1
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
2
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Motta H, Reuwsaat JCV, Lopes FC, Viezzer G, Volpato FCZ, Barth AL, de Tarso Roth Dalcin P, Staats CC, Vainstein MH, Kmetzsch L. Comparative microbiome analysis in cystic fibrosis and non-cystic fibrosis bronchiectasis. Respir Res 2024; 25:211. [PMID: 38762736 PMCID: PMC11102160 DOI: 10.1186/s12931-024-02835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Bronchiectasis is a condition characterized by abnormal and irreversible bronchial dilation resulting from lung tissue damage and can be categorized into two main groups: cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Both diseases are marked by recurrent infections, inflammatory exacerbations, and lung damage. Given that infections are the primary drivers of disease progression, characterization of the respiratory microbiome can shed light on compositional alterations and susceptibility to antimicrobial drugs in these cases compared to healthy individuals. METHODS To assess the microbiota in the two studied diseases, 35 subjects were recruited, comprising 10 NCFB and 13 CF patients and 12 healthy individuals. Nasopharyngeal swabs and induced sputum were collected, and total DNA was extracted. The DNA was then sequenced by the shotgun method and evaluated using the SqueezeMeta pipeline and R. RESULTS We observed reduced species diversity in both disease cohorts, along with distinct microbial compositions and profiles of antimicrobial resistance genes, compared to healthy individuals. The nasopharynx exhibited a consistent microbiota composition across all cohorts. Enrichment of members of the Burkholderiaceae family and an increased Firmicutes/Bacteroidetes ratio in the CF cohort emerged as key distinguishing factors compared to NCFB group. Staphylococcus aureus and Prevotella shahii also presented differential abundance in the CF and NCFB cohorts, respectively, in the lower respiratory tract. Considering antimicrobial resistance, a high number of genes related to antibiotic efflux were detected in both disease groups, which correlated with the patient's clinical data. CONCLUSIONS Bronchiectasis is associated with reduced microbial diversity and a shift in microbial and resistome composition compared to healthy subjects. Despite some similarities, CF and NCFB present significant differences in microbiome composition and antimicrobial resistance profiles, suggesting the need for customized management strategies for each disease.
Collapse
Affiliation(s)
- Heryk Motta
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlia Catarina Vieira Reuwsaat
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Cortez Lopes
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Graciele Viezzer
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Caroline Zempulski Volpato
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paulo de Tarso Roth Dalcin
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Microrganismos de Importância Médica e Biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Ruhluel D, Fisher L, Barton TE, Leighton H, Kumar S, Amores Morillo P, O’Brien S, Fothergill JL, Neill DR. Secondary messenger signalling influences Pseudomonas aeruginosa adaptation to sinus and lung environments. THE ISME JOURNAL 2024; 18:wrae065. [PMID: 38647527 PMCID: PMC11102083 DOI: 10.1093/ismejo/wrae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Pseudomonas aeruginosa is a cause of chronic respiratory tract infections in people with cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Prolonged infection allows the accumulation of mutations and horizontal gene transfer, increasing the likelihood of adaptive phenotypic traits. Adaptation is proposed to arise first in bacterial populations colonizing upper airway environments. Here, we model this process using an experimental evolution approach. Pseudomonas aeruginosa PAO1, which is not airway adapted, was serially passaged, separately, in media chemically reflective of upper or lower airway environments. To explore whether the CF environment selects for unique traits, we separately passaged PAO1 in airway-mimicking media with or without CF-specific factors. Our findings demonstrated that all airway environments-sinus and lungs, under CF and non-CF conditions-selected for loss of twitching motility, increased resistance to multiple antibiotic classes, and a hyper-biofilm phenotype. These traits conferred increased airway colonization potential in an in vivo model. CF-like conditions exerted stronger selective pressures, leading to emergence of more pronounced phenotypes. Loss of twitching was associated with mutations in type IV pili genes. Type IV pili mediate surface attachment, twitching, and induction of cAMP signalling. We additionally identified multiple evolutionary routes to increased biofilm formation involving regulation of cyclic-di-GMP signalling. These included the loss of function mutations in bifA and dipA phosphodiesterase genes and activating mutations in the siaA phosphatase. These data highlight that airway environments select for traits associated with sessile lifestyles and suggest upper airway niches support emergence of phenotypes that promote establishment of lung infection.
Collapse
Affiliation(s)
- Dilem Ruhluel
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Lewis Fisher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Thomas E Barton
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Sumit Kumar
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Paula Amores Morillo
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Siobhan O’Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Daniel R Neill
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
6
|
Zhou Y, Huang J, Wang G, Zhai Z, Ahmed MU, Xia X, Liu C, Jin Y, Pan X, Huang Y, Wu C, Zhang X. Polymyxin B sulfate inhalable microparticles with high-lectin-affinity sugar carriers for efficient treatment of biofilm-associated pulmonary infections. Sci Bull (Beijing) 2023; 68:3225-3239. [PMID: 37973467 DOI: 10.1016/j.scib.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary infections caused by multidrug-resistant bacteria have become a significant threat to human health. Bacterial biofilms exacerbate the persistence and recurrence of pulmonary infections, hindering the accessibility and effectiveness of antibiotics. In this study, a dry powder inhalation (DPI) consisting of polymyxin B sulfate (PMBS) inhalable microparticles and high-lectin-affinity (HLA) sugar (i.e., raffinose) carriers was developed for treating pulmonary infections and targeting bacterial lectins essential for biofilm growth. The formulated PMBS-HLA DPIs exhibited particle sizes of approximately 3 μm, and surface roughness varied according to the drug-to-carrier ratio. Formulation F5 (PMBS: raffinose = 10:90) demonstrated the highest fine particle fraction (FPF) value (64.86%), signifying its substantially enhanced aerosol performance, potentially attributable to moderate roughness and smallest mass median aerodynamic particle size. The efficacy of PMBS-HLA DPIs in inhibiting biofilm formation and eradicating mature biofilms was significantly improved with the addition of raffinose, suggesting the effectiveness of lectin-binding strategy for combating bacterial biofilm-associated infections. In rat models with acute and chronic pulmonary infections, F5 demonstrated superior bacterial killing and amelioration of inflammatory responses compared to spray-dried PMBS (F0). In conclusion, our HLA carrier-based formulation presents considerable potential for the efficient treatment of multidrug-resistant bacterial biofilm-associated pulmonary infections.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Jiayuan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zizhao Zhai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Maizbha Uddin Ahmed
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette IN 47907, USA
| | - Xiao Xia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Cenfeng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yuzhen Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China.
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Xuejuan Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Vetrivel A, Vetrivel P, Dhandapani K, Natchimuthu S, Ramasamy M, Madheswaran S, Murugesan R. Inhibition of biofilm formation, quorum sensing and virulence factor production in Pseudomonas aeruginosa PAO1 by selected LasR inhibitors. Int Microbiol 2023; 26:851-868. [PMID: 36806045 DOI: 10.1007/s10123-023-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
The quorum sensing network of Pseudomonas aeruginosa mediates the regulation of genes controlling biofilm formation and virulence factors. The rise of drug resistance to Pseudomonas aeruginosa infections has made quorum sensing-regulated biofilm formation in clinical settings a major issue. In the present study, LasR inhibitors identified in our previous study were evaluated for their antibiofilm and antiquorum sensing activities against P. aeruginosa PAO1. The compounds selected were (3-[2-(3,4-dimethoxyphenyl)-2-(1H-indol-3-yl)ethyl]-1-(2-fluorophenyl)urea) (C1), (3-(4-fluorophenyl)-2-[(3-methylquinoxalin-2-yl)methylsulfanyl]quinazolin-4-one) (C2) and (2-({4-[4-(2-methoxyphenyl)piperazin-1-yl]pyrimidin-2-yl}sulfanyl)-N-(2,4,6-trimethylphenyl)acetamide) (C3). The minimum inhibitory concentrations of C1 and C2 were 1000 μM, whereas that of C3 was 500 μM. At sub-MICs, the compounds showed potent antibiofilm activity without affecting the growth of P. aeruginosa PAO1. Electron microscopy confirmed the disruption of biofilm by the selected compounds. The antiquorum sensing activity of the compounds was revealed by the inhibition of violacein in Chromobacterium violaceum and the inhibition of swimming and swarming motilities in P. aeruginosa PAO1. Furthermore, the compounds also attenuated the production of quorum sensing-mediated virulence factors. The qRT-PCR revealed the downregulation of quorum sensing regulatory genes, namely lasI, lasR, rhlI, rhlR, lasB, pqsA and pqsR. The selected compounds also exhibited lower cytotoxicity against peripheral blood lymphocytes. Thus, this study could pave a way to explore these compounds for the development of therapeutic agent against Pseudomonas aeruginosa biofilm-related infections.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Monica Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Soundariya Madheswaran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
8
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
9
|
Shein AMS, Wannigama DL, Hurst C, Monk PN, Amarasiri M, Badavath VN, Phattharapornjaroen P, Ditcham WGF, Ounjai P, Saethang T, Chantaravisoot N, Thuptimdang W, Luk-In S, Nilgate S, Rirerm U, Tanasatitchai C, Kueakulpattana N, Laowansiri M, Liao T, Kupwiwat R, Rojanathanes R, Ngamwongsatit N, Thammahong A, Ishikawa H, Pletzer D, Leelahavanichkul A, Ragupathi NKD, Wapeesittipan P, Ali Hosseini Rad SM, Kanjanabuch T, Storer RJ, Miyanaga K, Cui L, Hamamoto H, Higgins PG, Kicic A, Chatsuwan T, Hongsing P, Abe S. Novel intranasal phage-CaEDTA-ceftazidime/avibactam triple combination therapy demonstrates remarkable efficacy in treating Pseudomonas aeruginosa lung infection. Biomed Pharmacother 2023; 168:115793. [PMID: 39491417 DOI: 10.1016/j.biopha.2023.115793] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
Given the rise of multidrug-resistant (MDR) Pseudomonas aeruginosa infections, alternative treatments are needed. Anti-pseudomonal phage therapy shows promise, but its clinical application is limited due to the development of resistance and a lack of biofilm penetration. Recently, adjuvants like CaEDTA have shown the ability to enhance the effectiveness of combined antimicrobial agents. Here, we tested a phage-adjuvant combination and demonstrated the effectiveness of intranasally inhaled phage (KKP10) + CaEDTA in addition to ceftazidime/avibactam (CZA) for chronic P. aeruginosa lung infections. The results emphasize that intranasal inhalation of phage along with CaEDTA can successfully re-sensitize MDR P. aeruginosa to CZA in a triple combination treatment. This promising approach shows potential as a therapy for chronic respiratory tract infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia; Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, United Kingdom; Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan.
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, United Kingdom
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
| | - Phatthranit Phattharapornjaroen
- Department of Emergency Medicine, Center of Excellence, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - William Graham Fox Ditcham
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanwara Thuptimdang
- Institute of Biomedical Engineering, Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sumanee Nilgate
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubolrat Rirerm
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanikan Tanasatitchai
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Matchima Laowansiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tingting Liao
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Microcirculation, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Rosalyn Kupwiwat
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Department of Dermatology. Faculty of Medicine Siriraj Hospital. Mahidol University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- Center of Excellence in Materials and Bio-Interfaces, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Arsa Thammahong
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St., 9054 Dunedin, New Zealand
| | - Asada Leelahavanichkul
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand; Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroshi Hamamoto
- Department of Infectious Diseases, Faculty of Medicine Yamagata University, Yamagata, Japan
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia.
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Parichart Hongsing
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand; Mae Fah Luang University Hospital, Chiang Rai, Thailand.
| | - Shuichi Abe
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, United Kingdom; Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| |
Collapse
|
10
|
Odom AR, McClintock J, Gill CJ, Pieciak R, Ismail A, MacLeod WB, Johnson WE, Lapidot R. Analysis of nasopharyngeal microbiome patterns in Zambian infants with fatal acute febrile illness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559805. [PMID: 37808661 PMCID: PMC10557644 DOI: 10.1101/2023.09.27.559805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Introduction Associative connections have previously been identified between nasopharyngeal infections and infant mortality. The nasopharyngeal microbiome may potentially influence the severity of these infections. Methods We conducted an analysis of a longitudinal prospective cohort study of 1,981 infants who underwent nasopharyngeal sampling from 1 week through 14 weeks of age at 2-3-week intervals. In all, 27 microbiome samples from 9 of the infants in the cohort who developed fatal acute febrile illness (fAFI) were analyzed in pooled comparisons with 69 samples from 10 healthy comparator infants. We completed 16S rRNA amplicon gene sequencing all infant NP samples and characterized the maturation of the infant NP microbiome among the fAFI(+) and fAFI(-) infant cohorts. Results Beta diversity measures of fAFI(-) infants were markedly higher than those of fAFI(+) infants. The fAFI(+) infant NP microbiome was marked by higher abundances of Escherichia, Pseudomonas, Leuconostoc, and Weissella, with low relative presence of Alkalibacterium, Dolosigranulum, Moraxella, and Streptococcus. Conclusions Our results suggest that nasopharyngeal microbiome dysbiosis precedes fAFI in young infants. Early dysbiosis, involving microbes such as Escherichia, may play a role in the causal pathway leading to fAFI or could be a marker of other pathogenic forces that directly lead to fAFI.
Collapse
Affiliation(s)
- Aubrey R. Odom
- Bioinformatics Program, Boston University, Boston, MA, 02118, USA
| | - Jessica McClintock
- Division of Infectious Disease, Center for Data Science, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Christopher J. Gill
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Rachel Pieciak
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou 0950, South Africa
| | - William B. MacLeod
- Department of Global Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - W. Evan Johnson
- Division of Infectious Disease, Center for Data Science, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rotem Lapidot
- Pediatric Infectious Diseases, Boston Medical Center, Boston, MA, 02118, USA
- Department of Pediatrics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
11
|
Parfitt KM, Green AE, Connor TR, Neill DR, Mahenthiralingam E. Identification of two distinct phylogenomic lineages and model strains for the understudied cystic fibrosis lung pathogen Burkholderia multivorans. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001366. [PMID: 37526960 PMCID: PMC10482378 DOI: 10.1099/mic.0.001366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Burkholderia multivorans is the dominant Burkholderia pathogen recovered from lung infection in people with cystic fibrosis. However, as an understudied pathogen there are knowledge gaps in relation to its population biology, phenotypic traits and useful model strains. A phylogenomic study of B. multivorans was undertaken using a total of 283 genomes, of which 73 were sequenced and 49 phenotypically characterized as part of this study. Average nucleotide identity analysis (ANI) and phylogenetic alignment of core genes demonstrated that the B. multivorans population separated into two distinct evolutionary clades, defined as lineage 1 (n=58 genomes) and lineage 2 (n=221 genomes). To examine the population biology of B. multivorans, a representative subgroup of 77 B. multivorans genomes (28 from the reference databases and the 49 novel short-read genome sequences) were selected based on multilocus sequence typing (MLST), isolation source and phylogenetic placement criteria. Comparative genomics was used to identify B. multivorans lineage-specific genes - ghrB_1 in lineage 1 and glnM_2 in lineage 2 - and diagnostic PCRs targeting them were successfully developed. Phenotypic analysis of 49 representative B. multivorans strains showed considerable inter-strain variance, but the majority of the isolates tested were motile and capable of biofilm formation. A striking absence of B. multivorans protease activity in vitro was observed, but no lineage-specific phenotypic differences were demonstrated. Using phylogenomic and phenotypic criteria, three model B. multivorans CF strains were identified, BCC0084 (lineage 1), BCC1272 (lineage 2a) and BCC0033 lineage 2b, and their complete genome sequences determined. B. multivorans CF strains BCC0033 and BCC0084, and the environmental reference strain, ATCC 17616, were all capable of short-term survival within a murine lung infection model. By mapping the population biology, identifying lineage-specific PCRs and model strains, we provide much needed baseline resources for future studies of B. multivorans.
Collapse
Affiliation(s)
- Kasia M. Parfitt
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
- Present address: Department of Biology, Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Thomas R. Connor
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Present address: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK, UK
| | - Eshwar Mahenthiralingam
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
| |
Collapse
|
12
|
Wannigama DL, Sithu Shein AM, Hurst C, Monk PN, Hongsing P, Phattharapornjaroen P, Fox Ditcham WG, Ounjai P, Saethang T, Chantaravisoot N, Wapeesittipan P, Luk-in S, Sae-Joo S, Nilgate S, Rirerm U, Tanasatitchai C, Kueakulpattana N, Laowansiri M, Liao T, Kupwiwat R, Rojanathanes R, Ngamwongsatit N, Tungsanga S, Leelahavanichkul A, Devanga Ragupathi NK, Badavath VN, Hosseini Rad SA, Kanjanabuch T, Hirankarn N, Storer RJ, Cui L, Amarasiri M, Ishikawa H, Higgins PG, Stick SM, Kicic A, Chatsuwan T, Abe S. Ca-EDTA restores the activity of ceftazidime-avibactam or aztreonam against carbapenemase-producing Klebsiellapneumoniae infections. iScience 2023; 26:107215. [PMID: 37496674 PMCID: PMC10366478 DOI: 10.1016/j.isci.2023.107215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Developing an effective therapy to overcome carbapenemase-positive Klebsiella pneumoniae (CPKp) is an important therapeutic challenge that must be addressed urgently. Here, we explored a Ca-EDTA combination with aztreonam or ceftazidime-avibactam in vitro and in vivo against diverse CPKp clinical isolates. The synergy testing of this study demonstrated that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combination was significantly effective in eliminating planktonic and mature biofilms in vitro, as well as eradicating CPKp infections in vivo. Both combinations revealed significant therapeutic efficacies in reducing bacterial load in internal organs and protecting treated mice from mortality. Conclusively, this is the first in vitro and in vivo study to demonstrate that novel aztreonam-Ca-EDTA or ceftazidime-avibactam-Ca-EDTA combinations provide favorable efficacy and safety for successful eradication of carbapenemase-producing Klebsiella pneumoniae planktonic and biofilm infections.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter’s Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
| | - Peter N. Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, UK
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Phatthranit Phattharapornjaroen
- Department of Emergency Medicine, Center of Excellence, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - William Graham Fox Ditcham
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sasipen Sae-Joo
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sumanee Nilgate
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubolrat Rirerm
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanikan Tanasatitchai
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Matchima Laowansiri
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tingting Liao
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Microcirculation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rosalyn Kupwiwat
- Pathogen Hunter’s Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Dermatology. Faculty of Medicine Siriraj Hospital. Mahidol University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- Center of Excellence in Materials and Bio-Interfaces, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somkanya Tungsanga
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of General Internal Medicine-Nephrology Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Pathogen Hunter’s Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
| | - S.M. Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Stephen M. Stick
- Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shuichi Abe
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter’s Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
13
|
Jia J, Parmar D, Ellis JF, Cao T, Cutri AR, Shrout JD, Sweedler JV, Bohn PW. Effect of Micro-Patterned Mucin on Quinolone and Rhamnolipid Profiles of Mucoid Pseudomonas aeruginosa under Antibiotic Stress. ACS Infect Dis 2023; 9:150-161. [PMID: 36538577 PMCID: PMC10116410 DOI: 10.1021/acsinfecdis.2c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is commonly implicated in hospital-acquired infections where its capacity to form biofilms on a variety of surfaces and the resulting enhanced antibiotic resistance seriously limit treatment choices. Because surface attachment sensitizes P. aeruginosa to quorum sensing (QS) and induces virulence through both chemical and mechanical cues, we investigate the effect of surface properties through spatially patterned mucin, combined with sub-inhibitory concentrations of tobramycin on QS and virulence factors in both mucoid and non-mucoid P. aeruginosa strains using multi-modal chemical imaging combining confocal Raman microscopy and matrix-assisted laser desorption/ionization-mass spectrometry. Samples comprise surface-adherent static biofilms at a solid-water interface, supernatant liquid, and pellicle biofilms at an air-water interface at various time points. Although the presence of a sub-inhibitory concentration of tobramycin in the supernatant retards growth and development of static biofilms independent of strain and surface mucin patterning, we observe clear differences in the behavior of mucoid and non-mucoid strains. Quinolone signals in a non-mucoid strain are induced earlier and are influenced by mucin surface patterning to a degree not exhibited in the mucoid strain. Additionally, phenazine virulence factors, such as pyocyanin, are observed in the pellicle biofilms of both mucoid and non-mucoid strains but are not detected in the static biofilms from either strain, highlighting the differences in stress response between pellicle and static biofilms. Differences between mucoid and non-mucoid strains are consistent with their strain-specific phenology, in which the mucoid strain develops highly protected biofilms.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joanna F Ellis
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allison R Cutri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Antimicrobial and Antibiofilm Effects of Combinatorial Treatment Formulations of Anti-Inflammatory Drugs-Common Antibiotics against Pathogenic Bacteria. Pharmaceutics 2022; 15:pharmaceutics15010004. [PMID: 36678634 PMCID: PMC9864814 DOI: 10.3390/pharmaceutics15010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the spread of multi-drug-resistant (MDR) bacteria and the lack of effective antibiotics to treat them, developing new therapeutic methods and strategies is essential. In this study, we evaluated the antibacterial and antibiofilm activity of different formulations composed of ibuprofen (IBP), acetylsalicylic acid (ASA), and dexamethasone sodium phosphate (DXP) in combination with ciprofloxacin (CIP), gentamicin (GEN), cefepime (FEP), imipenem (IPM), and meropenem (MEM) on clinical isolates of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) as well as the transcription levels of biofilm-associated genes in the presence of sub-MICs of IBP, ASA, and DXP. The minimal inhibitory concentrations (MICs), minimal biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) of CIP, GEN, FEP, IPM, and MEM with/without sub-MICs of IBP (200 µg/mL), ASA (200 µg/mL), and DXP (500 µg/mL) for the clinical isolates were determined by the microbroth dilution method. Quantitative real-time-PCR (qPCR) was used to determine the expression levels of biofilm-related genes, including icaA in S. aureus and algD in P. aeruginosa at sub-MICs of IBP, ASA, and DXP. All S. aureus isolates were methicillin-resistant S. aureus (MRSA), and all P. aeruginosa were resistant to carbapenems. IBP decreased the levels of MIC, MBIC, and MBEC for all antibiotic agents in both clinical isolates, except for FEP among P. aeruginosa isolates. In MRSA isolates, ASA decreased the MICs of GEN, FEP, and IPM and the MBICs of IPM and MEM. In P. aeruginosa, ASA decreased the MICs of FEP, IPM, and MEM, the MBICs of FEP and MEM, and the MBEC of FEP. DXP increased the MICs of CIP, GEN, and FEP, and the MBICs of CIP, GEN, and FEP among both clinical isolates. The MBECs of CIP and FEP for MRSA isolates and the MBECs of CIP, GEN, and MEM among P. aeruginosa isolates increased in the presence of DXP. IBP and ASA at 200 µg/mL significantly decreased the transcription level of algD in P. aeruginosa, and IBP significantly decreased the transcription level of icaA in S. aureus. DXP at 500 µg/mL significantly increased the expression levels of algD and icaA genes in S. aureus and P. aeruginosa isolates, respectively. Our findings showed that the formulations containing ASA and IBP have significant effects on decreasing the MIC, MBIC, and MBEC levels of some antibiotics and can down-regulate the expression of biofilm-related genes such as icaA and algD. Therefore, NSAIDs represent appropriate candidates for the design of new antibacterial and antibiofilm therapeutic formulations.
Collapse
|
15
|
Kumar D, Pandit R, Sharma S, Raval J, Patel Z, Joshi M, Joshi CG. Nasopharyngeal microbiome of COVID-19 patients revealed a distinct bacterial profile in deceased and recovered individuals. Microb Pathog 2022; 173:105829. [PMID: 36252893 PMCID: PMC9568276 DOI: 10.1016/j.micpath.2022.105829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The bacterial co-infections in SARS-CoV-2 patients remained the least explored subject of clinical manifestations that may also determine the disease severity. Nasopharyngeal microbial community structure within SARS-CoV-2 infected patients could reveal interesting microbiome dynamics that may influence the disease outcomes. Here, in this research study, we analyzed distinct nasopharyngeal microbiome profile in the deceased (n = 48) and recovered (n = 29) COVID-19 patients and compared it with control SARS-CoV-2 negative individuals (control) (n = 33). The nasal microbiome composition of the three groups varies significantly (PERMANOVA, p-value <0.001), where deceased patients showed higher species richness compared to the recovered and control groups. Pathogenic genera, including Corynebacterium (LDA score 5.51), Staphylococcus, Serratia, Klebsiella and their corresponding species were determined as biomarkers (p-value <0.05, LDA cutoff 4.0) in the deceased COVID-19 patients. Ochrobactrum (LDA score 5.79), and Burkholderia (LDA 5.29), were found in the recovered group which harbors ordinal bacteria (p-value <0.05, LDA-4.0) as biomarkers. Similarly, Pseudomonas (LDA score 6.19), and several healthy nasal cavity commensals including Veillonella, and Porphyromonas, were biomarkers for the control individuals. Healthy commensal bacteria may trigger the immune response and alter the viral infection susceptibility and thus, may play important role and possible recovery that needs to be further explored. This research finding provide vital information and have significant implications for understanding the microbial diversity of COVID-19 patients. However, additional studies are needed to address the microbiome-based therapeutics and diagnostics interventions.
Collapse
Affiliation(s)
- Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Janvi Raval
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Zarna Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India.
| |
Collapse
|
16
|
Barton TE, Frost F, Fothergill JL, Neill DR. Challenges and opportunities in the development of novel antimicrobial therapeutics for cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 36748497 DOI: 10.1099/jmm.0.001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic respiratory infection is the primary driver of mortality in individuals with cystic fibrosis (CF). Existing drug screening models utilised in preclinical antimicrobial development are unable to mimic the complex CF respiratory environment. Consequently, antimicrobials showing promising activity in preclinical models often fail to translate through to clinical efficacy in people with CF. Model systems used in CF anti-infective drug discovery and development range from antimicrobial susceptibility testing in nutrient broth, through to 2D and 3D in vitro tissue culture systems and in vivo models. No single model fully recapitulates every key aspect of the CF lung. To improve the outcomes of people with CF (PwCF) it is necessary to develop a set of preclinical models that collectively recapitulate the CF respiratory environment to a high degree of accuracy. Models must be validated for their ability to mimic aspects of the CF lung and associated lung infection, through evaluation of biomarkers that can also be assessed following treatment in the clinic. This will give preclinical models greater predictive power for identification of antimicrobials with clinical efficacy. The landscape of CF is changing, with the advent of modulator therapies that correct the function of the CFTR protein, while antivirulence drugs and phage therapy are emerging alternative treatments to chronic infection. This review discusses the challenges faced in current antimicrobial development pipelines, including the advantages and disadvantages of current preclinical models and the impact of emerging treatments.
Collapse
Affiliation(s)
- Thomas E Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Frederick Frost
- Adult Cystic Fibrosis Centre, Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, UK.,Liverpool Centre for Cardiovascular Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| |
Collapse
|
17
|
Hasan CM, Pottenger S, Green AE, Cox AA, White JS, Jones T, Winstanley C, Kadioglu A, Wright MH, Neill DR, Fothergill JL. Pseudomonas aeruginosa utilizes the host-derived polyamine spermidine to facilitate antimicrobial tolerance. JCI Insight 2022; 7:158879. [PMID: 36194492 PMCID: PMC9746822 DOI: 10.1172/jci.insight.158879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the 2-component regulatory system sensor kinase gene pmrB in P. aeruginosa from CF lung infections and from experimental infection of mice. Here, we demonstrate that, while such mutations lowered in vitro minimum inhibitory concentrations for multiple antimicrobial classes, this was not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impaired aminoarabinose modification of LPS, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this could be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coated the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine was elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilized.
Collapse
Affiliation(s)
- Chowdhury M. Hasan
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Adrienne A. Cox
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jack S. White
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Trevor Jones
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan H. Wright
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Joanne L. Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Crisan CV, Goldberg JB. Antibacterial contact-dependent proteins secreted by Gram-negative cystic fibrosis respiratory pathogens. Trends Microbiol 2022; 30:986-996. [PMID: 35487848 PMCID: PMC9474641 DOI: 10.1016/j.tim.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease that affects almost 100 000 people worldwide. CF patients suffer from chronic bacterial airway infections that are often polymicrobial and are the leading cause of mortality. Interactions between pathogens modulate expression of genes responsible for virulence and antibiotic resistance. One of the ways bacteria can interact is through contact-dependent systems, which secrete antibacterial proteins (effectors) that confer advantages to cells that harbor them. Here, we highlight recent work that describes effectors used by Gram-negative CF pathogens to eliminate competitor bacteria. Understanding the mechanisms of secreted effectors may lead to novel insights into the ecology of bacteria that colonize respiratory tracts and could also pave the way for the design of new therapeutics.
Collapse
Affiliation(s)
- Cristian V Crisan
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
19
|
Guohui J, Kun W, Dong T, Ji Z, Dong L, Dong W, Jingyu C. Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective. HEALTH CARE SCIENCE 2022; 1:119-128. [PMID: 38938886 PMCID: PMC11080722 DOI: 10.1002/hcs2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 06/29/2024]
Abstract
The respiratory tract is known to harbor a microbial community including bacteria, viruses, and fungi. New techniques contribute enormously to the identification of unknown or culture-independent species and reveal the interaction of the community with the host immune system. The existing respiratory microbiome and substantial equilibrium of the transplanted microbiome from donor lung grafts provide an extreme bloom of dynamic changes in the microenvironment in lung transplantation (LT) recipients. Dysbiosis in grafts are not only related to the modified microbial components but also involve the kinetics of the host-graft "talk," which signifies the destination of graft allograft injury, acute rejection, infection, and chronic allograft dysfunction development in short- and long-term survival. Microbiome-derived factors may contribute to lung xenograft survival when using genetically multimodified pig-derived organs. Here, we review the most advanced knowledge of the dynamics and resilience of microbial communities in transplanted lungs with various pretransplant indications. Conceptual and analytical points of view have been illustrated along the time series, gaining insight into the microbiome and lung grafts. Future endeavors on precise tools, sophisticated models, and novel targeted regimens are needed to improve the long-term survival in these patients.
Collapse
Affiliation(s)
- Jiao Guohui
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Wu Kun
- Center for Medical Device Evaluation, NMPABeijingChina
| | - Tian Dong
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduChina
| | - Zhang Ji
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Liu Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Wei Dong
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| | - Chen Jingyu
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiChina
| |
Collapse
|
20
|
Ruhluel D, O'Brien S, Fothergill JL, Neill DR. Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Res 2022; 11:1007. [PMID: 36519007 PMCID: PMC9718992 DOI: 10.12688/f1000research.125074.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/25/2023] Open
Abstract
The respiratory tract is a compartmentalised and heterogenous environment. The nasopharynx and sinuses of the upper airways have distinct properties from the lungs and these differences may shape bacterial adaptation and evolution. Upper airway niches act as early colonisation sites for respiratory bacterial pathogens, including those, such as Pseudomonas aeruginosa, that can go on to establish chronic infection of the lungs in people with cystic fibrosis (CF). Despite the importance of upper airway environments in facilitating early adaptation to host environments, currently available in vitro models for study of respiratory infection in CF focus exclusively on the lungs. Furthermore, animal models, widely used to bridge the gap between in vitro systems and the clinical scenario, do not allow the upper and lower airways to be studied in isolation. We have developed a suite of culture media reproducing key features of the upper and lower airways, for the study of bacterial adaptation and evolution in different respiratory environments. For both upper and lower airway-mimicking media, we have developed formulations that reflect airway conditions in health and those that reflect the altered environment of the CF respiratory tract. Here, we describe the development and validation of these media and their use for study of genetic and phenotypic adaptations in P. aeruginosa during growth under upper or lower airway conditions in health and in CF.
Collapse
Affiliation(s)
- Dilem Ruhluel
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Siobhan O'Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| |
Collapse
|
21
|
Ruhluel D, O'Brien S, Fothergill JL, Neill DR. Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Res 2022; 11:1007. [PMID: 36519007 PMCID: PMC9718992 DOI: 10.12688/f1000research.125074.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
The respiratory tract is a compartmentalised and heterogenous environment. The nasopharynx and sinuses of the upper airways have distinct properties from the lungs and these differences may shape bacterial adaptation and evolution. Upper airway niches act as early colonisation sites for respiratory bacterial pathogens, including those, such as Pseudomonas aeruginosa, that can go on to establish chronic infection of the lungs in people with cystic fibrosis (CF). Despite the importance of upper airway environments in facilitating early adaptation to host environments, currently available in vitro models for study of respiratory infection in CF focus exclusively on the lungs. Furthermore, animal models, widely used to bridge the gap between in vitro systems and the clinical scenario, do not allow the upper and lower airways to be studied in isolation. We have developed a suite of culture media reproducing key features of the upper and lower airways, for the study of bacterial adaptation and evolution in different respiratory environments. For both upper and lower airway-mimicking media, we have developed formulations that reflect airway conditions in health and those that reflect the altered environment of the CF respiratory tract. Here, we describe the development and validation of these media and their use for study of genetic and phenotypic adaptations in P. aeruginosa during growth under upper or lower airway conditions in health and in CF.
Collapse
Affiliation(s)
- Dilem Ruhluel
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Siobhan O'Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences,, Liverpool, L69 7BE, UK
| |
Collapse
|
22
|
RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum. Int J Mol Sci 2022; 23:ijms23158232. [PMID: 35897798 PMCID: PMC9331949 DOI: 10.3390/ijms23158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and ΔrclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.
Collapse
|
23
|
Park WS, Lee J, Na G, Park S, Seo SK, Choi JS, Jung WK, Choi IW. Benzyl Isothiocyanate Attenuates Inflammasome Activation in Pseudomonas aeruginosa LPS-Stimulated THP-1 Cells and Exerts Regulation through the MAPKs/NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23031228. [PMID: 35163151 PMCID: PMC8835927 DOI: 10.3390/ijms23031228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammasomes are a group of intracellular multiprotein platforms that play important roles in immune systems. Benzyl isothiocyanate (BITC) is a constituent of cruciferous plants and has been confirmed to exhibit various biological activities. The modulatory effects of BITC on inflammasome-mediated interleukin (IL)-1β expression and its regulatory mechanisms in Pseudomonas aeruginosa (P. aeruginosa) LPS/ATP-stimulated THP-1 cells was investigated. Monocytic THP-1 cells were treated with phorbol myristate acetate (PMA) to induce differentiation into macrophages. Enzyme-linked immunosorbent assays (ELISA) were performed to measure the levels of IL-1β produced in P. aeruginosa LPS/ATP-exposed THP-1 cells. Western blotting was performed to examine the BITC modulatory mechanisms in inflammasome-mediated signaling pathways. BITC inhibited IL-1β production in P. aeruginosa LPS/ATP-induced THP-1 cells. BITC also inhibited activation of leucine-rich repeat protein-3 (NLRP3) and caspase-1 in P. aeruginosa LPS/ATP-induced THP-1 cells. Furthermore, we show that mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation in P. aeruginosa LPS was attenuated by BITC. These BITC-mediated modulatory effects on IL-1β production may have therapeutic potential for inflammasome-mediated disorders such as a nasal polyp.
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea;
| | - Jeonghan Lee
- Department of Anesthesiology and Pain Medicine, Busan Paik Hospital, Inje University, Busan 47392, Korea;
| | - Giyoun Na
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (G.N.); (S.P.); (S.-K.S.)
| | - SaeGwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (G.N.); (S.P.); (S.-K.S.)
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (G.N.); (S.P.); (S.-K.S.)
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, Inje University, Busan 47392, Korea;
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Il-Whan Choi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Korea; (G.N.); (S.P.); (S.-K.S.)
- Correspondence:
| |
Collapse
|
24
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. NATURE REVIEWS. MATERIALS 2022; 7:39-54. [PMID: 35330939 PMCID: PMC8938918 DOI: 10.1038/s41578-021-00362-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms, have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents, but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community- and hospital-acquired infectious diseases, with a focus in in vivo results. We highlight the translational potential of different biomaterial-based strategies, and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies. WEB SUMMARY The development of antibiotic tolerance and resistance has demanded the search for alternative antibacterial therapies. This Review discusses antibacterial biomaterials and biomaterial-assisted delivery of non-antibiotic therapeutics for the treatment of bacterial infectious diseases, with a focus on clinical translation.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Milan Riddick
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- author to whom correspondence should be addressed:
| |
Collapse
|
26
|
Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections. Viruses 2021; 13:v13091809. [PMID: 34578390 PMCID: PMC8472870 DOI: 10.3390/v13091809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) bacteria is recognised today as one of the greatest challenges to public health. As traditional antimicrobials are becoming ineffective and research into new antibiotics is diminishing, a number of alternative treatments for MDR bacteria have been receiving greater attention. Bacteriophage therapies are being revisited and present a promising opportunity to reduce the burden of bacterial infection in this post-antibiotic era. This review focuses on the current evidence supporting bacteriophage therapy against prevalent or emerging multi-drug resistant bacterial pathogens in respiratory medicine and the challenges ahead in preclinical data generation. Starting with efforts to improve delivery of bacteriophages to the lung surface, the current developments in animal models for relevant efficacy data on respiratory infections are discussed before finishing with a summary of findings from the select human trials performed to date.
Collapse
Affiliation(s)
- Joshua J. Iszatt
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Alexander N. Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, University of Sydney, Camperdown 2006, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
27
|
Marshall CW, Gloag ES, Lim C, Wozniak DJ, Cooper VS. Rampant prophage movement among transient competitors drives rapid adaptation during infection. SCIENCE ADVANCES 2021; 7:7/29/eabh1489. [PMID: 34272240 PMCID: PMC8284892 DOI: 10.1126/sciadv.abh1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 05/11/2023]
Abstract
Interactions between bacteria, their close competitors, and viral parasites are common in infections, but understanding of these eco-evolutionary dynamics is limited. Most examples of adaptations caused by phage lysogeny are through the acquisition of new genes. However, integrated prophages can also insert into functional genes and impart a fitness benefit by disrupting their expression, a process called active lysogeny. Here, we show that active lysogeny can fuel rapid, parallel adaptations in establishing a chronic infection. These recombination events repeatedly disrupted genes encoding global regulators, leading to increased cyclic di-GMP levels and elevated biofilm production. The implications of prophage-mediated adaptation are broad, as even transient members of microbial communities can alter the course of evolution and generate persistent phenotypes associated with poor clinical outcomes.
Collapse
Affiliation(s)
| | - Erin S Gloag
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Christina Lim
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Constant S, Saaid A, Jimenez-Chobillon M. Efficacy and safety evaluation of a hypertonic seawater solution enriched with manganese and copper salts. RHINOLOGY ONLINE 2021. [DOI: 10.4193/rhinol/21.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Nasal irrigation is commonly recommended as an adjuvant treatment for blocked nose. In the present study, the safety and efficacy profile of Stérimar Blocked Nose (SBN), a hypertonic seawater solution enriched with manganese and copper salts, has been evaluated on nasal epithelium, in vitro. Methodology: 3D reconstituted human nasal epithelium tissue model, MucilAir™, has been used to investigate the safety of SBN on nasal epithelium by measuring trans-epithelial electrical resistance (TEER), cytotoxicity (lactate dehydrogenase (LDH) release) and phlogosis-related effects (interleukin-8 secretion). Efficacy assessment was measured by ciliary beat frequency (CBF), mucociliary clearance (MCC) and antimicrobial activities (against Staphylococcus aureus and Pseudomonas aeruginosa). Results: Four-day SBN treatment did not compromise the nasal epithelium integrity as TEER values were over the tissue integrity limit. SBN treatment did not exert cytotoxic (LDH release) or pro-inflammatory effects (IL-8 secretion). SBN treatment significantly increased the CBF and MCC rates compared to untreated cells. SBN treatment exerted a bactericidal effect on S. aureus and P. aeruginosa cultures, whereas seawater not enriched in copper and manganese had only a bacteriostatic effect. Conclusions: The results demonstrate that SBN is a safe formula for use on human nasal epithelium. The results also suggest a better potential therapeutic role for SBN in comparison to not-enriched seawater when used to control nasal congestion and inhibit bacterial growth which may cause nasal congestion.
Collapse
|
29
|
Alford MA, Baquir B, An A, Choi KYG, Hancock REW. NtrBC Selectively Regulates Host-Pathogen Interactions, Virulence, and Ciprofloxacin Susceptibility of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:694789. [PMID: 34249781 PMCID: PMC8264665 DOI: 10.3389/fcimb.2021.694789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile opportunistic pathogen capable of infecting distinct niches of the human body, including skin wounds and the lungs of cystic fibrosis patients. Eradication of P. aeruginosa infection is becoming increasingly difficult due to the numerous resistance mechanisms it employs. Adaptive resistance is characterized by a transient state of decreased susceptibility to antibiotic therapy that is distinct from acquired or intrinsic resistance, can be triggered by various environmental stimuli and reverted by removal of the stimulus. Further, adaptive resistance is intrinsically linked to lifestyles such as swarming motility and biofilm formation, both of which are important in infections and lead to multi-drug adaptive resistance. Here, we demonstrated that NtrBC, the master of nitrogen control, had a selective role in host colonization and a substantial role in determining intrinsic resistance to ciprofloxacin. P. aeruginosa mutant strains (ΔntrB, ΔntrC and ΔntrBC) colonized the skin but not the respiratory tract of mice as well as WT and, unlike WT, could be reduced or eradicated from the skin by ciprofloxacin. We hypothesized that nutrient availability contributed to these phenomena and found that susceptibility to ciprofloxacin was impacted by nitrogen source in laboratory media. P. aeruginosa ΔntrB, ΔntrC and ΔntrBC also exhibited distinct host interactions, including modestly increased cytotoxicity toward human bronchial epithelial cells, reduced virulence factor production and 10-fold increased uptake by macrophages. These data might explain why NtrBC mutants were less adept at colonizing the upper respiratory tract of mice. Thus, NtrBC represents a link between nitrogen metabolism, adaptation and virulence of the pathogen P. aeruginosa, and could represent a target for eradication of recalcitrant infections in situ.
Collapse
Affiliation(s)
- Morgan A Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Beverlie Baquir
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Andy An
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Ka-Yee G Choi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev 2021; 50:7725-7744. [PMID: 34013918 DOI: 10.1039/d0cs01340d] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food fermentation, antibiotics, and pollutant degradation are closely related to bacteria. Bacteria play an irreplaceable role in life. However, some bacteria seriously threaten human health and cause large-scale infectious diseases. Therefore, there is a pressing need to develop strategies to accurately monitor bacteria. Technology based on molecular probes and fluorescence imaging is noninvasive, results in little damage, and has high specificity and sensitivity, so it has been widely applied in the detection of bacteria. In this review, we summarize the recent progress in bacterial detection using fluorescence. In particular, we generalize the mechanisms commonly used to design organic fluorescent probes for detecting and imaging bacteria. Moreover, a perspective regarding fluorescent probes for bacterial detection is discussed.
Collapse
Affiliation(s)
- Yurou Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| |
Collapse
|
31
|
Langendonk RF, Neill DR, Fothergill JL. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front Cell Infect Microbiol 2021; 11:665759. [PMID: 33937104 PMCID: PMC8085337 DOI: 10.3389/fcimb.2021.665759] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
P. aeruginosa is classified as a priority one pathogen by the World Health Organisation, and new drugs are urgently needed, due to the emergence of multidrug-resistant (MDR) strains. Antimicrobial-resistant nosocomial pathogens such as P. aeruginosa pose unwavering and increasing threats. Antimicrobial stewardship has been a challenge during the COVID-19 pandemic, with a majority of those hospitalized with SARS-CoV2 infection given antibiotics as a safeguard against secondary bacterial infection. This increased usage, along with increased handling of sanitizers and disinfectants globally, may further accelerate the development and spread of cross-resistance to antibiotics. In addition, P. aeruginosa is the primary causative agent of morbidity and mortality in people with the life-shortening genetic disease cystic fibrosis (CF). Prolonged periods of selective pressure, associated with extended antibiotic treatment and the actions of host immune effectors, results in widespread adaptive and acquired resistance in P. aeruginosa found colonizing the lungs of people with CF. This review discusses the arsenal of resistance mechanisms utilized by P. aeruginosa, how these operate under high-stress environments such as the CF lung and how their interconnectedness can result in resistance to multiple antibiotic classes. Intrinsic, adaptive and acquired resistance mechanisms will be described, with a focus on how each layer of resistance can serve as a building block, contributing to multi-tiered resistance to antimicrobial activity. Recent progress in the development of anti-resistance adjuvant therapies, targeting one or more of these building blocks, should lead to novel strategies for combatting multidrug resistant P. aeruginosa. Anti-resistance adjuvant therapy holds great promise, not least because resistance against such therapeutics is predicted to be rare. The non-bactericidal nature of anti-resistance adjuvants reduce the selective pressures that drive resistance. Anti-resistance adjuvant therapy may also be advantageous in facilitating efficacious use of traditional antimicrobials, through enhanced penetration of the antibiotic into the bacterial cell. Promising anti-resistance adjuvant therapeutics and targets will be described, and key remaining challenges highlighted. As antimicrobial stewardship becomes more challenging in an era of emerging and re-emerging infectious diseases and global conflict, innovation in antibiotic adjuvant therapy can play an important role in extending the shelf-life of our existing antimicrobial therapeutic agents.
Collapse
Affiliation(s)
- R. Frèdi Langendonk
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
32
|
Wagner Mackenzie B, Dassi C, Vivekanandan A, Zoing M, Douglas RG, Biswas K. Longitudinal analysis of sinus microbiota post endoscopic surgery in patients with cystic fibrosis and chronic rhinosinusitis: a pilot study. Respir Res 2021; 22:106. [PMID: 33849523 PMCID: PMC8045235 DOI: 10.1186/s12931-021-01697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis is a debilitating, autosomal recessive disease which results in chronic upper and lower airway infection and inflammation. In this study, four adult patients presenting with cystic fibrosis and chronic rhinosinusitis were recruited. Culture and molecular techniques were employed to evaluate changes in microbial profiles, host gene expression and antimicrobial resistance (AMR) in the upper respiratory tract over time. METHODS Swab samples from the sinonasal cavity were collected at the time of surgery and at follow-up clinics at regular time intervals for up to 18 months. Nucleic acids were extracted, and DNA amplicon sequencing was applied to describe bacterial and fungal composition. In parallel, RNA was used to evaluate the expression of 17 AMR genes and two inflammatory markers (interleukins 6 and 8) using custom qPCR array cards. Molecular results were compared with routine sinus and sputum culture reports within each patient. RESULTS Bacterial amplicon sequencing and swab culture reports from the sinonasal cavity were mostly congruent and relatively stable for each patient across time. The predominant species detected in patients P02 and P04 were Pseudomonas aeruginosa, Staphylococcus aureus in patient P03, and a mixture of Enterobacter and S. aureus in patient P01. Fungal profiles were variable and less subject specific than bacterial communities. Increased expressions of interleukins 6 and 8 were observed in all patients throughout the sampling period compared with other measured genes. The most prevalent AMR gene detected was ampC. However, the prevalence of AMR gene expression was low in all patient samples across varying time-points. CONCLUSIONS We observed a surprising degree of stability of sinonasal microbial composition, and inflammatory and AMR gene expression across all patients post sinus surgery.
Collapse
Affiliation(s)
- Brett Wagner Mackenzie
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand.
| | - Camila Dassi
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Anitha Vivekanandan
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Melissa Zoing
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, The University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| |
Collapse
|
33
|
Alford MA, Choi KYG, Trimble MJ, Masoudi H, Kalsi P, Pletzer D, Hancock REW. Murine Model of Sinusitis Infection for Screening Antimicrobial and Immunomodulatory Therapies. Front Cell Infect Microbiol 2021; 11:621081. [PMID: 33777834 PMCID: PMC7994591 DOI: 10.3389/fcimb.2021.621081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
The very common condition of sinusitis is characterized by persistent inflammation of the nasal cavity, which contributes to chronic rhinosinusitis and morbidity of cystic fibrosis patients. Colonization by opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa triggers inflammation that is exacerbated by defects in the innate immune response. Pathophysiological mechanisms underlying initial colonization of the sinuses are not well established. Despite their extensive use, current murine models of acute bacterial rhinosinusitis have not improved the understanding of early disease stages due to analytical limitations. In this study, a model is described that is technically simple, allows non-invasive tracking of bacterial infection, and screening of host-responses to infection and therapies. The model was modified to investigate longer-term infection and disease progression by using a less virulent, epidemic P. aeruginosa cystic fibrosis clinical isolate LESB65. Tracking of luminescent bacteria was possible after intranasal infections, which were sustained for up to 120 h post-infection, without compromising the overall welfare of the host. Production of reactive oxidative species was associated with neutrophil localization to the site of infection in this model. Further, host-defense peptides administered by Respimat® inhaler or intranasal instillation reduced bacterial burden and impacted disease progression as well as cytokine responses associated with rhinosinusitis. Thus, future studies using this model will improve our understanding of rhinosinusitis etiology and early stage pathogenesis, and can be used to screen for the efficacy of emerging therapies pre-clinically.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Ka-Yee G. Choi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Michael J. Trimble
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control, Public Health Services Authority, Vancouver, BC, Canada
| | - Hamid Masoudi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pavneet Kalsi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I, Tucker NP, Kenna DTD, Turton JF, Jeukens J, Freschi L, Wee BA, Loman NJ, Holden S, Manzoor S, Hawkey P, Southern KW, Walshaw MJ, Levesque RC, Fothergill JL, Winstanley C. Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 2021; 7:mgen000511. [PMID: 33720817 PMCID: PMC8190615 DOI: 10.1099/mgen.0.000511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.
Collapse
Affiliation(s)
- Matthew P. Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Present address: Nuffield Department of Health, University of Oxford, UK
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Williams
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Irena Kukavica-Ibrulj
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy & Biomedical Sciences. University of Strathclyde, Glasgow, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, London, UK
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
- Present address: Harvard Medical School, Boston, MA, USA
| | - Bryan A. Wee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Present address: Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas J. Loman
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
| | - Stephen Holden
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- Present address: MSD Research Laboratories, Two Pancras Square, London, UK
| | - Susan Manzoor
- University Hospitals Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, UK
| | - Peter Hawkey
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
- Present address: University of Birmingham Microbiome Treatment Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Roger C. Levesque
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Joanne L. Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Teper D, Wang N. Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas. PLoS Genet 2021; 17:e1009310. [PMID: 33465093 PMCID: PMC7845958 DOI: 10.1371/journal.pgen.1009310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri (Xcc), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBEPthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4:Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9–28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4:Tn5 restored the ability to induce the expression of CsLOB1, promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens. Mutation of the EBEs of susceptibility (S) genes via genome editing and utilization of naturally occurring EBE variants have been used to generate disease resistant plants. However, TALE adaptations may lead to resistance loss, limiting the long-term efficacy of the strategy. We utilized an experimental evolution approach to test TALEs adaptations in the Xanthomonas citri-citrus pathosystem using designer TALEs that cannot recognize the EBE of host targets. We identified adaptive TALE mutations and deletions that occurred during less than 30 cycles of repeated infections, which reconstituted the virulence on the host. Adaptive variants originated from TALEs that harbored a small number of mismatches (≤5) to the EBE, whereas designer TALEs that harbored larger number of mismatches (≥7) to the EBE failed to adapt in the duration of this study. Our study experimentally demonstrates adaptive rearrangements of TALEs during host adaptation and suggests that the potential durability in the resistance of modified crops should be a significant factor to be considered prior to their introduction into the field.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
González J, Salvador M, Özkaya Ö, Spick M, Reid K, Costa C, Bailey MJ, Avignone Rossa C, Kümmerli R, Jiménez JI. Loss of a pyoverdine secondary receptor in Pseudomonas aeruginosa results in a fitter strain suitable for population invasion. ISME JOURNAL 2020; 15:1330-1343. [PMID: 33323977 DOI: 10.1038/s41396-020-00853-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023]
Abstract
The rapid emergence of antibiotic resistant bacterial pathogens constitutes a critical problem in healthcare and requires the development of novel treatments. Potential strategies include the exploitation of microbial social interactions based on public goods, which are produced at a fitness cost by cooperative microorganisms, but can be exploited by cheaters that do not produce these goods. Cheater invasion has been proposed as a 'Trojan horse' approach to infiltrate pathogen populations with strains deploying built-in weaknesses (e.g., sensitiveness to antibiotics). However, previous attempts have been often unsuccessful because population invasion by cheaters was prevented by various mechanisms including the presence of spatial structure (e.g., growth in biofilms), which limits the diffusion and exploitation of public goods. Here we followed an alternative approach and examined whether the manipulation of public good uptake and not its production could result in potential 'Trojan horses' suitable for population invasion. We focused on the siderophore pyoverdine produced by the human pathogen Pseudomonas aeruginosa MPAO1 and manipulated its uptake by deleting and/or overexpressing the pyoverdine primary (FpvA) and secondary (FpvB) receptors. We found that receptor synthesis feeds back on pyoverdine production and uptake rates, which led to strains with altered pyoverdine-associated costs and benefits. Moreover, we found that the receptor FpvB was advantageous under iron-limited conditions but revealed hidden costs in the presence of an antibiotic stressor (gentamicin). As a consequence, FpvB mutants became the fittest strain under gentamicin exposure, displacing the wildtype in liquid cultures, and in biofilms and during infections of the wax moth larvae Galleria mellonella, which both represent structured environments. Our findings reveal that an evolutionary trade-off associated with the costs and benefits of a versatile pyoverdine uptake strategy can be harnessed for devising a Trojan-horse candidate for medical interventions.
Collapse
Affiliation(s)
- Jaime González
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Özhan Özkaya
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matt Spick
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kate Reid
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Catia Costa
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Melanie J Bailey
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Rolf Kümmerli
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - José I Jiménez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK. .,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
37
|
Radulesco T, Lechien JR, Saussez S, Hopkins C, Michel J. Safety and Impact of Nasal Lavages During Viral Infections Such as SARS-CoV-2. EAR, NOSE & THROAT JOURNAL 2020; 100:188S-191S. [PMID: 32853040 PMCID: PMC7453155 DOI: 10.1177/0145561320950491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Thomas Radulesco
- COVID-19 Task Force of the Young-Otolaryngologists of the International Federations of Otorhinolaryngological Societies (YO-IFOS), Marseille, France.,Department of Otorhinolaryngology-Head and Neck Surgery, Aix Marseille University, 36900APHM, IUSTI, La Conception University Hospital, Marseille, France
| | - Jerome R Lechien
- COVID-19 Task Force of the Young-Otolaryngologists of the International Federations of Otorhinolaryngological Societies (YO-IFOS), Marseille, France.,Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, 54521UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium.,Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, 54521UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium
| | | | - Justin Michel
- COVID-19 Task Force of the Young-Otolaryngologists of the International Federations of Otorhinolaryngological Societies (YO-IFOS), Marseille, France.,Department of Otorhinolaryngology-Head and Neck Surgery, Aix Marseille University, 36900APHM, IUSTI, La Conception University Hospital, Marseille, France
| |
Collapse
|
38
|
Voronina OL, Ryzhova NN, Kunda MS, Loseva EV, Aksenova EI, Amelina EL, Shumkova GL, Simonova OI, Gintsburg AL. Characteristics of the Airway Microbiome of Cystic Fibrosis Patients. BIOCHEMISTRY (MOSCOW) 2020; 85:1-10. [PMID: 32079513 DOI: 10.1134/s0006297920010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbiota as an integral component of human body is actively investigated, including by massively parallel sequencing. However, microbiomes of lungs and sinuses have become the object of scientific attention only in the last decade. For patients with cystic fibrosis, monitoring the state of respiratory tract microorganisms is essential for maintaining lung function. Here, we studied the role of sinuses and polyps in the formation of respiratory tract microbiome. We identified Proteobacteria in the sinuses and samples from the lower respiratory tract (even in childhood). In some cases, they were accompanied by potentially dangerous basidiomycetes. The presence of polyps did not affect formation of the sinus microbiome. Proteobacteria are decisive in reducing the biodiversity of lung and sinus microbiomes, which correlated with the worsening of the lung function indicators. Soft mutations in the CFTR gene contribute to the formation of safer microbiome even in heterozygotes with class I mutations.
Collapse
Affiliation(s)
- O L Voronina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, 123098, Russia.
| | - N N Ryzhova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, 123098, Russia
| | - M S Kunda
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, 123098, Russia
| | - E V Loseva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, 123098, Russia
| | - E I Aksenova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, 123098, Russia
| | - E L Amelina
- Pulmonology Research Institute, Federal Medical-Biological Agency, Moscow, 115682, Russia
| | - G L Shumkova
- Pulmonology Research Institute, Federal Medical-Biological Agency, Moscow, 115682, Russia
| | - O I Simonova
- National Medical Research Center for Children's Health, Ministry of Health of Russia, Moscow, 119296, Russia
| | - A L Gintsburg
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, 123098, Russia
| |
Collapse
|
39
|
Abd El-Aziz AM, Elgaml A, Ali YM. Bacteriophage Therapy Increases Complement-Mediated Lysis of Bacteria and Enhances Bacterial Clearance After Acute Lung Infection With Multidrug-Resistant Pseudomonas aeruginosa. J Infect Dis 2020; 219:1439-1447. [PMID: 30476337 DOI: 10.1093/infdis/jiy678] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 01/21/2023] Open
Abstract
Emergence of multidrug-resistant (MDR) bacterial infections is a major problem in clinical medicine. Development of new strategies such as phage therapy may be a novel approach for treatment of life-threatening infections caused by MDR bacteria. A newly isolated phage, MMI-Ps1, with strong lytic activity was used for treatment of acute lung infection with Pseudomonas aeruginosa in a mouse model. Intranasal administration of a single dose of MMI-Ps1 immediately after infection provided a significant level of protection and increased the survival duration. Moreover, treatment of infected mice with phage as late as 12 hours after infection was still protective. Our in vitro results are the first to show the synergistic elimination of serum-resistant Pseudomonas strains by phage and complement. Phage therapy increases the efficacy of complement-mediated lysis of serum-resistant P. aeruginosa strains, indicating the importance of an intact complement system in clearing Pseudomonas infection during phage therapy.
Collapse
Affiliation(s)
- Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Youssif M Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
40
|
O'Brien TJ, Welch M. Recapitulation of polymicrobial communities associated with cystic fibrosis airway infections: a perspective. Future Microbiol 2019; 14:1437-1450. [PMID: 31778075 DOI: 10.2217/fmb-2019-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The airways of persons with cystic fibrosis are prone to infection by a diverse and dynamic polymicrobial consortium. Currently, no models exist that permit recapitulation of this consortium within the laboratory. Such microbial ecosystems likely have a network of interspecies interactions, serving to modulate metabolic pathways and impact upon disease severity. The contribution of less abundant/fastidious microbial species on this cross-talk has often been neglected due to lack of experimental tractability. Here, we critically assess the existing models for studying polymicrobial infections. Particular attention is paid to 3Rs-compliant in vitro and in silico infection models, offering significant advantages over mammalian infection models. We outline why these models will likely become the 'go to' approaches when recapitulating polymicrobial cystic fibrosis infection.
Collapse
Affiliation(s)
- Thomas J O'Brien
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
41
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
42
|
Aziz A, Sarovich DS, Nosworthy E, Beissbarth J, Chang AB, Smith-Vaughan H, Price EP, Harris TM. Molecular Signatures of Non-typeable Haemophilus influenzae Lung Adaptation in Pediatric Chronic Lung Disease. Front Microbiol 2019; 10:1622. [PMID: 31379777 PMCID: PMC6646836 DOI: 10.3389/fmicb.2019.01622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/03/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi), an opportunistic pathogen of the upper airways of healthy children, can infect the lower airways, driving chronic lung disease. However, the molecular basis underpinning NTHi transition from a commensal to a pathogen is not clearly understood. Here, we performed comparative genomic and transcriptomic analyses of 12 paired, isogenic NTHi strains, isolated from the nasopharynx (NP) and bronchoalveolar lavage (BAL) of 11 children with chronic lung disease, to identify convergent molecular signatures associated with lung adaptation. Comparative genomic analyses of the 12 NP-BAL pairs demonstrated that five were genetically identical, with the remaining seven differing by only 1 to 3 mutations. Within-patient transcriptomic analyses identified between 2 and 58 differentially expressed genes in 8 of the 12 NP-BAL pairs, including pairs with no observable genomic changes. Whilst no convergence was observed at the gene level, functional enrichment analysis revealed significant under-representation of differentially expressed genes belonging to Coenzyme metabolism, Function unknown, Translation, ribosomal structure, and biogenesis Cluster of Orthologous Groups categories. In contrast, Carbohydrate transport and metabolism, Cell motility and secretion, Intracellular trafficking and secretion, and Energy production categories were over-represented. This observed trend amongst genetically unrelated NTHi strains provides evidence of convergent transcriptional adaptation of NTHi to pediatric airways that deserves further exploration. Understanding the pathoadaptative mechanisms that NTHi employs to infect and persist in the lower pediatric airways is essential for devising targeted diagnostics and treatments aimed at minimizing disease severity, and ultimately, preventing NTHi lung infections and subsequent chronic lung disease in children.
Collapse
Affiliation(s)
- Ammar Aziz
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Derek S. Sarovich
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Elizabeth Nosworthy
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Anne B. Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Respiratory and Sleep Medicine, Children’s Health Queensland, Queensland University of Technology, Brisbane, QLD, Australia
| | - Heidi Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Erin P. Price
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tegan M. Harris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
43
|
Mullins AJ, Murray JAH, Bull MJ, Jenner M, Jones C, Webster G, Green AE, Neill DR, Connor TR, Parkhill J, Challis GL, Mahenthiralingam E. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nat Microbiol 2019; 4:996-1005. [PMID: 30833726 PMCID: PMC6544543 DOI: 10.1038/s41564-019-0383-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022]
Abstract
Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B. ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B. ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B. ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia cepacia complex bacteria. Removal of the third replicon reduced B. ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.
Collapse
Affiliation(s)
- Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - James A H Murray
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Matthew J Bull
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Matthew Jenner
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - Cerith Jones
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Angharad E Green
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Daniel R Neill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Thomas R Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Gregory L Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
- Department of Biochemistry and Molecular Biology,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
44
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
45
|
Pletcher SD, Goldberg AN, Cope EK. Loss of Microbial Niche Specificity Between the Upper and Lower Airways in Patients With Cystic Fibrosis. Laryngoscope 2018; 129:544-550. [PMID: 30284279 DOI: 10.1002/lary.27454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS To determine the relationship between mucosal-associated sinus and bronchial microbiota in cystic fibrosis (CF) patients compared to non-CF patients with chronic rhinosinusitis (CRS). STUDY DESIGN Case series. METHODS We examined the microbial composition of 52 paired sinus and bronchial brushings from 26 patients with CRS. Paired airway samples from nine subjects with CF were compared with samples from 17 non-CF-CRS disease control patients. The Illumina MiSeq platform was used to sequence the V4 region of the 16S rRNA gene. Sequences were analyzed using QIIME 1.9.0. RESULTS CF patients demonstrate increased severity of sinus inflammation (Lund-Mackay score 16.3 vs. 12.4, P = .023) and diminished diversity of microbial communities in both the sinuses (Shannon diversity 0.98 vs. 3.3, P = .009) and lungs (Shannon diversity 2.2 vs. 4.0, P = .042) relative to non-CF-CRS. Non-CF-CRS sinus and lung microbiota were distinct and clustered by niche (sinus vs. lung, P = .004). However, CF airway microbiota demonstrated a loss of niche specificity (sinus vs. lung, P = .492). Two CF patients underwent lung transplantation at 4.5 and 9 months prior to sampling. Sinus and lung samples from these two patients demonstrated distinct microbial communities. CONCLUSIONS Patients with CF undergoing surgery for CRS exhibit substantial bacterial community collapse in the sinuses and a loss of niche specificity between the upper and lower airways compared to non-CF patients with CRS. These results extend previous studies elucidating the lower airway microbiome in cystic fibrosis and provide support for the concept of microbial translocation in the cystic fibrosis airways. LEVEL OF EVIDENCE 4 Laryngoscope, 129:544-550, 2019.
Collapse
Affiliation(s)
- Steven D Pletcher
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California
| | - Andrew N Goldberg
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, California
| | - Emily K Cope
- Pathogen and Microbiome Institute, Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, U.S.A
| |
Collapse
|
46
|
Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018; 31:e00019-18. [PMID: 30158299 PMCID: PMC6148191 DOI: 10.1128/cmr.00019-18] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lower airway infection with Pseudomonas aeruginosa is a major contributor to morbidity and mortality in individuals suffering from the genetic disease cystic fibrosis (CF). Whereas it was long presumed that each patient independently acquired unique strains of P. aeruginosa present in their living environment, multiple studies have since demonstrated that shared strains of P. aeruginosa exist among individuals with CF. Many of these shared strains, often referred to as clonal or epidemic strains, can be transmitted from one CF individual to another, potentially reaching epidemic status. Numerous epidemic P. aeruginosa strains have been described from different parts of the world and are often associated with an antibiotic-resistant phenotype. Importantly, infection with these strains often portends a worse prognosis than for infection with nonclonal strains, including an increased pulmonary exacerbation rate, exaggerated lung function decline, and progression to end-stage lung disease. This review describes the global epidemiology of clonal P. aeruginosa strains in CF and summarizes the current literature regarding the underlying biology and clinical impact of globally important CF clones. Mechanisms associated with patient-to-patient transmission are discussed, and best-evidence practices to prevent infections are highlighted. Preventing new infections with epidemic P. aeruginosa strains is of paramount importance in mitigating CF disease progression.
Collapse
Affiliation(s)
- Michael D Parkins
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Valerie J Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
48
|
Chang RYK, Wallin M, Lin Y, Leung SSY, Wang H, Morales S, Chan HK. Phage therapy for respiratory infections. Adv Drug Deliv Rev 2018; 133:76-86. [PMID: 30096336 PMCID: PMC6226339 DOI: 10.1016/j.addr.2018.08.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 01/12/2023]
Abstract
A respiratory infection caused by antibiotic-resistant bacteria can be life-threatening. In recent years, there has been tremendous effort put towards therapeutic application of bacteriophages (phages) as an alternative or supplementary treatment option over conventional antibiotics. Phages are natural parasitic viruses of bacteria that can kill the bacterial host, including antibiotic-resistant bacteria. Inhaled phage therapy involves the development of stable phage formulations suitable for inhalation delivery followed by preclinical and clinical studies for assessment of efficacy, pharmacokinetics and safety. We presented an overview of recent advances in phage formulation for inhalation delivery and their efficacy in acute and chronic rodent respiratory infection models. We have reviewed and presented on the prospects of inhaled phage therapy as a complementary treatment option with current antibiotics and as a preventative means. Inhaled phage therapy has the potential to transform the prevention and treatment of bacterial respiratory infections, including those caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Martin Wallin
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Denmark
| | - Yu Lin
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia
| | - Sharon Sui Yee Leung
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia; Faculty of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Wang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia
| | - Sandra Morales
- AmpliPhi Biosciences AU, Brookvale, Sydney, NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, Australia.
| |
Collapse
|
49
|
Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL, Waters EM, Sarsby J, Panagiotou S, Dunn J, Chakraborty A, Fang Y, Griswold KE, Winstanley C, Fothergill JL, Kadioglu A, Neill DR. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nat Commun 2018; 9:2635. [PMID: 29980663 PMCID: PMC6035264 DOI: 10.1038/s41467-018-04996-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.
Collapse
Affiliation(s)
- Laura Bricio-Moreno
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Victoria H Sheridan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Ian Goodhead
- School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 3GL, UK
| | - Janet K L Wong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Elaine M Waters
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- Department of Microbiology, School of Natural Science, National University of Ireland, Galway, H91 TK33, Ireland
| | - Joscelyn Sarsby
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Stavros Panagiotou
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - James Dunn
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Adrita Chakraborty
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Yongliang Fang
- Thayer School of Engineering, Dartmouth, Hanover, NH, 03755, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, 03755, USA
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
50
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|