALC, Bezerra LP, Shawar DE, Neto NAS, Mesquita FP, da Silva GO, Souza PFN. Synthetic antiviral peptides: a new way to develop targeted antiviral drugs. Future Virol 2022. [DOI: 10.2217/fvl-2021-0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global concern over emerging and re-emerging viral infections has spurred the search for novel antiviral agents. Peptides with antiviral activity stand out, by overcoming limitations of the current drugs utilized, due to their biocompatibility, specificity and effectiveness. Synthetic peptides have been shown to be viable alternatives to natural peptides due to several difficulties of using of the latter in clinical trials. Various platforms have been utilized by researchers to predict the most effective peptide sequences against HIV, influenza, dengue, MERS and SARS. Synthetic peptides are already employed in the treatment of HIV infection. The novelty of this study is to discuss, for the first time, the potential of synthetic peptides as antiviral molecules. We conclude that synthetic peptides can act as new weapons against viral threats to humans.
Collapse
Affiliation(s)
- Aura LC Parra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Leandro P Bezerra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Dur E Shawar
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Nilton AS Neto
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Felipe P Mesquita
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| | - Gabrielly O da Silva
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Pedro FN Souza
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| |
Collapse
|
33
|
Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses. PLoS Negl Trop Dis 2022; 16:e0010291. [PMID: 35482672 PMCID: PMC9049358 DOI: 10.1371/journal.pntd.0010291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.
Collapse
|
34
|
Chen Y, Wang X, Shi H, Zou P. Montelukast Inhibits HCoV-OC43 Infection as a Viral Inactivator. Viruses 2022; 14:v14050861. [PMID: 35632604 PMCID: PMC9143845 DOI: 10.3390/v14050861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection.
Collapse
Affiliation(s)
| | | | | | - Peng Zou
- Correspondence: ; Tel.: +86-21-3799-0333 (ext. 5273)
| |
Collapse
|
35
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
36
|
Lim TS, Choong YS. In silico design of ACE2 mutants for competitive binding of SARS-CoV-2 receptor binding domain with hACE2. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The receptor binding motif (RBM) within the S-protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been touted as one of the main targets for vaccine/therapeutic development due to its interaction with the human angiotensin II converting enzyme 2 (hACE2) to facilitate virus entry into the host cell. The mechanism of action is based on the disruption of binding between the RBM and the hACE2 to prevent virus uptake for replication. In this work, we applied in silico approaches to design specific competitive binders for SARS-CoV-2 S-protein receptor binding motif (RBM) by using hACE2 peptidase domain (PD) mutants. Online single point mutation servers were utilised to estimate the effect of PD mutation on the binding affinity with RBM. The PD mutants were then modelled and the binding free energy was calculated. Three PD variants were designed with an increased affinity and interaction with SARS-CoV-2-RBM. It is hope that these designs could serve as the initial work for vaccine/drug development and could eventually interfere the preliminary recognition between SARS-CoV-2 and the host cell.
Collapse
Affiliation(s)
- Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia , Penang , Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia , Penang , Malaysia
| |
Collapse
|
37
|
Yang Y, Wu J, Li Q, Wang J, Mu L, Hui L, Li M, Xu W, Yang H, Wei L. A non-bactericidal cathelicidin provides prophylactic efficacy against bacterial infection by driving phagocyte influx. eLife 2022; 11:72849. [PMID: 35195067 PMCID: PMC8865851 DOI: 10.7554/elife.72849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
The roles of bactericidal cathelicidins against bacterial infection have been extensively studied. However, the antibacterial property and mechanism of action of non-bactericidal cathelicidins are rarely known. Herein, a novel naturally occurring cathelicidin (PopuCATH) from tree frog (Polypedates puerensis) did not show any direct anti-bacterial activity in vitro. Intriguingly, intraperitoneal injection of PopuCATH before bacterial inoculation significantly reduced the bacterial load in tree frogs and mice, and reduced the inflammatory response induced by bacterial inoculation in mice. PopuCATH pretreatment also increased the survival rates of septic mice induced by a lethal dose of bacterial inoculation or cecal ligation and puncture (CLP). Intraperitoneal injection of PopuCATH significantly drove the leukocyte influx in both frogs and mice. In mice, PopuCATH rapidly drove neutrophil, monocyte/macrophage influx in mouse abdominal cavity and peripheral blood with a negligible impact on T and B lymphocytes, and neutrophils, monocytes/macrophages, but not T and B lymphocytes, were required for the preventive efficacy of PopuCATH. PopuCATH did not directly act as chemoattractant for phagocytes, but PopuCATH obviously drove phagocyte migration when it was cultured with macrophages. PopuCATH significantly elicited chemokine/cytokine production in macrophages through activating p38/ERK mitogen-activated protein kinases (MAPKs) and NF-κB p65. PopuCATH markedly enhanced neutrophil phagocytosis via promoting the release of neutrophil extracellular traps (NETs). Additionally, PopuCATH showed low side effects both in vitro and in vivo. Collectively, PopuCATH acts as a host-based immune defense regulator that provides prophylactic efficacy against bacterial infection without direct antimicrobial effects. Our findings reveal a non-bactericidal cathelicidin which possesses unique anti-bacterial action, and highlight the potential of PopuCATH to prevent bacterial infection.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qiao Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jing Wang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Li Hui
- The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Dorjsuren D, Eastman RT, Song MJ, Yasgar A, Chen Y, Bharti K, Zakharov AV, Jadhav A, Ferrer M, Shi PY, Simeonov A. A platform of assays for the discovery of anti-Zika small-molecules with activity in a 3D-bioprinted outer-blood-retina model. PLoS One 2022; 17:e0261821. [PMID: 35041689 PMCID: PMC8765781 DOI: 10.1371/journal.pone.0261821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/10/2021] [Indexed: 01/24/2023] Open
Abstract
The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV. As a primary high-throughput screen, we used a viral cytopathic effect (CPE) inhibition assay conducted in Vero cells that was optimized and miniaturized to a 1536-well format. Suitably active compounds identified from the primary screen were tested in a panel of orthogonal assays using recombinant Zika viruses, including a ZIKV Renilla luciferase reporter assay and a ZIKV mCherry reporter system. Compounds that were active in the wild-type ZIKV inhibition and ZIKV reporter assays were further evaluated for their inhibitory effects against other flaviviruses. Lastly, we demonstrated that wild-type ZIKV is able to infect a 3D-bioprinted outer-blood-retina barrier tissue model and disrupt its barrier function, as measured by electrical resistance. One of the identified compounds (3-Acetyl-13-deoxyphomenone, NCGC00380955) was able to prevent the pathological effects of the viral infection on this clinically relevant ZIKV infection model.
Collapse
Affiliation(s)
- Dorjbal Dorjsuren
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Richard T. Eastman
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Min Jae Song
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Adam Yasgar
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yuchi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexey V. Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajit Jadhav
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Pei-Yong Shi
- University of Texas Medical Branch Galveston, Galveston, TX, United States of America
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Endogenous cathelicidin is required for protection against ZIKV-caused testis damage via inactivating virons. Antiviral Res 2022; 198:105248. [PMID: 35038500 DOI: 10.1016/j.antiviral.2022.105248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Cathelicidins have been shown to effectively inhibit flavivirus replication in vitro. However, the effects of mouse and human endogenous cathelicidins on flavivirus infection in vivo are rarely known. We herein found that mouse endogenous cathelicidin CRAMP was significantly up-regulated upon Zika virus (ZIKV) infection. CRAMP deficiency markedly exacerbated ZIKV replication in testis, and aggravated ZIKV-induced testicular damage and ZIKV-induced spermatic damage in mice, indicating that endogenous cathelicidin is required for protection against ZIKV-caused male infertility in mice. In vitro antiviral assay showed that both mouse cathelidin CRAMP and human cathelicidin LL-37 obviously reduced ZIKV-caused cytopathic effect and inhibited ZIKV replication in Vero cells. Antiviral mechanism revealed that they both directly inactivated ZIKV virons by binding to ZIKV virons and inducing the leakage of ZIKV genomic RNA, consequently inactivated ZIKV virons. In vivo antiviral assay indicated that both of them effectively inhibited ZIKV replication in C57BL/6J and IFNα/β receptor-deficient (Ifnar1-/-) mice when CRAMP or LL-37 was intravenously injected in parallel with or at 1 h after intravenous injection of ZIKV, implying that mouse cathelidin CRAMP and human cathelicidin LL-37 effectively inactivated ZIKV particles and exhibited therapeutic potential against ZIKV infection in vivo. Our findings reveal that endogenous cahtelicidin CRAMP and LL-37 act as inactivators of ZIKV, and effectively protect against ZIKV replication and ZIKV-induced male infertility, highlighting their potential for therapy of ZIKV infection.
Collapse
|
40
|
Lin CS, Huang SH, Yan BY, Lai HC, Lin CW. Effective Antiviral Activity of the Tyrosine Kinase Inhibitor Sunitinib Malate against Zika Virus. Infect Chemother 2021; 53:730-740. [PMID: 34951532 PMCID: PMC8731257 DOI: 10.3947/ic.2021.0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Zika virus (ZIKV), a mosquito-borne flavivirus, causes the outbreaks of Latin America in 2015 - 2016, with the incidence of neurological complications. Sunitinib malate, an orally bioavailable malate salt of the tyrosine kinase inhibitor, is suggested as a broad-spectrum antiviral agent against emerging viruses like severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Materials and Methods This study investigated the antiviral efficacy and antiviral mechanisms of sunitinib malate against ZIKV infection using cytopathic effect reduction, virus yield, and time-of-addition assays. Results Sunitinib malate concentration-dependently reduced ZIKV-induced cytopathic effect, the expression of viral proteins, and ZIKV yield in supernatant with 50% inhibitory concentration (IC50) value of 0.015 μM, and the selectivity index of greater than 100 against ZIKV infection, respectively. Sunitinib malate had multiple antiviral actions during entry and post-entry stages of ZIKV replication. Sunitinib malate treatment at entry stage significantly reduced the levels of ZIKV RNA replication with the reduction of (+) RNA to (-) RNA ratio and the production of new intracellular infectious particles in infected cells. The treatment at post-entry stage caused a concentration-dependent increase in the levels of ZIKV (+) RNA and (-) RNA in infected cells, along with enlarging the ratio of (+) RNA to (-) RNA, but caused a pointed increase in the titer of intracellular infectious particles by 0.01 and 0.1 μM, and a substantial decrease in the titer of intracellular infectious particles by 1 μM. Conclusion The study discovered the antiviral actions of sunitinib malate against ZIKV infection, demonstrating a repurposed, host-targeted approach to identify potential antiviral drugs for treating emerging and global viral diseases.
Collapse
Affiliation(s)
- Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Su-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Bo-Yu Yan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Xiong W, Li J, Feng Y, Chai J, Wu J, Hu Y, Tian M, Lu W, Xu X, Zou M. Brevinin-2GHk, a Peptide Derived from the Skin of Fejervarya limnocharis, Inhibits Zika Virus Infection by Disrupting Viral Integrity. Viruses 2021; 13:v13122382. [PMID: 34960651 PMCID: PMC8708736 DOI: 10.3390/v13122382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Several years have passed since the Zika virus (ZIKV) pandemic reoccurred in 2015–2016. However, there is still a lack of proved protective vaccines or effective drugs against ZIKV. The peptide brevinin-2GHk (BR2GK), pertaining to the brevinin-2 family of antimicrobial peptides, has been reported to exhibit only weak antibacterial activity, and its antiviral effects have not been investigated. Thus, we analyzed the effect of BR2GK on ZIKV infection. BR2GK showed significant inhibitory activity in the early and middle stages of ZIKV infection, with negligible cytotoxicity. Furthermore, BR2GK was suggested to bind with ZIKV E protein and disrupt the integrity of the envelope, thus directly inactivating ZIKV. In addition, BR2GK can also penetrate the cell membrane, which may contribute to inhibition of the middle stage of ZIKV infection. BR2GK blocked ZIKV E protein expression with an IC50 of 3.408 ± 0.738 μΜ. In summary, BR2GK was found to be a multi-functional candidate and a potential lead compound for further development of anti-ZIKV drugs.
Collapse
Affiliation(s)
- Weichen Xiong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingyan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yifei Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunrui Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (X.X.); (M.Z.)
| | - Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.X.); (J.L.); (Y.F.); (J.C.); (J.W.); (Y.H.); (M.T.); (W.L.)
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (X.X.); (M.Z.)
| |
Collapse
|
42
|
Ren M, Wang Y, Luo Y, Yao X, Yang Z, Zhang P, Zhao W, Jiang D. Functionalized Nanoparticles in Prevention and Targeted Therapy of Viral Diseases With Neurotropism Properties, Special Insight on COVID-19. Front Microbiol 2021; 12:767104. [PMID: 34867899 PMCID: PMC8634613 DOI: 10.3389/fmicb.2021.767104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Neurotropic viruses have neural-invasive and neurovirulent properties to damage the central nervous system (CNS), leading to humans' fatal symptoms. Neurotropic viruses comprise a lot of viruses, such as Zika virus (ZIKV), herpes simplex virus (HSV), rabies virus (RABV), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Effective therapy is needed to prevent infection by these viruses in vivo and in vitro. However, the blood-brain barrier (BBB) usually prevents macromolecules from entering the CNS, which challenges the usage of the traditional probes, antiviral drugs, or neutralizing antibodies in the CNS. Functionalized nanoparticles (NPs) have been increasingly reported in the targeted therapy of neurotropic viruses due to their sensitivity and targeting characteristics. Therefore, the present review outlines efficient functionalized NPs to further understand the recent trends, challenges, and prospects of these materials.
Collapse
Affiliation(s)
| | - Yin Wang
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Fang Y, Liu Z, Qiu Y, Kong J, Fu Y, Liu Y, Wang C, Quan J, Wang Q, Xu W, Yin L, Cui J, Xu Y, Curry S, Jiang S, Lu L, Zhou X. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity 2021; 54:2231-2244.e6. [PMID: 34555337 DOI: 10.1016/j.immuni.2021.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) is the major antiviral mechanism in plants and invertebrates, but the absence of detectable viral (v)siRNAs in mammalian cells upon viral infection has questioned the functional relevance of this pathway in mammalian immunity. We designed a series of peptides specifically targeting enterovirus A71 (EV-A71)-encoded protein 3A, a viral suppressor of RNAi (VSR). These peptides abrogated the VSR function of EV-A71 in infected cells and resulted in the accumulation of vsiRNAs and reduced viral replication. These vsiRNAs were functional, as evidenced by RISC-loading and silencing of target RNAs. The effects of VSR-targeting peptides (VTPs) on infection with EV-A71 as well as another enterovirus, Coxsackievirus-A16, were ablated upon deletion of Dicer1 or AGO2, core components of the RNAi pathway. In vivo, VTP treatment protected mice against lethal EV-A71 challenge, with detectable vsiRNAs. Our findings provide evidence for the functional relevance of RNAi in mammalian immunity and present a therapeutic strategy for infectious disease.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Jing Kong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Yuhong Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Chong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jia Quan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS, Shanghai 200031, China
| | - Yi Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Stephen Curry
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China.
| |
Collapse
|
44
|
In Silico Structure-Based Design of Antiviral Peptides Targeting the Severe Fever with Thrombocytopenia Syndrome Virus Glycoprotein Gn. Viruses 2021; 13:v13102047. [PMID: 34696477 PMCID: PMC8539749 DOI: 10.3390/v13102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus in Asia that causes severe disease. Despite its clinical importance, treatment options for SFTSV infection remains limited. The SFTSV glycoprotein Gn plays a major role in mediating virus entry into host cells and is therefore a potential antiviral target. In this study, we employed an in silico structure-based strategy to design novel cyclic antiviral peptides that target the SFTSV glycoprotein Gn. Among the cyclic peptides, HKU-P1 potently neutralizes the SFTSV virion. Combinatorial treatment with HKU-P1 and the broad-spectrum viral RNA-dependent RNA polymerase inhibitor favipiravir exhibited synergistic antiviral effects in vitro. The in silico peptide design platform in this study may facilitate the generation of novel antiviral peptides for other emerging viruses.
Collapse
|
45
|
Gao C, Yu Y, Wen C, Li Z, Sun M, Gao S, Lin S, Wang S, Zou P, Xing Z. Peptides derived from viral glycoprotein Gc Inhibit infection of severe fever with thrombocytopenia syndrome virus. Antiviral Res 2021; 194:105164. [PMID: 34411654 DOI: 10.1016/j.antiviral.2021.105164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an acute infectious disease caused by a novel phlebovirus (SFTSV), characterized by fever, thrombocytopenia and leukocytopenia which lead to multiple organ failure with high mortality in severe cases. The SFTSV has spread rapidly in recent years and posed a serious threat to public health in endemic areas. However, specific antiviral therapeutics for SFTSV infection are rare. In this study, we demonstrated that two peptides, SGc1 and SGc8, derived from a hydrophobic region of the SFTSV glycoprotein Gc, could potently inhibit SFTSV replication in a dose-dependent manner without apparent cytotoxicity in various cell lines and with low immunogenicity and good stability. The IC50 (50% inhibition concentration) values for both peptides to inhibit 2 MOI of SFTSV infection were below 10 μM in L02, Vero and BHK21 cells. Mechanistically, SGc1 and SGc8 mainly inhibited viral entry at the early stage of the viral infection. Inhibition of SFTSV replication was specific by both peptides because no inhibitory effect was shown against other viruses including Zika virus and Enterovirus A71. Taken together, our results suggested that viral glycoprotein-derived SGc1 and SGc8 peptides have antiviral potential and warrant further assessment as an SFTSV-specific therapeutic.
Collapse
Affiliation(s)
- Chengfeng Gao
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Yufeng Yu
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China.
| | - Chunxia Wen
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Zhifeng Li
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Menghuai Sun
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Shu Gao
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Shuhan Lin
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China
| | - Shenjiao Wang
- Department of Acute Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zheng Xing
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, 210093, China; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
46
|
Hollmann A, Cardoso NP, Espeche JC, Maffía PC. Review of antiviral peptides for use against zoonotic and selected non-zoonotic viruses. Peptides 2021; 142:170570. [PMID: 34000327 PMCID: PMC8120785 DOI: 10.1016/j.peptides.2021.170570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Viruses remain one of the leading causes of animal and human disease. Some animal viral infections spread sporadically to human populations, posing a serious health risk. Particularly the emerging viral zoonotic diseases such as the novel, zoonotic coronavirus represent an actual challenge for the scientific and medical community. Besides human health risks, some animal viral infections, although still not zoonotic, represent important economic loses to the livestock industry. Viral infections pose a genuine concern for which there has been an increasing interest for new antiviral molecules. Among these novel compounds, antiviral peptides have been proposed as promising therapeutic options, not only for the growing body of evidence showing hopeful results but also due to the many adverse effects of chemical-based drugs. Here we review the current progress, key targets and considerations for the development of antiviral peptides (AVPs). The review summarizes the state of the art of the AVPs tested in zoonotic (coronaviruses, Rift Valley fever viruses, Eastern Equine Encephalitis Virus, Dengue and Junín virus) and also non-zoonotic farm animal viruses (avian and cattle viruses). Their molecular target, amino acid sequence and mechanism of action are summarized and reviewed. Antiviral peptides are currently on the cutting edge since they have been reported to display anti-coronavirus activity. Particularly, the review will discuss the specific mode of action of AVPs that specifically inhibit the fusion of viral and host-cell membranes for SARS-CoV-2, showing in detail some important features of the fusion inhibiting peptides that target the spike protein of these risky viruses.
Collapse
Affiliation(s)
- Axel Hollmann
- Laboratorio de Compuestos Bioactivos, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206, Santiago del Estero, Argentina; Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Nancy P Cardoso
- Instituto de Virología e Innovaciones Tecnológicas, IVIT - Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Juan C Espeche
- Laboratorio de Compuestos Bioactivos, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - Paulo C Maffía
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Av. Vergara 2222, Villa Tesei, Hurlingham, B1688GEZ, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Abstract
Currently, there are no approved drugs for the treatment of flavivirus infection. Accordingly, we tested the inhibitory effects of the novel θ-defensin retrocyclin-101 (RC-101) against flavivirus infection and investigated the mechanism underlying the potential inhibitory effects. First, RC-101 robustly inhibited both Japanese encephalitis virus (JEV) and Zika virus (ZIKV) infections. RC-101 exerted inhibitory effects on the entry and replication stages. Results also indicated that the nonstructural protein NS2B-NS3 serine protease might serve as a potential viral target. Furthermore, RC-101 inhibited protease activity at the micromolar level. We also demonstrated that with respect to the glycoprotein E protein of flavivirus, the DE loop of domain III (DIII), which is the receptor-binding domain of the E protein, might serve as another viral target of RC-101. Moreover, a JEV DE mutant exhibited resistance to RC-101, which was associated with deceased binding affinity of RC-101 to DIII. These findings provide a basis for the development of RC-101 as a potential candidate for the treatment of flavivirus infection. IMPORTANCE Retrocyclin is an artificially humanized circular θ-defensin peptide, containing 18 residues, previously reported to possess broad antimicrobial activity. In this study, we found that retrocyclin-101 inhibited flavivirus (ZIKV and JEV) infections. Retrocyclin-101 inhibited NS2B-NS3 serine protease activity, suggesting that the catalytic triad of the protease is the target. Moreover, retrocyclin-101 bound to the DE loop of the E protein of flavivirus, which prevented its entry.
Collapse
|
48
|
Chen Y, Li Z, Pan P, Lao Z, Xu J, Li Z, Zhan S, Liu X, Wu Y, Wang W, Li G. Cinnamic acid inhibits Zika virus by inhibiting RdRp activity. Antiviral Res 2021; 192:105117. [PMID: 34174248 DOI: 10.1016/j.antiviral.2021.105117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/18/2022]
Abstract
In recent years, Zika virus (ZIKV), which causes severe diseases such as congenital microcephaly and Guillain-Barré syndrome, bringing serious harm to humans, has spread throughout the world. However, there are currently no effective drugs against the virus, and the need to develop anti-ZIKV drugs is thus urgent. In this study, we evaluated the antiviral efficacy of cinnamic acid against ZIKV by using reverse transcription-quantitative real-time PCR (qRT-PCR), plaque--forming, immunofluorescence and Western blotting. Additionally, Cinnamic acid possessed anti-ZIKV properties against the post-entry stage of the ZIKV replication cycle, and inhibited RdRp activity. In vivo, we found that cinnamic acid reduced the mortality of mice, viral load in the blood and ZIKV protein levels in the brain. Based on our experiments, cinnamic acid was found to be a potential effective anti-ZIKV drug.
Collapse
Affiliation(s)
- Yuting Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhaoxin Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Pan Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zizhao Lao
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiangtao Xu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zonghui Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shaofeng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yina Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
49
|
Wang Q, Su S, Xue J, Yu F, Pu J, Bi W, Xia S, Meng Y, Wang C, Yang W, Xu W, Zhu Y, Zheng Q, Qin C, Jiang S, Lu L. An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Sci Transl Med 2021; 12:12/546/eaaz2254. [PMID: 32493792 DOI: 10.1126/scitranslmed.aaz2254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/26/2022]
Abstract
HIV-associated morbidity and mortality have markedly declined because of combinational antiretroviral therapy, but HIV readily mutates to develop drug resistance. Developing antivirals against previously undefined targets is essential to treat existing drug-resistant HIV strains. Some peptides derived from HIV-1 envelope glycoprotein (Env, gp120-gp41) have been shown to be effective in inhibiting HIV-1 infection. Therefore, we screened a peptide library from HIV-1 Env and identified a peptide from the cytoplasmic region, designated F9170, able to effectively inactivate HIV-1 virions and induce necrosis of HIV-1-infected cells, and reactivated latently infected cells. F9170 specifically targeted the conserved cytoplasmic tail of HIV-1 Env and effectively disrupted the integrity of the viral membrane. Short-term monoadministration of F9170 controlled viral loads to below the limit of detection in chronically SHIV-infected macaques. F9170 can enter the brain and lymph nodes, anatomic reservoirs for HIV latency. Therefore, F9170 shows promise as a drug candidate for HIV treatment.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding 071001, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenwen Bi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wenqian Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Yun Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinwen Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China. .,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| |
Collapse
|
50
|
Tonk M, Růžek D, Vilcinskas A. Compelling Evidence for the Activity of Antiviral Peptides against SARS-CoV-2. Viruses 2021; 13:v13050912. [PMID: 34069206 PMCID: PMC8156787 DOI: 10.3390/v13050912] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple outbreaks of epidemic and pandemic viral diseases have occurred in the last 20 years, including those caused by Ebola virus, Zika virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The emergence or re-emergence of such diseases has revealed the deficiency in our pipeline for the discovery and development of antiviral drugs. One promising solution is the extensive library of antimicrobial peptides (AMPs) produced by all eukaryotic organisms. AMPs are widely known for their activity against bacteria, but many possess additional antifungal, antiparasitic, insecticidal, anticancer, or antiviral activities. AMPs could therefore be suitable as leads for the development of new peptide-based antiviral drugs. Sixty therapeutic peptides had been approved by the end of 2018, with at least another 150 in preclinical or clinical development. Peptides undergoing clinical trials include analogs, mimetics, and natural AMPs. The advantages of AMPs include novel mechanisms of action that hinder the evolution of resistance, low molecular weight, low toxicity toward human cells but high specificity and efficacy, the latter enhanced by the optimization of AMP sequences. In this opinion article, we summarize the evidence supporting the efficacy of antiviral AMPs and discuss their potential to treat emerging viral diseases including COVID-19.
Collapse
Affiliation(s)
- Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic;
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|