1
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
2
|
Su G, Chen Y, Li X, Shao JW. Virus versus host: influenza A virus circumvents the immune responses. Front Microbiol 2024; 15:1394510. [PMID: 38817972 PMCID: PMC11137263 DOI: 10.3389/fmicb.2024.1394510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Influenza A virus (IAV) is a highly contagious pathogen causing dreadful losses to humans and animals around the globe. As is known, immune escape is a strategy that benefits the proliferation of IAVs by antagonizing, blocking, and suppressing immune surveillance. The HA protein binds to the sialic acid (SA) receptor to enter the cytoplasm and initiate viral infection. The conserved components of the viral genome produced during replication, known as the pathogen-associated molecular patterns (PAMPs), are thought to be critical factors for the activation of effective innate immunity by triggering dependent signaling pathways after recognition by pattern recognition receptors (PRRs), followed by a cascade of adaptive immunity. Viral infection-induced immune responses establish an antiviral state in the host to effectively inhibit virus replication and enhance viral clearance. However, IAV has evolved multiple mechanisms that allow it to synthesize and transport viral components by "playing games" with the host. At its heart, this review will describe how host and viral factors interact to facilitate the viral evasion of host immune responses.
Collapse
Affiliation(s)
- Guanming Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, China
| | - Yiqun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Soos BL, Ballinger A, Weinstein M, Foreman H, Grampone J, Weafer S, Aylesworth C, King BL. Color-Flu Fluorescent Reporter Influenza A Viruses Allow for In Vivo Studies of Innate Immune Function in Zebrafish. Viruses 2024; 16:155. [PMID: 38275965 PMCID: PMC10818453 DOI: 10.3390/v16010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Influenza virus infection can cause severe respiratory disease and is estimated to cause millions of illnesses annually. Studies on the contribution of the innate immune response to influenza A virus (IAV) to viral pathogenesis may yield new antiviral strategies. Zebrafish larvae are useful models for studying the innate immune response to pathogens, including IAV, in vivo. Here, we demonstrate how Color-flu, four fluorescent IAV strains originally developed for mice, can be used to study the host response to infection by simultaneously monitoring infected cells, neutrophils, and macrophages in vivo. Using this model, we show how the angiotensin-converting enzyme inhibitor, ramipril, and mitophagy inhibitor, MDIVI-1, improved survival, decreased viral burden, and improved the respiratory burst response to IAV infection. The Color-flu zebrafish larvae model of IAV infection is complementary to other models where the dynamics of infection and the response of innate immune cells can be visualized in a transparent host in vivo.
Collapse
Affiliation(s)
- Brandy-Lee Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Alec Ballinger
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Mykayla Weinstein
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Haley Foreman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Julianna Grampone
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Samuel Weafer
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Connor Aylesworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
4
|
Soos BL, Ballinger A, Weinstein M, Foreman H, Grampone J, Weafer S, Aylesworth C, King BL. Multi-spectral Fluorescent Reporter Influenza A Viruses Allow for in vivo Studies of Innate Immune Function in Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564888. [PMID: 37961402 PMCID: PMC10634972 DOI: 10.1101/2023.10.31.564888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Influenza virus infection can cause severe respiratory disease and is estimated to cause millions of illnesses annually. Studies of the contribution of the innate immune response to influenza A virus (IAV) to viral pathogenesis may yield new antiviral strategies. Zebrafish larvae are useful models to study the innate immune response to pathogens, including IAV, in vivo. Here, we demonstrate how Color-flu, four fluorescent IAV strains originally developed for mice, can be used to study host-virus interactions by simultaneously monitoring virus particles, neutrophils, and macrophages in vivo. Using this model, we show how the angiotensin-converting enzyme inhibitor, ramipril, and mitophagy inhibitor, MDIVI-1, improved survival, decreased viral burden, and improved the respiratory burst response to IAV infection. The Color-flu zebrafish model of IAV infection is complementary to other models as it is the only model where interactions between virus particles and host cells in an intact vertebrate can be visualized in vivo.
Collapse
Affiliation(s)
- Brandy-Lee Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Alec Ballinger
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Mykayla Weinstein
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Haley Foreman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Julianna Grampone
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Samuel Weafer
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Connor Aylesworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
5
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
6
|
Thoresen DT, Galls D, Götte B, Wang W, Pyle AM. A rapid RIG-I signaling relay mediates efficient antiviral response. Mol Cell 2023; 83:90-104.e4. [PMID: 36521492 PMCID: PMC9825657 DOI: 10.1016/j.molcel.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
RIG-I is essential for host defense against viral pathogens, as it triggers the release of type I interferons upon encounter with viral RNA molecules. In this study, we show that RIG-I is rapidly and efficiently activated by small quantities of incoming viral RNA and that it relies exclusively on the constitutively expressed resident pool of RIG-I receptors for a strong antiviral response. Live-cell imaging of RIG-I following stimulation with viral or synthetic dsRNA reveals that RIG-I signaling occurs without mass aggregation at the mitochondrial membrane. By contrast, interferon-induced RIG-I protein becomes embedded in cytosolic aggregates that are functionally unrelated to signaling. These findings suggest that endogenous RIG-I efficiently recognizes viral RNA and rapidly relays an antiviral signal to MAVS via a transient signaling complex and that cellular aggregates of RIG-I have a function that is distinct from signaling.
Collapse
Affiliation(s)
- Daniel T Thoresen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Drew Galls
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Benjamin Götte
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Wenshuai Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA; Department of Chemistry, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Skelton RM, Huber VC. Comparing Influenza Virus Biology for Understanding Influenza D Virus. Viruses 2022; 14:1036. [PMID: 35632777 PMCID: PMC9147167 DOI: 10.3390/v14051036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The newest type of influenza virus, influenza D virus (IDV), was isolated in 2011. IDV circulates in several animal species worldwide, causing mild respiratory illness in its natural hosts. Importantly, IDV does not cause clinical disease in humans and does not spread easily from person to person. Here, we review what is known about the host-pathogen interactions that may limit IDV illness. We focus on early immune interactions between the virus and infected host cells in our summary of what is known about IDV pathogenesis. This work establishes a foundation for future research into IDV infection and immunity in mammalian hosts.
Collapse
Affiliation(s)
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
8
|
Liedmann S, Liu X, Guy CS, Crawford JC, Rodriguez DA, Kuzuoğlu-Öztürk D, Guo A, Verbist KC, Temirov J, Chen MJ, Ruggero D, Zhang H, Thomas PG, Green DR. Localization of a TORC1-eIF4F translation complex during CD8 + T cell activation drives divergent cell fate. Mol Cell 2022; 82:2401-2414.e9. [PMID: 35597236 DOI: 10.1016/j.molcel.2022.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Activated CD8+ T lymphocytes differentiate into heterogeneous subsets. Using super-resolution imaging, we found that prior to the first division, dynein-dependent vesicular transport polarized active TORC1 toward the microtubule-organizing center (MTOC) at the proximal pole. This active TORC1 was physically associated with active eIF4F, required for the translation of c-myc mRNA. As a consequence, c-myc-translating polysomes polarized toward the cellular pole proximal to the immune synapse, resulting in localized c-myc translation. Upon division, the TORC1-eIF4A complex preferentially sorted to the proximal daughter cell, facilitating asymmetric c-Myc synthesis. Transient disruption of eIF4A activity at first division skewed long-term cell fate trajectories to memory-like function. Using a genetic barcoding approach, we found that first-division sister cells often displayed differences in transcriptional profiles that largely correlated with c-Myc and TORC1 target genes. Our findings provide mechanistic insights as to how distinct T cell fate trajectories can be established during the first division.
Collapse
Affiliation(s)
- Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA 70148, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Duygu Kuzuoğlu-Öztürk
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ao Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katherine C Verbist
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jamshid Temirov
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark J Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Davide Ruggero
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
9
|
Guy C, Mitrea DM, Chou PC, Temirov J, Vignali KM, Liu X, Zhang H, Kriwacki R, Bruchez MP, Watkins SC, Workman CJ, Vignali DAA. LAG3 associates with TCR-CD3 complexes and suppresses signaling by driving co-receptor-Lck dissociation. Nat Immunol 2022; 23:757-767. [PMID: 35437325 PMCID: PMC9106921 DOI: 10.1038/s41590-022-01176-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
LAG3 is an inhibitory receptor that is highly expressed on exhausted T cells. Although LAG3-targeting immunotherapeutics are currently in clinical trials, how LAG3 inhibits T cell function remains unclear. Here, we show that LAG3 moved to the immunological synapse and associated with the T cell receptor (TCR)-CD3 complex in CD4+ and CD8+ T cells, in the absence of binding to major histocompatibility complex class II-its canonical ligand. Mechanistically, a phylogenetically conserved, acidic, tandem glutamic acid-proline repeat in the LAG3 cytoplasmic tail lowered the pH at the immune synapse and caused dissociation of the tyrosine kinase Lck from the CD4 or CD8 co-receptor, which resulted in a loss of co-receptor-TCR signaling and limited T cell activation. These observations indicated that LAG3 functioned as a signal disruptor in a major histocompatibility complex class II-independent manner, and provide insight into the mechanism of action of LAG3-targeting immunotherapies.
Collapse
Affiliation(s)
- Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Po-Chien Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kate M Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Xueyan Liu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Hui Zhang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Park ES, Dezhbord M, Lee AR, Kim KH. The Roles of Ubiquitination in Pathogenesis of Influenza Virus Infection. Int J Mol Sci 2022; 23:ijms23094593. [PMID: 35562987 PMCID: PMC9105177 DOI: 10.3390/ijms23094593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 01/14/2023] Open
Abstract
The ubiquitin system denotes a potent post-translational modification machinery that is capable of activation or deactivation of target proteins through reversible linkage of a single ubiquitin or ubiquitin chains. Ubiquitination regulates major cellular functions such as protein degradation, trafficking and signaling pathways, innate immune response, antiviral defense, and virus replication. The RNA sensor RIG-I ubiquitination is specifically induced by influenza A virus (IAV) to activate type I IFN production. Influenza virus modulates the activity of major antiviral proteins in the host cell to complete its full life cycle. Its structural and non-structural proteins, matrix proteins and the polymerase complex can regulate host immunity and antiviral response. The polymerase PB1-F2 of mutated 1918 IAV, adapts a novel IFN antagonist function by sending the DDX3 into proteasomal degradation. Ultimately the fate of virus is determined by the outcome of interplay between viral components and host antiviral proteins and ubiquitination has a central role in the encounter of virus and its host cell.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
11
|
Kaur R, Batra J, Stuchlik O, Reed MS, Pohl J, Sambhara S, Lal SK. Heterogeneous Ribonucleoprotein A1 (hnRNPA1) Interacts with the Nucleoprotein of the Influenza a Virus and Impedes Virus Replication. Viruses 2022; 14:v14020199. [PMID: 35215793 PMCID: PMC8880450 DOI: 10.3390/v14020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), like other viruses, depends on the host cellular machinery for replication and production of progeny. The relationship between a virus and a host is complex, shaped by many spatial and temporal interactions between viral and host proteome, ultimately dictating disease outcome. Therefore, it is imperative to identify host-virus interactions as crucial determinants of disease pathogenies. Heterogeneous ribonucleoprotein A1 (hnRNPA1) is an RNA binding protein involved in the life cycle of many DNA and RNA viruses; however, its role in IAV remains undiscovered. Here we report that human hnRNPA1 physically interacts with the nucleoprotein (NP) of IAV in mammalian cells at different time points of the viral replication cycle. Temporal distribution studies identify hnRNPA1 and NP co-localize in the same cellular milieu in both nucleus and mitochondria in NP-transfected and IAV-infected mammalian cells. Interestingly, hnRNPA1 influenced NP gene expression and affected viral replication. Most importantly, hnRNPA1 knockdown caused a significant increase in NP expression and enhanced viral replication (93.82%) in IAV infected A549 cells. Conversely, hnRNPA1 overexpression reduced NP expression at the mRNA and protein levels and impeded virus replication by (60.70%), suggesting antagonistic function. Taken together, results from this study demonstrate that cellular hnRNPA1 plays a protective role in the host hitherto unknown and may hold potential as an antiviral target to develop host-based therapeutics against IAV.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
| | - Jyoti Batra
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
| | - Olga Stuchlik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Matthew S. Reed
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Jan Pohl
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
- Correspondence: (S.S.); (S.K.L.)
| | - Sunil Kumar Lal
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
- Tropical Medicine & Biology Platform, Monash University, Selangor 47500, Malaysia
- Correspondence: (S.S.); (S.K.L.)
| |
Collapse
|
12
|
Metabolic control of T FH cells and humoral immunity by phosphatidylethanolamine. Nature 2021; 595:724-729. [PMID: 34234346 PMCID: PMC8448202 DOI: 10.1038/s41586-021-03692-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Collapse
|
13
|
Weis S, te Velthuis AJW. Influenza Virus RNA Synthesis and the Innate Immune Response. Viruses 2021; 13:v13050780. [PMID: 33924859 PMCID: PMC8146608 DOI: 10.3390/v13050780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
Infection with influenza A and B viruses results in a mild to severe respiratory tract infection. It is widely accepted that many factors affect the severity of influenza disease, including viral replication, host adaptation, innate immune signalling, pre-existing immunity, and secondary infections. In this review, we will focus on the interplay between influenza virus RNA synthesis and the detection of influenza virus RNA by our innate immune system. Specifically, we will discuss the generation of various RNA species, host pathogen receptors, and host shut-off. In addition, we will also address outstanding questions that currently limit our knowledge of influenza virus replication and host adaption. Understanding the molecular mechanisms underlying these factors is essential for assessing the pandemic potential of future influenza virus outbreaks.
Collapse
|
14
|
Tran GVQ, Kleinehr J, Preugschas HF, Anhlan D, Mohamed FF, Ehrhardt C, Ludwig S, Hrincius ER. Nonsense-mediated mRNA decay does not restrict influenza A virus propagation. Cell Microbiol 2021; 23:e13323. [PMID: 33655690 DOI: 10.1111/cmi.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) was identified as a process to degrade flawed cellular messenger RNA (mRNA). Within the last decades it was also shown that NMD carries virus-restricting capacities and thus could be considered a part of the cellular antiviral system. As this was shown to affect primarily positive-sense single stranded RNA ((+)ssRNA) viruses there is only scarce knowledge if this also applies to negative-sense single stranded RNA ((-)ssRNA) viruses. Influenza A viruses (IAVs) harbour a segmented (-)ssRNA genome. During their replication IAVs produce numerous RNA transcripts and simultaneously impair cellular transcription and translation. The viral mRNAs hold several molecular patterns which can elicit NMD and in turn would lead to their degradation. This, in consequence, may mitigate viral propagation. Thus, we examined if a knockdown or a pharmacological inhibition of NMD key components may influence IAV replication. Additionally, we performed similar experiments with respiratory syncytial virus (RSV), another (-)ssRNA virus, but with a non-segmented genome. Although it seemed that a knockdown of up-frameshift protein 1 (UPF1), the central NMD factor, slightly increased viral mRNA and protein levels, no significant alteration of viral replication could be observed, implying that the NMD machinery may not have restricting capacities against (-)ssRNA viruses.
Collapse
Affiliation(s)
- Giao Vu Quynh Tran
- Institute of Virology Muenster (IVM), University Hospital Muenster (UKM), Muenster, Germany
| | - Jens Kleinehr
- Institute of Virology Muenster (IVM), University Hospital Muenster (UKM), Muenster, Germany
| | | | - Darisuren Anhlan
- Institute of Virology Muenster (IVM), University Hospital Muenster (UKM), Muenster, Germany
| | - Fakry Fahmy Mohamed
- Institute of Virology Muenster (IVM), University Hospital Muenster (UKM), Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), University Hospital Muenster (UKM), Muenster, Germany.,Section of Experimental Virology, Institute of Medical Microbiology, University Hospital Jena, Jena, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), University Hospital Muenster (UKM), Muenster, Germany
| | - Eike Roman Hrincius
- Institute of Virology Muenster (IVM), University Hospital Muenster (UKM), Muenster, Germany
| |
Collapse
|
15
|
Bruno SR, Anathy V. Lung epithelial endoplasmic reticulum and mitochondrial 3D ultrastructure: a new frontier in lung diseases. Histochem Cell Biol 2021; 155:291-300. [PMID: 33598824 PMCID: PMC7889473 DOI: 10.1007/s00418-020-01950-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
It has long been appreciated that the endoplasmic reticulum (ER) and mitochondria, organelles important for regular cell function and survival, also play key roles in pathogenesis of various lung diseases, including asthma, fibrosis, and infections. Alterations in processes regulated within these organelles, including but not limited to protein folding in the ER and oxidative phosphorylation in the mitochondria, are important in disease pathogenesis. In recent years it has also become increasingly apparent that organelle structure dictates function. It is now clear that organelles must maintain precise organization and localization for proper function. Newer microscopy capabilities have allowed the scientific community to reveal, via 3D imaging, that the structure of these organelles and their interactions with each other are a main component of regulating function and, therefore, effects on the disease state. In this review, we will examine how 3D imaging through techniques could allow advancements in knowledge of how the ER and mitochondria function and the roles they may play in lung epithelia in progression of lung disease.
Collapse
Affiliation(s)
- Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA.
| |
Collapse
|
16
|
Zeng Y, Xu S, Wei Y, Zhang X, Wang Q, Jia Y, Wang W, Han L, Chen Z, Wang Z, Zhang B, Chen H, Lei CQ, Zhu Q. The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathog 2021; 17:e1009300. [PMID: 33577621 PMCID: PMC7880438 DOI: 10.1371/journal.ppat.1009300] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) has evolved various strategies to counteract the innate immune response using different viral proteins. However, the mechanism is not fully elucidated. In this study, we identified the PB1 protein of H7N9 virus as a new negative regulator of virus- or poly(I:C)-stimulated IFN induction and specifically interacted with and destabilized MAVS. A subsequent study revealed that PB1 promoted E3 ligase RNF5 to catalyze K27-linked polyubiquitination of MAVS at Lys362 and Lys461. Moreover, we found that PB1 preferentially associated with a selective autophagic receptor neighbor of BRCA1 (NBR1) that recognizes ubiquitinated MAVS and delivers it to autophagosomes for degradation. The degradation cascade mediated by PB1 facilitates H7N9 virus infection by blocking the RIG-I-MAVS-mediated innate signaling pathway. Taken together, these data uncover a negative regulatory mechanism involving the PB1-RNF5-MAVS-NBR1 axis and provide insights into an evasion strategy employed by influenza virus that involves selective autophagy and innate signaling pathways. In 2013, H7N9 influenza viruses appeared in China and other countries resulting in 1, 567 human infections and 615 deaths. Understanding the cross-talk between virus and host is vital for the development of effective vaccines and therapeutics. Here, we identified the PB1 protein of H7N9 virus as a novel negative regulator that enhances the degradation of MAVS, an essential adaptor protein in the innate signaling pathway. Mechanistically, PB1 promoted the E3 ligase RNF5-mediated ubiquitination of MAVS and recruited the selective autophagic receptor NBR1 to associate with and deliver the ubiquitinated MAVS to the autophagosomes for degradation. Thus, the PB1-RNF5-MAVS-NBR1 axis inhibited innate immune antiviral response and facilitated virus replication by mediating MAVS degradation in an autophagosome-dependent manner. Our findings reveal a novel mechanism by which influenza virus negatively regulates the innate immune response.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanli Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuegang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wanbing Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoshan Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (C-QL); (QZ)
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (C-QL); (QZ)
| |
Collapse
|
17
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
18
|
Hu X, Zhao Y, Yang Y, Gong W, Sun X, Yang L, Zhang Q, Jin M. Akkermansia muciniphila Improves Host Defense Against Influenza Virus Infection. Front Microbiol 2021; 11:586476. [PMID: 33603716 PMCID: PMC7884316 DOI: 10.3389/fmicb.2020.586476] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza virus infection can alter the composition of the gut microbiota, while its pathogenicity can, in turn, be highly influenced by the gut microbiota. However, the details underlying these associations remain to be determined. The H7N9 influenza virus is an emerging zoonotic pathogen which has caused the death of 616 humans and has incurred huge losses in the poultry industry. Here, we investigated the effects of infection with highly pathogenic H7N9 on gut microbiota and determined potential anti-influenza microbes. 16S rRNA sequencing results show that H7N9 infection alters the mouse gut microbiota by promoting the growth of Akkermansia, Ruminococcus 1, and Ruminococcaceae UCG-010, and reducing the abundance of Rikenellaceae RC9 gut group and Lachnoclostridium. Although the abundance of Akkermansia muciniphila is positively related to H7N9 infection, the oral administration of cultures, especially of pasteurized A. muciniphila, can significantly reduce weight loss and mortality caused by H7N9 infection in mice. Furthermore, oral administration of live or pasteurized A. muciniphila significantly reduces pulmonary viral titers and the levels IL-1β and IL-6 but enhances the levels of IFN-β, IFN-γ, and IL-10 in H7N9-infected mice, suggesting that the anti-influenza role of A. muciniphila is due to its anti-inflammatory and immunoregulatory properties. Taken together, we showed that the changes in the gut microbiota are associated with H7N9 infection and demonstrated the anti-influenza role of A. muciniphila, which enriches current knowledge about how specific gut bacterial strains protect against influenza infection and suggests a potential anti-influenza probiotic.
Collapse
Affiliation(s)
- Xiaotong Hu
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Zhao
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yong Yang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenxiao Gong
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Yang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
19
|
Ludwig S, Hrincius ER, Boergeling Y. The Two Sides of the Same Coin-Influenza Virus and Intracellular Signal Transduction. Cold Spring Harb Perspect Med 2021; 11:a038513. [PMID: 31871235 PMCID: PMC7778220 DOI: 10.1101/cshperspect.a038513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells respond to extracellular agents by activation of intracellular signaling pathways. Viruses can be regarded as such agents, leading to a firework of signaling inside the cell, primarily induced by pathogen-associated molecular patterns (PAMPs) that provoke safeguard mechanisms to defend from the invader. In the constant arms race between pathogen and cellular defense, viruses not only have evolved mechanisms to suppress or misuse supposedly antiviral signaling processes for their own benefit but also actively induce signaling to promote replication. This creates viral dependencies that may be exploited for novel strategies of antiviral intervention. Here, we will summarize the current knowledge of activation and function of influenza virus-induced signaling pathways with a focus on nuclear factor (NF)-κB signaling, mitogen-activated protein kinase cascades, and the phosphatidylinositol-3-kinase pathway. We will discuss the opportunities and drawbacks of targeting these signaling pathways for antiviral intervention.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
20
|
The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci 2021; 78:7237-7256. [PMID: 34677644 PMCID: PMC8532088 DOI: 10.1007/s00018-021-03957-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA polymerase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.
Collapse
|
21
|
Ghorbani A, Abundo MC, Ji H, Taylor KJM, Ngunjiri JM, Lee CW. Viral Subpopulation Screening Guides in Designing a High Interferon-Inducing Live Attenuated Influenza Vaccine by Targeting Rare Mutations in NS1 and PB2 Proteins. J Virol 2020; 95:e01722-20. [PMID: 33115873 PMCID: PMC7944443 DOI: 10.1128/jvi.01722-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses continue to circulate among wild birds and poultry worldwide, posing constant pandemic threats to humans. Effective control of emerging influenza viruses requires new broadly protective vaccines. Live attenuated influenza vaccines with truncations in nonstructural protein 1 (NS1) have shown broad protective efficacies in birds and mammals, which correlate with the ability to induce elevated interferon responses in the vaccinated hosts. Given the extreme diversity of influenza virus populations, we asked if we could improve an NS1-truncated live attenuated influenza vaccine developed for poultry (PC4) by selecting viral subpopulations with enhanced interferon-inducing capacities. Here, we deconstructed a de novo population of PC4 through plaque isolation, created a large library of clones, and assessed their interferon-inducing phenotypes. While most of the clones displayed the parental interferon-inducing phenotype in cell culture, few clones showed enhanced interferon-inducing phenotypes in cell culture and chickens. The enhanced interferon-inducing phenotypes were linked to either a deletion in NS1 (NS1Δ76-86) or a substitution in polymerase basic 2 protein (PB2-D309N). The NS1Δ76-86 deletion disrupted the putative eukaryotic translation initiation factor 4GI-binding domain and promoted the synthesis of biologically active interferons. The PB2-D309N substitution enhanced the early transcription of interferon mRNA, revealing a novel role for the 309D residue in suppression of interferon responses. We combined these mutations to engineer a novel vaccine candidate that induced additive amounts of interferons and stimulated protective immunity in chickens. Therefore, viral subpopulation screening approaches can guide the design of live vaccines with strong immunostimulatory properties.IMPORTANCE Effectiveness of NS1-truncated live attenuated influenza vaccines relies heavily on their ability to induce elevated interferon responses in vaccinated hosts. Influenza viruses contain diverse particle subpopulations with distinct phenotypes. We show that live influenza vaccines can contain underappreciated subpopulations with enhanced interferon-inducing phenotypes. The genomic traits of such virus subpopulations can be used to further improve the efficacy of the current live vaccines.
Collapse
Affiliation(s)
- Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Michael C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Hana Ji
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kara J M Taylor
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Sun N, Jiang L, Ye M, Wang Y, Wang G, Wan X, Zhao Y, Wen X, Liang L, Ma S, Liu L, Bu Z, Chen H, Li C. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell 2020; 11:894-914. [PMID: 32562145 PMCID: PMC7719147 DOI: 10.1007/s13238-020-00734-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022] Open
Abstract
Tripartite motif (TRIM) family proteins are important effectors of innate immunity against viral infections. Here we identified TRIM35 as a regulator of TRAF3 activation. Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon (IFN) in response to viral infection. Trim35-deficient mice were more susceptible to influenza A virus (IAV) infection than were wild-type mice. TRIM35 promoted the RIG-I-mediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1. IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3. TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2, thereby antagonizing its suppression of TRAF3 activation. Our in vitro and in vivo findings thus reveal novel roles of TRIM35, through catalyzing Lys63- or Lys48-linked polyubiquitination, in RIG-I antiviral immunity and mechanism of defense against IAV infection.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Miaomiao Ye
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yihan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guangwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaopeng Wan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuhui Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xia Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Libin Liang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
23
|
A Well-Defined H9N2 Avian Influenza Virus Genotype with High Adaption in Mammals was Prevalent in Chinese Poultry Between 2016 to 2019. Viruses 2020; 12:v12040432. [PMID: 32290398 PMCID: PMC7232211 DOI: 10.3390/v12040432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
H9N2 subtype avian influenza virus (AIV) is widely prevalent in poultry, and the virus is becoming adaptive to mammals, which poses pandemic importance. Here, BALB/c mice were employed as a model to evaluate the adaption in mammals of 21 field H9N2 viruses isolated from avian species between 2016 to 2019 in China. The replication capacity of the viruses was evaluated in the lungs of mice. The pathogenicity of the viruses were compared by weight loss and lung lesions from infected mice. The whole genomic sequences of the viruses were further characterized to define the associated phenotypes of the H9N2 viruses in vitro and in vivo. The results showed that most viruses could replicate well and cause lesions in the mouse lungs. The propagation capacity in MDCK cells and damage to respiratory tissues of the infected mice corresponded to relative viral titers in the mouse lungs. Further genome analysis showed that all of the H9N2 viruses belonged to the same genotype, G57, and contained a couple of amino acid substitutions or deletions that have been demonstrated as avian-human markers. Additionally, nine amino acids residues in seven viral proteins were found to be correlated with the replication phenotypes of the H9N2 viruses in mammals. The study demonstrated that a well-defined H9N2 AIV genotype with high adaption in mammals was prevalent in China in recent years. Further investigations on the role of the identified residues and continuous surveillance of newly identified mutations associated with host adaption should be strengthened to prevent any devastating human influenza pandemics.
Collapse
|
24
|
PARP1 Enhances Influenza A Virus Propagation by Facilitating Degradation of Host Type I Interferon Receptor. J Virol 2020; 94:JVI.01572-19. [PMID: 31915279 DOI: 10.1128/jvi.01572-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) utilizes multiple strategies to confront or evade host type I interferon (IFN)-mediated antiviral responses in order to enhance its own propagation within the host. One such strategy is to induce the degradation of type I IFN receptor 1 (IFNAR1) by utilizing viral hemagglutinin (HA). However, the molecular mechanism behind this process is poorly understood. Here, we report that a cellular protein, poly(ADP-ribose) polymerase 1 (PARP1), plays a critical role in mediating IAV HA-induced degradation of IFNAR1. We identified PARP1 as an interacting partner for IAV HA through mass spectrometry analysis. This interaction was confirmed by coimmunoprecipitation analyses. Furthermore, confocal fluorescence microscopy showed altered localization of endogenous PARP1 upon transient IAV HA expression or during IAV infection. Knockdown or inhibition of PARP1 rescued IFNAR1 levels upon IAV infection or HA expression, exemplifying the importance of PARP1 for IAV-induced reduction of IFNAR1. Notably, PARP1 was crucial for the robust replication of IAV, which was associated with regulation of the type I IFN receptor signaling pathway. These results indicate that PARP1 promotes IAV replication by controlling viral HA-induced degradation of host type I IFN receptor. Altogether, these findings provide novel insight into interactions between influenza virus and the host innate immune response and reveal a new function for PARP1 during influenza virus infection.IMPORTANCE Influenza A virus (IAV) infections cause seasonal and pandemic influenza outbreaks, which pose a devastating global health concern. Despite the availability of antivirals against influenza, new IAV strains continue to persist by overcoming the therapeutics. Therefore, much emphasis in the field is placed on identifying new therapeutic targets that can more effectively control influenza. IAV utilizes several tactics to evade host innate immunity, which include the evasion of antiviral type I interferon (IFN) responses. Degradation of type I IFN receptor (IFNAR) is one known method of subversion, but the molecular mechanism for IFNAR downregulation during IAV infection remains unclear. Here, we have found that a host protein, poly(ADP-ribose) polymerase 1 (PARP1), facilitates IFNAR degradation and accelerates IAV replication. The findings reveal a novel cellular target for the potential development of antivirals against influenza, as well as expand our base of knowledge regarding interactions between influenza and the host innate immunity.
Collapse
|
25
|
Wang R, Zhu Y, Ren C, Yang S, Tian S, Chen H, Jin M, Zhou H. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy 2020; 17:496-511. [PMID: 32013669 DOI: 10.1080/15548627.2020.1725375] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Influenza A virus (IAV) infection induces mitophagy, which is essential for the clearance of damaged mitochondria. Dysfunctional mitochondria can be selectively targeted by PINK1, which recruits PRKN/PARK2 and leads to subsequent mitochondrial sequestration within autophagosomes. The IAV PB1-F2 protein translocates to mitochondria, accelerates the mitochondrial fragmentation and impairs the innate immunity. However, whether PB1-F2 mediates IAV-induced mitophagy and the relation between mitophagy and PB1-F2-attenuated innate immunity remain obscure. Here, we showed that PB1-F2 translocated to mitochondria by interacting and colocalizing with TUFM (Tu translation elongation factor, mitochondrial). Further studies revealed that PB1-F2 induced complete mitophagy, which required the interactions of PB1-F2 with both TUFM and MAP1LC3B/LC3B that mediated the autophagosome formation. PB1-F2-induced mitophagy was critical for the MAVS (mitochondrial antiviral signaling protein) degradation and led to its suppression of the type I IFN production. Importantly, the C-terminal LIR motif of PB1-F2 protein was demonstrated to be essential for its mitophagy induction and attenuated innate immunity. In conclusion, PB1-F2-induced mitophagy strongly correlates with impaired cellular innate immunity, revealing it is a potential therapeutic target.Abbreviations: BCL2L13: BCL2 like 13; BECN1: beclin 1; BNIP3L/Nix: BCL2 interacting protein 3 like; CQ: chloroquine; DDX58: DExD/H-box helicase 58; eGFP: enhanced green fluorescent protein; hpi: hours post infection; IAV: influenza A virus; IFN: interferon; IP: immunoprecipitation; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOI, multiplicity of infection; mRFP: monomeric red fluorescent protein; NBR1: NBR1 autophagy cargo receptor; NC: negative control; NLRP3: NLR family pyrin domain containing 3; PINK1: PTEN induced kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RLR: RIG-I-like-receptor; ROS: reactive oxygen species; SEV: sendai virus; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TM: transmembrane; TOMM20/40: translocase of outer mitochondrial membrane 20/40; TUFM: Tu translation elongation factor, mitochondrial.
Collapse
Affiliation(s)
- Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chenwei Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuaike Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
26
|
Benam KH, Denney L, Ho LP. How the Respiratory Epithelium Senses and Reacts to Influenza Virus. Am J Respir Cell Mol Biol 2019; 60:259-268. [PMID: 30372120 DOI: 10.1165/rcmb.2018-0247tr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human lung is constantly exposed to the environment and potential pathogens. As the interface between host and environment, the respiratory epithelium has evolved sophisticated sensing mechanisms as part of its defense against pathogens. In this review, we examine how the respiratory epithelium senses and responds to influenza A virus, the biggest cause of respiratory viral deaths worldwide.
Collapse
Affiliation(s)
- Kambez H Benam
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado.,2 Department of Bioengineering, University of Colorado Denver, Aurora, Colorado; and
| | - Laura Denney
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ling-Pei Ho
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
27
|
Liu G, Zhou Y. Cytoplasm and Beyond: Dynamic Innate Immune Sensing of Influenza A Virus by RIG-I. J Virol 2019; 93:e02299-18. [PMID: 30760567 PMCID: PMC6450113 DOI: 10.1128/jvi.02299-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Innate immune sensing of influenza A virus (IAV) requires retinoic acid-inducible gene I (RIG-I), a fundamental cytoplasmic RNA sensor. How RIG-I's cytoplasmic localization reconciles with the nuclear replication nature of IAV is poorly understood. Recent findings provide advanced insights into the spatiotemporal RIG-I sensing of IAV and highlight the contribution of various RNA ligands to RIG-I activation. Understanding a compartment-specific RIG-I-sensing paradigm would facilitate the identification of the full spectrum of physiological RIG-I ligands produced during IAV infection.
Collapse
Affiliation(s)
- GuanQun Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
28
|
Ampomah PB, Kong WT, Zharkova O, Chua SCJH, Perumal Samy R, Lim LHK. Annexins in Influenza Virus Replication and Pathogenesis. Front Pharmacol 2018; 9:1282. [PMID: 30498445 PMCID: PMC6249340 DOI: 10.3389/fphar.2018.01282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
Influenza A viruses (IAVs) are important human respiratory pathogens which cause seasonal or periodic endemic infections. IAV can result in severe or fatal clinical complications including pneumonia and respiratory distress syndrome. Treatment of IAV infections is complicated because the virus can evade host immunity through antigenic drifts and antigenic shifts, to establish infections making new treatment options desirable. Annexins (ANXs) are a family of calcium and phospholipid binding proteins with immunomodulatory roles in viral infections, lung injury, and inflammation. A current understanding of the role of ANXs in modulating IAV infection and host responses will enable the future development of more effective antiviral therapies. This review presents a comprehensive understanding of the advances made in the field of ANXs, in particular, ANXA1 and IAV research and highlights the importance of ANXs as a suitable target for IAV therapy.
Collapse
Affiliation(s)
- Patrick Baah Ampomah
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wan Ting Kong
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olga Zharkova
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonja C. J. H. Chua
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - R. Perumal Samy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lina H. K. Lim
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Pereira CF, Wise HM, Kurian D, Pinto RM, Amorim MJ, Gill AC, Digard P. Effects of mutations in the effector domain of influenza A virus NS1 protein. BMC Res Notes 2018; 11:673. [PMID: 30227889 PMCID: PMC6145200 DOI: 10.1186/s13104-018-3779-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The multifunctional NS1 protein of influenza A virus has roles in antagonising cellular innate immune responses and promoting viral gene expression. To better understand the interplay between these functions, we tested the effects of NS1 effector domain mutations known to affect homo-dimerisation or interactions with cellular PI3 kinase or Trim25 on NS1 ability to promote nuclear export of viral mRNAs. RESULTS The NS1 dimerisation mutant W187R retained the functions of binding cellular NXF1 as well as stabilising NXF1 interaction with viral segment 7 mRNAs and promoting their nuclear export. Two PI3K-binding mutants, NS1 Y89F and Y89A still bound NXF1 but no longer promoted NXF1 interactions with segment 7 mRNA or its nuclear export. The Trim25-binding mutant NS1 E96A/E97A bound NXF1 and supported NXF1 interactions with segment 7 mRNA but no longer supported mRNA nuclear export. Analysis of WT and mutant NS1 interaction partners identified hsp70 as specifically binding to NS1 E96A/E97A. Whilst these data suggest the possibility of functional links between NS1's effects on intracellular signalling and its role in viral mRNA nuclear export, they also indicate potential pleiotropic effects of the NS1 mutations; in the case of E96A/E97A possibly via disrupted protein folding leading to chaperone recruitment.
Collapse
Affiliation(s)
- Carina F Pereira
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,European Commission, Place Rogier 16, 1210, Brussels, Belgium
| | - Helen M Wise
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Department of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Rute M Pinto
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Maria J Amorim
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Cell Biology of Viral Infection, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Andrew C Gill
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln, Lincolnshire, LN6 7DL, UK
| | - Paul Digard
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
30
|
Liu G, Lu Y, Thulasi Raman SN, Xu F, Wu Q, Li Z, Brownlie R, Liu Q, Zhou Y. Nuclear-resident RIG-I senses viral replication inducing antiviral immunity. Nat Commun 2018; 9:3199. [PMID: 30097581 PMCID: PMC6086882 DOI: 10.1038/s41467-018-05745-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022] Open
Abstract
The nucleus represents a cellular compartment where the discrimination of self from non-self nucleic acids is vital. While emerging evidence establishes a nuclear non-self DNA sensing paradigm, the nuclear sensing of non-self RNA, such as that from nuclear-replicating RNA viruses, remains unexplored. Here, we report the identification of nuclear-resident RIG-I actively involved in nuclear viral RNA sensing. The nuclear RIG-I, along with its cytoplasmic counterpart, senses influenza A virus (IAV) nuclear replication leading to a cooperative induction of type I interferon response. Its activation signals through the canonical signaling axis and establishes an effective antiviral state restricting IAV replication. The exclusive signaling specificity conferred by nuclear RIG-I is reinforced by its inability to sense cytoplasmic-replicating Sendai virus and appreciable sensing of hepatitis B virus pregenomic RNA in the nucleus. These results refine the RNA sensing paradigm for nuclear-replicating viruses and reveal a previously unrecognized subcellular milieu for RIG-I-like receptor sensing.
Collapse
Affiliation(s)
- GuanQun Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Yao Lu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Sathya N Thulasi Raman
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Fang Xu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Qi Wu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Zhubing Li
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Robert Brownlie
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
31
|
Hippo/Mst signalling couples metabolic state and immune function of CD8α + dendritic cells. Nature 2018; 558:141-145. [PMID: 29849151 DOI: 10.1038/s41586-018-0177-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Abstract
Dendritic cells orchestrate the crosstalk between innate and adaptive immunity. CD8α+ dendritic cells present antigens to CD8+ T cells and elicit cytotoxic T cell responses to viruses, bacteria and tumours 1 . Although lineage-specific transcriptional regulators of CD8α+ dendritic cell development have been identified 2 , the molecular pathways that selectively orchestrate CD8α+ dendritic cell function remain elusive. Moreover, metabolic reprogramming is important for dendritic cell development and activation3,4, but metabolic dependence and regulation of dendritic cell subsets are largely uncharacterized. Here we use a data-driven systems biology algorithm (NetBID) to identify a role of the Hippo pathway kinases Mst1 and Mst2 (Mst1/2) in selectively programming CD8α+ dendritic cell function and metabolism. Our NetBID analysis reveals a marked enrichment of the activities of Hippo pathway kinases in CD8α+ dendritic cells relative to CD8α- dendritic cells. Dendritic cell-specific deletion of Mst1/2-but not Lats1 and Lats2 (Lats1/2) or Yap and Taz (Yap/Taz), which mediate canonical Hippo signalling-disrupts homeostasis and function of CD8+ T cells and anti-tumour immunity. Mst1/2-deficient CD8α+ dendritic cells are impaired in presentation of extracellular proteins and cognate peptides to prime CD8+ T cells, while CD8α- dendritic cells that lack Mst1/2 have largely normal function. Mechanistically, compared to CD8α- dendritic cells, CD8α+ dendritic cells exhibit much stronger oxidative metabolism and critically depend on Mst1/2 signalling to maintain bioenergetic activities and mitochondrial dynamics for their functional capacities. Further, selective expression of IL-12 by CD8α+ dendritic cells depends on Mst1/2 and the crosstalk with non-canonical NF-κB signalling. Our findings identify Mst1/2 as selective drivers of CD8α+ dendritic cell function by integrating metabolic activity and cytokine signalling, and highlight that the interplay between immune signalling and metabolic reprogramming underlies the unique functions of dendritic cell subsets.
Collapse
|
32
|
Du Y, Xin L, Shi Y, Zhang TH, Wu NC, Dai L, Gong D, Brar G, Shu S, Luo J, Reiley W, Tseng YW, Bai H, Wu TT, Wang J, Shu Y, Sun R. Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science 2018; 359:290-296. [PMID: 29348231 DOI: 10.1126/science.aan8806] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
In conventional attenuated viral vaccines, immunogenicity is often suboptimal. Here we present a systematic approach for vaccine development that eliminates interferon (IFN)-modulating functions genome-wide while maintaining virus replication fitness. We applied a quantitative high-throughput genomics system to influenza A virus that simultaneously measured the replication fitness and IFN sensitivity of mutations across the entire genome. By incorporating eight IFN-sensitive mutations, we generated a hyper-interferon-sensitive (HIS) virus as a vaccine candidate. HIS virus is highly attenuated in IFN-competent hosts but able to induce transient IFN responses, elicits robust humoral and cellular immune responses, and provides protection against homologous and heterologous viral challenges. Our approach, which attenuates the virus and promotes immune responses concurrently, is broadly applicable for vaccine development against other pathogens.
Collapse
Affiliation(s)
- Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA. .,Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing 102206, China
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Nicholas C Wu
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Gurpreet Brar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Sara Shu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Jiadi Luo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.,Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410005, China
| | | | - Yen-Wen Tseng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Hongyan Bai
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing 102206, China
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Jieru Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing 102206, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA. .,Cancer Institute, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Perot BP, Boussier J, Yatim N, Rossman JS, Ingersoll MA, Albert ML. Autophagy diminishes the early interferon-β response to influenza A virus resulting in differential expression of interferon-stimulated genes. Cell Death Dis 2018; 9:539. [PMID: 29748576 PMCID: PMC5945842 DOI: 10.1038/s41419-018-0546-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.
Collapse
Affiliation(s)
- Brieuc P Perot
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Université Pierre et Marie Curie (Université Paris 6), Paris, France
| | - Jeremy Boussier
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France.,International Group for Data Analysis, Institut Pasteur, Paris, France.,Ecole Doctorale Frontières du Vivant, Université Paris Diderot, Paris, France
| | - Nader Yatim
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France.,Inserm 1223, Paris, France
| | | | - Molly A Ingersoll
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France.
| | - Matthew L Albert
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France. .,Inserm 1223, Paris, France. .,Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
34
|
Xia C, Wolf JJ, Vijayan M, Studstill CJ, Ma W, Hahm B. Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus. J Virol 2018; 92:e00006-18. [PMID: 29343571 PMCID: PMC5972889 DOI: 10.1128/jvi.00006-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA (siRNA)-based knockdown of CK1α repressed the degradation processes of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating conditions favorable for viral propagation. Therefore, the study uncovers a new immune-evasive pathway of influenza virus.IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans, causing seasonal and pandemic influenza. Upon infection, innate and adaptive immunity, such as the interferon (IFN) response, is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses, although the detailed mechanisms need to be elucidated. In the present study, we show that IAV HA induces the degradation of the type II IFN receptor IFNGR1 and thereby substantially attenuates cellular responses to IFN-γ. Of note, a cellular kinase, casein kinase 1α (CK1α), is crucial for IAV HA-induced degradation of both IFNGR1 and IFNAR1. Accordingly, CK1α is proven to positively regulate IAV propagation. Thus, this study unveils a novel strategy employed by IAV to evade IFN-mediated antiviral activities. These findings may provide new insights into the interplay between IAV and host immunity to impact influenza virus pathogenicity.
Collapse
MESH Headings
- A549 Cells
- Animals
- Casein Kinase I/genetics
- Casein Kinase I/immunology
- Chlorocebus aethiops
- Dogs
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immune Evasion
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/pathology
- Madin Darby Canine Kidney Cells
- Protein Kinase D2
- Protein Kinases/genetics
- Protein Kinases/immunology
- Proteolysis
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- Vero Cells
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/immunology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Chuan Xia
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Jennifer J Wolf
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Caleb J Studstill
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
35
|
Chan CP, Yuen CK, Cheung PHH, Fung SY, Lui PY, Chen H, Kok KH, Jin DY. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase. FASEB J 2018. [PMID: 29513570 DOI: 10.1096/fj.201701361r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PACT is a double-stranded RNA-binding protein that has been implicated in host-influenza A virus (IAV) interaction. PACT facilitates the action of RIG-I in the activation of the type I IFN response, which is suppressed by the viral nonstructural protein NS1. PACT is also known to interact with the IAV RNA polymerase subunit PA. Exactly how PACT exerts its antiviral activity during IAV infection remains to be elucidated. In the current study, we demonstrated the interplay between PACT and IAV polymerase. Induction of IFN-β by the IAV RNP complex was most robust when both RIG-I and PACT were expressed. PACT-dependent activation of IFN-β production was suppressed by the IAV polymerase subunits, polymerase acidic protein, polymerase basic protein 1 (PB1), and PB2. PACT associated with PA, PB1, and PB2. Compromising PACT in IAV-infected A549 cells resulted in the augmentation of viral RNA (vRNA) transcription and replication and IFN-β production. Furthermore, vRNA replication was boosted by knockdown of PACT in both A549 cells and IFN-deficient Vero cells. Thus, the antiviral activity of PACT is mediated primarily via its interaction with and inhibition of IAV polymerase. Taken together, our findings reveal a new facet of the host-IAV interaction in which the interplay between PACT and IAV polymerase affects the outcome of viral infection and antiviral response.-Chan, C.-P., Yuen, C.-K., Cheung, P.-H. H., Fung, S.-Y., Lui, P.-Y., Chen, H., Kok, K.-H., Jin, D.-Y. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chun-Kit Yuen
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Honglin Chen
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
36
|
Gebhardt A, Laudenbach BT, Pichlmair A. Discrimination of Self and Non-Self Ribonucleic Acids. J Interferon Cytokine Res 2018; 37:184-197. [PMID: 28475460 DOI: 10.1089/jir.2016.0092] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most virus infections are controlled through the innate and adaptive immune system. A surprisingly limited number of so-called pattern recognition receptors (PRRs) have the ability to sense a large variety of virus infections. The reason for the broad activity of PRRs lies in the ability to recognize viral nucleic acids. These nucleic acids lack signatures that are present in cytoplasmic cellular nucleic acids and thereby marking them as pathogen-derived. Accumulating evidence suggests that these signatures, which are predominantly sensed by a class of PRRs called retinoic acid-inducible gene I (RIG-I)-like receptors and other proteins, are not unique to viruses but rather resemble immature forms of cellular ribonucleic acids generated by cellular polymerases. RIG-I-like receptors, and other cellular antiviral proteins, may therefore have mainly evolved to sense nonprocessed nucleic acids typically generated by primitive organisms and pathogens. This capability has not only implications on induction of antiviral immunity but also on the function of cellular proteins to handle self-derived RNA with stimulatory potential.
Collapse
Affiliation(s)
- Anna Gebhardt
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry , Munich, Germany
| | | | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry , Munich, Germany
| |
Collapse
|
37
|
Zeng H, Yu M, Tan H, Li Y, Su W, Shi H, Dhungana Y, Guy C, Neale G, Cloer C, Peng J, Wang D, Chi H. Discrete roles and bifurcation of PTEN signaling and mTORC1-mediated anabolic metabolism underlie IL-7-driven B lymphopoiesis. SCIENCE ADVANCES 2018; 4:eaar5701. [PMID: 29399633 PMCID: PMC5792226 DOI: 10.1126/sciadv.aar5701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Interleukin-7 (IL-7) drives early B lymphopoiesis, but the underlying molecular circuits remain poorly understood, especially how Stat5 (signal transducer and activator of transcription 5)-dependent and Stat5-independent pathways contribute to this process. Combining transcriptome and proteome analyses and mouse genetic models, we show that IL-7 promotes anabolic metabolism and biosynthetic programs in pro-B cells. IL-7-mediated activation of mTORC1 (mechanistic target of rapamycin complex 1) supported cell proliferation and metabolism in a Stat5-independent, Myc-dependent manner but was largely dispensable for cell survival or Rag1 and Rag2 gene expression. mTORC1 was also required for Myc-driven lymphomagenesis. PI3K (phosphatidylinositol 3-kinase) and mTORC1 had discrete effects on Stat5 signaling and independently controlled B cell development. PI3K was actively suppressed by PTEN (phosphatase and tensin homolog) in pro-B cells to ensure proper IL-7R expression, Stat5 activation, heavy chain rearrangement, and cell survival, suggesting the unexpected bifurcation of the classical PI3K-mTOR signaling. Together, our integrative analyses establish IL-7R-mTORC1-Myc and PTEN-mediated PI3K suppression as discrete signaling axes driving B cell development, with differential effects on IL-7R-Stat5 signaling.
Collapse
Affiliation(s)
- Hu Zeng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Haiyan Tan
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wei Su
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Caryn Cloer
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| |
Collapse
|
38
|
Gong YN, Guy C, Crawford JC, Green DR. Biological events and molecular signaling following MLKL activation during necroptosis. Cell Cycle 2017; 16:1748-1760. [PMID: 28854080 DOI: 10.1080/15384101.2017.1371889] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Necroptosis is a form of programmed necrotic cell death mediated by the kinase RIPK3 and its substrate MLKL. MLKL, which displays plasma membrane (PM) pore-forming activity upon phosphorylation, functions as the executioner during necroptosis. Thus, it was previously assumed that MLKL phosphorylation is the endpoint of the necroptotic signaling pathway. Here, we summarize several events that characterize the dying necroptotic cells after MLKL phosphorylation, including Ca2+ influx, phosphatidylserine (PS) externalization, PM repair by ESCRT-III activation, and the final compromise of PM integrity. These processes add several unexpected regulatory events downstream of MLKL signaling. We have also observed that CoCl2, which may mimic hypoxia, can induce necroptosis, which suggests that in vivo triggers of necroptosis might include a transient lack of O2.
Collapse
Affiliation(s)
- Yi-Nan Gong
- a Department of Immunology , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Cliff Guy
- a Department of Immunology , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Jeremy Chase Crawford
- a Department of Immunology , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Douglas R Green
- a Department of Immunology , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
39
|
Ilyushina NA, Lugovtsev VY, Samsonova AP, Sheikh FG, Bovin NV, Donnelly RP. Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses. PLoS One 2017; 12:e0181999. [PMID: 28750037 PMCID: PMC5531537 DOI: 10.1371/journal.pone.0181999] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses pose a constant potential threat to human health. In view of the innate antiviral activity of interferons (IFNs) and their potential use as anti-influenza agents, it is important to know whether viral resistance to these antiviral proteins can arise. To examine the likelihood of emergence of IFN-λ1-resistant H1N1 variants, we serially passaged the A/California/04/09 (H1N1) strain in a human lung epithelial cell line (Calu-3) in the presence of increasing concentrations of recombinant IFN-λ1 protein. To monitor changes associated with adaptation of this virus to growth in Calu-3 cells, we also passaged the wild-type virus in the absence of IFN-λ1. Under IFN-λ1 selective pressure, the parental virus developed two neuraminidase (NA) mutations, S79L and K331N, which significantly reduced NA enzyme activity (↓1.4-fold) and sensitivity to IFN-λ1 (↓˃20-fold), respectively. These changes were not associated with a reduction in viral replication levels. Mutants carrying either K331N alone or S79L and K331N together induced weaker phosphorylation of IFN regulatory factor 3 (IRF3), and, as a consequence, much lower expression of the IFN genes (IFNB1, IFNL1 and IFNL2/3) and proteins (IFN-λ1 and IFN-λ2/3). The lower levels of IFN expression correlated with weaker induction of tyrosine-phosphorylated STAT1 and reduced RIG-I protein levels. Our findings demonstrate that influenza viruses can develop increased resistance to the antiviral activity of type III interferons.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- DEAD Box Protein 58/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Dogs
- Drug Resistance, Viral/drug effects
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation/drug effects
- Humans
- Immunity, Innate/drug effects
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza A Virus, H1N1 Subtype/physiology
- Interferon Regulatory Factor-3/metabolism
- Interferons
- Interleukins/pharmacology
- Mutation/genetics
- Neuraminidase/genetics
- Phosphorylation/drug effects
- Receptors, Immunologic
- Receptors, Virus/genetics
- Recombination, Genetic/genetics
- STAT1 Transcription Factor/metabolism
- Sequence Analysis, DNA
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Natalia A. Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vladimir Y. Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anastasia P. Samsonova
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Faruk G. Sheikh
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nicolai V. Bovin
- Carbohydrate Chemistry Laboratory, Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Raymond P. Donnelly
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
40
|
Kesavardhana S, Kuriakose T, Guy CS, Samir P, Malireddi RKS, Mishra A, Kanneganti TD. ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. J Exp Med 2017. [PMID: 28634194 PMCID: PMC5551577 DOI: 10.1084/jem.20170550] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The activation mechanism of ZBP1/DAI to regulate virus-induced programmed cell death is not known. Kesavardhana et al. show that ZBP1 senses viral ribonucleoproteins to induce cell death upon influenza A virus infection. Apical activation of RIG-I–IFNAR signaling to upregulate ZBP1 and influenza-induced ZBP1 ubiquitination are critical events for ZBP1 activation. Innate sensing of influenza virus infection induces activation of programmed cell death pathways. We have recently identified Z-DNA–binding protein 1 (ZBP1) as an innate sensor of influenza A virus (IAV). ZBP1-mediated IAV sensing is critical for triggering programmed cell death in the infected lungs. Surprisingly, little is known about the mechanisms regulating ZBP1 activation to induce programmed cell death. Here, we report that the sensing of IAV RNA by retinoic acid inducible gene I (RIG-I) initiates ZBP1-mediated cell death via the RIG-I–MAVS–IFN-β signaling axis. IAV infection induces ubiquitination of ZBP1, suggesting potential regulation of ZBP1 function through posttranslational modifications. We further demonstrate that ZBP1 senses viral ribonucleoprotein (vRNP) complexes of IAV to trigger cell death. These findings collectively indicate that ZBP1 activation requires RIG-I signaling, ubiquitination, and vRNP sensing to trigger activation of programmed cell death pathways during IAV infection. The mechanism of ZBP1 activation described here may have broader implications in the context of virus-induced cell death.
Collapse
Affiliation(s)
| | - Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Ashutosh Mishra
- Proteomics and Mass Spectrometry Core, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
41
|
Vijayan M, Xia C, Song YE, Ngo H, Studstill CJ, Drews K, Fox TE, Johnson MC, Hiscott J, Kester M, Alexander S, Hahm B. Sphingosine 1-Phosphate Lyase Enhances the Activation of IKKε To Promote Type I IFN-Mediated Innate Immune Responses to Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:677-687. [PMID: 28600291 DOI: 10.4049/jimmunol.1601959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/12/2017] [Indexed: 12/28/2022]
Abstract
Sphingosine 1-phosphate (S1P) lyase (SPL) is an intracellular enzyme that mediates the irreversible degradation of the bioactive lipid S1P. We have previously reported that overexpressed SPL displays anti-influenza viral activity; however, the underlying mechanism is incompletely understood. In this study, we demonstrate that SPL functions as a positive regulator of IKKε to propel type I IFN-mediated innate immune responses against viral infection. Exogenous SPL expression inhibited influenza A virus replication, which correlated with an increase in type I IFN production and IFN-stimulated gene accumulation upon infection. In contrast, the lack of SPL expression led to an elevated cellular susceptibility to influenza A virus infection. In support of this, SPL-deficient cells were defective in mounting an effective IFN response when stimulated by influenza viral RNAs. SPL augmented the activation status of IKKε and enhanced the kinase-induced phosphorylation of IRF3 and the synthesis of type I IFNs. However, the S1P degradation-incompetent form of SPL also enhanced IFN responses, suggesting that SPL's pro-IFN function is independent of S1P. Biochemical analyses revealed that SPL, as well as the mutant form of SPL, interacts with IKKε. Importantly, when endogenous IKKε was downregulated using a small interfering RNA approach, SPL's anti-influenza viral activity was markedly suppressed. This indicates that IKKε is crucial for SPL-mediated inhibition of influenza virus replication. Thus, the results illustrate the functional significance of the SPL-IKKε-IFN axis during host innate immunity against viral infection.
Collapse
Affiliation(s)
- Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Yul Eum Song
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Hanh Ngo
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Caleb J Studstill
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy; and
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Stephen Alexander
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; .,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
42
|
Abstract
Influenza A virus (IAV) RNA segments are individually packaged with viral nucleoprotein (NP) and RNA polymerases to form a viral ribonucleoprotein (vRNP) complex. We previously reported that NP is a monoubiquitinated protein which can be deubiquitinated by a cellular ubiquitin protease, USP11. In this study, we identified an E3 ubiquitin ligase, CNOT4 (Ccr4-Not transcription complex subunit 4), which can ubiquitinate NP. We found that the levels of viral RNA, protein, viral particles, and RNA polymerase activity in CNOT4 knockdown cells were lower than those in the control cells upon IAV infection. Conversely, overexpression of CNOT4 rescued viral RNP activity. In addition, CNOT4 interacted with the NP in the cell. An in vitro ubiquitination assay also showed that NP could be ubiquitinated by in vitro-translated CNOT4, but ubiquitination did not affect the protein stability of NP. Significantly, CNOT4 increased NP ubiquitination, whereas USP11 decreased it. Mass spectrometry analysis of ubiquitinated NP revealed multiple ubiquitination sites on the various lysine residues of NP. Three of these, K184, K227, and K273, are located on the RNA-binding groove of NP. Mutations of these sites to arginine reduced viral RNA replication. These results indicate that CNOT4 is a ubiquitin ligase of NP, and ubiquitination of NP plays a positive role in viral RNA replication. Influenza virus, particularly influenza A virus, causes severe and frequent outbreaks among human and avian species. Finding potential target sites for antiviral agents is of utmost importance from the public health point of view. We previously found that viral nucleoprotein (NP) is ubiquitinated, and ubiquitination enhances viral RNA replication. In this study, we found a cellular ubiquitin ligase, CNOT4, capable of ubiquitinating NP. The ubiquitination sites are scattered on the surface of the NP molecule, which is critical for RNA replication. CNOT4 and a ubiquitin protease, USP11, together regulate the extent of NP ubiquitination and thereby the efficiency of RNA replication. This study thus identifies a potential antiviral target site and reveals a novel posttranslational mechanism for regulating viral replication. This represents a novel finding in the literature of influenza virus research.
Collapse
|
43
|
Standing on three legs: antiviral activities of RIG-I against influenza viruses. Curr Opin Immunol 2016; 42:71-75. [DOI: 10.1016/j.coi.2016.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022]
|
44
|
To Conquer the Host, Influenza Virus Is Packing It In: Interferon-Antagonistic Strategies beyond NS1. J Virol 2016; 90:8389-94. [PMID: 27440898 DOI: 10.1128/jvi.00041-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The nonstructural protein NS1 is well established as a virulence factor of influenza A virus counteracting induction of the antiviral type I interferon system. Recent studies now show that viral structural proteins, their derivatives, and even the genome itself also contribute to keeping the host defense under control. Here, we summarize the current knowledge on these NS1-independent interferon escape strategies.
Collapse
|
45
|
Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. J Virol 2016; 90:8105-14. [PMID: 27384648 DOI: 10.1128/jvi.00883-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. IMPORTANCE Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human infectivity.
Collapse
|
46
|
Wu XL, Luo YH, Chen J, Yu B, Liu KL, He JX, Lu SH, Li JX, Wu S, Jiang ZY, Chen XY. Hygrothermal environment may cause influenza pandemics through immune suppression. Hum Vaccin Immunother 2016; 11:2641-6. [PMID: 26359946 DOI: 10.1080/21645515.2015.1084452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Over the past few decades, climate warming has caused profound changes in our living environment, and human diseases, including infectious diseases, have also been influenced by these changes. However, it remains unclear if a warm-wet climate can influence the infectivity of influenza and result in influenza pandemics. This study focused on observations of how the hydrothermal environment influences the infectivity of the influenza virus and the resulting immunoreactions of the infected mice. We used a manual climatic box to establish the following 3 environments with different temperatures and humidity: normal environment (T: 24 ± 1°C, RH: 50% ± 4%), wet environment (T: 24 ± 1 °C, RH: 95% ± 4%) and warm-wet environment (T: 33 ± 1 °C, RH: 95% ± 4%), and the mice were fed and maintained in these 3 different environments. After 14 days, half of the mice were infected with H1N1 (A/FM1/1/47, a lung adapted strain of the flu virus specific for the mouse lung) virus for 4 d After establishing the animal model, we observed the microstructure of the lung tissue, the Th1/Th2 T cell subsets, the Th17/Treg balance, the expression of cytokines in the peripheral blood serum and the expression of the immune recognition RLH signal pathway. The results showed that mice in different environments have different reaction. Results showed that after infection, the proportion of Th1/Th2 and Th17/Treg cells in the spleen was significantly increased, and these proportions were increased the most in the infected group kept in wet-hot conditions. After infection, the mRNA levels and protein expression of the RLH (RIG-1-like helicases) signal pathway components were up-regulated while the uninfected animals in the 3 diverse environments showed no significant change. The infected mice kept in the wet and warm-wet environments showed a slight elevation in the expression of RLH pathway components compared to infected mice maintained in the normal environment. Our study suggested that the warm-wet environment may have interfered with the immune response and balance. The mice kept in the warm-wet environment displayed immune tolerance when they were exposed to the influenza virus, and the body was not able to effectively clear the virus, leading to a persistent infection. A warm-wet climate may thus be a factor that contributes to influenza pandemics, people should focus on the warm-wet climate coming and advance prepare to vaccine manufacture.
Collapse
Affiliation(s)
- Xian-Lin Wu
- a Department of Pancreatic Disease Center ; the First Affiliated Hospital of Jinan University ; Guangzhou , China.,b Department of Traditional Chinese Medicine ; Medicine College of Jinan University; Guangzhou , China
| | - Yu-Hong Luo
- a Department of Pancreatic Disease Center ; the First Affiliated Hospital of Jinan University ; Guangzhou , China.,c Department of Hepatobiliary Surgery ; the First Affiliated Hospital of Jinan University; Guangzhou , China
| | - Jia Chen
- b Department of Traditional Chinese Medicine ; Medicine College of Jinan University; Guangzhou , China
| | - Bin Yu
- b Department of Traditional Chinese Medicine ; Medicine College of Jinan University; Guangzhou , China
| | - Kang-Li Liu
- d Department of Internal Medicine , Nancheng People's Hospital , Dongguan , China
| | - Jin-Xiong He
- b Department of Traditional Chinese Medicine ; Medicine College of Jinan University; Guangzhou , China
| | - Su-Hong Lu
- b Department of Traditional Chinese Medicine ; Medicine College of Jinan University; Guangzhou , China
| | - Jie-Xing Li
- a Department of Pancreatic Disease Center ; the First Affiliated Hospital of Jinan University ; Guangzhou , China.,c Department of Hepatobiliary Surgery ; the First Affiliated Hospital of Jinan University; Guangzhou , China
| | - Sha Wu
- e Department of Microbiology and Immunology , Medical College of Jinan University , Guangzhou , China
| | - Zhen-You Jiang
- e Department of Microbiology and Immunology , Medical College of Jinan University , Guangzhou , China
| | - Xiao-Yin Chen
- b Department of Traditional Chinese Medicine ; Medicine College of Jinan University; Guangzhou , China
| |
Collapse
|
47
|
Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs. Sci Rep 2016; 6:21845. [PMID: 26912401 PMCID: PMC4766433 DOI: 10.1038/srep21845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/28/2016] [Indexed: 01/20/2023] Open
Abstract
The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a "triple-reassortment" H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs.
Collapse
|
48
|
Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1. J Virol 2015; 90:2403-17. [PMID: 26676772 DOI: 10.1128/jvi.02749-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. IMPORTANCE Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling pathway. Here, we uncovered that influenza viral hemagglutinin (HA) protein causes the degradation of type I IFN receptor subunit 1 (IFNAR1). HA promoted phosphorylation and polyubiquitination of IFNAR1, which facilitated the degradation of this receptor. The HA-mediated elimination of IFNAR1 notably decreased the cells' sensitivities to type I IFNs, as demonstrated by the diminished expression of IFN-induced antiviral genes. This discovery could help us understand how IAV regulates the host innate immune response to create an environment optimized for viral survival in host cells.
Collapse
|
49
|
Mäkelä SM, Österlund P, Westenius V, Latvala S, Diamond MS, Gale M, Julkunen I. RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression. J Virol 2015; 89:12014-25. [PMID: 26378160 PMCID: PMC4645339 DOI: 10.1128/jvi.01576-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/13/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.
Collapse
Affiliation(s)
- Sanna M Mäkelä
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Pamela Österlund
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Veera Westenius
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Sinikka Latvala
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Michael S Diamond
- Departments of Medicine, Pathology and Immunology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ilkka Julkunen
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
50
|
Killip MJ, Fodor E, Randall RE. Influenza virus activation of the interferon system. Virus Res 2015; 209:11-22. [PMID: 25678267 PMCID: PMC4638190 DOI: 10.1016/j.virusres.2015.02.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/24/2022]
Abstract
The host interferon (IFN) response represents one of the first barriers that influenza viruses must surmount in order to establish an infection. Many advances have been made in recent years in understanding the interactions between influenza viruses and the interferon system. In this review, we summarise recent work regarding activation of the type I IFN response by influenza viruses, including attempts to identify the viral RNA responsible for IFN induction, the stage of the virus life cycle at which it is generated and the role of defective viruses in this process.
Collapse
Affiliation(s)
- Marian J Killip
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Richard E Randall
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|