1
|
Roy AJ, Bergermann A, Bethkenhagen M, Redmer R. Mixture of hydrogen and methane under planetary interior conditions. Phys Chem Chem Phys 2024; 26:14374-14383. [PMID: 38712595 DOI: 10.1039/d4cp00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We employ first-principles molecular dynamics simulations to provide equation-of-state data, pair distribution functions (PDFs), diffusion coefficients, and band gaps of a mixture of hydrogen and methane under planetary interior conditions as relevant for Uranus, Neptune, and similar icy exoplanets. We test the linear mixing approximation, which is fulfilled within a few percent for the chosen P-T conditions. Evaluation of the PDFs reveals that methane molecules dissociate into carbon clusters and free hydrogen atoms at temperatures greater than 3000 K. At high temperatures, the clusters are found to be short-lived. Furthermore, we calculate the electrical conductivity from which we derive the non-metal-to-metal transition region of the mixture. We also calculate the electrical conductivity along the P-T profile of Uranus [N. Nettelmann et al., Planet. Space Sci., 2013, 77, 143-151] and observe the transition of the mixture from a molecular to an atomic fluid as a function of the radius of the planet. The density and temperature ranges chosen in our study can be achieved using dynamic shock compression experiments and seek to aid such future experiments. Our work also provides a relevant data set for a better understanding of the interior, evolution, luminosity, and magnetic field of the ice giants in our solar system and beyond.
Collapse
Affiliation(s)
- Argha Jyoti Roy
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - Armin Bergermann
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - Mandy Bethkenhagen
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique - Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| |
Collapse
|
2
|
Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nat Commun 2023; 14:1104. [PMID: 36843123 PMCID: PMC9968715 DOI: 10.1038/s41467-023-36841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/15/2023] [Indexed: 02/28/2023] Open
Abstract
Hydrocarbon mixtures are extremely abundant in the Universe, and diamond formation from them can play a crucial role in shaping the interior structure and evolution of planets. With first-principles accuracy, we first estimate the melting line of diamond, and then reveal the nature of chemical bonding in hydrocarbons at extreme conditions. We finally establish the pressure-temperature phase boundary where it is thermodynamically possible for diamond to form from hydrocarbon mixtures with different atomic fractions of carbon. Notably, here we show a depletion zone at pressures above 200 GPa and temperatures below 3000 K-3500 K where diamond formation is thermodynamically favorable regardless of the carbon atomic fraction, due to a phase separation mechanism. The cooler condition of the interior of Neptune compared to Uranus means that the former is much more likely to contain the depletion zone. Our findings can help explain the dichotomy of the two ice giants manifested by the low luminosity of Uranus, and lead to a better understanding of (exo-)planetary formation and evolution.
Collapse
|
3
|
Dufour-Décieux V, Moakler C, Reed EJ, Cameron M. Predicting molecule size distribution in hydrocarbon pyrolysis using random graph theory. J Chem Phys 2023; 158:024101. [PMID: 36641405 DOI: 10.1063/5.0133641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hydrocarbon pyrolysis is a complex process involving large numbers of chemical species and types of chemical reactions. Its quantitative description is important for planetary sciences, in particular, for understanding the processes occurring in the interior of icy planets, such as Uranus and Neptune, where small hydrocarbons are subjected to high temperature and pressure. We propose a computationally cheap methodology based on an originally developed ten-reaction model and the configurational model from random graph theory. This methodology generates accurate predictions for molecule size distributions for a variety of initial chemical compositions and temperatures ranging from 3200 to 5000 K. Specifically, we show that the size distribution of small molecules is particularly well predicted, and the size of the largest molecule can be accurately predicted provided that this molecule is not too large.
Collapse
Affiliation(s)
- Vincent Dufour-Décieux
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Christopher Moakler
- Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA
| | - Evan J Reed
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Maria Cameron
- Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
4
|
Dufour-Décieux V, Ransom B, Sendek AD, Freitas R, Blanchet J, Reed EJ. Temperature Extrapolation of Molecular Dynamics Simulations of Complex Chemistry to Microsecond Timescales Using Kinetic Models: Applications to Hydrocarbon Pyrolysis. J Chem Theory Comput 2022; 18:7496-7509. [PMID: 36399110 DOI: 10.1021/acs.jctc.2c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We develop a method to construct temperature-dependent kinetic models of hydrocarbon pyrolysis, based on information from molecular dynamics (MD) simulations of pyrolyzing systems in the high-temperature regime. MD simulations are currently a key tool to understand the mechanism of complex chemical processes such as pyrolysis and to observe their outcomes in different conditions, but these simulations are computationally expensive and typically limited to nanoseconds of simulation time. This limitation is inconsequential at high temperatures, where equilibrium is reached quickly, but at low temperatures, the system may not equilibrate within a tractable simulation timescale. In this work, we develop a method to construct kinetic models of hydrocarbon pyrolysis using the information from the high-temperature high-reactivity regime. We then extrapolate this model to low temperatures, which enables microsecond-long simulations to be performed. We show that this approach accurately predicts the time evolution of small molecules, as well as the size and composition of long carbon chains across a wide range of temperatures and compositions. Further, we show that the range of suitable temperatures for extrapolation can easily be improved by adding more simulations to the training data. Compared to experimental results, our kinetic model leads to similar compositional trends while allowing for more detailed kinetic and mechanistic insights.
Collapse
Affiliation(s)
- Vincent Dufour-Décieux
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
| | - Brandi Ransom
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
| | - Austin D Sendek
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States.,Aionics, Inc., Palo Alto, California94301, United States
| | - Rodrigo Freitas
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Jose Blanchet
- Department of Management Science and Engineering, Stanford University, Stanford, California94305, United States
| | - Evan J Reed
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
5
|
Zhang L, Zhang L, Tang M, Wang X, Tao R, Xu C, Bader T. Massive abiotic methane production in eclogite during cold subduction. Natl Sci Rev 2022; 10:nwac207. [PMID: 36654916 PMCID: PMC9840456 DOI: 10.1093/nsr/nwac207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Methane (CH4) is a critical but overlooked component in the study of the deep carbon cycle. Abiotic CH4 produced by serpentinization of ultramafic rocks has received extensive attention, but its formation and flux in mafic rocks during subduction remain poorly understood. Here, we report massive CH4-rich fluid inclusions in well-zoned garnet from eclogites in Western Tianshan, China. Petrological characteristics and carbon-hydrogen isotopic compositions confirm the abiotic origin of this CH4. Reconstructed P-T-fO2-fluid trajectories and Deep Earth Water modeling imply that massive abiotic CH4 was generated during cold subduction at depths of 50-120 km, whereas CO2 was produced during exhumation. The massive production of abiotic CH4 in eclogites may result from multiple mechanisms during prograde high pressure-ultrahigh pressure metamorphism. Our flux calculation proposes that abiotic CH4 that has been formed in HP-UHP eclogites in cold subduction zones may represent one of the largest, yet overlooked, sources of abiotic CH4 on Earth.
Collapse
Affiliation(s)
- Lijuan Zhang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | | | - Ming Tang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xiao Wang
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Renbiao Tao
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Cheng Xu
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Thomas Bader
- Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Ranieri U, Conway LJ, Donnelly ME, Hu H, Wang M, Dalladay-Simpson P, Peña-Alvarez M, Gregoryanz E, Hermann A, Howie RT. Formation and Stability of Dense Methane-Hydrogen Compounds. PHYSICAL REVIEW LETTERS 2022; 128:215702. [PMID: 35687440 DOI: 10.1103/physrevlett.128.215702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Through a series of x-ray diffraction, optical spectroscopy diamond anvil cell experiments, combined with density functional theory calculations, we explore the dense CH_{4}-H_{2} system. We find that pressures as low as 4.8 GPa can stabilize CH_{4}(H_{2})_{2} and (CH_{4})_{2}H_{2}, with the latter exhibiting extreme hardening of the intramolecular vibrational mode of H_{2} units within the structure. On further compression, a unique structural composition, (CH_{4})_{3}(H_{2})_{25}, emerges. This novel structure holds a vast amount of molecular hydrogen and represents the first compound to surpass 50 wt % H_{2}. These compounds, stabilized by nuclear quantum effects, persist over a broad pressure regime, exceeding 160 GPa.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lewis J Conway
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Mary-Ellen Donnelly
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Huixin Hu
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Mengnan Wang
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Philip Dalladay-Simpson
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Miriam Peña-Alvarez
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Eugene Gregoryanz
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
- Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei, China
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Ross T Howie
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Basu A, Mookherjee M, McMahan E, Haberl B, Boehler R. Behavior of Long-Chain Hydrocarbons at High Pressures and Temperatures. J Phys Chem B 2022; 126:2530-2537. [PMID: 35332775 DOI: 10.1021/acs.jpcb.1c10786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although long-chain aliphatic hydrocarbons are documented in meteorites, their origin is poorly understood. A key question is whether they are pristine or a byproduct of terrestrial alteration? To understand if these long-chain hydrocarbons are indigenous, it will be important to explore their thermodynamic and mechanical stability at conditions experienced by extraterrestrial objects during atmospheric entry and passage. Extreme pressures and temperatures experienced by meteorites are likely to alter the molecular organization of these long-chain hydrocarbons. These structural changes associated with extreme conditions are often documented via laboratory-based Raman spectroscopic measurements. So far, Raman spectroscopic measurements have investigated the effect of static compression on the aliphatic hydrocarbons. The effect of temperature on the structural changes remains poorly explored. To bridge this gap, in this study, we have explored the behavior of two aliphatic hydrocarbons at simultaneously high pressures and temperatures. We have used a resistively heated diamond anvil cell. On compression to moderate pressures, the appearance of new vibrational modes in the low-energy region confirms prior studies and is related to the bending of the linear chains. Upon heating to ∼220 °C, we note that the new low-energy mode undergoes softening. The mode softening is likely due to the combination of unbending of the alkane chain and mode anharmonicity.
Collapse
Affiliation(s)
- Abhisek Basu
- Earth Materials Laboratory, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Mainak Mookherjee
- Earth Materials Laboratory, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Ericka McMahan
- Earth Materials Laboratory, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Bianca Haberl
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Reinhard Boehler
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Li F, Xu J, Wang Y, Zheng H, Li K. Pressure-Induced Polymerization: Addition and Condensation Reactions. Molecules 2021; 26:7581. [PMID: 34946665 PMCID: PMC8704508 DOI: 10.3390/molecules26247581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Under pressure of 1-100 GPa, unsaturated organic molecules tend to form covalent bond to each other for a negative enthalpy change, which often produces polymeric materials with extended carbon skeleton. The polymerization reactions typically happen in crystal, which promotes the topochemical process. This review summarized the topochemical polymerization processes of several alkynes, aromatics, and alkynylphenyl compounds, including the critical crystal structures before the reaction, bonding process, and the structure of the products. Secondly, this review also summarized the condensation reaction identified in the polymerization process, including the elimination of small molecules such as NH3, etc.
Collapse
Affiliation(s)
| | | | - Yajie Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (F.L.); (J.X.)
| | - Haiyan Zheng
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (F.L.); (J.X.)
| | - Kuo Li
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (F.L.); (J.X.)
| |
Collapse
|
9
|
Stavrou E, Maryewski AA, Lobanov SS, Oganov AR, Konôpková Z, Prakapenka VB, Goncharov AF. Ethane and methane at high pressures: Structure and stability. J Chem Phys 2021; 155:184503. [PMID: 34773959 DOI: 10.1063/5.0067828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have performed a combined experimental and theoretical study of ethane and methane at high pressures of up to 120 GPa at 300 K using x-ray diffraction and Raman spectroscopies and the USPEX ab initio evolutionary structural search algorithm, respectively. For ethane, we have determined the crystallization point, for room temperature, at 2.7 GPa and also the low pressure crystal structure (phase A). This crystal structure is orientationally disordered (plastic phase) and deviates from the known crystal structures for ethane at low temperatures. Moreover, a pressure induced phase transition has been identified, for the first time, at 13.6 GPa to a monoclinic phase B, the structure of which is solved based on good agreement with the experimental results and theoretical predictions. For methane, our x-ray diffraction measurements are in agreement with the previously reported high-pressure structures and equation of state (EOS). We have determined the EOSs of ethane and methane, which provides a solid basis for the discussion of their relative stability at high pressures.
Collapse
Affiliation(s)
- Elissaios Stavrou
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Alexander A Maryewski
- Skolkovo Institute of Science and Technology, 3 Nobel St., Moscow 143026, Russian Federation
| | - Sergey S Lobanov
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, 3 Nobel St., Moscow 143026, Russian Federation
| | | | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander F Goncharov
- Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| |
Collapse
|
10
|
Lütgert J, Vorberger J, Hartley NJ, Voigt K, Rödel M, Schuster AK, Benuzzi-Mounaix A, Brown S, Cowan TE, Cunningham E, Döppner T, Falcone RW, Fletcher LB, Galtier E, Glenzer SH, Laso Garcia A, Gericke DO, Heimann PA, Lee HJ, McBride EE, Pelka A, Prencipe I, Saunders AM, Schölmerich M, Schörner M, Sun P, Vinci T, Ravasio A, Kraus D. Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures. Sci Rep 2021; 11:12883. [PMID: 34145307 PMCID: PMC8213800 DOI: 10.1038/s41598-021-91769-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
We present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$\end{document}(C10H8O4)n, also called mylar) shock-compressed to (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$155 \pm 20$$\end{document}155±20) GPa and (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$6000 \pm 1000$$\end{document}6000±1000) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.
Collapse
Affiliation(s)
- J Lütgert
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany. .,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany.
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - N J Hartley
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - K Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - M Rödel
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - A K Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - S Brown
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - T E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute of Nuclear and Particle Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - E Cunningham
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - T Döppner
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - R W Falcone
- Department of Physics, University of California, Berkeley, CA, 94720, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - A Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - D O Gericke
- CFSA, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - P A Heimann
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - A Pelka
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - I Prencipe
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - A M Saunders
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - M Schölmerich
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - M Schörner
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,Institut für Physik, Albert-Einstein-Str. 23, Universität Rostock, 18059, Rostock, Germany
| | - P Sun
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - T Vinci
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - A Ravasio
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - D Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institut für Physik, Albert-Einstein-Str. 23, Universität Rostock, 18059, Rostock, Germany
| |
Collapse
|
11
|
Stolte N, Yu J, Chen Z, Sverjensky DA, Pan D. Water-Gas Shift Reaction Produces Formate at Extreme Pressures and Temperatures in Deep Earth Fluids. J Phys Chem Lett 2021; 12:4292-4298. [PMID: 33928781 DOI: 10.1021/acs.jpclett.1c00563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The water-gas shift reaction is one of the most important reactions in industrial hydrogen production and plays a key role in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle but is little known at extreme pressure-temperature conditions found in the Earth's upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid from CO and supercritical water at 10-13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000-1400 K. Our study suggests that the water-gas shift reaction may not happen in the Earth's upper mantle, and formic acid or formate may be an important carbon carrier in reducing environments, participating in many geochemical processes in deep Earth.
Collapse
Affiliation(s)
- Nore Stolte
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junting Yu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zixin Chen
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dimitri A Sverjensky
- Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, No. 2 Huan Shi Da Dao Road, Nansha District, Guangzhou City, 511458, China
| |
Collapse
|
12
|
Kadobayashi H, Ohnishi S, Ohfuji H, Yamamoto Y, Muraoka M, Yoshida S, Hirao N, Kawaguchi-Imada S, Hirai H. Diamond formation from methane hydrate under the internal conditions of giant icy planets. Sci Rep 2021; 11:8165. [PMID: 33854182 PMCID: PMC8047023 DOI: 10.1038/s41598-021-87638-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/01/2021] [Indexed: 12/05/2022] Open
Abstract
Hydrocarbon chemistry in the C–O–H system at high pressure and high temperature is important for modelling the internal structure and evolution of giant icy planets, such as Uranus and Neptune, as their interiors are thought to be mainly composed of water and methane. In particular, the formation of diamond from the simplest hydrocarbon, i.e., methane, under the internal conditions of these planets has been discussed for nearly 40 years. Here, we demonstrate the formation of diamond from methane hydrate up to 3800 K and 45 GPa using a CO2 laser-heated diamond anvil cell combined with synchrotron X-ray diffraction, Raman spectroscopy, and scanning electron microscopy observations. The results show that the process of dissociation and polymerisation of methane molecules to produce heavier hydrocarbons while releasing hydrogen to ultimately form diamond proceeds at milder temperatures (~ 1600 K) and pressures (13–45 GPa) in the C–O–H system than in the C–H system due to the influence of water. Our findings suggest that diamond formation can also occur in the upper parts of the icy mantles of giant icy planets.
Collapse
Affiliation(s)
| | - Satoka Ohnishi
- Research and Technology Center, YAZAKI Corporation, Susono, Shizuoka, 410-1194, Japan
| | - Hiroaki Ohfuji
- Geodynamics Research Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Yoshitaka Yamamoto
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8569, Japan
| | - Michihiro Muraoka
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8569, Japan
| | - Suguru Yoshida
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8569, Japan
| | - Naohisa Hirao
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan
| | | | - Hisako Hirai
- Faculty of Geo-Environmental Science, Rissho University, Kumagaya, Saitama, 360-0194, Japan
| |
Collapse
|
13
|
Liu H, Zhou H, Kang W, Zhang P, Duan H, Zhang W, He XT. Dynamics of bond breaking and formation in polyethylene near shock front. Phys Rev E 2020; 102:023207. [PMID: 32942414 DOI: 10.1103/physreve.102.023207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
In a systematic study of shock wave propagating in crystalline polyethylenes using molecular dynamics method and the electron force field (eFF) potential, we show that microscopic structure of shock front is significantly affected by the anisotropy of long carbon chain and the bond breaking and recombination dynamics. However, macroscopic properties measured in Hugoniot experiments, such as compression ratio and shock velocity, are not sensitive to carbon chain anisotropy and bond dynamics. Our work also display that hydrogen molecules are formed when the piston speed is in the region between 10 km/s and 30 km/s. However, carbon-hydrogen pair distribution function does not display an indication of carbon-hydrogen phase segregation.
Collapse
Affiliation(s)
- Hao Liu
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
- HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
| | - Hao Zhou
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Wei Kang
- HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
| | - Ping Zhang
- HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Huiling Duan
- HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Weiyan Zhang
- HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
- China Academy of Engineering Physics, Mianyang 621900, China
| | - X T He
- HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
14
|
Frydrych S, Vorberger J, Hartley NJ, Schuster AK, Ramakrishna K, Saunders AM, van Driel T, Falcone RW, Fletcher LB, Galtier E, Gamboa EJ, Glenzer SH, Granados E, MacDonald MJ, MacKinnon AJ, McBride EE, Nam I, Neumayer P, Pak A, Voigt K, Roth M, Sun P, Gericke DO, Döppner T, Kraus D. Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter. Nat Commun 2020; 11:2620. [PMID: 32457297 PMCID: PMC7251136 DOI: 10.1038/s41467-020-16426-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/29/2020] [Indexed: 11/12/2022] Open
Abstract
The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures up to thousands of kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interiors. Here, we demonstrate the feasibility of X-ray Thomson scattering to quantify the degree of species separation in a 1:1 carbon-hydrogen mixture at a pressure of ~150 GPa and a temperature of ~5000 K. Our measurements provide absolute values of the structure factor that encodes the microscopic arrangement of the particles. From these data, we find a lower limit of [Formula: see text]% of the carbon atoms forming isolated carbon clusters. In principle, this procedure can be employed for investigating the miscibility behaviour of any binary mixture at the high-pressure environment of planetary interiors, in particular, for non-crystalline samples where it is difficult to obtain conclusive results from X-ray diffraction. Moreover, this method will enable unprecedented measurements of mixing/demixing kinetics in dense plasma environments, e.g., induced by chemistry or hydrodynamic instabilities.
Collapse
Affiliation(s)
- S Frydrych
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, Darmstadt, 64289, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - N J Hartley
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - A K Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany
| | - K Ramakrishna
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany
| | - A M Saunders
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - T van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R W Falcone
- Department of Physics, University of California, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E J Gamboa
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M J MacDonald
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- University of Michigan, Ann Arbor, MI, 48109, USA
| | - A J MacKinnon
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- European XFEL GmbH, Holzkoppel 4, Schenefeld, 22869, Germany
| | - I Nam
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - P Neumayer
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt, 64291, Germany
| | - A Pak
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - K Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany
| | - M Roth
- Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, Darmstadt, 64289, Germany
| | - P Sun
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - T Döppner
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - D Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany.
| |
Collapse
|
15
|
Formation of complex hydrocarbon systems from methane at the upper mantle thermobaric conditions. Sci Rep 2020; 10:4559. [PMID: 32165707 PMCID: PMC7067895 DOI: 10.1038/s41598-020-61644-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
The existence of methane in the Earth’s mantle does not cause any doubt, however, its possible chemical transformation under the mantle thermobaric conditions is not enough known. Investigation of methane at the upper mantle thermobaric conditions, using diamond anvil cells, demonstrated the possible formation of ethane, propane and n-butane from methane, however, theoretical calculations of methane behaviour at extreme temperature and pressure predicted also heavier hydrocarbons. We experimentally investigated the chemical transformations of methane at the upper mantle thermobaric conditions, corresponding to the depth of 70–80 km (850–1000 K, 2.5 GPa), using “Toroid”-type Large reactive volume device and gas chromatography. The experimental results demonstrated the formation of the complex hydrocarbon mixture up to C7 with linear, branched and cycled structures and benzene. Unsaturated hydrocarbons were detected on the trace level in the products mixture. The increasing of exposure time leaded to growth of heavier components in the product systems. The data obtained suggest possible existence of complex hydrocarbon mixtures at the upper mantle thermobaric conditions and provide a new insight on the possible pathways of the hydrocarbons synthesis from methane in the upper mantle.
Collapse
|
16
|
Kadobayashi H, Hirai H, Ohfuji H, Ohtake M, Yamamoto Y. In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa. J Chem Phys 2018; 148:164503. [PMID: 29716198 DOI: 10.1063/1.5013302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
Collapse
Affiliation(s)
| | - Hisako Hirai
- Graduate School of Geo-environmental Science, Rissho University, Saitama 360-0194, Japan
| | - Hiroaki Ohfuji
- Geodynamics Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Michika Ohtake
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | - Yoshitaka Yamamoto
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
17
|
|
18
|
Immiscible hydrocarbon fluids in the deep carbon cycle. Nat Commun 2017; 8:15798. [PMID: 28604740 PMCID: PMC5472781 DOI: 10.1038/ncomms15798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
The cycling of carbon between Earth's surface and interior governs the long-term habitability of the planet. But how carbon migrates in the deep Earth is not well understood. In particular, the potential role of hydrocarbon fluids in the deep carbon cycle has long been controversial. Here we show that immiscible isobutane forms in situ from partial transformation of aqueous sodium acetate at 300 °C and 2.4–3.5 GPa and that over a broader range of pressures and temperatures theoretical predictions indicate that high pressure strongly opposes decomposition of isobutane, which may possibly coexist in equilibrium with silicate mineral assemblages. These results complement recent experimental evidence for immiscible methane-rich fluids at 600–700 °C and 1.5–2.5 GPa and the discovery of methane-rich fluid inclusions in metasomatized ophicarbonates at peak metamorphic conditions. Consequently, a variety of immiscible hydrocarbon fluids might facilitate carbon transfer in the deep carbon cycle. Carbon migration in the deep Earth is still not fully understood. Here, the authors show that immiscible isobutane forms in situ from transformation of aqueous sodium acetate at 300 °C and 2.4–3.5 GPa, indicating that hydrocarbon fluids may play a major role in carbon transfer in the deep carbon cycle.
Collapse
|
19
|
Kolesnikov AY, Saul JM, Kutcherov VG. Chemistry of Hydrocarbons Under Extreme Thermobaric Conditions. ChemistrySelect 2017. [DOI: 10.1002/slct.201601123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anton Yu. Kolesnikov
- Department of Physics; Gubkin Russian State University of Oil and Gas; Leninsky Prospect, 65 119991 Moscow Russia
| | | | - Vladimir G. Kutcherov
- Department of Energy Technology; Royal Institute of Technology; Brinellvägen, 68 100 44 Stockholm Sweden
| |
Collapse
|
20
|
Abstract
The structure, bonding, and other properties of phases in the carbon-hydrogen system over a range of conditions are of considerable importance to a broad range of scientific problems. However, the phase diagram of the C-H system at high pressures and temperatures is still not known. To search for new low-energy hydrocarbon structures, we carried out systematic structure prediction calculations for the C-H system from 100 to 300 GPa. We confirmed several previously predicted structures but found additional compositions that adopt more stable structures. In particular, a C2H4 structure is found that has an indirect band gap, and phonon calculations confirm that it is dynamically stable over a broad pressure range. We also identify more carbon-rich structures that are energetically favorable. The results are important for understanding carbon-hydrogen interactions in high-pressure experiments, dense astrophysical environments and the deep carbon cycle in planetary interiors.
Collapse
Affiliation(s)
- Hanyu Liu
- Geophysical Laboratory, Carnegie Institution of Washington , Washington, D.C. 20015, United States
| | - Ivan I Naumov
- Geophysical Laboratory, Carnegie Institution of Washington , Washington, D.C. 20015, United States
| | - Russell J Hemley
- Department of Civil and Environmental Engineering, The George Washington University , Washington, D.C. 20052 United States
- Lawrence Livermore National Laboratory , Livermore, California 94550 United States
| |
Collapse
|
21
|
Che Z, Li J, Wang L, Qi Y, Zhang Y, Zhang H, Wang X, Wang J, Kim MJ. Effect of diamond surface chemistry and structure on the interfacial microstructure and properties of Al/diamond composites. RSC Adv 2016. [DOI: 10.1039/c6ra11905k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modification of diamond surfaces affects the interfacial reaction in Al/diamond composites, which promotes the interfacial bonding and properties of the composites.
Collapse
Affiliation(s)
- Zifan Che
- State Key Laboratory for Advanced Metals and Materials
- University of Science and Technology Beijing
- Beijing
- China
- Department of Materials Science and Engineering
| | - Jianwei Li
- State Key Laboratory for Advanced Metals and Materials
- University of Science and Technology Beijing
- Beijing
- China
| | - Luhua Wang
- State Key Laboratory for Advanced Metals and Materials
- University of Science and Technology Beijing
- Beijing
- China
| | - Yingxu Qi
- State Key Laboratory for Advanced Metals and Materials
- University of Science and Technology Beijing
- Beijing
- China
| | - Yang Zhang
- State Key Laboratory for Advanced Metals and Materials
- University of Science and Technology Beijing
- Beijing
- China
| | - Hailong Zhang
- State Key Laboratory for Advanced Metals and Materials
- University of Science and Technology Beijing
- Beijing
- China
| | - Xitao Wang
- State Key Laboratory for Advanced Metals and Materials
- University of Science and Technology Beijing
- Beijing
- China
| | - Jinguo Wang
- Department of Materials Science and Engineering
- The University of Texas at Dallas
- Richardson
- USA
| | - Moon J. Kim
- Department of Materials Science and Engineering
- The University of Texas at Dallas
- Richardson
- USA
| |
Collapse
|
22
|
Belonoshko AB, Lukinov T, Rosengren A, Bryk T, Litasov KD. Synthesis of heavy hydrocarbons at the core-mantle boundary. Sci Rep 2015; 5:18382. [PMID: 26675747 PMCID: PMC4682099 DOI: 10.1038/srep18382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
The synthesis of complex organic molecules with C-C bonds is possible under conditions of reduced activity of oxygen. We have found performing ab initio molecular dynamics simulations of the C-O-H-Fe system that such conditions exist at the core-mantle boundary (CMB). H2O and CO2 delivered to the CMB by subducting slabs provide a source for hydrogen and carbon. The mixture of H2O and CO2 subjected to high pressure (130 GPa) and temperature (4000 to 4500 K) does not lead to synthesis of complex hydrocarbons. However, when Fe is added to the system, C-C bonds emerge. It means that oil might be a more abundant mineral than previously thought.
Collapse
Affiliation(s)
- Anatoly B Belonoshko
- Condensed Matter Theory, Theoretical Physics, AlbaNova University Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Timofiy Lukinov
- Condensed Matter Theory, Theoretical Physics, AlbaNova University Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Anders Rosengren
- Condensed Matter Theory, Theoretical Physics, AlbaNova University Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden.,Center for Quantum Materials, Nordita, Roslagstullsbacken 21, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Taras Bryk
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine
| | - Konstantin D Litasov
- V. S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
23
|
Xie B, Yang C, Zhang Z, Zou P, Lin Z, Shi G, Yang Q, Kang F, Wong CP. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics. ACS NANO 2015; 9:5636-45. [PMID: 25938988 DOI: 10.1021/acsnano.5b00899] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With the bloom of wearable electronics, it is becoming necessary to develop energy storage units, e.g., supercapacitors that can be arbitrarily tailored at the device level. Although gel electrolytes have been applied in supercapacitors for decades, no report has studied the shape-tailorable capability of a supercapacitor, for instance, where the device still works after being cut. Here we report a tailorable gel-based supercapacitor with symmetric electrodes prepared by combining electrochemically reduced graphene oxide deposited on a nickel nanocone array current collector with a unique packaging method. This supercapacitor with good flexibility and consistency showed excellent rate performance, cycling stability, and mechanical properties. As a demonstration, these tailorable supercapacitors connected in series can be used to drive small gadgets, e.g., a light-emitting diode (LED) and a minimotor propeller. As simple as it is (electrochemical deposition, stencil printing, etc.), this technique can be used in wearable electronics and miniaturized device applications that require arbitrarily shaped energy storage units.
Collapse
Affiliation(s)
- Binghe Xie
- †Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Cheng Yang
- †Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Zhexu Zhang
- †Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Peichao Zou
- †Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ziyin Lin
- ‡School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Gaoquan Shi
- §School of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Quanhong Yang
- †Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Feiyu Kang
- †Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ching-Ping Wong
- ‡School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Pramanik A, Maiti S, Mahanty S. Reduced graphene oxide anchored Cu(OH)2as a high performance electrochemical supercapacitor. Dalton Trans 2015. [DOI: 10.1039/c5dt01643f] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(OH)2@RGO symmetric supercapacitor cell shows an excellent energy density and power density (84.5 Wh kg−1at 550 W kg−1).
Collapse
Affiliation(s)
- Atin Pramanik
- Fuel Cell & Battery Division
- CSIR-Central Glass & Ceramic Research Institute
- Kolkata 700032 and CSIR-Network of Institutes for Solar Energy (NISE)
- New Delhi
- India
| | - Sandipan Maiti
- Fuel Cell & Battery Division
- CSIR-Central Glass & Ceramic Research Institute
- Kolkata 700032 and CSIR-Network of Institutes for Solar Energy (NISE)
- New Delhi
- India
| | - Sourindra Mahanty
- Fuel Cell & Battery Division
- CSIR-Central Glass & Ceramic Research Institute
- Kolkata 700032 and CSIR-Network of Institutes for Solar Energy (NISE)
- New Delhi
- India
| |
Collapse
|
25
|
Carbon-bearing iron phases and the carbon isotope composition of the deep Earth. Proc Natl Acad Sci U S A 2014; 112:31-6. [PMID: 25512520 DOI: 10.1073/pnas.1401782112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carbon budget and dynamics of the Earth's interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ(13)C ≈ -5 ± 3‰ with a very broad distribution to lower values (∼-40‰). The processes that have produced the wide δ(13)C distributions to the observed low δ(13)C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe-C phases (Fe carbides and C dissolved in Fe-Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in (13)C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe-C phases can readily produce diamond with the observed low δ(13)C values. The sharp contrast in the δ(13)C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5-3 Ga. Our model also predicts that the core contains C with low δ(13)C values and that an average δ(13)C value of the bulk Earth could be much lower than ∼-5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ(13)C values of the deep Earth have implications, not only for its accretion-differentiation history but also for carbon isotope biosignatures for early life on the Earth.
Collapse
|
26
|
Kimura T, Kuwayama Y, Yagi T. Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique. J Chem Phys 2014; 140:074501. [PMID: 24559351 DOI: 10.1063/1.4865252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The melting curve of H2O from 49 to 72 GPa was determined by using a laser-heated diamond anvil cell. Double-sided CO2 laser heating technique was employed in order to heat the sample directly. Discontinuous changes of the heating efficiency attributed to the H2O melting were observed between 49 and 72 GPa. The obtained melting temperatures at 49 and 72 GPa are 1200 and 1410 K, respectively. We found that the slope of the melting curve significantly decreases with increasing pressure, only 5 K/GPa at 72 GPa while 44 K/GPa at 49 GPa. Our results suggest that the melting curve does not intersect with the isentropes of Uranus and Neptune, and hence, H2O should remain in the liquid state even at the pressure and temperature conditions found deep within Uranus and Neptune.
Collapse
Affiliation(s)
- T Kimura
- Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Y Kuwayama
- Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - T Yagi
- Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|