1
|
Wang C, Zhang T, Zhang L, Wang J, Ge M, Hu Y, Huang J, Mei L, Wang T, Chen XK, Du W. Tension Induced Photoluminescence Enhancement in an Organic Single Crystal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403035. [PMID: 39030885 DOI: 10.1002/smll.202403035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Organic single crystals possess distinct advantages due to their highly ordered molecular structures, resulting in improved stability, enhanced carrier mobility, and superior optical characteristics. However, their mechanical rigidity and brittleness impede the applications in flexible and wearable optoelectronic devices. Here, photoluminescence (PL) emission from 2,6-diphenylanthracene (DPA) single crystals is studied under tensile strain, which shows PL enhancement by more than two times with a strain of ≈1.42%. Such a tension induced PL enhancement is reversible, exhibiting no clear optical degradations during 100 cycles of bending and recovery processes. Theoretical calculations reveal that the deformation of molecular structure under strain induces a decrease of the dihedral between anthracene and benzene moieties in DPA molecules. Further, the increased molecular conjugation enhances the molecular oscillator strength, leading to the brightened PL emission. Meanwhile, with the decreased dihedral, the molecular vibrations in DPA crystals are suppressed, which can reduce the non-radiative decay rate. In contrast, no tension induced PL enhancement is observed in polycrystalline DPA thin films as the strain can be released via the grain boundaries. This study highlights the superior optical performance of DPA single crystals under strain field, which will provide new possibilities for DPA-based flexible devices.
Collapse
Affiliation(s)
- Chunjiao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junhui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Maowen Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yidan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jingwei Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le Mei
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
2
|
Matsuo T, Hayashi S. Lasing in Low-Dimensional Crystals of a Fumaronitrile-Based Luminogen. J Phys Chem Lett 2024; 15:3968-3974. [PMID: 38569108 DOI: 10.1021/acs.jpclett.3c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Low-dimensional structures are ideal for organic laser media because of their efficient waveguide, photon confinement, and stimulated emission. Control of the structure and alignment of luminescent molecules is very important for realizing laser media. Here, we fabricate low-dimensional crystals of bis(biphenyl)fumaronitrile (BPFN), which is an aggregation-induced emission luminogen. The BPFN molecule contains fumaronitrile, which displays solid-state luminescence, and biphenyl, which forms low-dimensional structures through dipole-dipole interactions. Solvent diffusion yielded two-dimensional platelet crystals of BPFN with strong dipole-dipole CH-π interactions. The high photoluminescence quantum efficiency of 0.46 and uniaxially aligned molecular π-electronic transition dipole moment in the two-dimensional crystals of BPFN resulted in optically pumped lasing even when using an optical excitation source with a long pulse duration (∼5 ns). One-dimensional BPFN crystals obtained via epitaxial growth on the cleaved surface of a KBr single crystal also displayed lasing behavior.
Collapse
Affiliation(s)
- Takumi Matsuo
- School of Engineering Science, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Shotaro Hayashi
- School of Engineering Science, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| |
Collapse
|
3
|
Yuan M, Qiu Y, Gao H, Feng J, Jiang L, Wu Y. Molecular Electronics: From Nanostructure Assembly to Device Integration. J Am Chem Soc 2024; 146:7885-7904. [PMID: 38483827 DOI: 10.1021/jacs.3c14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Integrated electronics and optoelectronics based on organic semiconductors have attracted considerable interest in displays, photovoltaics, and biosensing owing to their designable electronic properties, solution processability, and flexibility. Miniaturization and integration of devices are growing trends in molecular electronics and optoelectronics for practical applications, which requires large-scale and versatile assembly strategies for patterning organic micro/nano-structures with simultaneously long-range order, pure orientation, and high resolution. Although various integration methods have been developed in past decades, molecular electronics still needs a versatile platform to avoid defects and disorders due to weak intermolecular interactions in organic materials. In this perspective, a roadmap of organic integration technologies in recent three decades is provided to review the history of molecular electronics. First, we highlight the importance of long-range-ordered molecular packing for achieving exotic electronic and photophysical properties. Second, we classify the strategies for large-scale integration of molecular electronics through the control of nucleation and crystallographic orientation, and evaluate them based on factors of resolution, crystallinity, orientation, scalability, and versatility. Third, we discuss the multifunctional devices and integrated circuits based on organic field-effect transistors (OFETs) and photodetectors. Finally, we explore future research directions and outlines the need for further development of molecular electronics, including assembly of doped organic semiconductors and heterostructures, biological interfaces in molecular electronics and integrated organic logics based on complementary FETs.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yuchen Qiu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
4
|
Feng J, Qiu Y, Gao H, Wu Y. Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices. Acc Chem Res 2024; 57:222-233. [PMID: 38170611 DOI: 10.1021/acs.accounts.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
ConspectusSelf-assembly, a spontaneous process that organizes disordered constituents into ordered structures, has revolutionized our fundamental understanding of living matter, nanotechnology, and molecular science. From the perspective of nanomaterials, self-assembly serves as a bottom-up method for creating long-range-ordered materials. This is accomplished by tailoring the geometry, chemistry, and interactions of the components, thereby facilitating the efficient fabrication of high-quality materials and high-performance functional devices. Over the past few decades, we have seen controllable organization and diverse phases in self-assembled materials, such as organic crystals, biomolecular structures, and colloidal nanoparticle supercrystals. However, most self-assembled ordered materials and their assembly mechanisms are derived from constituents in a liquid bulk medium, where the effects of boundaries and interfaces are negligible. In the context of nanostructure patterning, self-assembly occurs in confined spaces, with feature sizes ranging from a few to hundreds of nanometers. In such settings, ubiquitous boundaries and interfaces can trap the system in a kinetically favored but metastable state, devoid of long-range order. This makes it extremely difficult to achieve ordered structures in micro/nano-patterning techniques that rely on sessile microdroplets, such as inkjet printing, dip-pen lithography, and contact printing.In stark contrast to sessile droplets, capillary bridges─formed by liquids confined between two solid surfaces─provide unique opportunities for understanding the long-range-ordered self-assembly of crystalline materials under spatial confinement. Because capillary bridges are stabilized by Laplace pressure, which is inversely proportional to the feature size, the confinement and manipulation of solutions or suspensions of functional materials at the nanoscale become accessible through the rational design of surface chemistry and geometry. Although global thermodynamic equilibrium is unattainable in evaporative systems, ordered nucleation and packing of constituent components can be locally realized at the contact line of capillary bridges. This enables the unprecedented fabrication of long-range-ordered micro/nanostructures with deterministic patterns.In this Account, we review the advancements in long-range-ordered self-assembly of crystalline micro/nanostructures under confinement. First, we briefly introduce crystalline materials characterized by strong intramolecular interactions and relatively weak intermolecular forces, analyzing both the opportunities and challenges inherent to self-assembled nanomaterials. Next, we delve into the construction and manipulation of confined liquids, focusing especially on capillary bridges controlled by engineered chemistry and geometry to regulate Laplace pressure. Through this approach, we have achieved capillary bridges with thicknesses on the order of a few nanometers and wafer-scale homogeneity, facilitating the self-assembly of ordered structures. Supported by factors such as local free-volume entropy, electrostatic interactions, curvilinear geometry, directional microfluidics, and nanoconfinement, we have achieved long-range-ordered, deterministic patterning of organic semiconductors, metal-halide perovskites, and colloidal nanocrystal superlattices using this capillary-bridge platform. These long-range microstructures serve as a bridge between nanomaterials and integrated devices, enabling emergent functionalities like intrinsic stretchability, giant photoconductivity, propagating and interacting exciton polaritons, and spin-valley-locked lasing, which are otherwise unattainable in disordered materials. Finally, we discuss potential directions for both the fundamental understanding and practical applications of confined self-assembly.
Collapse
Affiliation(s)
- Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yuchen Qiu
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
5
|
Nakabayashi M, Matsuo T, Hayashi S. Non-Covalent Supramolecular 1D Alternating Copolymer in Crystal toward 2D Anisotropic Photon Transport. Chemistry 2023; 29:e202302351. [PMID: 37496105 DOI: 10.1002/chem.202302351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
To realize organic integrated optoelectronic circuits, there is a need for anisotropic optical waveguides at the micro/nanoscale. Anisotropic alignment of one-dimensional-ordered supramolecular structures composed of light-emissive π-conjugated molecules in a crystal may meet the requirements of such waveguides. Here, a bipyridyl-appended acrylonitrile-based π-conjugated molecule was designed, which produced a one-dimensional supramolecular polymer constructed through non-covalent bonding between a lone pair in bipyridyl and a σ-hole in 1,4-diiodo-2,3,5,6-tetrafluorobenzene. The one-dimensional copolymer of bipyridyl and 1,4-diiodo-2,3,5,6-tetrafluorobenzene is aligned horizontally with the two-dimensional crystal surface because of the angle-controlled supramolecular synthons. As a result of control over the non-covalent bonding direction, anisotropic photoluminescence and photon transport (optical waveguiding) characteristics are realized by orienting the transition dipole moment horizontally with respect to the two-dimensional surface. Compared with the loss coefficient αL =52 dB cm-1 for the long-axis direction of the two-dimensional platelet cocrystal, a very large difference of αS =2111 dB cm-1 is present in the crystal short-axis direction. The anisotropic waveguiding ability, αL /αS , is estimated to be 41, which is more than an order of magnitude greater than previously reported two-dimensional platelet crystal waveguides. This supramolecular synthon provides an approach to designing anisotropic photon transporters and highly regulated optical logic circuits.
Collapse
Affiliation(s)
- Mahiro Nakabayashi
- School of Engineering Science, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Takumi Matsuo
- School of Engineering Science, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Shotaro Hayashi
- School of Engineering Science, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| |
Collapse
|
6
|
Matsuo T, Kuwabara J, Kanbara T, Hayashi S. Flexible and Red-Emissive Organic Single-Crystal Microresonator for Efficient Active Waveguides. J Phys Chem Lett 2023; 14:6577-6582. [PMID: 37458725 DOI: 10.1021/acs.jpclett.3c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We fabricated a flexible and red-emissive microcrystal resonator for highly efficient optical waveguiding. The microfiber crystals of diketopyrrolopyrrole (DPP) used in this work possess a high photoluminescence (PL) quantum efficiency (ΦPL = 0.45) and exhibit a micromechanical deformation shape in the curved state. The crystals show optical fringes in their PL spectra, suggesting the existence of a naturally formed Fabry-Pérot crystal resonator owing to its flat crystal surface. The group refractive index (ng) and Rabi splitting energy (ℏΩ) indicating the coupling strength between excitons and resonator photons are large (ng = 3.7-6.0, ℏΩ = 1.38 eV), suggesting the strong confinement of waveguiding photons. Spatially resolved PL measurements revealed that the PL in a crystal fiber is efficiently waveguided, even in a curved crystal with a very small curvature radius of 11 μm. Strong photon confinement inside a crystal resonator is a plausible origin of efficient optical waveguiding.
Collapse
Affiliation(s)
- Takumi Matsuo
- School of Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shotaro Hayashi
- School of Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| |
Collapse
|
7
|
Lv Q, Zheng M, Wang XD, Liao LS. Low-Dimensional Organic Crystals: From Precise Synthesis to Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203961. [PMID: 36057992 DOI: 10.1002/smll.202203961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional organic crystals (LOCs) have attracted increasing attention recently for their potential applications in miniaturized optoelectronics and integrated photonics. Such applications are possible owing to their tunable physicochemical properties and excellent charge/photon transport features. As a result, the precise synthesis of LOCs has been examined in terms of morphology modulation, large-area pattern arrays, and complex architectures, and this has led to a series of appealing structure-dependent properties for future optoelectronic applications. This review summarizes the recent advances in the precise synthesis of LOCs in addition to discussing their structure-property relationships in the context of optoelectronic applications. It also presents the current challenges related to organic crystals with specific structures and desired performances, and the outlook regarding their use in next-generation integrated optoelectronic applications.
Collapse
Affiliation(s)
- Qiang Lv
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
8
|
Chen Z, Duan S, Zhang X, Geng B, Xiao Y, Jie J, Dong H, Li L, Hu W. Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104166. [PMID: 34416051 DOI: 10.1002/adma.202104166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Indexed: 06/13/2023]
Abstract
2D organic semiconductor crystals (2DOSCs) have extraordinary charge transport capability, adjustable photoelectric properties, and superior flexibility, and have stimulated continuous research interest for next-generation electronic and optoelectronic applications. The prerequisite for achieving large-area and high-throughput optoelectronic device integration is to fabricate high-resolution 2DOSC arrays. Patterned substrate- and template-assisted self-assembly is an effective strategy to fabricate OSC arrays. However, the film thickness is difficult to control due to the complicated crystallization process during solvent evaporation. Therefore, the manufacturing of 2DOSC arrays with high-resolution and controllable molecular-layer numbers through solution-based patterning methods remains a challenge. Herein, a two-step strategy to produce high-resolution layer-controlled 2DOSC arrays is reported. First, large-scale 2DOSCs with well-defined layer numbers are obtained by a solution-processed organic semiconductor crystal engineering method. Next, the high-resolution layer-controlled 2DOSC arrays are fabricated by a polydimethylsiloxane mold-assisted selective contact evaporation printing technique. The organic field-effect transistors (OFETs) based on 2DOSC arrays have high electrical performance and excellent uniformity. The 2,6-bis(4-hexylphenyl)anthracene 2DOSC arrays-based OFETs have a small variation of 12.5% in mobility. This strategy can be applied to various organic semiconductors and pattern arrays. These demonstrations will offer more opportunities for 2DOSCs for integrated optoelectronic devices.
Collapse
Affiliation(s)
- Zheng Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shuming Duan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Sciences, Tianjin University, Tianjin, 300072, China
| | - Bowen Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yanling Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiansheng Jie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liqiang Li
- Institute of Molecular Aggregation Sciences, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
9
|
Luo X, Zhang X, Jiang L. 仿生超浸润界面材料与界面化学. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Wei Y, Geng Y, Wang K, Gao H, Wu Y, Jiang L. Organic ultrathin nanostructure arrays: materials, methods and applications. NANOSCALE ADVANCES 2022; 4:2399-2411. [PMID: 36134127 PMCID: PMC9417106 DOI: 10.1039/d1na00863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Organic ultrathin semiconductor nanostructures have attracted continuous attention in recent years owing to their excellent charge transport capability, favorable flexibility, solution-processability and adjustable photoelectric properties, providing opportunities for next-generation optoelectronic applications. For integrated electronics, organic ultrathin nanostructures need to be prepared as large-area patterns with precise alignment and high crystallinity to achieve organic electronic devices with high performance and high throughput. However, the fabrication of organic ultrathin nanostructure arrays still remains challenging due to uncontrollable growth along the height direction in solution processes. In this review, we first introduce the properties, assembly methods and applications of four typical organic ultrathin nanostructures, including small molecules, polymers, and other organic-inorganic hybrid materials. Five categories of representative solution-processing techniques for patterning organic micro- and nanostructures are summarized and discussed. Finally, challenges and perspectives in the controllable preparation of organic ultrathin arrays and potential applications are featured on the basis of their current development.
Collapse
Affiliation(s)
- Yanjie Wei
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Yue Geng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Kui Wang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
| | - Hanfei Gao
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Yuchen Wu
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Lei Jiang
- Ji Hua Laboratory Foshan Guangdong 528200 P.R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P.R. China
| |
Collapse
|
11
|
Chen N, Yu P, Guo K, Lu X. Rubrene-Directed Structural Transformation of Fullerene (C 60) Microsheets to Nanorod Arrays with Enhanced Photoelectrochemical Properties. NANOMATERIALS 2022; 12:nano12060954. [PMID: 35335767 PMCID: PMC8953273 DOI: 10.3390/nano12060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
Abstract
One-dimensional (1D) nanostructures possess huge potential in electronics and optoelectronics, but the axial alignment of such 1D structures is still a challenging task. Herein, we report a simple method that enables two-dimensional (2D) C60 microsheets to evolve into highly ordered nanorod arrays using rubrene as a structure-directing agent. The structural transformation is accomplished by adding droplets of rubrene-m-xylene solution onto C60 microsheets and allowing the m-xylene solvent to evaporate naturally. In sharp contrast, when rubrene is absent from m-xylene, randomly oriented C60 nanorods are produced. Spectroscopic and microscopic characterizations collectively indicate a rather plausible transformation mechanism that the close lattice match allows the epitaxial growth of rubrene on C60 microsheets, followed by the reassembly of dissolved C60 along the aligned rubrene due to the intermolecular charge-transfer (CT) interactions, leading to the formation of ordered nanorod arrays. Due to the aligned structures and the CT interactions between rubrene and C60, the photocurrent density of the nanorod arrays is improved by 31.2% in the UV region relative to the randomly oriented counterpart. This work presents a facile and effective strategy for the construction of ordered fullerene nanorod arrays, providing new ideas for the alignment of fullerene and other relevant organic microstructures.
Collapse
Affiliation(s)
| | | | - Kun Guo
- Correspondence: (K.G.); (X.L.)
| | - Xing Lu
- Correspondence: (K.G.); (X.L.)
| |
Collapse
|
12
|
Feng J, Qiu Y, Jiang L, Wu Y. Long-Range-Ordered Assembly of Micro-/Nanostructures at Superwetting Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106857. [PMID: 34908188 DOI: 10.1002/adma.202106857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
On-chip integration of solution-processable materials imposes stringent and simultaneous requirements of controlled nucleation and growth, tunable geometry and dimensions, and long-range-ordered assembly, which is challenging in solution process far from thermodynamic equilibrium. Superwetting interfaces, underpinned by programmable surface chemistry and topography, are promising for steering transport, dewetting, and microfluid dynamics of liquids, thus opening a new paradigm for micro-/nanostructure assembly in solution process. Herein, assembly methods on the basis of superwetting interfaces are reviewed for constructing long-range-ordered micro-/nanostructures. Confined capillary liquids, including capillary bridges and capillary corner menisci realized by controlling local wettability and surface topography, are highlighted for simultaneously attained deterministic patterning and long-range order. The versatility and robustness of confined capillary liquids are discussed with assembly of single-crystalline micro-/nanostructures of organic semiconductors, metal-halide perovskites, and colloidal-nanoparticle superlattices, which lead to enhanced device performances and exotic functionalities. Finally, a perspective for promising directions in this realm is provided.
Collapse
Affiliation(s)
- Jiangang Feng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemical and Biomolecular Sciences, National University of Singapore, Singapore, 117585, Singapore
| | - Yuchen Qiu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
13
|
Hai T, Feng Z, Sun Y, Wong WY, Liang Y, Zhang Q, Lei Y. Vapor-Phase Living Assembly of π-Conjugated Organic Semiconductors. ACS NANO 2022; 16:3290-3299. [PMID: 35107255 DOI: 10.1021/acsnano.1c11295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In contrast to well-studied amphiphilic block copolymers (BCPs) and π-stacked dyes, living assembly of hydrophobic π-conjugated materials has not yet been explored to date. Using a microspacing physical vapor transport (PVT) technique, the prefabricated microrods of organic semiconductors involving 9,10-dicyanoanthracene (DCA, A) or its binary alloy (B) can act as seeds to initiate living homoepitaxial growth from their ends, giving elongated microrods with controlled length. Red-green-red tricolor fluorescent microrod heterostructures with low dispersity are further realized by living heteroepitaxial growth of B microrod blocks on A seed microrod tips. Upon varying the growth sequence of each block, reverse triblock microrods are also accessible. Such a seed-induced living growth is applicable to triblock microrod heterostructures of more binary combinations as well as even more complex penta- and hepta-block heterostructures comprising A and B. By virtue of a convenient vapor-phase growth method, the present work demonstrates the generality of living assembly of π-conjugated materials.
Collapse
Affiliation(s)
- Tao Hai
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Zuofang Feng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yanqiu Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China
| | - Yin Liang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yilong Lei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Feng Z, Hai T, Liang Y, Zhang Q, Lei Y. Hyperbranched Microwire Networks of Organic Cocrystals with Optical Waveguiding and Light-Harvesting Abilities. Angew Chem Int Ed Engl 2021; 60:27046-27052. [PMID: 34676654 DOI: 10.1002/anie.202111856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Indexed: 11/08/2022]
Abstract
We report the synthesis of hyperbranched organic microwire (MW) networks comprising 1,4-bis(pentafluorostyryl)benzene (10Ft) and 9,10-bis(phenylethynyl)anthracene (BA) using a simple solution co-assembly route. Pure 10Ft or BA assemblies cannot produce such complex MW networks; in contrast with a binary cocrystal of 10Ft and BA with a 2:1 molar ratio ((2:1)10Ft:BA), which is formed via intermolecular arene-perfluoroarene (AP) interactions. A new generation of multiple MWs grow epitaxially on the previous generation of MWs to form MW arrays in which BA may also act as an intermediate product to facilitate the regeneration of (2:1)10Ft:BA. Highly aligned and well-connected MW networks enable superior optical waveguiding ability. Moreover, a red-emitting dopant, 5,12-bis(phenylethynyl)naphthacene (BN) was incorporated into (2:1)10Ft:BA host MWs, giving light-harvesting hierarchical MW networks via an energy-transfer (ET) process. The realization of the hyperbranched MWs provides us with deep insight into the rational creation of complex branched arrays from functional organic cocrystals.
Collapse
Affiliation(s)
- Zuofang Feng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Tao Hai
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Liang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yilong Lei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
15
|
Feng Z, Hai T, Liang Y, Zhang Q, Lei Y. Hyperbranched Microwire Networks of Organic Cocrystals with Optical Waveguiding and Light‐Harvesting Abilities. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zuofang Feng
- Department of Chemistry School of Science Tianjin University Tianjin 300072 P. R. China
| | - Tao Hai
- Department of Chemistry School of Science Tianjin University Tianjin 300072 P. R. China
| | - Yin Liang
- Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 P. R. China
| | - Qing Zhang
- Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 P. R. China
| | - Yilong Lei
- Department of Chemistry School of Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
16
|
Zhang D, De J, Lei Y, Fu H. Organic multicomponent microparticle libraries. Nat Commun 2021; 12:1838. [PMID: 33758192 PMCID: PMC7988115 DOI: 10.1038/s41467-021-22060-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Multimetallic nanostructures can be synthesized by integrating up to seven or eight metallic elements into a single nanoparticle, which represent a great advance in developing complex multicomponent nanoparticle libraries. Contrary, organic micro- and nanoparticles beyond three π-conjugated components have not been explored because of the diversity and structural complexity of molecular assemblies. Here, we report a library of microparticles composed of an arbitrary combination of four luminescent organic semiconductors. We demonstrate that the composition and emission color of each domain as well as its spatial distribution can be rationally modulated. Unary, binary, ternary, and quaternary microparticles are thus realized in a predictable manner based on the miscibility of the components, resulting in mixed-composition phases or alloyed or phase separated heterostructures. This work reports a simple yet available synthetic methodology for rational modulation of organic multicomponent microparticles with complex architectures, which can be used to direct the design of functional microparticles. The synthesis of alloyed complex multicomponent micro- and nanoparticles composed of organic molecules is challenging. Here, the authors demonstrate a library of mixed composition organic microparticles in comprising up to four compounds in their structure.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China
| | - Jianbo De
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China
| | - Yilong Lei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China.
| | - Hongbing Fu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, P. R. China. .,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, P. R. China.
| |
Collapse
|
17
|
Wang H, Fontein F, Li J, Huang L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L. Lithographical Fabrication of Organic Single-Crystal Arrays by Area-Selective Growth and Solvent Vapor Annealing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48854-48860. [PMID: 32981323 DOI: 10.1021/acsami.0c14349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Miniaturized organic single-crystal arrays that are addressed by reading-out circuits are crucial for high performance and high-level integration organic electronics. Here, we report a lithography compatible strategy to fabricate organic single-crystal arrays via area-selective growth and solvent vapor annealing (SVA). The organic semiconducting molecules can first selectively grow on photographically patterned drain-source electrodes, forming ordered amorphous aggregates that can further be converted to discrete single-crystal arrays by SVA. This strategy can be applied to self-align the microsized organic single crystals on predesigned locations. With this method, suppression of cross-talk among devices, organic field-effect transistors, and basic logic gate arrays with reading-out electrodes are further demonstrated.
Collapse
Affiliation(s)
- Hong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
- School of Materials and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou 510275, Guangdong, P. R. China
| | - Florian Fontein
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Jianping Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lizhen Huang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lin Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Harald Fuchs
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Wenchong Wang
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Universität Münster, Münster 48149, Germany
| | - Yandong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
18
|
Zhang H, Wang H, Qian PC, Wong WY. A combination of an organic alloy and a heterojunction towards a rod-tail helix architecture with dual-color-emitting properties. NANOSCALE 2020; 12:16414-16419. [PMID: 32749439 DOI: 10.1039/d0nr03948a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An organic alloy can be regarded as a homogeneous solid solution wherein an isostructural molecule is randomly distributed in a host molecule, compared to an organic heterojunction where dissimilar materials generate an interface between two layers or regions. Herein, we fabricate an unprecedented novel BA@BA0.72BN0.28 heterostructure with a rod-tail helix configuration, in which the helical dual-component BA0.72BN0.28 alloy can be grown in a controllable manner onto the mono-component BA microrod, forming an organic core-shell micro-structure. In particular, the process of co-assembly formed could be described as the combined construction of an organic alloy and a heterojunction, and the co-assembly possesses the distinctive property of dual-color luminescence. This complex heterostructured architecture is achieved through a stepwise seed-induced growth method and the present solution-phase route allows us to construct more sophisticated organic luminescent heterostructured materials.
Collapse
Affiliation(s)
- Hongyang Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | | | | | | |
Collapse
|
19
|
Jiang Y, Liu YY, Liu X, Lin H, Gao K, Lai WY, Huang W. Organic solid-state lasers: a materials view and future development. Chem Soc Rev 2020; 49:5885-5944. [PMID: 32672260 DOI: 10.1039/d0cs00037j] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lasing applications have spread over various aspects of human life. To meet the developing trends of the laser industry towards being miniature, portable, and highly integrated, new laser technologies are in urgent demand. Organic semiconductors are promising gain medium candidates for novel laser devices, due to their convenient processing techniques, ease of spectral and chemical tuning, low refractive indexes, mechanical flexibilities, and low thresholds, etc. organic solid-state lasers (OSSLs) open up a new horizon of simple, low-cost, time-saving, versatile and environmental-friendly manufacturing technologies for new and desirable laser structures (micro-, asymmetric, flexible, etc.) to unleash the full potential of semiconductor lasers for future electronics. Besides the development of optical feedback structures, the design and synthesis of robust organic gain media is critical as a vigorous aspect of OSSLs. Herein, we provide a comprehensive review of recent advances in organic gain materials, mainly focused on organic semiconductors for OSSLs. The significant breakthroughs toward electrical pumping of OSSLs are emphasized. Opportunities, challenges and future research directions for the design of organic gain media are also discussed.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yuan-Yuan Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xu Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - He Lin
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kun Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. and Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. and Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
20
|
Sun Y, Lei Y, Hu W, Wong WY. Epitaxial Growth of Nanorod Meshes from Luminescent Organic Cocrystals via Crystal Transformation. J Am Chem Soc 2020; 142:7265-7269. [DOI: 10.1021/jacs.0c00135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yanqiu Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong 999077, P. R. China
- PolyU Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Yilong Lei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wenping Hu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong 999077, P. R. China
- PolyU Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
21
|
Gu Z, Zhou Z, Huang Z, Wang K, Cai Z, Hu X, Li L, Li M, Zhao YS, Song Y. Controllable Growth of High-Quality Inorganic Perovskite Microplate Arrays for Functional Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908006. [PMID: 32166844 DOI: 10.1002/adma.201908006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 05/28/2023]
Abstract
Inorganic perovskite single crystals have emerged as promising vapor-phase processable structures for optoelectronic devices. However, because of material lattice mismatch and uncontrolled nucleation, vapor-phase methods have been restricted to random distribution of single crystals that are difficult to perform for integrated device arrays. Herein, an effective strategy to control the vapor-phase growth of high-quality cesium lead bromide perovskite (CsPbBr3 ) microplate arrays with uniform morphology as well as controlled location and size is reported. By introducing perovskite seeds on substrates, intractable lattice mismatches and random nucleation barriers are surpassed, and the epitaxial growth of perovskite crystals is accurately controlled. It is further demonstrated that CsPbBr3 microplate arrays can be monolithically integrated on substrates for the fabrication of high-performance lasers and photodetectors. This strategy provides a facile approach to fabricate high-quality CsPbBr3 microplates with controllable size and location, which offers new opportunities for the scalable production of integrated optoelectronic devices.
Collapse
Affiliation(s)
- Zhenkun Gu
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhonghao Zhou
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhandong Huang
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kang Wang
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheren Cai
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaotian Hu
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lihong Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Mingzhu Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Yong Sheng Zhao
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| | - Yanlin Song
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
22
|
|
23
|
Wang H, Li X, Luan K, Bai X. Capillary liquid bridge soft lithography for micro-patterning preparation based on SU-8 photoresist templates with special wettability. RSC Adv 2019; 9:23986-23993. [PMID: 35530577 PMCID: PMC9069536 DOI: 10.1039/c9ra04281d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
Patterned micro-nano arrays have shown great potential in the fields of optics, electronics and optoelectronics. In this study, a strategy of interface-induced dewetting assembly based on capillary liquid bridges and SU-8 photoresist templates is proposed for patterning organic molecules and nanoparticles. First, photoresist templates with chemical stability were prepared via a simplified lithography method. Then the interface wettability and the contact angle hysteresis of water droplets on the fluorosilane modified templates were adequately studied and discussed. Subsequently, a sandwich structure, composed of a superhydrophilic target substrate, a hydrophobic high adhesive photoresist template and a growth solution were introduced for the confined space dewetting assembly. The related mechanism was investigated and revealed, with the assistance of in situ observation via a fluorescence microscope. Finally, the patterned arrays of water-soluble organic small molecules and aqueous dispersed nanoparticles were successfully obtained on the target substrates. This method is simple and easy, and the SU-8 photoresist templates possess a series of advantages such as low processing cost, short preparation periods and reusable performance, which endow this strategy with potential for application in molecular functional devices.
Collapse
Affiliation(s)
- Huijie Wang
- Multiscale Frontier Physics Research Center, School of Physics and Information Engineering, Shanxi Normal University Linfen 041004 P. R. China
| | - Xiaoxun Li
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University Kaifeng 475004 P. R. China
| | - Kang Luan
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University Kaifeng 475004 P. R. China
| | - Xilin Bai
- Multiscale Frontier Physics Research Center, School of Physics and Information Engineering, Shanxi Normal University Linfen 041004 P. R. China
| |
Collapse
|
24
|
Preferential Orientation of Crystals and its Influence on the Emission Wavelength of Acrylonitrile Derivatives Treated with Polar Solvents. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201800156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Zhang X, Deng W, Jia R, Zhang X, Jie J. Precise Patterning of Organic Semiconductor Crystals for Integrated Device Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900332. [PMID: 30990970 DOI: 10.1002/smll.201900332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Development of high-performance organic electronic and optoelectronic devices relies on high-quality semiconducting crystals that have outstanding charge transport properties and long exciton diffusion length and lifetime. To achieve integrated device applications, it is a prerequisite to precisely locate the organic semiconductor crystals (OSCCs) to form a specifically patterned structure. Well-patterned OSCCs can not only reduce leakage current and cross-talk between neighboring devices, but also facilely integrate with other device elements and their corresponding interconnects. In this Review, general strategies for the patterning of OSCCs are summarized, and the advantages and limitations of different patterning methods are discussed. Discussion is focused on an advanced strategy for the high-resolution and wafer-scale patterning of OSCC by a surface microstructure-assisted patterning method. Furthermore, the recent progress on OSCC pattern-based integrated circuities is highlighted. Finally, the research challenges and directions of this young field are also presented.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Ruofei Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| |
Collapse
|
26
|
Wang Y, Sun L, Wang C, Yang F, Ren X, Zhang X, Dong H, Hu W. Organic crystalline materials in flexible electronics. Chem Soc Rev 2019; 48:1492-1530. [PMID: 30283937 DOI: 10.1039/c8cs00406d] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flexible electronics have attracted considerable attention recently given their potential to revolutionize human lives. High-performance organic crystalline materials (OCMs) are considered strong candidates for next-generation flexible electronics such as displays, image sensors, and artificial skin. They not only have great advantages in terms of flexibility, molecular diversity, low-cost, solution processability, and inherent compatibility with flexible substrates, but also show less grain boundaries with minimal defects, ensuring excellent and uniform electronic characteristics. Meanwhile, OCMs also serve as a powerful tool to probe the intrinsic electronic and mechanical properties of organics and reveal the flexible device physics for further guidance for flexible materials and device design. While the past decades have witnessed huge advances in OCM-based flexible electronics, this review is intended to provide a timely overview of this fascinating field. First, the crystal packing, charge transport, and assembly protocols of OCMs are introduced. State-of-the-art construction strategies for aligned/patterned OCM on/into flexible substrates are then discussed in detail. Following this, advanced OCM-based flexible devices and their potential applications are highlighted. Finally, future directions and opportunities for this field are proposed, in the hope of providing guidance for future research.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Camposeo A, Granger DB, Parkin SR, Altamura D, Giannini C, Anthony JE, Pisignano D. Directed Functionalization Tailors the Polarized Emission and Waveguiding Properties of Anthracene-Based Molecular Crystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:1775-1783. [PMID: 30918420 PMCID: PMC6429991 DOI: 10.1021/acs.chemmater.8b05361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Organic semiconducting crystals are characterized by anisotropic optical and electronic properties, which can be tailored by controlling the packing of the constituent molecules in the crystal unit cell. Here, the synthesis, structural characterization, and emission of anthracene derivatives are focused to correlate directed functionalization and optical properties. These compounds are easily and scalably prepared by standard synthesis techniques, and alterations in functional groups yield materials with either exclusive edge-to-face or face-to-face solid-state interactions. The resulting crystals feature either platelet or needle shapes, and the emission exhibits polarization ratios up to 5 at room temperature. In needle-shaped crystals, self-waveguiding of the emission is also observed with propagation loss coefficients as low as 1.3 dB mm-1. Moreover, optical coupling between crossing crystalline microwires is found and characterized. The combination of optical anisotropy and emission self-waveguiding opens interesting routes for the exploitation of these active materials in photonic applications, including optical integrated circuits and microscale light sources.
Collapse
Affiliation(s)
- Andrea Camposeo
- NEST,
Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Devin B. Granger
- Center
for Applied Energy Research, University
of Kentucky, 2582 Research Park Drive, Lexington, Kentucky 40506, United States
| | - Sean R. Parkin
- Center
for Applied Energy Research, University
of Kentucky, 2582 Research Park Drive, Lexington, Kentucky 40506, United States
| | - Davide Altamura
- Istituto
di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - Cinzia Giannini
- Istituto
di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - John E. Anthony
- Center
for Applied Energy Research, University
of Kentucky, 2582 Research Park Drive, Lexington, Kentucky 40506, United States
| | - Dario Pisignano
- NEST,
Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
- Dipartimento
di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
28
|
Wu Y, Feng J, Gao H, Feng X, Jiang L. Superwettability-Based Interfacial Chemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800718. [PMID: 30592333 DOI: 10.1002/adma.201800718] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/13/2018] [Indexed: 06/09/2023]
Abstract
Superwetting interfaces arising from the cooperation of surface energy and multiscale micro/nanostructures are extensively studied in biological systems. Fundamental understandings gained from biological interfaces boost the control of wettability under different dimensionalities, such as 2D surfaces, 1D fibers and channels, and 3D architectures, thus permitting manipulation of the transport physics of liquids, gases, and ions, which profoundly impacts chemical reactions and material fabrication. In this context, the progress of new chemistry based on superwetting interfaces is highlighted, beginning with mass transport dynamics, including liquid, gas, and ion transport. In the following sections, the impacts of the superwettability-mediated transport dynamics on chemical reactions and material fabrication is discussed. Superwettability science has greatly enhanced the efficiency of chemical reactions, including photocatalytic, bioelectronic, electrochemical, and organic catalytic reactions, by realizing efficient mass transport. For material fabrication, superwetting interfaces are pivotal in the manipulation of the transport and microfluidic dynamics of liquids on solid surfaces, leading to the spatially regulated growth of low-dimensional single-crystalline arrays and high-quality polymer films. Finally, a perspective on future directions is presented.
Collapse
Affiliation(s)
- Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiangang Feng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hanfei Gao
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Zhang R, Jin X, Wen X, Chen Q. Recent Advance in 1-D Organic Semiconductors for Waveguide Applications. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180406143727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One dimensional (1-D) micro-/nanostructures provide a good system to investigate the dependence
of various properties on dimensionality and size reduction, especially in optoelectronic field.
Organic conjugates including small molecules and polymers exhibit good optoelectronic properties and
are apt to assemble into ordered nanostructures with well-defined shapes, tunable sizes and defect-free
structures. In this review, we focus on recent progress of 1-D organic semiconductors for waveguide
applications. Fabrication methods and materials of 1-D organic semiconductors are introduced. The
morphology influence on the properties is also summarized.
Collapse
Affiliation(s)
- Rong Zhang
- International Center for Bamboo and Rattan, Beijing, China
| | - Xiaobei Jin
- International Center for Bamboo and Rattan, Beijing, China
| | - Xuwen Wen
- International Center for Bamboo and Rattan, Beijing, China
| | - Qi Chen
- International Center for Bamboo and Rattan, Beijing, China
| |
Collapse
|
30
|
Zhang X, Dong H, Hu W. Organic Semiconductor Single Crystals for Electronics and Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801048. [PMID: 30039629 DOI: 10.1002/adma.201801048] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Indexed: 05/26/2023]
Abstract
Organic semiconducting single crystals (OSSCs) are ideal candidates for the construction of high-performance optoelectronic devices/circuits and a great platform for fundamental research due to their long-range order, absence of grain boundaries, and extremely low defect density. Impressive improvements have recently been made in organic optoelectronics: the charge-carrier mobility is now over 10 cm2 V-1 s-1 and the fluorescence efficiency reaches 90% for many OSSCs. Moreover, high mobility and strong emission can be integrated into a single OSSC, for example, showing a mobility of up to 34 cm2 V-1 s-1 and a photoluminescence yield of 41.2%. These achievements are attributed to the rational design and synthesis of organic semiconductors as well as improvements in preparation technology for crystals, which accelerate the application of OSSCs in devices and circuits, such as organic field-effect transistors, organic photodetectors, organic photovoltaics, organic light-emitting diodes, organic light-emitting transistors, and even electrically pumped organic lasers. In this context, an overview of these fantastic advancements in terms of the fundamental insights into developing high-performance organic semiconductors, efficient strategies for yielding desirable high-quality OSSCs, and their applications in optoelectronic devices and circuits is presented. Finally, an overview of the development of OSSCs along with current challenges and future research directions is provided.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
31
|
Complex assembly from planar and twisted π-conjugated molecules towards alloy helices and core-shell structures. Nat Commun 2018; 9:4358. [PMID: 30341293 PMCID: PMC6195596 DOI: 10.1038/s41467-018-06489-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
Integrating together two dissimilar π-conjugated molecules into controlled complex topological configurations remains a largely unsolved problem owing to the diversity of organic species and their respective different assembly features. Here, we find that two structurally similar organic semiconductors, 9,10-bis(phenylethynyl)anthracene (BA) and 5,12-bis(phenylethynyl)naphthacene (BN), co-assemble into two-component helices by control of the growth kinetics as well as the molar ratio of BA/BN. The helical superstructures made of planar and twisted bis(phenylethynyl) derivatives can be regarded as (BA)x(BN)1-x alloys, which are formed due to compatible structural relationship between BA and BN. Moreover, epitaxial growth of (BA)x(BN)1-x alloy layer on the surface of BA tube to form BA@(BA)x(BN)1-x core-shell structure is also achieved via a solute exchange process. The precise control over composition and morphology towards organic alloy helices and core-shell microstructures opens a door for understanding the complex co-assembly features of two or more different material partners with similar structures.
Collapse
|
32
|
Polyoxometalate-based microcrystal arrays patterned on air-grid superwettable surface. Sci Rep 2018; 8:13915. [PMID: 30224696 PMCID: PMC6141463 DOI: 10.1038/s41598-018-32279-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/30/2018] [Indexed: 11/08/2022] Open
Abstract
Surface patterning of polyoxometalates (POMs) is an important step to gain functional materials and devices. However, some special requirements such as complex operation steps or strict synthesis environment greatly limit their further applications. Herein, we have employed a simple and universal strategy for patterning POM-based microcrystal arrays on air-grid superwettable surfaces. The size and distribution of POM crystals were precisely adjusted by varying the pillar parameter of superwettable surface and concentration of POM mother liquid. We envision that this POM patterning method may bring valuable insights for designing POM-based functional materials and devices.
Collapse
|
33
|
Kang J, Lee M, Facchetti A, Kim J, Park SK. High-performance organic circuits based on precisely aligned single-crystal arrays. RSC Adv 2018; 8:17417-17420. [PMID: 35539227 PMCID: PMC9080451 DOI: 10.1039/c8ra02139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/07/2018] [Indexed: 11/21/2022] Open
Abstract
In this paper, we demonstrate high-performance organic logic circuits based on precisely controlled organic single-crystal arrays. Well-aligned microrod shaped 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single-crystal organic thin-film-transistors (OTFTs) were fabricated via solvent mediated molecular tailoring with a polymeric sacrificial layer, exhibiting saturation mobility of >2 cm2 V-1 s-1. Using this approach, precise placement of organic crystal arrays in a controlled orientation was successfully achieved, enabling the fabrication of OTFT-based inverter circuits with a gain of 1.37 (V V-1). Furthermore, it was demonstrated that, by varying the number of single-crystal microrods, the device dimension and corresponding circuit performance can be modulated. A high-performance inverter operation with various interdigitating single-crystal microrod arrays can thus be achieved.
Collapse
Affiliation(s)
- Jingu Kang
- School of Electrical and Electronic Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Minwook Lee
- School of Electrical and Electronic Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Antonio Facchetti
- Department of Chemistry, The Materials Research Center, The Argonne-Northwestern Solar Energy Research Center, Northwestern University Evanston Illinois 60208 USA
- Flexterra Inc. Skokie Illinois 60077 USA
| | - Jaekyun Kim
- Department of Photonics and Nanoelectronics, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Sung Kyu Park
- School of Electrical and Electronic Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
34
|
Zhang B, Meng F, Feng J, Wang J, Wu Y, Jiang L. Manipulation of Colloidal Particles in Three Dimensions via Microfluid Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707291. [PMID: 29682819 DOI: 10.1002/adma.201707291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/25/2018] [Indexed: 05/12/2023]
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education; School of Chemistry; Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 P. R. China
| | - Fanshu Meng
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jiangang Feng
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Yuchen Wu
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education; School of Chemistry; Beijing Advanced Innovation Center for Biomedical Engineering; Beihang University; Beijing 100191 P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
35
|
Zou C, Wang J, Wang M, Wu Y, Gu K, Shen Z, Xiong G, Yang H, Jiang L, Ikeda T. Patterning of Discotic Liquid Crystals with Tunable Molecular Orientation for Electronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800557. [PMID: 29667319 DOI: 10.1002/smll.201800557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/07/2018] [Indexed: 06/08/2023]
Abstract
The large-area formation of functional micropatterns with liquid crystals is of great significance for diversified applications in interdisciplinary fields. Meanwhile, the control of molecular alignment in the patterns is fundamental and prerequisite for the adequate exploitation of their photoelectric properties. However, it would be extremely complicated and challenging for discotic liquid crystals (DLCs) to achieve the goal, because they are insensitive to external fields and surface chemistry. Herein, a simple method of patterning and aligning DLCs on flat substrates is disclosed through precise control of the formation and dewetting of the capillary liquid bridges, within which the DLC molecules are confined. Large-area uniform alignment occurs spontaneously due to directional shearing force when the solvent is slowly evaporated and programmable patterns could be directly generated on desired substrates. Moreover, the in-plane column direction of DLCs is tunable by slightly tailoring their chemical structures which changes their self-assembly behaviors in liquid bridges. The patterned DLCs show molecular orientation-dependent charge transport properties and are promising for templating self-assembly of other materials. The study provides a facile method for manipulation of the macroscopic patterns and microscopic molecular orientation which opens up new opportunities for electronic applications of DLCs.
Collapse
Affiliation(s)
- Cheng Zou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingxia Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Meng Wang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kehua Gu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guirong Xiong
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huai Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tomiki Ikeda
- Research and Development Initiative, Chuo University, Tokyo, 112-8551, Japan
| |
Collapse
|
36
|
Liu Y, Feng J, Zhang B, Wu Y, Chen Y, Jiang L. Regular Aligned 1D Single-Crystalline Supramolecular Arrays for Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1701861. [PMID: 29251425 DOI: 10.1002/smll.201701861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Solution-processed semiconductor single-crystal patterns possess unique advantages of large scale and low cost, leading to potential applications toward high-performance optoelectronic devices. To integrate organic semiconductor micro/nanostructures into devices, various patterning techniques have been developed. However, previous patterning techniques suffer from trade-offs between precision, scalability, crystallinity, and orientation. Herein, a patterning method is reported based on an asymmetric-wettability micropillar-structured template. Large-scale 1D single-crystalline supramolecular arrays with strict alignment, pure crystallographic orientation, and precise position can be obtained. The wettability difference between tops and sidewalls of micropillars gives rise to the confinement of organic solutions in discrete capillary tubes followed by dewetting and formation of capillary trailing. The capillary trailing enables unidirectional dewetting, regulated mass transport, and confined crystal growth. Owing to the high crystallinity and pure crystallographic orientation with Pt atomic chains parallel to the substrate, the photodetectors based on the 1D arrays exhibit improved responsivity. The work not only provides fundamental understanding on the patterning and crystallization of supramolecular structures but also develops a large-scale assembly technique for patterning single-crystalline micro/nanostructures.
Collapse
Affiliation(s)
- Yun Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Jiangang Feng
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bo Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Chen
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
37
|
Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W. 2D Organic Materials for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1702415. [PMID: 29024065 DOI: 10.1002/adma.201702415] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/15/2017] [Indexed: 06/07/2023]
Abstract
The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D-materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self-assembly monolayers, and covalent organic frameworks. The protocols for 2D-organic-crystal-fabrication and -patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented.
Collapse
Affiliation(s)
- Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Shanshan Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaochen Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences, Tianjin University, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
38
|
Park KS, Baek J, Park Y, Lee L, Hyon J, Koo Lee YE, Shrestha NK, Kang Y, Sung MM. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603285. [PMID: 27885700 DOI: 10.1002/adma.201603285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.
Collapse
Affiliation(s)
- Kyung Sun Park
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | - Jangmi Baek
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | - Yoonkyung Park
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | - Lynn Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | - Jinho Hyon
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | - Yong-Eun Koo Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | | | - Youngjong Kang
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| | - Myung Mo Sung
- Department of Chemistry, Hanyang University, Seoul, 04763, Korea
| |
Collapse
|
39
|
Wang SS, Liu HB, Kan XN, Wang L, Chen YH, Su B, Li YL, Jiang L. Superlyophilicity-Facilitated Synthesis Reaction at the Microscale: Ordered Graphdiyne Stripe Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602265. [PMID: 27714982 DOI: 10.1002/smll.201602265] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/23/2016] [Indexed: 06/06/2023]
Abstract
As a new member of carbon allotropes, graphdiyne is a promising material with excellent electronic performance and high elasticity, indicating the possibility of graphdiyne to serve as the building blocks in flexible electronics. However, precise positioning/patterning of graphdiyne is still a challenge for the realization of large-area and flexible organic electronic devices and circuits. Here, the direct in situ synthesis of patterning graphdiyne stripe arrays dominated by the superlyophilic grooved templates is reported, whereas the superlyophilicity of grooved templates plays a key role in allowing continuous mass transport of raw reactants into the microscale spacing. After the completion of cross-coupling reaction procedure, precisely patterned graphdiyne stripes can be generated accordingly. The size of graphdiyne stripe arrays is depending on the silicon substrate size (1 cm × 1.5 cm), and the layer thickness can be manipulated from just several nanometers to hundreds of nanometers by varying the primary concentration of hexaethynylbenzene monomers. As a proof-of-principle demonstration, a stretchable sensor based on the graphdiyne stripe arrays is performed to monitor the human finger motion. It is expected that this wettability-facilitated strategy will provide new insights into the controlled synthesis of graphdiyne toward promising flexible electronics and other optoelectronic applications.
Collapse
Affiliation(s)
- Sha-Sha Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui-Biao Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao-Nan Kan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan-Huan Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bin Su
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yu-Liang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
40
|
Li QF, Liu S, Chen HZ, Li HY. Alignment and patterning of organic single crystals for field-effect transistors. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zhang X, Jie J, Deng W, Shang Q, Wang J, Wang H, Chen X, Zhang X. Alignment and Patterning of Ordered Small-Molecule Organic Semiconductor Micro-/Nanocrystals for Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2475-503. [PMID: 26813697 DOI: 10.1002/adma.201504206] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Indexed: 05/28/2023]
Abstract
Large-area alignment and patterning of small-molecule organic semiconductor micro-/nanocrystals (SMOSNs) at desired locations is a prerequisite for their practical device applications. Recent strategies for alignment and patterning of ordered SMOSNs and their corresponding device applications are highlighted.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Qixun Shang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Jincheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| | - Xianfeng Chen
- School of Chemistry and Forensic Sciences, Faculty of Life Sciences, University of Bradford, United Kingdom, BD7 1DP
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu, 215123, P. R. China
| |
Collapse
|
42
|
Wang H, Deng W, Huang L, Zhang X, Jie J. Precisely Patterned Growth of Ultra-Long Single-Crystalline Organic Microwire Arrays for Near-Infrared Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7912-7918. [PMID: 26987110 DOI: 10.1021/acsami.5b12190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Owing to extraordinary properties, small-molecule organic micro/nanocrystals are identified to be prospective system to construct new-generation organic electronic and optoelectronic devices. Alignment and patterning of organic micro/nanocrystals at desired locations are prerequisite for their device applications in practice. Though various methods have been developed to control their directional growth and alignment, high-throughput precise positioning and patterning of the organic micro/nanocrystals at desired locations remains a challenge. Here, we report a photoresist-assisted evaporation method for large-area growth of precisely positioned ultralong methyl-squarylium (MeSq) microwire (MW) arrays. Positions as well as alignment densities of the MWs can be precisely controlled with the aid of the photoresist-template that fabricated by photolithography process. This strategy enables large-scale fabrication of organic MW arrays with nearly the same accuracy, uniformity, and reliability as photolithography. Near-infrared (NIR) photodetectors based on the MeSq MW arrays show excellent photoresponse behavior and are capable of detecting 808 nm light with high stability and reproducibility. The high on/off ratio of 1600 is significantly better than other organic nanostructure-based optical switchers. More importantly, this strategy can be readily extended to other organic molecules, revealing the great potential of photoresist-assisted evaporation method for future high-performance organic optoelectronic devices.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou , Jiangsu 215123, P. R. China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou , Jiangsu 215123, P. R. China
| | - Liming Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou , Jiangsu 215123, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou , Jiangsu 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou , Jiangsu 215123, P. R. China
| |
Collapse
|
43
|
Wei C, Zhao YS. Photonic Applications of Metal-Dielectric Heterostructured Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3703-3713. [PMID: 26536046 DOI: 10.1021/acsami.5b08086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metal materials, supporting plasmon modes on their surface, can confine the optical field at deep subwavelength scale, which is desired for photonic integration. However, their intrinsic high Ohmic losses make it impossible to construct the whole circuit solely with the metal materials. Integrating the plasmonic components with dielectric materials may offer a solution to this dilemma. With outstanding active optical performance, these dielectric components not only can greatly reduce the optical losses of the entire circuits but also offer an efficient way to launch the surface plasmon polaritons through the evanescent field coupling or the direct exciton-plasmon conversion. Furthermore, the cooperative interaction between metal and dielectric materials would bring vast novel optical phenomena and functional photonic devices. In this review, the synergistic effects among metal and dielectric materials in various heterostructures as well as their related applications are highlighted. Comprehensive understanding on their synergistic interactions would offer useful guidance for the design and fabrication of the ultracompact novel optical devices.
Collapse
Affiliation(s)
- Cong Wei
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yong Sheng Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
44
|
Wang Y, Wei C, Cong H, Yang Q, Wu Y, Su B, Zhao Y, Wang J, Jiang L. Hybrid Top-Down/Bottom-Up Strategy Using Superwettability for the Fabrication of Patterned Colloidal Assembly. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4985-4993. [PMID: 26824430 DOI: 10.1021/acsami.5b11945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Superwettability of substrates has had a profound influence on the production of novel and advanced colloidal assemblies in recent decades owing to its effect on the spreading area, evaporation rate, and the resultant assembly structure. In this paper, we investigated in detail the influence of the superwettability of a transfer/template substrate on the colloidal assembly from a hybrid top-down/bottom-up strategy. By taking advantage of a superhydrophilic flat transfer substrate and a superhydrophobic groove-structured silicon template, the patterned colloidal microsphere assembly was formed including linear and mesh-, cyclic-, and multistopband assembly arrays of microspheres, and the optic-waveguide of a circular colloidal structure was demonstrated. We believed this liquid top-down/bottom-up strategy would open an efficient avenue for assembling/integrating microspheres building blocks into device applications in a low-cost manner.
Collapse
Affiliation(s)
- Yuezhong Wang
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University , Qingdao 266071, China
- The Laboratory of Bio-Inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Science , Beijing 100190, China
| | - Cong Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Hailin Cong
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University , Qingdao 266071, China
| | - Qiang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yuchen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Bin Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yongsheng Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Jingxia Wang
- The Laboratory of Bio-Inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Science , Beijing 100190, China
| | - Lei Jiang
- The Laboratory of Bio-Inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Science , Beijing 100190, China
| |
Collapse
|
45
|
Su B, Tian Y, Jiang L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J Am Chem Soc 2016; 138:1727-48. [DOI: 10.1021/jacs.5b12728] [Citation(s) in RCA: 790] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bin Su
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ye Tian
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- Laboratory
of Bioinspired Smart Interfacial Science, Technical Institute of Physics
and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
46
|
Deng W, Zhang X, Wang L, Wang J, Shang Q, Zhang X, Huang L, Jie J. Wafer-Scale Precise Patterning of Organic Single-Crystal Nanowire Arrays via a Photolithography-Assisted Spin-Coating Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7305-7312. [PMID: 26460612 DOI: 10.1002/adma.201503019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/06/2015] [Indexed: 06/05/2023]
Abstract
A photolithography-assisted spin-coating approach is developed to produce single-crystal organic nanowire (NW) arrays at designated locations with high precision and high efficiency. This strategy enables the large-scale fabrication of organic NW arrays with nearly the same accuracy, reliability, and flexibility as photolithography. The high mobilities of the organic NWs enable the control of the switch of multicolored light-emitting devices with good stability.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang Wang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jincheng Wang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qixun Shang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liming Huang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
47
|
Feng J, Wu Y, Su B, Jiang L. Large-Scale Assembly of Organic Highly Crystalline Multicomponent Wires through Surface-Engineered Condensation and Crystallization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5759-5765. [PMID: 26415092 DOI: 10.1002/smll.201501563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Highly crystalline multicomponent wire arrays are fabricated by a scalable technique, termed surface-engineered condensation and crystallization (SECC). Alignment and position are precisely controlled with the guidance of a micropillar-structured substrate with regionally different wettability and vapor-flow controllability.
Collapse
Affiliation(s)
- Jiangang Feng
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuchen Wu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bin Su
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Lei Jiang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|