1
|
Bartolucci C, Mesirca P, Ricci E, Sales-Bellés C, Torre E, Louradour J, Mangoni ME, Severi S. Computational modelling of mouse atrio ventricular node action potential and automaticity. J Physiol 2024; 602:4821-4847. [PMID: 39269369 DOI: 10.1113/jp285950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The atrioventricular node (AVN) is a crucial component of the cardiac conduction system. Despite its pivotal role in regulating the transmission of electrical signals between atria and ventricles, a comprehensive understanding of the cellular electrophysiological mechanisms governing AVN function has remained elusive. This paper presents a detailed computational model of mouse AVN cell action potential (AP). Our model builds upon previous work and introduces several key refinements, including accurate representation of membrane currents and exchangers, calcium handling, cellular compartmentalization, dynamic update of intracellular ion concentrations, and calcium buffering. We recalibrated and validated the model against existing and unpublished experimental data. In control conditions, our model reproduces the AVN AP experimental features, (e.g. rate = 175 bpm, experimental range [121, 191] bpm). Notably, our study sheds light on the contribution of L-type calcium currents, through both Cav1.2 and Cav1.3 channels, in AVN cells. The model replicates several experimental observations, including the cessation of firing upon block of Cav1.3 or INa,r current. If block induces a reduction in beating rate of 11%. In summary, this work presents a comprehensive computational model of mouse AVN cell AP, offering a valuable tool for investigating pacemaking mechanisms and simulating the impact of ionic current blockades. By integrating calcium handling and refining formulation of ionic currents, our model advances understanding of this critical component of the cardiac conduction system, providing a platform for future developments in cardiac electrophysiology. KEY POINTS: This paper introduces a comprehensive computational model of mouse atrioventricular node (AVN) cell action potentials (APs). Our model is based on the electrophysiological data from isolated mouse AVN cells and exhibits an action potential and calcium transient that closely match the experimental records. By simulating the effects of blocking specific ionic currents, the model effectively predicts the roles of L-type Cav1.2 and Cav1.3 channels, T-type calcium channels, sodium currents (TTX-sensitive and TTX-resistant), and the funny current (If) in AVN pacemaking. The study also emphasizes the significance of other ionic currents, including IKr, Ito, IKur, in regulating AP characteristics and cycle length in AVN cells. The model faithfully reproduces the rate dependence of action potentials under pacing, opening the possibility of use in impulse propagation models. The population-of-models approach showed the robustness of this new AP model in simulating a wide spectrum of cellular pacemaking in AVN.
Collapse
Affiliation(s)
- Chiara Bartolucci
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi,', University of Bologna, Cesena, Italy
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Eugenio Ricci
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi,', University of Bologna, Cesena, Italy
| | - Clara Sales-Bellés
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Julien Louradour
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Matteo Elia Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channels Science and Therapeutics (ICST), Montpellier, France
| | - Stefano Severi
- Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi,', University of Bologna, Cesena, Italy
| |
Collapse
|
2
|
Al-Othman S, Boyett MR, Morris GM, Malhotra A, Mesirca P, Mangoni ME, D'Souza A. Symptomatic bradyarrhythmias in the athlete-Underlying mechanisms and treatments. Heart Rhythm 2024; 21:1415-1427. [PMID: 38428449 DOI: 10.1016/j.hrthm.2024.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Bradyarrhythmias including sinus bradycardia and atrioventricular (AV) block are frequently encountered in endurance athletes especially at night. While these are well tolerated by the young athlete, there is evidence that generally from the fifth decade of life onward, such arrhythmias can degenerate into pathological symptomatic bradycardia requiring pacemaker therapy. For many years, athletic bradycardia and AV block have been attributed to high vagal tone, but work from our group has questioned this widely held assumption and demonstrated a role for intrinsic electrophysiological remodeling of the sinus node and the AV node. In this article, we argue that bradyarrhythmias in the veteran athlete arise from the cumulative effects of exercise training, the circadian rhythm and aging on the electrical activity of the nodes. We consider contemporary strategies for the treatment of symptomatic bradyarrhythmias in athletes and highlight potential therapies resulting from our evolving mechanistic understanding of this phenomenon.
Collapse
Affiliation(s)
- Sami Al-Othman
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Mark R Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.
| | - Gwilym M Morris
- Cardiology Department, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Aneil Malhotra
- Institute of Sport, Manchester Metropolitan University and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; Laboratory of Excellence "Ion Channel Science and Therapeutics" (ICST), Montpellier, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; Laboratory of Excellence "Ion Channel Science and Therapeutics" (ICST), Montpellier, France
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Wulkan F, Romagnuolo R, Qiang B, Valdman Sadikov T, Kim KP, Quesnel E, Jiang W, Andharia N, Weyers JJ, Ghugre NR, Ozcan B, Alibhai FJ, Laflamme MA. Stem cell-derived cardiomyocytes expressing a dominant negative pacemaker HCN4 channel do not reduce the risk of graft-related arrhythmias. Front Cardiovasc Med 2024; 11:1374881. [PMID: 39045008 PMCID: PMC11263024 DOI: 10.3389/fcvm.2024.1374881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Background Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.
Collapse
Affiliation(s)
- Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | | | - Elya Quesnel
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Wenlei Jiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Naaz Andharia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Jill J. Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nilesh R. Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bilgehan Ozcan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
6
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
7
|
Teixeira SK, Pontes R, Zuleta LFG, Wang J, Xu D, Hildebrand S, Russell J, Zhan X, Choi M, Tang M, Li X, Ludwig S, Beutler B, Krieger JE. Genetic determinants of blood pressure and heart rate identified through ENU-induced mutagenesis with automated meiotic mapping. SCIENCE ADVANCES 2024; 10:eadj9797. [PMID: 38427739 PMCID: PMC10906923 DOI: 10.1126/sciadv.adj9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.
Collapse
Affiliation(s)
- Samantha K. Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Pontes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando G. Zuleta
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose E. Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Padda I, Sebastian SA, Khehra N, Mahtani A, Sethi Y, Panthangi V, Fulton M, Bandyopadhyay D, Johal G. Tachy-brady syndrome: Electrophysiology and evolving principles of management. Dis Mon 2024; 70:101637. [PMID: 37690863 DOI: 10.1016/j.disamonth.2023.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sudden alterations in the heart rate may be associated with diverse symptoms. Sinus node dysfunction (SND), also known as sick sinus syndrome, is a sinoatrial (SA) node disorder. SND is primarily caused by the dysfunction of the pacemaker, as well as impaired impulse transmission resulting in a multitude of abnormalities in the heart rhythms, such as bradycardia-tachycardia, atrial bradyarrhythmias, and atrial tachyarrhythmias. The transition from bradycardia to tachycardia is generally referred to as "tachy-brady syndrome" (TBS). Although TBS is etiologically variable, the manifestations remain consistent throughout. Abnormal heart rhythms have the propensity to limit tissue perfusion resulting in palpitations, fatigue, lightheadedness, presyncope, and syncope. In this review, we examine the physiology of tachy-brady syndrome, the practical approach to its diagnosis and management, and the role of adenosine in treating SND.
Collapse
Affiliation(s)
- Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA.
| | | | - Nimrat Khehra
- Saint James School of Medicine, Arnos Vale, Saint Vincent and the Grenadines
| | - Arun Mahtani
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Yashendra Sethi
- Department of Internal Medicine, Government Doon Medical College, Dehradun, India
| | | | - Matthew Fulton
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | | | - Gurpreet Johal
- Department of Cardiology, University of Washington, Valley Medical Center, Seattle, WA, USA
| |
Collapse
|
9
|
Delgado-Betancourt V, Chinda K, Mesirca P, Barrère C, Covinhes A, Gallot L, Vincent A, Bidaud I, Kumphune S, Nargeot J, Piot C, Wickman K, Mangoni ME, Barrère-Lemaire S. Heart rate reduction after genetic ablation of L-type Ca v1.3 channels induces cardioprotection against ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1134503. [PMID: 37593151 PMCID: PMC10429177 DOI: 10.3389/fcvm.2023.1134503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/21/2023] [Indexed: 08/19/2023] Open
Abstract
Background Acute myocardial infarction (AMI) is the major cause of cardiovascular mortality worldwide. Most ischemic episodes are triggered by an increase in heart rate, which induces an imbalance between myocardial oxygen delivery and consumption. Developing drugs that selectively reduce heart rate by inhibiting ion channels involved in heart rate control could provide more clinical benefits. The Cav1.3-mediated L-type Ca2+ current (ICav1.3) play important roles in the generation of heart rate. Therefore, they can constitute relevant targets for selective control of heart rate and cardioprotection during AMI. Objective We aimed to investigate the relationship between heart rate and infarct size using mouse strains knockout for Cav1.3 (Cav1.3-/-) L-type calcium channel and of the cardiac G protein gated potassium channel (Girk4-/-) in association with the funny (f)-channel inhibitor ivabradine. Methods Wild-type (WT), Cav1.3+/-, Cav1.3-/- and Girk4-/- mice were used as models of respectively normal heart rate, moderate heart rate reduction, bradycardia, and mild tachycardia, respectively. Mice underwent a surgical protocol of myocardial IR (40 min ischemia and 60 min reperfusion). Heart rate was recorded by one-lead surface ECG recording, and infarct size measured by triphenyl tetrazolium chloride staining. In addition, Cav1.3-/- and WT hearts perfused on a Langendorff system were subjected to the same ischemia-reperfusion protocol ex vivo, without or with atrial pacing, and the coronary flow was recorded. Results Cav1.3-/- mice presented reduced infarct size (-29%), while Girk4-/- displayed increased infarct size (+30%) compared to WT mice. Consistently, heart rate reduction in Cav1.3+/- or by the f-channel blocker ivabradine was associated with significant decrease in infarct size (-27% and -32%, respectively) in comparison to WT mice. Conclusion Our results show that decreasing heart rate allows to protect the myocardium against IR injury in vivo and reveal a close relationship between basal heart rate and IR injury. In addition, this study suggests that targeting Cav1.3 channels could constitute a relevant target for reducing infarct size, since maximal heart rate dependent cardioprotective effect is already observed in Cav1.3+/- mice.
Collapse
Affiliation(s)
- Viviana Delgado-Betancourt
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Kroekkiat Chinda
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Christian Barrère
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Aurélie Covinhes
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Laura Gallot
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEi), Chiang Mai University, Chiang Mai, Thailand
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Christophe Piot
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Matteo Elia Mangoni
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| |
Collapse
|
10
|
Meyer KM, Malhotra N, Kwak JS, El Refaey M. Relevance of KCNJ5 in Pathologies of Heart Disease. Int J Mol Sci 2023; 24:10849. [PMID: 37446026 PMCID: PMC10341679 DOI: 10.3390/ijms241310849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Abnormalities in G-protein-gated inwardly rectifying potassium (GIRK) channels have been implicated in diseased states of the cardiovascular system; however, the role of GIRK4 (Kir3.4) in cardiac physiology and pathophysiology has yet to be completely understood. Within the heart, the KACh channel, consisting of two GIRK1 and two GIRK4 subunits, plays a major role in modulating the parasympathetic nervous system's influence on cardiac physiology. Being that GIRK4 is necessary for the functional KACh channel, KCNJ5, which encodes GIRK4, it presents as a therapeutic target for cardiovascular pathology. Human variants in KCNJ5 have been identified in familial hyperaldosteronism type III, long QT syndrome, atrial fibrillation, and sinus node dysfunction. Here, we explore the relevance of KCNJ5 in each of these diseases. Further, we address the limitations and complexities of discerning the role of KCNJ5 in cardiovascular pathophysiology, as identical human variants of KCNJ5 have been identified in several diseases with overlapping pathophysiology.
Collapse
Affiliation(s)
- Karisa M. Meyer
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nipun Malhotra
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jung seo Kwak
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH 43210, USA; (K.M.M.); (N.M.); (J.s.K.)
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
12
|
Moise N, Weinberg SH. Emergent activity, heterogeneity, and robustness in a calcium feedback model of the sinoatrial node. Biophys J 2023; 122:1613-1632. [PMID: 36945778 PMCID: PMC10183324 DOI: 10.1016/j.bpj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN activity emerges at an early point in life and maintains a steady rhythm for the lifetime of the organism. The ion channel composition and currents of SAN cells can be influenced by a variety of factors. Therefore, the emergent activity and long-term stability imply some form of dynamical feedback control of SAN activity. We adapt a recent feedback model-previously utilized to describe control of ion conductances in neurons-to a model of SAN cells and tissue. The model describes a minimal regulatory mechanism of ion channel conductances via feedback between intracellular calcium and an intrinsic target calcium level. By coupling a SAN cell to the calcium feedback model, we show that spontaneous electrical activity emerges from quiescence and is maintained at steady state. In a 2D SAN tissue model, spatial variability in intracellular calcium targets lead to significant, self-organized heterogeneous ion channel expression and calcium transients throughout the tissue. Furthermore, multiple pacemaking regions appear, which interact and lead to time-varying cycle length, demonstrating that variability in heart rate is an emergent property of the feedback model. Finally, we demonstrate that the SAN tissue is robust to the silencing of leading cells or ion channel knockouts. Thus, the calcium feedback model can reproduce and explain many fundamental emergent properties of activity in the SAN that have been observed experimentally based on a minimal description of intracellular calcium and ion channel regulatory networks.
Collapse
Affiliation(s)
- Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
13
|
Choquet C, Sicard P, Vahdat J, Nguyen THM, Kober F, Varlet I, Bernard M, Richard S, Kelly RG, Lalevée N, Miquerol L. Nkx2-5 Loss of Function in the His-Purkinje System Hampers Its Maturation and Leads to Mechanical Dysfunction. J Cardiovasc Dev Dis 2023; 10:jcdd10050194. [PMID: 37233161 DOI: 10.3390/jcdd10050194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
The ventricular conduction or His-Purkinje system (VCS) mediates the rapid propagation and precise delivery of electrical activity essential for the synchronization of heartbeats. Mutations in the transcription factor Nkx2-5 have been implicated in a high prevalence of developing ventricular conduction defects or arrhythmias with age. Nkx2-5 heterozygous mutant mice reproduce human phenotypes associated with a hypoplastic His-Purkinje system resulting from defective patterning of the Purkinje fiber network during development. Here, we investigated the role of Nkx2-5 in the mature VCS and the consequences of its loss on cardiac function. Neonatal deletion of Nkx2-5 in the VCS using a Cx40-CreERT2 mouse line provoked apical hypoplasia and maturation defects of the Purkinje fiber network. Genetic tracing analysis demonstrated that neonatal Cx40-positive cells fail to maintain a conductive phenotype after Nkx2-5 deletion. Moreover, we observed a progressive loss of expression of fast-conduction markers in persistent Purkinje fibers. Consequently, Nkx2-5-deleted mice developed conduction defects with progressively reduced QRS amplitude and RSR' complex associated with higher duration. Cardiac function recorded by MRI revealed a reduction in the ejection fraction in the absence of morphological changes. With age, these mice develop a ventricular diastolic dysfunction associated with dyssynchrony and wall-motion abnormalities without indication of fibrosis. These results highlight the requirement of postnatal expression of Nkx2-5 in the maturation and maintenance of a functional Purkinje fiber network to preserve contraction synchrony and cardiac function.
Collapse
Affiliation(s)
- Caroline Choquet
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
- INSERM, MMG, Aix-Marseille Université, 13385 Marseille, France
| | - Pierre Sicard
- INSERM, CNRS, PHYMEDEXP, University de Montpellier, 34295 Montpellier, France
| | - Juliette Vahdat
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| | - Thi Hong Minh Nguyen
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
- INSERM, TAGC, UMR1090, Aix-Marseille Université, 13288 Marseille, France
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Frank Kober
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Isabelle Varlet
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Monique Bernard
- CNRS, CRMBM, Aix-Marseille Université, 13385 Marseille, France
| | - Sylvain Richard
- INSERM, CNRS, PHYMEDEXP, University de Montpellier, 34295 Montpellier, France
| | - Robert G Kelly
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| | - Nathalie Lalevée
- INSERM, TAGC, UMR1090, Aix-Marseille Université, 13288 Marseille, France
- INSERM, C2VN, UMR1263, Aix-Marseille Université, 13005 Marseille, France
| | - Lucile Miquerol
- CNRS, IBDM, UMR7288, Aix-Marseille Université, 13009 Marseille, France
| |
Collapse
|
14
|
Depressed HCN4 function in the type 2 diabetic sinoatrial node. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Peters CH, Rickert C, Morotti S, Grandi E, Aronow KA, Beam KG, Proenza C. The funny current If is essential for the fight-or-flight response in cardiac pacemaker cells. J Gen Physiol 2022; 154:e202213193. [PMID: 36305844 PMCID: PMC9812006 DOI: 10.1085/jgp.202213193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
The sympathetic nervous system fight-or-flight response is characterized by a rapid increase in heart rate, which is mediated by an increase in the spontaneous action potential (AP) firing rate of pacemaker cells in the sinoatrial node. Sympathetic neurons stimulate sinoatrial myocytes (SAMs) by activating β adrenergic receptors (βARs) and increasing cAMP. The funny current (If) is among the cAMP-sensitive currents in SAMs. If is critical for pacemaker activity, however, its role in the fight-or-flight response remains controversial. In this study, we used AP waveform analysis, machine learning, and dynamic clamp experiments in acutely isolated SAMs from mice to quantitatively define the AP waveform changes and role of If in the fight-or-flight increase in AP firing rate. We found that while βAR stimulation significantly altered nearly all AP waveform parameters, the increase in firing rate was only correlated with changes in a subset of parameters (diastolic duration, late AP duration, and diastolic depolarization rate). Dynamic clamp injection of the βAR-sensitive component of If showed that it accounts for ∼41% of the fight-or-flight increase in AP firing rate and 60% of the decrease in the interval between APs. Thus, If is an essential contributor to the fight-or-flight increase in heart rate.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Christian Rickert
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, CA
| | | | - Kurt G. Beam
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Catherine Proenza
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
16
|
D'Souza A, Boink GJJ, Toyoda F, Mesirca P. Editorial: Cardiac Pacemaking in Health and Disease: From Genes to Function. Front Physiol 2022; 13:913506. [PMID: 35711314 PMCID: PMC9197676 DOI: 10.3389/fphys.2022.913506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gerard J J Boink
- Departments of Cardiology and Medical Biology, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Research Program: Heart Failure and Arrhythmias, Amsterdam, Netherlands
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| |
Collapse
|
17
|
Paradigm shift: new concepts for HCN4 function in cardiac pacemaking. Pflugers Arch 2022; 474:649-663. [PMID: 35556164 PMCID: PMC9192375 DOI: 10.1007/s00424-022-02698-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are the molecular correlate of the If current and are critically involved in controlling neuronal excitability and the autonomous rhythm of the heart. The HCN4 isoform is the main HCN channel subtype expressed in the sinoatrial node (SAN), a tissue composed of specialized pacemaker cells responsible for generating the intrinsic heartbeat. More than 40 years ago, the If current was first discovered in rabbit SAN tissue. Along with this discovery, a theory was proposed that cyclic adenosine monophosphate–dependent modulation of If mediates heart rate regulation by the autonomic nervous system—a process called chronotropic effect. However, up to the present day, this classical theory could not be reliably validated. Recently, new concepts emerged confirming that HCN4 channels indeed play an important role in heart rate regulation. However, the cellular mechanism by which HCN4 controls heart rate turned out to be completely different than originally postulated. Here, we review the latest findings regarding the physiological role of HCN4 in the SAN. We describe a newly discovered mechanism underlying heart rate regulation by HCN4 at the tissue and single cell levels, and we discuss these observations in the context of results from previously studied HCN4 mouse models.
Collapse
|
18
|
Louradour J, Bortolotti O, Torre E, Bidaud I, Lamb N, Fernandez A, Le Guennec JY, Mangoni ME, Mesirca P. L-Type Cav1.3 Calcium Channels Are Required for Beta-Adrenergic Triggered Automaticity in Dormant Mouse Sinoatrial Pacemaker Cells. Cells 2022; 11:cells11071114. [PMID: 35406677 PMCID: PMC8997967 DOI: 10.3390/cells11071114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Sinoatrial node cells (SANC) automaticity is generated by functional association between the activity of plasmalemmal ion channels and local diastolic intracellular Ca2+ release (LCR) from ryanodine receptors. Strikingly, most isolated SANC exhibit a “dormant” state, whereas only a fraction shows regular firing as observed in intact SAN. Recent studies showed that β-adrenergic stimulation can initiate spontaneous firing in dormant SANC, though this mechanism is not entirely understood. Methods: To investigate the role of L-type Cav1.3 Ca2+ channels in the adrenergic regulation of automaticity in dormant SANC, we used a knock-in mouse strain in which the sensitivity of L-type Cav1.2 α1 subunits to dihydropyridines (DHPs) was inactivated (Cav1.2DHP−/−), enabling the selective pharmacological inhibition of Cav1.3 by DHPs. Results: In dormant SANC, β-adrenergic stimulation with isoproterenol (ISO) induced spontaneous action potentials (AP) and Ca2+ transients, which were completely arrested with concomitant perfusion of the DHP nifedipine. In spontaneously firing SANC at baseline, Cav1.3 inhibition completely reversed the effect of β-adrenergic stimulation on AP and the frequency of Ca2+ transients. Confocal calcium imaging of SANC showed that the β-adrenergic-induced synchronization of LCRs is regulated by the activity of Cav1.3 channels. Conclusions: Our study shows a novel role of Cav1.3 channels in initiating and maintaining automaticity in dormant SANC upon β-adrenergic stimulation.
Collapse
Affiliation(s)
- Julien Louradour
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 34090 Montpellier, France;
| | - Olivier Bortolotti
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
| | - Ned Lamb
- Mammalian Stem Cell Biology Group, Institute of Human Genetics, Université de Montpellier, CNRS, 34090 Montpellier, France; (N.L.); (A.F.)
| | - Anne Fernandez
- Mammalian Stem Cell Biology Group, Institute of Human Genetics, Université de Montpellier, CNRS, 34090 Montpellier, France; (N.L.); (A.F.)
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, INSERM U1046, UMR CNRS, 34090 Montpellier, France;
| | - Matteo E. Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- Correspondence: (M.E.M.); (P.M.)
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (J.L.); (O.B.); (E.T.); (I.B.)
- LabEx Ion Channels Science and Therapeutics (ICST), 34090 Montpellier, France
- Correspondence: (M.E.M.); (P.M.)
| |
Collapse
|
19
|
Odening KE, Gomez AM, Dobrev D, Fabritz L, Heinzel FR, Mangoni ME, Molina CE, Sacconi L, Smith G, Stengl M, Thomas D, Zaza A, Remme CA, Heijman J. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace 2021; 23:1795-1814. [PMID: 34313298 PMCID: PMC11636574 DOI: 10.1093/europace/euab142] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Collapse
Affiliation(s)
- Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute of Physiology, University of Bern, Bern, Switzerland
| | - Ana-Maria Gomez
- Signaling and cardiovascular pathophysiology—UMR-S 1180, Inserm, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Leonardo Sacconi
- National Institute of Optics and European Laboratory for Non Linear Spectroscopy, Italy
- Institute for Experimental Cardiovascular Medicine, University Freiburg, Germany
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Anderson A, Vo BN, de Velasco EMF, Hopkins CR, Weaver CD, Wickman K. Characterization of VU0468554, a New Selective Inhibitor of Cardiac G Protein-Gated Inwardly Rectifying K + Channels. Mol Pharmacol 2021; 100:540-547. [PMID: 34503975 DOI: 10.1124/molpharm.121.000311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels are critical mediators of excitability in the heart and brain. Enhanced GIRK-channel activity has been implicated in the pathogenesis of supraventricular arrhythmias, including atrial fibrillation. The lack of selective pharmacological tools has impeded efforts to investigate the therapeutic potential of cardiac GIRK-channel interventions in arrhythmias. Here, we characterize a recently identified GIRK-channel inhibitor, VU0468554. Using whole-cell electrophysiological approaches and primary cultures of sinoatrial nodal cells and hippocampal neurons, we show that VU0468554 more effectively inhibits the cardiac GIRK channel than the neuronal GIRK channel. Concentration-response experiments suggest that VU0468554 inhibits Gβγ-activated GIRK channels in noncompetitive and potentially uncompetitive fashion. In contrast, VU0468554 competitively inhibits GIRK-channel activation by ML297, a GIRK-channel activator containing the same chemical scaffold as VU0468554. In the isolated heart model, VU0468554 partially reversed carbachol-induced bradycardia in hearts from wild-type mice but not Girk4-/- mice. Collectively, these data suggest that VU0468554 represents a promising new pharmacological tool for targeting cardiac GIRK channels with therapeutic implications for relevant cardiac arrhythmias. SIGNIFICANCE STATEMENT: Although cardiac GIRK-channel inhibition shows promise for the treatment of supraventricular arrhythmias, the absence of subtype-selective channel inhibitors has hindered exploration into this therapeutic strategy. This study utilizes whole-cell patch-clamp electrophysiology to characterize the new GIRK-channel inhibitor VU0468554 in human embryonic kidney 293T cells and primary cultures. We report that VU0468554 exhibits a favorable pharmacodynamic profile for cardiac over neuronal GIRK channels and partially reverses GIRK-mediated bradycardia in the isolated mouse heart model.
Collapse
Affiliation(s)
- Allison Anderson
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Baovi N Vo
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Ezequiel Marron Fernandez de Velasco
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Corey R Hopkins
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - C David Weaver
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| | - Kevin Wickman
- Graduate Program in Pharmacology (A.A., B.N.V.) and Department of Pharmacology (E.M.F.d.V., K.W.), University of Minnesota, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (C.R.H.); and Departments of Pharmacology and Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (C.D.W.)
| |
Collapse
|
21
|
Developmental HCN channelopathy results in decreased neural progenitor proliferation and microcephaly in mice. Proc Natl Acad Sci U S A 2021; 118:2009393118. [PMID: 34429357 DOI: 10.1073/pnas.2009393118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals.
Collapse
|
22
|
Mika D, Fischmeister R. Cyclic nucleotide signaling and pacemaker activity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:29-38. [PMID: 34298001 DOI: 10.1016/j.pbiomolbio.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023]
Abstract
The sinoatrial node (SAN) is the natural pacemaker of the heart, producing the electrical impulse that initiates every heart beat. Its activity is tightly controlled by the autonomic nervous system, and by circulating and locally released factors. Neurohumoral regulation of heart rate plays a crucial role in the integration of vital functions and influences behavior and ability to respond to changing environmental conditions. At the cellular level, modulation of SAN activity occurs through intracellular signaling pathways involving cyclic nucleotides: cyclic AMP (cAMP) and cyclic GMP (cGMP). In this Review, dedicated to Professor Dario DiFrancesco and his accomplishements in the field of cardiac pacemaking, we summarize all findings on the role of cyclic nucleotides signaling in regulating the key actors of cardiac automatism, and we provide an up-to-date review on cAMP- and cGMP-phosphodiesterases (PDEs), compellingly involved in this modulation.
Collapse
Affiliation(s)
- Delphine Mika
- Université Paris-Saclay, Inserm, UMR-S, 1180, Châtenay-Malabry, France.
| | | |
Collapse
|
23
|
Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:61-85. [PMID: 34197836 DOI: 10.1016/j.pbiomolbio.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the sinus node, the innate pacemaker of the heart, and more recently evidence has accumulated to show that If may play an important role in action potential conduction through the atrioventricular (AV) node. Evidence has also accumulated to show that regulation of the transcription and translation of the underlying Hcn genes plays an important role in the regulation of sinus node pacemaking and AV node conduction under normal physiological conditions - in athletes, during the circadian rhythm, in pregnancy, and during postnatal development - as well as pathological states - ageing, heart failure, pulmonary hypertension, diabetes and atrial fibrillation. There may be yet more pathological conditions involving changes in the expression of the Hcn genes. Here, we review the role of If and the underlying HCN channels in physiological and pathological changes of the sinus and AV nodes and we begin to explore the signalling pathways (microRNAs, transcription factors, GIRK4, the autonomic nervous system and inflammation) involved in this regulation. This review is dedicated to Dario DiFrancesco on his retirement.
Collapse
|
24
|
Mesirca P, Nakao S, Nissen SD, Forte G, Anderson C, Trussell T, Li J, Cox C, Zi M, Logantha S, Yaar S, Cartensen H, Bidaud I, Stuart L, Soattin L, Morris GM, da Costa Martins PA, Cartwright EJ, Oceandy D, Mangoni ME, Jespersen T, Buhl R, Dobrzynski H, Boyett MR, D'Souza A. Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes. Circ Res 2021; 129:e1-e20. [PMID: 33849278 DOI: 10.1161/circresaha.119.316386] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pietro Mesirca
- IGF, Université de Montpellier, CNRS, INSERM, France (P.M., I.B., M.E.M.)
| | - Shu Nakao
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
- Department of Biomedical Sciences, Ritsumeikan University, Japan (S.N.)
| | - Sarah Dalgas Nissen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences (S.D.N., H.C., R.B.), University of Copenhagen, Denmark
| | - Gabriella Forte
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Tariq Trussell
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Jue Li
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Charlotte Cox
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Sunil Logantha
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
- Liverpool Centre for Cardiovascular Sciences, University of Liverpool, United Kingdom (S.L.)
| | - Sana Yaar
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Helena Cartensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences (S.D.N., H.C., R.B.), University of Copenhagen, Denmark
| | - Isabelle Bidaud
- IGF, Université de Montpellier, CNRS, INSERM, France (P.M., I.B., M.E.M.)
| | - Luke Stuart
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | | | - Gwilym M Morris
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | | | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Matteo E Mangoni
- IGF, Université de Montpellier, CNRS, INSERM, France (P.M., I.B., M.E.M.)
| | - Thomas Jespersen
- Department of Biomedical Sciences (T.J., M.R.B.), University of Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences (S.D.N., H.C., R.B.), University of Copenhagen, Denmark
| | - Halina Dobrzynski
- Department of Anatomy, Jagiellonian University Medical College, Poland (H.D.)
| | - Mark R Boyett
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
- Department of Biomedical Sciences (T.J., M.R.B.), University of Copenhagen, Denmark
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| |
Collapse
|
25
|
DiFrancesco ML, Mesirca P, Bidaud I, Isbrandt D, Mangoni ME. The funny current in genetically modified mice. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:39-50. [PMID: 34129872 DOI: 10.1016/j.pbiomolbio.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
Since its first description in 1979, the hyperpolarization-activated funny current (If) has been the object of intensive research aimed at understanding its role in cardiac pacemaker activity and its modulation by the sympathetic and parasympathetic branches of the autonomic nervous system. If was described in isolated tissue strips of the rabbit sinoatrial node using the double-electrode voltage-clamp technique. Since then, the rabbit has been the principal animal model for studying pacemaker activity and If for more than 20 years. In 2001, the first study describing the electrophysiological properties of mouse sinoatrial pacemaker myocytes and those of If was published. It was soon followed by the description of murine myocytes of the atrioventricular node and the Purkinje fibres. The sinoatrial node of genetically modified mice has become a very popular model for studying the mechanisms of cardiac pacemaker activity. This field of research benefits from the impressive advancement of in-vivo exploration techniques of physiological parameters, imaging, genetics, and large-scale genomic approaches. The present review discusses the influence of mouse genetic on the most recent knowledge of the funny current's role in the physiology and pathophysiology of cardiac pacemaker activity. Genetically modified mice have provided important insights into the role of If in determining intrinsic automaticity in vivo and in myocytes of the conduction system. In addition, gene targeting of f-(HCN) channel isoforms have contributed to elucidating the current's role in the regulation of heart rate by the parasympathetic nervous system. This review is dedicated to Dario DiFrancesco on his retirement.
Collapse
Affiliation(s)
- Mattia L DiFrancesco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx Ion Channels Science and Therapeutics (ICST), France.
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx Ion Channels Science and Therapeutics (ICST), France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx Ion Channels Science and Therapeutics (ICST), France
| | - Dirk Isbrandt
- Deutsches Zentrum für Neurodegenerative Erktankungen (DZNE), Bonn, Germany; University of Cologne, Institute for Molecular and Behavioral Neuroscience, Cologne, Germany
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx Ion Channels Science and Therapeutics (ICST), France.
| |
Collapse
|
26
|
Hennis K, Rötzer RD, Piantoni C, Biel M, Wahl-Schott C, Fenske S. Speeding Up the Heart? Traditional and New Perspectives on HCN4 Function. Front Physiol 2021; 12:669029. [PMID: 34122140 PMCID: PMC8191466 DOI: 10.3389/fphys.2021.669029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart and is responsible for generating the intrinsic heartbeat. Within the SAN, spontaneously active pacemaker cells initiate the electrical activity that causes the contraction of all cardiomyocytes. The firing rate of pacemaker cells depends on the slow diastolic depolarization (SDD) and determines the intrinsic heart rate (HR). To adapt cardiac output to varying physical demands, HR is regulated by the autonomic nervous system (ANS). The sympathetic and parasympathetic branches of the ANS innervate the SAN and regulate the firing rate of pacemaker cells by accelerating or decelerating SDD-a process well-known as the chronotropic effect. Although this process is of fundamental physiological relevance, it is still incompletely understood how it is mediated at the subcellular level. Over the past 20 years, most of the work to resolve the underlying cellular mechanisms has made use of genetically engineered mouse models. In this review, we focus on the findings from these mouse studies regarding the cellular mechanisms involved in the generation and regulation of the heartbeat, with particular focus on the highly debated role of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 in mediating the chronotropic effect. By focusing on experimental data obtained in mice and humans, but not in other species, we outline how findings obtained in mice relate to human physiology and pathophysiology and provide specific information on how dysfunction or loss of HCN4 channels leads to human SAN disease.
Collapse
Affiliation(s)
- Konstantin Hennis
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - René D. Rötzer
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chiara Piantoni
- Institute for Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Martin Biel
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Institute for Neurophysiology, Hannover Medical School, Hanover, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefanie Fenske
- Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
27
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
28
|
Bidaud I, D'Souza A, Forte G, Torre E, Greuet D, Thirard S, Anderson C, Chung You Chong A, Torrente AG, Roussel J, Wickman K, Boyett MR, Mangoni ME, Mesirca P. Genetic Ablation of G Protein-Gated Inwardly Rectifying K + Channels Prevents Training-Induced Sinus Bradycardia. Front Physiol 2021; 11:519382. [PMID: 33551824 PMCID: PMC7857143 DOI: 10.3389/fphys.2020.519382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Endurance athletes are prone to bradyarrhythmias, which in the long-term may underscore the increased incidence of pacemaker implantation reported in this population. Our previous work in rodent models has shown training-induced sinus bradycardia to be due to microRNA (miR)-mediated transcriptional remodeling of the HCN4 channel, leading to a reduction of the "funny" (I f) current in the sinoatrial node (SAN). Objective: To test if genetic ablation of G-protein-gated inwardly rectifying potassium channel, also known as I KACh channels prevents sinus bradycardia induced by intensive exercise training in mice. Methods: Control wild-type (WT) and mice lacking GIRK4 (Girk4 -/-), an integral subunit of I KACh were assigned to trained or sedentary groups. Mice in the trained group underwent 1-h exercise swimming twice a day for 28 days, 7 days per week. We performed electrocardiogram recordings and echocardiography in both groups at baseline, during and after the training period. At training cessation, mice were euthanized and SAN tissues were isolated for patch clamp recordings in isolated SAN cells and molecular profiling by quantitative PCR (qPCR) and western blotting. Results: At swimming cessation trained WT mice presented with a significantly lower resting HR that was reversible by acute I KACh block whereas Girk4 -/- mice failed to develop a training-induced sinus bradycardia. In line with HR reduction, action potential rate, density of I f, as well as of T- and L-type Ca2+ currents (I CaT and I CaL ) were significantly reduced only in SAN cells obtained from WT-trained mice. I f reduction in WT mice was concomitant with downregulation of HCN4 transcript and protein, attributable to increased expression of corresponding repressor microRNAs (miRs) whereas reduced I CaL in WT mice was associated with reduced Cav1.3 protein levels. Strikingly, I KACh ablation suppressed all training-induced molecular remodeling observed in WT mice. Conclusion: Genetic ablation of cardiac I KACh in mice prevents exercise-induced sinus bradycardia by suppressing training induced remodeling of inward currents I f, I CaT and I CaL due in part to the prevention of miR-mediated transcriptional remodeling of HCN4 and likely post transcriptional remodeling of Cav1.3. Strategies targeting cardiac I KACh may therefore represent an alternative to pacemaker implantation for bradyarrhythmias seen in some veteran athletes.
Collapse
Affiliation(s)
- Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gabriella Forte
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| | - Denis Greuet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Steeve Thirard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Antony Chung You Chong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| | - Julien Roussel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Mark R Boyett
- Division of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx Ion Channels Science and Therapeutics, Montpellier, France
| |
Collapse
|
29
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
30
|
Gur S, Alzweri L, Yilmaz-Oral D, Kaya-Sezginer E, Abdel-Mageed AB, Sikka SC, Hellstrom WJG. Ivabradine, the hyperpolarization-activated cyclic nucleotide-gated channel blocker, elicits relaxation of the human corpus cavernosum: a potential option for erectile dysfunction treatment. Aging Male 2020; 23:1088-1097. [PMID: 31741421 DOI: 10.1080/13685538.2019.1678125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To evaluate the effect of the If channel inhibitor, ivabradine on human corpus cavernosum (HCC) smooth muscle tone. METHODS HCC samples were obtained from erectile dysfunction(ED) patients (n = 12) undergoing penile prosthesis surgery. Concentration-response curves for ivabradine were exposed to various inhibitory and stimulatory agents. The relaxant and contractile responses to electrical field stimulation (EFS, 10 Hz and 80 Hz) were examined in the presence or absence of ivabradine (10 μM). HCN3 and HCN4 channel expression and localization were determined by Western blot and immunohistochemical analyses of HCC tissues. RESULTS Increasing ivabradine concentrations dependently reduced the maximal contractile responses of isolated HCC strips induced by KCl (59.5 ± 2.5%) and phenylephrine (84.0 ± 9.8%), which was not affected by nitric oxide synthase and soluble guanylyl cyclase inhibitors after phenylephrine-induced contraction. Nifedipine and tetraethylammonium inhibited the maximum relaxation to ivabradine by 75% and 39.3%, respectively. Fasudil and sildenafil increased the relaxation response to ivabradine without altering the maximum response. Pre-incubation with ivabradine significantly increased relaxant responses to EFS (p < 0.01) and reduced the contractile tension evoked by EFS (72.3%) (p < 0.001). Ivabradine incubation did not affect the expression and localization of HCN3 and HCN4 channels in the HCC smooth muscle cells. CONCLUSIONS Ivabradine exhibits a relaxant effect on HCC tissues, which is likely to be attributed to the blocking of L-type Ca2+ channels and the opening of K+ channels, independent of changes in the activation of the nitric oxide/cyclic guanosine monophosphate system. Inhibition of HCN channels localized in cavernosal smooth muscle cells may offer pharmacological benefits for patients with cardiovascular risk factors.
Collapse
Affiliation(s)
- Serap Gur
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Laith Alzweri
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Ecem Kaya-Sezginer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Asim B Abdel-Mageed
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Suresh C Sikka
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Departments of Urology, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
31
|
Hsieh LS, Wen JH, Nguyen LH, Zhang L, Getz S, Torres-Reveron J, Wang Y, Spencer DD, Bordey A. Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Sci Transl Med 2020; 12:12/570/eabc1492. [PMID: 33208499 PMCID: PMC9888000 DOI: 10.1126/scitranslmed.abc1492] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023]
Abstract
The causative link between focal cortical malformations (FCMs) and epilepsy is well accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we showed that FCM neurons were responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP concentrations, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not control pyramidal neurons. Ectopic HCN4 expression was dependent on the mechanistic target of rapamycin (mTOR), preceded the onset of seizures, and was also found in diseased neurons in tissue resected from patients with TSC and FCDII. Last, blocking HCN4 channel activity in FCM neurons prevented epilepsy in the mouse model. These findings suggest that HCN4 play a main role in seizure and identify a cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons suggests that gene therapy targeting HCN4 might be effective in reducing seizures in FCDII or TSC.
Collapse
Affiliation(s)
- Lawrence S. Hsieh
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - John H. Wen
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lena H. Nguyen
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Stephanie Getz
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Juan Torres-Reveron
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ying Wang
- Emergency Department, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, Hunan 410008, China
| | - Dennis D. Spencer
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,To whom correspondence should be addressed: Angélique Bordey, Ph.D., Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, FMB 422, New Haven, CT 06520-8082, Phone: 203-737-2515, Fax: 203-737-2159,
| |
Collapse
|
32
|
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells. Nat Commun 2020; 11:5555. [PMID: 33144559 PMCID: PMC7641277 DOI: 10.1038/s41467-020-19304-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node. The involvement of cAMP-dependent regulation of HCN4 in the chronotropic heart rate response is a matter of debate. Here the authors use a knockin mouse model expressing cAMP-insensitive HCN4 channels to discover an inhibitory nonfiring cell pool in the sinoatrial node and a tonic and mutual interaction between firing and nonfiring pacemaker cells that is controlled by cAMP-dependent regulation of HCN4, with implications in chronotropic heart rate responses.
Collapse
|
33
|
Baudot M, Torre E, Bidaud I, Louradour J, Torrente AG, Fossier L, Talssi L, Nargeot J, Barrère-Lemaire S, Mesirca P, Mangoni ME. Concomitant genetic ablation of L-type Ca v1.3 (α 1D) and T-type Ca v3.1 (α 1G) Ca 2+ channels disrupts heart automaticity. Sci Rep 2020; 10:18906. [PMID: 33144668 PMCID: PMC7642305 DOI: 10.1038/s41598-020-76049-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Cav1.2 Ca2+ channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Cav1.3 and T-type Cav3.1 Ca2+ channels (SAN-VGCCs). The role of SAN-VGCCs in automaticity is incompletely understood. We used knockout mice carrying individual genetic ablation of Cav1.3 (Cav1.3−/−) or Cav3.1 (Cav3.1−/−) channels and double mutant Cav1.3−/−/Cav3.1−/− mice expressing only Cav1.2 channels. We show that concomitant loss of SAN-VGCCs prevents physiological SAN automaticity, blocks impulse conduction and compromises ventricular rhythmicity. Coexpression of SAN-VGCCs is necessary for impulse formation in the central SAN. In mice lacking SAN-VGCCs, residual pacemaker activity is predominantly generated in peripheral nodal and extranodal sites by f-channels and TTX-sensitive Na+ channels. In beating SAN cells, ablation of SAN-VGCCs disrupted late diastolic local intracellular Ca2+ release, which demonstrates an important role for these channels in supporting the sarcoplasmic reticulum based “Ca2+clock” mechanism during normal pacemaking. These data implicate an underappreciated role for co-expression of SAN-VGCCs in heart automaticity and define an integral role for these channels in mechanisms that control the heartbeat.
Collapse
Affiliation(s)
- Matthias Baudot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France.,Department of Biotechnology and Biosciences, Università Degli Studi di Milano-Bicocca, Milan, Italy
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Julien Louradour
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Lucile Fossier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Leïla Talssi
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France.,LabEx ICST, Montpellier, France
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx ICST, Montpellier, France.
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la cardonille, 34094, Montpellier, France. .,LabEx ICST, Montpellier, France.
| |
Collapse
|
34
|
Harmsen S, Coskun AF, Ganesh S, Nolan GP, Gambhir SS. Isotopically Encoded Nanotags for Multiplexed Ion Beam Imaging. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:2000098. [PMID: 32661501 PMCID: PMC7357881 DOI: 10.1002/admt.202000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
High-dimensional profiling of markers and analytes using approaches, such as barcoded fluorescent imaging with repeated labeling and mass cytometry has allowed visualization of biological processes at the single-cell level. To address limitations of sensitivity and mass-channel capacity, a nanobarcoding platform is developed for multiplexed ion beam imaging (MIBI) using secondary ion beam spectrometry that utilizes fabricated isotopically encoded nanotags. Use of combinatorial isotope distributions in 100 nm sized nanotags expands the labeling palette to overcome the spectral bounds of mass channels. As a proof-of-principle, a four-digit (i.e., 0001-1111) barcoding scheme is demonstrated to detect 16 variants of 2H, 19F, 79/81Br, and 127I elemental barcode sets that are encoded in silica nanoparticle matrices. A computational debarcoding method and an automated machine learning analysis approach are developed to extract barcodes for accurate quantification of spatial nanotag distributions in large ion beam imaging areas up to 0.6 mm2. Isotopically encoded nanotags should boost the performance of mass imaging platforms, such as MIBI and other elemental-based bioimaging approaches.
Collapse
Affiliation(s)
- Stefan Harmsen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ahmet F Coskun
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shambavi Ganesh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Inhibition of G protein-gated K + channels by tertiapin-Q rescues sinus node dysfunction and atrioventricular conduction in mouse models of primary bradycardia. Sci Rep 2020; 10:9835. [PMID: 32555258 PMCID: PMC7300035 DOI: 10.1038/s41598-020-66673-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sinus node (SAN) dysfunction (SND) manifests as low heart rate (HR) and is often accompanied by atrial tachycardia or atrioventricular (AV) block. The only currently available therapy for chronic SND is the implantation of an electronic pacemaker. Because of the growing burden of SND in the population, new pharmacological therapies of chronic SND and heart block are desirable. We developed a collection of genetically modified mouse strains recapitulating human primary SND associated with different degrees of AV block. These mice were generated with genetic ablation of L-type Cav1.3 (Cav1.3-/-), T-type Cav3.1 (Cav3.1-/-), or both (Cav1.3-/-/Cav3.1-/-). We also studied mice haplo-insufficient for the Na+ channel Nav1.5 (Nav1.5+/) and mice in which the cAMP-dependent regulation of hyperpolarization-activated f-(HCN4) channels has been abolished (HCN4-CNBD). We analysed, by telemetric ECG recording, whether pharmacological inhibition of the G-protein-activated K+ current (IKACh) by the peptide tertiapin-Q could improve HR and AV conduction in these mouse strains. Tertiapin-Q significantly improved the HR of Cav1.3-/- (19%), Cav1.3-/-/Cav3.1-/- (23%) and HCN4-CNBD (14%) mice. Tertiapin-Q also improved cardiac conduction of Nav1.5+/- mice by 24%. Our data suggest that the development of pharmacological IKACh inhibitors for the management of SND and conduction disease is a viable approach.
Collapse
|
36
|
Kuß J, Stallmeyer B, Goldstein M, Rinné S, Pees C, Zumhagen S, Seebohm G, Decher N, Pott L, Kienitz MC, Schulze-Bahr E. Familial Sinus Node Disease Caused by a Gain of GIRK (G-Protein Activated Inwardly Rectifying K + Channel) Channel Function. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 12:e002238. [PMID: 30645171 DOI: 10.1161/circgen.118.002238] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inherited forms of sinus node dysfunction (SND) clinically include bradycardia, sinus arrest, and chronotropic incompetence and may serve as disease models to understand sinus node physiology and impulse generation. Recently, a gain-of-function mutation in the G-protein gene GNB2 led to enhanced activation of the GIRK (G-protein activated inwardly rectifying K+ channel). Thus, human cardiac GIRK channels are important for heart rate regulation and subsequently, genes encoding their subunits Kir3.1 and Kir3.4 ( KCNJ3 and KCNJ5) are potential candidates for inherited SND in human. METHODS We performed a combined approach of targeted sequencing of KCNJ3 and KCNJ5 in 52 patients with idiopathic SND and subsequent whole exome sequencing of additional family members in a genetically affected patient. A putative novel disease-associated gene variant was functionally analyzed by voltage-clamp experiments using various heterologous cell expression systems (Xenopus oocytes, CHO cells, and rat atrial cardiomyocytes). RESULTS In a 3-generation family with SND we identified a novel variant in KCNJ5 which leads to an amino acid substitution (p.Trp101Cys) in the first transmembrane domain of the Kir3.4 subunit of the cardiac GIRK channel. The identified variant cosegregated with the disease in the family and was absent in the Exome Variant Server and Exome Aggregation Consortium databases. Expression of mutant Kir3.4 (±native Kir3.1) in different heterologous cell expression systems resulted in increased GIRK currents ( IK,ACh) and a reduced inward rectification which was not compensated by intracellular spermidine. Moreover, in silico modeling of heterotetrameric mutant GIRK channels indicates a structurally altered binding site for spermine. CONCLUSIONS For the first time, an inherited gain-of-function mutation in the human GIRK3.4 causes familial human SND. The increased activity of GIRK channels is likely to lead to a sustained hyperpolarization of pacemaker cells and thereby reduces heart rate. Modulation of human GIRK channels may pave a way for further treatment of cardiac pacemaking.
Collapse
Affiliation(s)
- Johanna Kuß
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (J.K., B.S., S.Z., G.S., E.S.-B.)
| | - Birgit Stallmeyer
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (J.K., B.S., S.Z., G.S., E.S.-B.)
| | - Matthias Goldstein
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Germany (M.G., S.R., N.D.)
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Germany (M.G., S.R., N.D.)
| | - Christiane Pees
- Department of Pediatric Cardiology, University Children's Hospital Vienna, Austria (C.P.)
| | - Sven Zumhagen
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (J.K., B.S., S.Z., G.S., E.S.-B.)
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (J.K., B.S., S.Z., G.S., E.S.-B.)
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, Germany (M.G., S.R., N.D.)
| | - Lutz Pott
- Department of Cardiovascular Medicine, Institute of Physiology, Ruhr-University Bochum, Germany (L.P., M.-C.K.)
| | - Marie-Cécile Kienitz
- Department of Cardiovascular Medicine, Institute of Physiology, Ruhr-University Bochum, Germany (L.P., M.-C.K.)
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Germany (J.K., B.S., S.Z., G.S., E.S.-B.)
| |
Collapse
|
37
|
Abstract
Cardiac pacemaking is a most fundamental cardiac function, thoroughly investigated for decades with a multiscale approach at organ, tissue, cell and molecular levels, to clarify the basic mechanisms underlying generation and control of cardiac rhythm. Understanding the processes involved in pacemaker activity is of paramount importance for a basic physiological knowledge, but also as a way to reveal details of pathological dysfunctions useful in the perspective of a therapeutic approach. Among the mechanisms involved in pacemaking, the "funny" (If) current has properties most specifically fitting the requirements for generation and control of repetitive activity, and has consequently received the most attention in studies of the pacemaker function. Present knowledge of the basic mechanisms of pacemaking and the properties of funny channels has led to important developments of clinical relevance. These include: (1) the successful development of heart rate-reducing agents, such as ivabradine, able to control cardiac rhythm and useful in the treatment of diseases such as coronary artery disease, heart failure and tachyarrhythmias; (2) the understanding of the genetic basis of disorders of cardiac rhythm caused by HCN channelopathies; (3) the design of strategies to implement biological pacemakers based on transfer of HCN channels or of stem cell-derived pacemaker cells expressing If, with the ultimate goal to replace electronic devices. In this review, I will give a brief historical account of the discovery of the funny current and the development of the concept of If-based pacemaking, in the context of a wider, more complex model of cardiac rhythmic function.
Collapse
Affiliation(s)
- Dario DiFrancesco
- Department of Biosciences, University of Milano, IBF-CNR University of Milano Unit, Milan, Italy
| |
Collapse
|
38
|
Kozek KA, Du Y, Sharma S, Prael FJ, Spitznagel BD, Kharade SV, Denton JS, Hopkins CR, Weaver CD. Discovery and Characterization of VU0529331, a Synthetic Small-Molecule Activator of Homomeric G Protein-Gated, Inwardly Rectifying, Potassium (GIRK) Channels. ACS Chem Neurosci 2019; 10:358-370. [PMID: 30136838 PMCID: PMC6528656 DOI: 10.1021/acschemneuro.8b00287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-gated, inwardly rectifying, potassium (GIRK) channels are important regulators of cellular excitability throughout the body. GIRK channels are heterotetrameric and homotetrameric combinations of the Kir3.1-4 (GIRK1-4) subunits. Different subunit combinations are expressed throughout the central nervous system (CNS) and the periphery, and most of these combinations contain a GIRK1 subunit. For example, the predominance of GIRK channels in the CNS are composed of GIRK1 and GIRK2 subunits, while the GIRK channels in cardiac atrial myocytes are made up mostly of GIRK1 and GIRK4 subunits. Although the vast majority of GIRK channels contain a GIRK1 subunit, discrete populations of cells that express non-GIRK1-containing GIRK (non-GIRK1/X) channels do exist. For instance, dopaminergic neurons in the ventral tegmental area of the brain, associated with addiction and reward, do not express the GIRK1 subunit. Targeting these non-GIRK1/X channels with subunit-selective pharmacological probes could lead to important insights into how GIRK channels are involved in reward and addiction. Such insights may, in turn, reveal therapeutic opportunities for the treatment or prevention of addiction. Previously, our laboratory discovered small molecules that can specifically modulate the activity of GIRK1-containing GIRK channels. However, efforts to generate compounds active on non-GIRK1/X channels from these scaffolds have been unsuccessful. Recently, ivermectin was shown to modulate non-GIRK1/X channels, and historically, ivermectin is known to modulate a wide variety of neuronal channels and receptors. Further, ivermectin is a complex natural product, which makes it a challenging starting point for development of more selective, effective, and potent compounds. Thus, while ivermectin provides proof-of-concept as a non-GIRK1/X channel activator, it is of limited utility. Therefore, we sought to discover a synthetic small molecule that would serve as a starting point for the development of non-GIRK1/X channel modulators. To accomplish this, we used a high-throughput thallium flux assay to screen a 100 000-compound library in search of activators of homomeric GIRK2 channels. Using this approach, we discovered VU0529331, the first synthetic small molecule reported to activate non-GIRK1/X channels, to our knowledge. This discovery represents the first step toward developing potent and selective non-GIRK1/X channel probes. Such molecules will help elucidate the role of GIRK channels in addiction, potentially establishing a foundation for future development of therapies utilizing targeted GIRK channel modulation.
Collapse
Affiliation(s)
- Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Swagat Sharma
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sujay V. Kharade
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Corey R. Hopkins
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Segal S, Kirschner Peretz N, Arbel-Ganon L, Liang J, Li L, Marbach D, Yang D, Wang SQ, Yaniv Y. Eliminating contraction during culture maintains global and local Ca 2+ dynamics in cultured rabbit pacemaker cells. Cell Calcium 2018; 78:35-47. [PMID: 30594820 DOI: 10.1016/j.ceca.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Pacemaker cells residing in the sinoatrial node generate the regular heartbeat. Ca2+ signaling controls the heartbeat rate-directly, through the effect on membrane molecules (NCX exchange, K+ channel), and indirectly, through activation of calmodulin-AC-cAMP-PKA signaling. Thus, the physiological role of signaling in pacemaker cells can only be assessed if the Ca2+ dynamics are in the physiological range. Cultured cells that can be genetically manipulated and/or virally infected with probes are required for this purpose. Because rabbit pacemaker cells in culture experience a decrease in their spontaneous action potential (AP) firing rate below the physiological range, Ca2+ dynamics are expected to be affected. However, Ca2+ dynamics in cultured pacemaker cells have not been reported before. We aim to a develop a modified culture method that sustains the global and local Ca2+ kinetics along with the AP firing rate of rabbit pacemaker cells. We used experimental and computational tools to test the viability of rabbit pacemaker cells in culture under various conditions. We tested the effect of culture dish coating, pH, phosphorylation, and energy balance on cultured rabbit pacemaker cells function. The cells were maintained in culture for 48 h in two types of culture media: one without the addition of a contraction uncoupler and one enriched with either 10 mM BDM (2,3-Butanedione 2-monoxime) or 25 μM blebbistatin. The uncoupler was washed out from the medium prior to the experiments. Cells were successfully infected with a GFP adenovirus cultured with either BDM or blebbistatin. Using either uncoupler during culture led to the cell surface area being maintained at the same level as fresh cells. Moreover, the phospholamban and ryanodine receptor densities and their phosphorylation level remained intact in culture when either blebbistatin or BDM were present. Spontaneous AP firing rate, spontaneous Ca2+ kinetics, and spontaneous local Ca2+ release parameters were similar in the cultured cells with blebbistatin as in fresh cells. However, BDM affects these parameters. Using experimental and a computational model, we showed that by eliminating contraction, phosphorylation activity is preserved and energy is reduced. However, the side-effects of BDM render it less effective than blebbistatin.
Collapse
Affiliation(s)
- Sofia Segal
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | | | | | - Jinghui Liang
- College of Life Sciences, Peking University, Beijing, China
| | - Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Daphna Marbach
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Shi-Qiang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
| |
Collapse
|
40
|
Rat atrial engineered heart tissue: a new in vitro model to study atrial biology. Basic Res Cardiol 2018; 113:41. [DOI: 10.1007/s00395-018-0701-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
41
|
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19:713-730. [PMID: 30143745 DOI: 10.1038/s41580-018-0052-8] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium ions (Ca2+) are some of the most versatile signalling molecules, and they have many physiological functions, prominently including muscle contraction, neuronal excitability, cell migration and cell growth. By sequestering and releasing Ca2+, mitochondria serve as important regulators of cellular Ca2+. Mitochondrial Ca2+ also has other important functions, such as regulation of mitochondrial metabolism, ATP production and cell death. In recent years, identification of the molecular machinery regulating mitochondrial Ca2+ accumulation and efflux has expanded the number of (patho)physiological conditions that rely on mitochondrial Ca2+ homeostasis. Thus, expanding the understanding of the mechanisms of mitochondrial Ca2+ regulation and function in different cell types is an important task in biomedical research, which offers the possibility of targeting mitochondrial Ca2+ machinery for the treatment of several disorders.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care and Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
42
|
Lee SW, Anderson A, Guzman PA, Nakano A, Tolkacheva EG, Wickman K. Atrial GIRK Channels Mediate the Effects of Vagus Nerve Stimulation on Heart Rate Dynamics and Arrhythmogenesis. Front Physiol 2018; 9:943. [PMID: 30072916 PMCID: PMC6060443 DOI: 10.3389/fphys.2018.00943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023] Open
Abstract
Diminished parasympathetic influence is central to the pathogenesis of cardiovascular diseases, including heart failure and hypertension. Stimulation of the vagus nerve has shown promise in treating cardiovascular disease, prompting renewed interest in understanding the signaling pathway(s) that mediate the vagal influence on cardiac physiology. Here, we evaluated the contribution of G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels to the effect of vagus nerve stimulation (VNS) on heart rate (HR), HR variability (HRV), and arrhythmogenesis in anesthetized mice. As parasympathetic fibers innervate both atria and ventricle, and GIRK channels contribute to the cholinergic impact on atrial and ventricular myocytes, we collected in vivo electrocardiogram recordings from mice lacking either atrial or ventricular GIRK channels, during VNS. VNS decreased HR and increased HRV in control mice, in a muscarinic receptor-dependent manner. This effect was preserved in mice lacking ventricular GIRK channels, but was nearly completely absent in mice lacking GIRK channels in the atria. In addition, atrial-specific ablation of GIRK channels conferred resistance to arrhythmic episodes induced by VNS. These data indicate that atrial GIRK channels are the primary mediators of the impact of VNS on HR, HRV, and arrhythmogenesis in the anesthetized mouse.
Collapse
Affiliation(s)
- Steven W. Lee
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Pilar A. Guzman
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
43
|
Saeed Y, Temple IP, Borbas Z, Atkinson A, Yanni J, Maczewski M, Mackiewicz U, Aly M, Logantha SJRJ, Garratt CJ, Dobrzynski H. Structural and functional remodeling of the atrioventricular node with aging in rats: The role of hyperpolarization-activated cyclic nucleotide-gated and ryanodine 2 channels. Heart Rhythm 2018; 15:752-760. [PMID: 29288034 PMCID: PMC5934612 DOI: 10.1016/j.hrthm.2017.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Aging is associated with an increased incidence of atrioventricular nodal (AVN) dysfunction. OBJECTIVE The aim of this study was to investigate the structural and functional remodeling in the atrioventricular junction (AVJ) with aging. METHODS Electrophysiology, histology, and immunohistochemistry experiments on male Wistar Hannover rats aged 3 months (n = 24) and 2 years (n = 15) were performed. Atrio-His (AH) interval, Wenkebach cycle length (WBCL), and AVN effective refractory period (AVNERP) were measured. Cesium (2 mM) was used to block hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, while ryanodine (2 μM) was used to block ryanodine 2 (RyR2) channels. Protein expression from different regions of the AVJ was studied using immunofluorescence. The expression of connexins (connexin 43 and connexin 40), ion channels (Hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), voltage sensitive sodium channel (Nav1.5), and L-Type calcium channel (Cav1.3)), and calcium handling proteins (RyR2 and sarco/endoplasmic reticulum calcium ATPaset type 2a (SERCA2a)) were measured. Morphological characteristics were studied with histology. RESULTS Without drugs to block HCN and RyR2 channels, there was prolongation of the AH interval, WBCL, and AVNERP (P < .05) with aging. In young rats only, cesium prolonged the AH interval, WBCL, and AVNERP (P < .01). Ryanodine prolonged the AH interval and WBCL (P < .01) in both young and old rats. Immunofluorescence revealed that with aging, connexin 43, HCN4, Nav1.5, and RyR2 downregulate in the regions of the AVJ and connexin 40, SERCA2a, and Cav1.3 upregulate (P < .05). Aging results in cellular hypertrophy, loosely packed cells, a decrease in the number of nuclei, and an increase in collagen content. CONCLUSION Heterogeneous ion channel expression changes were observed in the AVJ with aging. For the first time, we have shown that HCN and RyR2 play an important role in AVN dysfunction with aging.
Collapse
Affiliation(s)
- Yawer Saeed
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Trust, Manchester, United Kingdom
| | - Ian P Temple
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Zoltan Borbas
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Trust, Manchester, United Kingdom
| | - Andrew Atkinson
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Joseph Yanni
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Michal Maczewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Mariam Aly
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Sunil Jit R J Logantha
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Clifford J Garratt
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Trust, Manchester, United Kingdom
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
44
|
Mesirca P, Torrente AG, Bidaud I, Baudot M, Nargeot J, Mangoni ME. [Genesis of cardiac sinus automaticity and therapeutic perspectives]. ARCHIVES DES MALADIES DU COEUR ET DES VAISSEAUX. PRATIQUE 2018; 2018:35-39. [PMID: 30333689 PMCID: PMC6186439 DOI: 10.1016/j.amcp.2018.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- P Mesirca
- CNRS, Inserm, département de physiologie, université de Montpellier, institut de génomique fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier, France
| | - A-G Torrente
- CNRS, Inserm, département de physiologie, université de Montpellier, institut de génomique fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier, France
| | - I Bidaud
- CNRS, Inserm, département de physiologie, université de Montpellier, institut de génomique fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier, France
| | - M Baudot
- CNRS, Inserm, département de physiologie, université de Montpellier, institut de génomique fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier, France
| | - J Nargeot
- CNRS, Inserm, département de physiologie, université de Montpellier, institut de génomique fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier, France
| | - M-E Mangoni
- CNRS, Inserm, département de physiologie, université de Montpellier, institut de génomique fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier, France
| |
Collapse
|
45
|
Abstract
The Popeye domain containing (POPDC) genes encode transmembrane proteins, which are abundantly expressed in striated muscle cells. Hallmarks of the POPDC proteins are the presence of three transmembrane domains and the Popeye domain, which makes up a large part of the cytoplasmic portion of the protein and functions as a cAMP-binding domain. Interestingly, despite the prediction of structural similarity between the Popeye domain and other cAMP binding domains, at the protein sequence level they strongly differ from each other suggesting an independent evolutionary origin of POPDC proteins. Loss-of-function experiments in zebrafish and mouse established an important role of POPDC proteins for cardiac conduction and heart rate adaptation after stress. Loss-of function mutations in patients have been associated with limb-girdle muscular dystrophy and AV-block. These data suggest an important role of these proteins in the maintenance of structure and function of striated muscle cells.
Collapse
|
46
|
Kozasa Y, Nakashima N, Ito M, Ishikawa T, Kimoto H, Ushijima K, Makita N, Takano M. HCN4 pacemaker channels attenuate the parasympathetic response and stabilize the spontaneous firing of the sinoatrial node. J Physiol 2018; 596:809-825. [PMID: 29315578 PMCID: PMC5830425 DOI: 10.1113/jp275303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023] Open
Abstract
Key points The contribution of HCN4 pacemaker channels in the autonomic regulation of the sino‐atrial node (SAN) has been a matter of debate. The transgenic overexpression of HCN4 did not induce tachycardia, but reduced heart rate variability, while the conditional knockdown of HCN4 gave rise to sinus arrhythmia. The response of the SAN to β‐adrenergic stimulation was not affected by overexpression or knockdown of HCN4 channels. When HCN4 channels were knocked down, the parasympathetic response examined by cervical vagus nerve stimulation (CVNS) was enhanced; the CVNS induced complete sinus pause. The overexpression of HCN4 attenuated bradycardia induced by CVNS only during β‐adrenergic stimulation. We concluded that HCN4 pacemaker channels stabilize the spontaneous firing by attenuating the parasympathetic response of the SAN.
Abstract The heart rate is dynamically controlled by the sympathetic and parasympathetic nervous systems that regulate the sinoatrial node (SAN). HCN4 pacemaker channels are the well‐known causative molecule of congenital sick sinus syndrome. Although HCN4 channels are activated by cAMP, the sympathetic response of the SAN was preserved in patients carrying loss‐of‐function mutations of the HCN4 gene. In order to clarify the contribution of HCN4 channels in the autonomic regulation of the SAN, we developed novel gain‐of‐function mutant mice in which the expression level of HCN4 channels could be reversibly changed from zero to ∼3 times that in wild‐type mice, using tetracycline transactivator and the tetracycline responsive element. We recorded telemetric ECGs in freely moving conscious mice and analysed the heart rate variability. We also evaluated the response of the SAN to cervical vagus nerve stimulation (CVNS). The conditional overexpression of HCN4 did not induce tachycardia, but reduced heart rate variability. The HCN4 overexpression also attenuated bradycardia induced by the CVNS only during the β‐adrenergic stimulation. In contrast, the knockdown of HCN4 gave rise to sinus arrhythmia, and enhanced the parasympathetic response; complete sinus pause was induced by the CVNS. In vitro, we compared the effects of acetylcholine on the spontaneous action potentials of single pacemaker cells, and found that similar phenotypic changes were induced by genetic manipulation of HCN4 expression both in the presence and absence of β‐adrenergic stimulation. Our study suggests that HCN4 channels attenuate the vagal response of the SAN, and thereby stabilize the spontaneous firing of the SAN. The contribution of HCN4 pacemaker channels in the autonomic regulation of the sino‐atrial node (SAN) has been a matter of debate. The transgenic overexpression of HCN4 did not induce tachycardia, but reduced heart rate variability, while the conditional knockdown of HCN4 gave rise to sinus arrhythmia. The response of the SAN to β‐adrenergic stimulation was not affected by overexpression or knockdown of HCN4 channels. When HCN4 channels were knocked down, the parasympathetic response examined by cervical vagus nerve stimulation (CVNS) was enhanced; the CVNS induced complete sinus pause. The overexpression of HCN4 attenuated bradycardia induced by CVNS only during β‐adrenergic stimulation. We concluded that HCN4 pacemaker channels stabilize the spontaneous firing by attenuating the parasympathetic response of the SAN.
Collapse
Affiliation(s)
- Yuko Kozasa
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan.,Department of Anesthesiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Noriyuki Nakashima
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Masayuki Ito
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Taisuke Ishikawa
- Department of Molecular Physiology, Nagasaki University, Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Hiroki Kimoto
- Department of Molecular Physiology, Nagasaki University, Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Kazuo Ushijima
- Department of Anesthesiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Naomasa Makita
- Department of Molecular Physiology, Nagasaki University, Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| |
Collapse
|
47
|
Expression and relevance of the G protein-gated K + channel in the mouse ventricle. Sci Rep 2018; 8:1192. [PMID: 29352184 PMCID: PMC5775354 DOI: 10.1038/s41598-018-19719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The atrial G protein-gated inwardly rectifying K+ (GIRK) channel is a critical mediator of parasympathetic influence on cardiac physiology. Here, we probed the details and relevance of the GIRK channel in mouse ventricle. mRNAs for the atrial GIRK channel subunits (GIRK1, GIRK4), M2 muscarinic receptor (M2R), and RGS6, a negative regulator of atrial GIRK-dependent signaling, were detected in mouse ventricle at relatively low levels. The cholinergic agonist carbachol (CCh) activated small GIRK currents in adult wild-type ventricular myocytes that exhibited relatively slow kinetics and low CCh sensitivity; these currents were absent in ventricular myocytes from Girk1-/- or Girk4-/- mice. While loss of GIRK channels attenuated the CCh-induced shortening of action potential duration and suppression of ventricular myocyte excitability, selective ablation of GIRK channels in ventricle had no effect on heart rate, heart rate variability, or electrocardiogram parameters at baseline or after CCh injection. Additionally, loss of ventricular GIRK channels did not impact susceptibility to ventricular arrhythmias. These data suggest that the mouse ventricular GIRK channel is a GIRK1/GIRK4 heteromer, and show that while it contributes to the cholinergic suppression of ventricular myocyte excitability, this influence does not substantially impact cardiac physiology or ventricular arrhythmogenesis in the mouse.
Collapse
|
48
|
Aziz Q, Li Y, Tinker A. Potassium channels in the sinoatrial node and their role in heart rate control. Channels (Austin) 2018; 12:356-366. [PMID: 30301404 PMCID: PMC6207292 DOI: 10.1080/19336950.2018.1532255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022] Open
Abstract
Potassium currents determine the resting membrane potential and govern repolarisation in cardiac myocytes. Here, we review the various currents in the sinoatrial node focussing on their molecular and cellular properties and their role in pacemaking and heart rate control. We also describe how our recent finding of a novel ATP-sensitive potassium channel population in these cells fits into this picture.
Collapse
Affiliation(s)
- Qadeer Aziz
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Yiwen Li
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
49
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
50
|
Haron-Khun S, Weisbrod D, Bueno H, Yadin D, Behar J, Peretz A, Binah O, Hochhauser E, Eldar M, Yaniv Y, Arad M, Attali B. SK4 K + channels are therapeutic targets for the treatment of cardiac arrhythmias. EMBO Mol Med 2017; 9:415-429. [PMID: 28219898 PMCID: PMC5376763 DOI: 10.15252/emmm.201606937] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress‐provoked ventricular arrhythmia, which also manifests sinoatrial node (SAN) dysfunction. We recently showed that SK4 calcium‐activated potassium channels are important for automaticity of cardiomyocytes derived from human embryonic stem cells. Here SK4 channels were identified in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) from healthy and CPVT2 patients bearing a mutation in calsequestrin 2 (CASQ2‐D307H) and in SAN cells from WT and CASQ2‐D307H knock‐in (KI) mice. TRAM‐34, a selective blocker of SK4 channels, prominently reduced delayed afterdepolarizations and arrhythmic Ca2+ transients observed following application of the β‐adrenergic agonist isoproterenol in CPVT2‐derived hiPSC‐CMs and in SAN cells from KI mice. Strikingly, in vivo ECG recording showed that intraperitoneal injection of the SK4 channel blockers, TRAM‐34 or clotrimazole, greatly reduced the arrhythmic features of CASQ2‐D307H KI and CASQ2 knockout mice at rest and following exercise. This work demonstrates the critical role of SK4 Ca2+‐activated K+ channels in adult pacemaker function, making them promising therapeutic targets for the treatment of cardiac ventricular arrhythmias such as CPVT.
Collapse
Affiliation(s)
- Shiraz Haron-Khun
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - David Weisbrod
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Bueno
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Yadin
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Joachim Behar
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Binah
- Department of Physiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edith Hochhauser
- The Cardiac Research Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Petah Tikva, Israel
| | - Michael Eldar
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Yael Yaniv
- Laboratory of Bioenergetic and Bioelectric Systems, Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|