1
|
Cerne R, Smith JL, Chrzanowska A, Lippa A. Nonsedating anxiolytics. Pharmacol Biochem Behav 2024; 245:173895. [PMID: 39461622 DOI: 10.1016/j.pbb.2024.173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Anxiety disorders are the most prevalent psychiatric pathology with substantial cost to society, but the existing treatments are often inadequate. This has rekindled the interest in the GABAA-receptor (GABAAR) positive allosteric modulator (PAM) compounds, which have a long history in treatment of anxiety beginning with diazepam, chlordiazepoxide, and alprazolam. While the GABAAR PAMs possess remarkable anxiolytic efficacy, they have fallen out of favor due to a host of adverse effects including sedation, motor impairment, addictive potential and tolerance development. A substantial effort was thus devoted to the design of GABAAR PAMs as anxiolytics with reduced sedative liabilities. Several non-benzodiazepine (BZD) GABAAPAMs progressed to clinical trials (bretazenil, abecarnil, alpidem, and ocinaplon) with alpidem obtaining regulatory approval as anxiolytic, but later withdrawn from market due to hepatotoxicity. Advances in molecular biology gave birth to a host of subtype selective GABAAR-PAMs which suffered from signs of sedation and motor impairment and only three compounds progressed to proof-of-concept studies (TPA-023, AZD7325 and PF-06372865). TPA-023 was terminated due to toxicity in preclinical species while AZD7325 and PF-06372865 did not achieve efficacy endpoints in patients. We highlight a new compound, KRM-II-81, that is an imidazodiazepine selective for GABAAR containing α2/3 and β3 proteins. In preclinical studies KRM-II-81 produced anxiolytic-like effects but with minimal sedation, respiratory depression, and abuse liability. Thus, KRM-II-81 is a newly discovered, non- BZD anxiolytic compound, which targets a selective population of GABAAR for improved therapeutic gain and reduced side effects.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| |
Collapse
|
2
|
Neumann E, Cramer T, Acuña MA, Scheurer L, Beccarini C, Luscher B, Wildner H, Zeilhofer HU. γ1 GABA A Receptors in Spinal Nociceptive Circuits. J Neurosci 2024; 44:e0591242024. [PMID: 39137998 PMCID: PMC11466064 DOI: 10.1523/jneurosci.0591-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
GABAergic neurons and GABAA receptors (GABAARs) are critical elements of almost all neuronal circuits. Most GABAARs of the CNS are heteropentameric ion channels composed of two α, two β, and one γ subunits. These receptors serve as important drug targets for benzodiazepine (BDZ) site agonists, which potentiate the action of GABA at GABAARs. Most GABAAR classifications rely on the heterogeneity of the α subunit (α1-α6) included in the receptor complex. Heterogeneity of the γ subunits (γ1-γ3), which mediate synaptic clustering of GABAARs and contribute, together with α subunits, to the benzodiazepine (BDZ) binding site, has gained less attention, mainly because γ2 subunits greatly outnumber the other γ subunits in most brain regions. Here, we have investigated a potential role of non-γ2 GABAARs in neural circuits of the spinal dorsal horn, a key site of nociceptive processing. Female and male mice were studied. We demonstrate that besides γ2 subunits, γ1 subunits are significantly expressed in the spinal dorsal horn, especially in its superficial layers. Unlike global γ2 subunit deletion, which is lethal, spinal cord-specific loss of γ2 subunits was well tolerated. GABAAR clustering in the superficial dorsal horn remained largely unaffected and antihyperalgesic actions of HZ-166, a nonsedative BDZ site agonist, were partially retained. Our results thus suggest that the superficial dorsal horn harbors functionally relevant amounts of γ1 subunits that support the synaptic clustering of GABAARs in this site. They further suggest that γ1 containing GABAARs contribute to the spinal control of nociceptive information flow.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Camilla Beccarini
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bernhard Luscher
- Departments of Biology, Biochemistry and Molecular Biology, and Psychiatry and Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
3
|
Lape EC, Powers JM, LaRowe LR, Ditre JW. Initial validation of the expectancies for Benzodiazepine Analgesia Scale. Exp Clin Psychopharmacol 2024; 32:369-378. [PMID: 38010761 PMCID: PMC11098706 DOI: 10.1037/pha0000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chronic pain populations exhibit greater prevalence of benzodiazepine (BZD) prescription (vs. the general population) and greater likelihood of BZD use not as prescribed and dependence symptoms. Individuals report taking BZDs for pain relief, potentially contributing to maintenance/escalation of BZD use and hazardous couse with prescription opioids. Identifying cognitive factors underlying pain-BZD use relations represents a critical step toward understanding the role of pain in BZD use trajectories. Outcome expectancies for substance-related analgesia have been implicated in pain-substance use comorbidity (e.g., alcohol), and there is reason to believe these processes may extend to BZD use. The present study aimed to examine psychometric properties of a newly adapted Expectancies for Benzodiazepine Analgesia (EBA) scale and probe associations between EBA scores and prescription opioid use behaviors. Participants were 306 adults (38.9% females) endorsing chronic pain and current BZD prescription who completed an online survey. Results provided initial support for psychometric validity of the EBA: evidence of single-factor structure with good model fit (Bollen-Stine bootstrap p = .101), excellent internal consistency (α = .93), and evidence of concurrent validity via correlations with pain variables, likelihood of BZD use not as prescribed, BZD dependence symptoms, and self-reported BZD use for pain relief. Exploratory findings among participants prescribed opioids indicated positive covariation between EBA scores and behaviors associated with higher risk opioid use. This is, to our knowledge, the first study to assess analgesia expectancies for BZD use. BZD analgesic expectancies warrant further study as a treatment target in comorbid pain and BZD use. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Emma C. Lape
- Department of Psychology, Syracuse University, 430 Huntington Hall, Syracuse, NY 13244, United States
| | - Jessica M. Powers
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, 625 North Michigan Avenue, 21st Floor, Chicago, IL 60611, United States
| | - Lisa R. LaRowe
- Mongan Institute Center for Aging and Serious Illness, Massachusetts General Hospital, 100 Cambridge Street, Suite 1600, Boston, MA 02114, United States
| | - Joseph W. Ditre
- Department of Psychology, Syracuse University, 430 Huntington Hall, Syracuse, NY 13244, United States
| |
Collapse
|
4
|
Witkin JM, Shafique H, Cerne R, Smith JL, Marini AM, Lipsky RH, Delery E. Mechanistic and therapeutic relationships of traumatic brain injury and γ-amino-butyric acid (GABA). Pharmacol Ther 2024; 256:108609. [PMID: 38369062 DOI: 10.1016/j.pharmthera.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Traumatic brain injury (TBI) is a highly prevalent medical condition for which no medications specific for the prophylaxis or treatment of the condition as a whole exist. The spectrum of symptoms includes coma, headache, seizures, cognitive impairment, depression, and anxiety. Although it has been known for years that the inhibitory neurotransmitter γ-amino-butyric acid (GABA) is involved in TBI, no novel therapeutics based upon this mechanism have been introduced into clinical practice. We review the neuroanatomical, neurophysiological, neurochemical, and neuropharmacological relationships of GABA neurotransmission to TBI with a view toward new potential GABA-based medicines. The long-standing idea that excitatory and inhibitory (GABA and others) balances are disrupted by TBI is supported by the experimental data but has failed to invent novel methods of restoring this balance. The slow progress in advancing new treatments is due to the complexity of the disorder that encompasses multiple dynamically interacting biological processes including hemodynamic and metabolic systems, neurodegeneration and neurogenesis, major disruptions in neural networks and axons, frank brain lesions, and a multitude of symptoms that have differential neuronal and neurohormonal regulatory mechanisms. Although the current and ongoing clinical studies include GABAergic drugs, no novel GABA compounds are being explored. It is suggested that filling the gap in understanding the roles played by specific GABAA receptor configurations within specific neuronal circuits could help define new therapeutic approaches. Further research into the temporal and spatial delivery of GABA modulators should also be useful. Along with GABA modulation, research into the sequencing of GABA and non-GABA treatments will be needed.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Ann M Marini
- Department of Neurology, Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert H Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elizabeth Delery
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA.
| |
Collapse
|
5
|
MacLean A, Chappell AS, Kranzler J, Evrard A, Monchal H, Roucard C. BAER-101, a selective potentiator of α2- and α3-containing GABA A receptors, fully suppresses spontaneous cortical spike-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Drug Dev Res 2024; 85:e22160. [PMID: 38380694 DOI: 10.1002/ddr.22160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BAER-101 (formerly AZD7325) is a selective partial potentiator of α2/3-containing γ-amino-butyric acid A receptors (GABAARs) and produces minimal sedation and dizziness. Antiseizure effects in models of Dravet and Fragile X Syndromes have been published. BAER-101 has been administered to over 700 healthy human volunteers and patients where it was found to be safe and well tolerated. To test the extent of the antiseizure activity of BAER-1010, we tested BAER-101 in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model, a widely used and translationally relevant model. GAERS rats with recording electrodes bilaterally located over the frontal and parietal cortices were used. Electroencepholographic (EEG) signals in freely moving awake rats were analyzed for spike-wave discharges (SWDs). BAER-101 was administered orally at doses of 0.3-100 mg/kg and diazepam was used as a positive control using a cross-over protocol with a wash-out period between treatments. The number of SWDs was dose-dependently reduced by BAER-101 with 0.3 mg/kg being the minimally effective dose (MED). The duration of and total time in SWDs were also reduced by BAER-101. Concentrations of drug in plasma achieved an MED of 10.1 nM, exceeding the Ki for α2 or α3, but 23 times lower than the Ki for α5-GABAARs. No adverse events were observed up to a dose 300× MED. The data support the possibility of antiseizure efficacy without the side effects associated with other GABAAR subtypes. This is the first report of an α2/3-selective GABA PAM suppressing seizures in the GAERS model. The data encourage proceeding to test BAER-101 in patients with epilepsy.
Collapse
|
6
|
Wu H, Huang Z, Wang X, Chen M, Chen W, Hua Y, Ren J, Shen L, Song Y, Zhou Y, Luo C, Lin Y, Wang Y, Chang L, Li F, Zhu D. Preclinical evaluation of ZL006-05, a new antistroke drug with fast-onset antidepressant and anxiolytic effects. Stroke Vasc Neurol 2023; 8:463-474. [PMID: 37185136 PMCID: PMC10800258 DOI: 10.1136/svn-2022-002156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Poststroke depression and anxiety, independent predictor of poor functional outcomes, are common in the acute phase of stroke. Up to now, there is no fast-onset antidepressive and anxiolytic agents suitable for the management of acute stroke. ZL006-05, a dual-target analgesic we developed, dissociates nitric oxide synthase from postsynaptic density-95 while potentiates α2-containing γ-aminobutyric acid type A receptor. This study aims to determine whether ZL006-05 can be used as an antistroke agent with fast-onset antidepressant and anxiolytic effects. METHODS Photothrombotic stroke and transient middle cerebral artery occlusion were induced in rats and mice. Infarct size was measured by TTC(2,3,5-Triphenyltetrazolium chloride) staining or Nissl staining. Neurological defects were assessed by four-point scale neurological score or modified Neurological Severity Scores. Grid-walking, cylinder and modified adhesive removal tasks were conducted to assess sensorimotor functions. Spatial learning was assessed using Morris water maze task. Depression and anxiety were induced by unpredictable chronic mild stress. Depressive behaviours were assessed by tail suspension, forced swim and sucrose preference tests. Anxiety behaviours were assessed by novelty-suppressed feeding and elevated plus maze tests. Pharmacokinetics, toxicokinetics and long-term toxicity studies were performed in rats. RESULTS Administration of ZL006-05 in the acute phase of stroke attenuated transient and permanent ischaemic injury and ameliorated long-term functional impairments significantly, with a treatment window of 12 hours after ischemia, and reduced plasminogen activato-induced haemorrhagic transformation. ZL006-05 produced fast-onset antidepressant and anxiolytic effects with onset latency of 1 hour in the normal and CMS mice, had antidepressant and anxiolytic effects in stroke mice. ZL006-05 crossed the blood-brain barrier and distributed into the brain rapidly, and had a high safety profile in toxicokinetics and long-term toxicological studies. CONCLUSION ZL006-05 is a new neuroprotectant with fast-onset antidepressant and anxiolytic effects and has translational properties in terms of efficacy, safety and targeting of clinical issues.
Collapse
Affiliation(s)
- Haiyin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenquan Huang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xuan Wang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyu Chen
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Chen
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Hua
- NeuroDawn Pharmaceutical Co., Ltd, Nanjing, China
| | - Jian Ren
- NeuroDawn Pharmaceutical Co., Ltd, Nanjing, China
| | - Luyao Shen
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixuan Song
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunxia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dongya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Qian X, Zhao X, Yu L, Yin Y, Zhang XD, Wang L, Li JX, Zhu Q, Luo JL. Current status of GABA receptor subtypes in analgesia. Biomed Pharmacother 2023; 168:115800. [PMID: 37935070 DOI: 10.1016/j.biopha.2023.115800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gamma-aminobutyric acid (GABA), a non-protein-producing amino acid synthesized from the excitatory amino acid glutamate via the enzyme glutamic acid decarboxylase, is extensively found in microorganisms, plants and vertebrates, and is abundantly expressed in the spinal cord and brain. It is the major inhibitory neurotransmitter in the mammalian nervous system. GABA plays crucial roles in the regulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of insomnia and depression. As the major inhibitory neurotransmitter, GABA plays pivotal roles in the regulation of pain sensation, which is initiated by the activation of peripheral nociceptors and transmitted to the spinal cord and brain along nerves. GABA exerts these roles by directly acting on three types of receptors: ionotropic GABAA and GABAC receptors and G protein-coupled GABAB receptor. The chloride-permeable ion channel receptors GABAA and GABAC mediate fast neurotransmission, while the metabotropic GABAB receptor mediates slow effect. Different GABA receptors regulate pain sensation via different signaling pathways. Here we highlight recent updates on the involvement of specific GABA receptors and their subtypes in the process of pain sensation. Further understanding of different GABA receptors and signaling pathways in pain sensation will benefit the development of novel analgesics for pain management by targeting specific GABA receptor subtypes and signaling pathways.
Collapse
Affiliation(s)
- Xunjia Qian
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xinyi Zhao
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Lulu Yu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yujian Yin
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiao-Dan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Liyun Wang
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China; Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong 226001, Jiangsu, China.
| | - Jia-Lie Luo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
8
|
Mohamad FH, Mohamad Jamali MA, Che Has AT. Structure-function Studies of GABA (A) Receptors and Related computer-aided Studies. J Mol Neurosci 2023; 73:804-817. [PMID: 37750966 DOI: 10.1007/s12031-023-02158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The γ-aminobutyric acid type A receptor (GABA (A) receptor) is a membrane protein activated by the neurotransmitter GABA. Structurally, this major inhibitory neurotransmitter receptor in the human central nervous system is a pentamer that can be built from a selection of 19 subunits consisting of α(1,2,3,4,5 or 6), β (1,2 or 3), γ (1,2 or 3), ρ (1,2 or 3), and δ, π, θ, and ε. This creates several possible pentameric arrangements, which also influence the pharmacological and physiological properties of the receptor. The complexity and heterogeneity of the receptors are further increased by the addition of short and long splice variants in several subunits and the existence of multiple allosteric binding sites and expansive ligands that can bind to the receptors. Therefore, a comprehensive understanding of the structure and function of the receptors is required to gain novel insights into the consequences of receptor dysfunction and subsequent drug development studies. Notably, advancements in computational-aided studies have facilitated the elucidation of residual interactions and exploring energy binding, which may otherwise be challenging to investigate. In this review, we aim to summarize the current understanding of the structure and function of GABA (A) receptors obtained from advancements in computational-aided applications.
Collapse
Affiliation(s)
- Fatin H Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Muhamad Arif Mohamad Jamali
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
9
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Gómez LCG, Medina NB, Blasco SS, Gravielle MC. Diazepam-Induced Down-Regulation of The Gaba a Receptor α1 Subunit, as Mediated by the Activation of L-Type Voltage-Gated Calcium Channel/Ca 2+/Protein Kinase A Signaling Cascade. Neurosci Lett 2023:137358. [PMID: 37356564 DOI: 10.1016/j.neulet.2023.137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Benzodiazepines are among the most prescribed drug class worldwide to treat disorders such as anxiety, insomnia, muscle spasticity, and convulsive disorders, and to induce presurgical sedation. Although benzodiazepines exhibit a high therapeutic index and low toxicity in short-term treatments, prolonged administration induces tolerance to most of their therapeutic actions. The mechanism of this tolerance remains unclear. The central actions of benzodiazepines are mediated by binding to GABAA receptors, which mediate most fast inhibitory transmission in the brain. The majority of GABAA receptors are composed of two α-(1-6), two β-(1-3) and one γ-subunits (1-3). In a previous report, we demonstrated that the prolonged exposure of cerebrocortical neurons to diazepam produces a transcriptional repression of the GABAA receptor α1 subunit gene via a mechanism dependent on the activation of L-type voltage-gated calcium channels (L-VGCCs). The results reported here confirm that the diazepam-induced downregulation of the α1 subunit is contingent upon calcium influx from extracellular space. In addition, this regulatory mechanism involves the activation of protein kinase A (PKA) and is accompanied by the activation of two transcription factors, the cAMP-response element-binding protein (CREB) and the inducible cAMP early repressor (ICER). Together, our results suggest that diazepam's activation of an L-VGCC/Ca2+/PKA/CREB-ICER signaling pathway is responsible for the regulation of GABAA receptors. This elucidation of the intracellular signaling cascade activated by a prolonged benzodiazepine exposure, itself potentially involved in the development of tolerance, may contribute to locating molecular targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Leydi Carolina González Gómez
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - Sara Sanz Blasco
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA). Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. CONICET. Buenos Aires, Argentina.
| |
Collapse
|
11
|
Olde Heuvel F, Ouali Alami N, Aousji O, Pogatzki-Zahn E, Zahn PK, Wilhelm H, Deshpande D, Khatamsaz E, Catanese A, Woelfle S, Schön M, Jain S, Grabrucker S, Ludolph AC, Verpelli C, Michaelis J, Boeckers TM, Roselli F. Shank2 identifies a subset of glycinergic neurons involved in altered nociception in an autism model. Mol Autism 2023; 14:21. [PMID: 37316943 DOI: 10.1186/s13229-023-00552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorders (ASD) patients experience disturbed nociception in the form of either hyposensitivity to pain or allodynia. A substantial amount of processing of somatosensory and nociceptive stimulus takes place in the dorsal spinal cord. However, many of these circuits are not very well understood in the context of nociceptive processing in ASD. METHODS We have used a Shank2-/- mouse model, which displays a set of phenotypes reminiscent of ASD, and performed behavioural and microscopic analysis to investigate the role of dorsal horn circuitry in nociceptive processing of ASD. RESULTS We determined that Shank2-/- mice display increased sensitivity to formalin pain and thermal preference, but a sensory specific mechanical allodynia. We demonstrate that high levels of Shank2 expression identifies a subpopulation of neurons in murine and human dorsal spinal cord, composed mainly by glycinergic interneurons and that loss of Shank2 causes the decrease in NMDAR in excitatory synapses on these inhibitory interneurons. In fact, in the subacute phase of the formalin test, glycinergic interneurons are strongly activated in wild type (WT) mice but not in Shank2-/- mice. Consequently, nociception projection neurons in laminae I are activated in larger numbers in Shank2-/- mice. LIMITATIONS Our investigation is limited to male mice, in agreement with the higher representation of ASD in males; therefore, caution should be applied to extrapolate the findings to females. Furthermore, ASD is characterized by extensive genetic diversity and therefore the findings related to Shank2 mutant mice may not necessarily apply to patients with different gene mutations. Since nociceptive phenotypes in ASD range between hyper- and hypo-sensitivity, diverse mutations may affect the circuit in opposite ways. CONCLUSION Our findings prove that Shank2 expression identifies a new subset of inhibitory interneurons involved in reducing the transmission of nociceptive stimuli and whose unchecked activation is associated with pain hypersensitivity. We provide evidence that dysfunction in spinal cord pain processing may contribute to the nociceptive phenotypes in ASD.
Collapse
Affiliation(s)
| | - Najwa Ouali Alami
- Department of Neurology, Ulm University, Ulm, Germany
- International PhD Program, Ulm University, Ulm, Germany
| | | | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- Clinic for Anesthesiology, Intensive Care and Pain Medicine, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Hanna Wilhelm
- Department of Neurology, Ulm University, Ulm, Germany
| | | | | | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sarah Woelfle
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sanjay Jain
- Department of Internal Medicine (Renal), Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | | | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Chiara Verpelli
- Institute of Neuroscience, National Science Council, Milan, Italy
| | | | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
- Department of Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
- Center for Biomedical Research (ZBF), Helmholtzstraße 8/2, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Marileo AM, Gavilán J, San Martín VP, Lara CO, Sazo A, Muñoz-Montesino C, Castro PA, Burgos CF, Leiva-Salcedo E, Aguayo LG, Moraga-Cid G, Fuentealba J, Yévenes GE. Modulation of GABA A receptors and of GABAergic synapses by the natural alkaloid gelsemine. Front Mol Neurosci 2023; 15:1083189. [PMID: 36733271 PMCID: PMC9887029 DOI: 10.3389/fnmol.2022.1083189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.
Collapse
Affiliation(s)
- Ana M. Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Javiera Gavilán
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Cesar O. Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Elías Leiva-Salcedo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis G. Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile,*Correspondence: Gonzalo E. Yévenes, ✉
| |
Collapse
|
13
|
Du Z, Zhang J, Han X, Yu W, Gu X. Potential novel therapeutic strategies for neuropathic pain. Front Mol Neurosci 2023; 16:1138798. [PMID: 37152429 PMCID: PMC10160452 DOI: 10.3389/fnmol.2023.1138798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose To explore the potential therapeutic strategies of different types of neuropathic pain (NP) and to summarize the cutting-edge novel approaches for NP treatment based on the clinical trials registered on ClinicalTrials.gov. Methods The relevant clinical trials were searched using ClinicalTrials.gov Dec 08, 2022. NP is defined as a painful condition caused by neurological lesions or diseases. All data were obtained and reviewed by the investigators to confirm whether they were related to the current topic. Results A total of 914 trials were included in this study. They were divided into painful diabetic neuropathy (PDN), postherpetic neuralgia (PHN), sciatica (SC), peripheral nerve injury-related NP (PNI), trigeminal neuralgia (TN), chemotherapy-induced NP (CINP), general peripheral NP (GPNP) and spinal cord injury NP (SCI-NP). Potential novel therapeutic strategies, such as novel drug targets and physical means, were discussed for each type of NP. Conclusion NP treatment is mainly dominated by drug therapy, and physical means have become increasingly popular. It is worth noting that novel drug targets, new implications of conventional medicine, and novel physical means can serve as promising strategies for the treatment of NP. However, more attention needs to be paid to the challenges of translating research findings into clinical practice.
Collapse
|
14
|
Subunit-dependent interaction of propoxazepam and its metabolite with the -aminobuturic acid type A receptor. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Benzodiazepines (BDZ) are widely used in clinics in the treatment of psychiatric disorders, and their main action is considered to be determined by more selective binding with α1, α2, α3 or α5 subunits of GABA receptor.
The aim of this work was studying of the molecular mechanism of action of new analgesic – propoxazepam and its metabolite (3-hydroxypropoxazepam) on α1, α2, α3, α4 or α5 subunits containing GABAA channels.
Materials and methods GABA ha1b3g2, ha2b3g2, ha3b3g2, ha4b3g2 and ha5b3g2 ionotropic GABAARs expressed in HEK293 were used on the automated SP384PE Patch Clamp system. In addition, Propoxazepam, 3-hydroxypropoxazepam, diazepam (positive allosteric modulator) and GABA (positive control) were administered at concentrations 0.001–300 nM to determine the EC50 and Emax for corresponding substances.
Results The α subunit plays a significantl role in determining the receptor’s affinity for propoxazepam and 3-hydroxypropoxazepam. The rank order of decreasing EC50 are α1 = α5> α2 > α3 > α4 (propoxazepam) and α1> α2> α5 > α3 > α4 (3-hydroxypropoxazepam), and for Emax α3 > α2 >α5 > α1 > α4 (propoxazepam), α3 > α1 > α2> α5 > α4 (3-hydroxypropoxazepam).
The data, transformed to Emax/EC50, show that propoxazepam exhibits tenfold (compared to diazepam) activity (taking into account the magnitude of the maximum effect) to the α3 subunit, which distinguishes it from 3-hydroxypropoxazepam.
Conclusion Due to the determined selectivity of propoxazepam for binding with different α subunit-containing GABAA-receptors (mostly α3 and α2 types), it has the potential to provide analgesia with less sedation than non-selective BDZ.
Collapse
|
15
|
Uygun DS, Basheer R. Circuits and components of delta wave regulation. Brain Res Bull 2022; 188:223-232. [PMID: 35738502 DOI: 10.1016/j.brainresbull.2022.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Sleep is vital and the deepest stages of sleep occur within Non-rapid-eye-movement sleep (NREM), defined by high electroencephalographic power in the delta (~0.5-4Hz) wave frequency range. Delta waves are thought to facilitate a myriad of physical and mental health functions. This review aims to comprehensively cover the historical and recent advances in the understanding of the mechanisms orchestrating NREM delta waves. We discuss a complete neurocircuit - focusing on one leg of the circuit at a time - and delve deeply into the molecular mechanistic components that contribute to NREM delta wave regulation. We also discuss the relatively localized nature in which these mechanisms have been defined, and how likely they might generalize across distinct sensory and higher order modalities in the brain.
Collapse
Affiliation(s)
- David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA; 02132.
| |
Collapse
|
16
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
17
|
Midazolam at low nanomolar concentrations affects long-term potentiation and synaptic transmission predominantly via the α1-GABAA receptor subunit in mice. Anesthesiology 2022; 136:954-969. [PMID: 35285894 DOI: 10.1097/aln.0000000000004202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Midazolam amplifies synaptic inhibition via different GABAA receptor subtypes defined by the presence of α1, α2, α3 or α5-subunits in the channel complex. Midazolam blocks long-term potentiation and produces postoperative amnesia. The aims of this study were to identify the GABAA receptor subtypes targeted by midazolam responsible for affecting CA1-long-term potentiation and synaptic inhibition in neocortical neurons. METHODS The effects of midazolam on hippocampal CA1-long-term potentiation were studied in acutely prepared brain slices of male and female mice. Positive allosteric modulation on GABAA receptor-mediated miniature inhibitory postsynaptic currents was investigated in organotypic slice cultures of the mouse neocortex. In both experiments, wild-type mice and GABAA receptor knock-in mouse lines were compared in which α1-, α5-, α1/2/3-, α1/3/5- and α2/3/5-GABAA receptor subtypes had been rendered benzodiazepine-insensitive. RESULTS Midazolam 10nM completely blocked long-term potentiation (midazolam mean±SD 98±11%, n=14/8 (slices/mice) vs. control 156±19%, n=20/12; p<0.001). Experiments in slices of α1-, α5-, α1/2/3-, α1/3/5- and α2/3/5-knock-in mice revealed a dominant role for the α1-GABAA receptor subtype in the long-term potentiation suppressing effect.In slices from wild-type mice, midazolam increased (mean±SD) charge transfer of miniature synaptic events concentration-dependently, 50nM: 172±71% (n=10/6) vs. 500nM: 236±54% (n=6/6), p=0.041. In α2/3/5-knock-in mice, charge transfer of miniature synaptic events did not further enhance when applying 500nM midazolam, 50nM: 171±62% (n=8/6) vs. 500nM: 175±62% (n=6/6), p=0.454) indicating two different binding affinities for midazolam to α2/3/5- and α1-subunits. CONCLUSIONS These results demonstrate a predominant role of α1-GABAA receptors in the actions of midazolam at low nanomolar concentrations. At higher concentrations, midazolam also enhances other GABAA receptor subtypes. α1-GABAA receptors may already contribute at sedative doses to the phenomenon of postoperative amnesia that has been reported after midazolam administration.
Collapse
|
18
|
Shi Y, Cui M, Ochs K, Brendel M, Strübing FL, Briel N, Eckenweber F, Zou C, Banati RB, Liu GJ, Middleton RJ, Rupprecht R, Rudolph U, Zeilhofer HU, Rammes G, Herms J, Dorostkar MM. Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). Nat Neurosci 2022; 25:317-329. [PMID: 35228700 DOI: 10.1038/s41593-022-01013-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/14/2022] [Indexed: 01/08/2023]
Abstract
Benzodiazepines are widely administered drugs to treat anxiety and insomnia. In addition to tolerance development and abuse liability, their chronic use may cause cognitive impairment and increase the risk for dementia. However, the mechanism by which benzodiazepines might contribute to persistent cognitive decline remains unknown. Here we report that diazepam, a widely prescribed benzodiazepine, impairs the structural plasticity of dendritic spines, causing cognitive impairment in mice. Diazepam induces these deficits via the mitochondrial 18 kDa translocator protein (TSPO), rather than classical γ-aminobutyric acid type A receptors, which alters microglial morphology, and phagocytosis of synaptic material. Collectively, our findings demonstrate a mechanism by which TSPO ligands alter synaptic plasticity and, as a consequence, cause cognitive impairment.
Collapse
Affiliation(s)
- Yuan Shi
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mochen Cui
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Ochs
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Felix L Strübing
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nils Briel
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Chengyu Zou
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney NSW, Australia.,Brain and Mind Centre, Medical Imaging Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney NSW, Australia.,Brain and Mind Centre, Medical Imaging Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSW, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney NSW, Australia
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Mario M Dorostkar
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
19
|
Engin E. GABA A receptor subtypes and benzodiazepine use, misuse, and abuse. Front Psychiatry 2022; 13:1060949. [PMID: 36713896 PMCID: PMC9879605 DOI: 10.3389/fpsyt.2022.1060949] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Benzodiazepines have been in use for over half a century. While they remain highly prescribed, their unfavorable side-effect profile and abuse liability motivated a search for alternatives. Most of these efforts focused on the development of benzodiazepine-like drugs that are selective for specific GABAA receptor subtypes. While there is ample evidence that subtype-selective GABAA receptor ligands have great potential for providing symptom relief without typical benzodiazepine side-effects, it is less clear whether subtype-selective targeting strategies can also reduce misuse and abuse potential. This review focuses on the three benzodiazepine properties that are relevant to the DSM-5-TR criteria for Sedative, Hypnotic, or Anxiolytic Use Disorder, namely, reinforcing properties of benzodiazepines, maladaptive behaviors related to benzodiazepine use, and benzodiazepine tolerance and dependence. We review existing evidence regarding the involvement of different GABAA receptor subtypes in each of these areas. The reviewed studies suggest that α1-containing GABAA receptors play an integral role in benzodiazepine-induced plasticity in reward-related brain areas and might be involved in the development of tolerance and dependence to benzodiazepines. However, a systematic comparison of the contributions of all benzodiazepine-sensitive GABAA receptors to these processes, a mechanistic understanding of how the positive modulation of each receptor subtype might contribute to the brain mechanisms underlying each of these processes, and a definitive answer to the question of whether specific chronic modulation of any given subtype would result in some or all of the benzodiazepine effects are currently lacking from the literature. Moreover, how non-selective benzodiazepines might lead to the maladaptive behaviors listed in DSM and how different GABAA receptor subtypes might be involved in the development of these behaviors remains unexplored. Considering the increasing burden of benzodiazepine abuse, the common practice of benzodiazepine misuse that leads to severe dependence, and the current efforts to generate side-effect free benzodiazepine alternatives, there is an urgent need for systematic, mechanistic research that provides a better understanding of the brain mechanisms of benzodiazepine misuse and abuse, including the involvement of specific GABAA receptor subtypes in these processes, to establish an informed foundation for preclinical and clinical efforts.
Collapse
Affiliation(s)
- Elif Engin
- Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
21
|
Cruz-Almeida Y, Forbes M, Cohen RC, Woods AJ, Fillingim RB, Riley JL, Porges ES. Brain gamma-aminobutyric acid, but not glutamine and glutamate levels are lower in older adults with chronic musculoskeletal pain: considerations by sex and brain location. Pain Rep 2021; 6:e952. [PMID: 34514275 PMCID: PMC8423393 DOI: 10.1097/pr9.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION AND OBJECTIVES GABAergic and glutamatergic neurotransmitter systems are central to the pathophysiology of chronic pain and are equally affected by aging processes. We measured levels of frontal gamma-aminobutyric acid (GABA) and the combined resonance of glutamate and glutamine (Glx) in vivo using proton magnetic resonance spectroscopy (1H-MRS) to elucidate age-specific and pain-specific associations with clinical and experimental pain in older adults. METHODS Younger (18-24, n = 24) and older (60-94, n = 41) individuals part of a larger study (Neuromodulatory Examination of Pain and Mobility Across the Lifespan [NEPAL]) underwent questionnaires, quantitative sensory testing, and 1H-MRS Mescher-Garwood point-resolved spectroscopy to measure GABA and Glx levels in prefrontal and sensorimotor brain regions. RESULTS Older participants had significantly lower sensorimotor, but not prefrontal, GABA and Glx levels, compared with younger controls (P's < 0.05). Younger controls had significantly higher prefrontal and sensorimotor GABA, but not Glx, levels compared with older controls and older adults with chronic pain (P's < 0.05). Older males with chronic pain had significantly lower prefrontal GABA compared with older and younger male controls (P's < 0.05). Prefrontal GABA, but not Glx, was significantly associated with self-reported and experimental pain measures (P's < 0.05). Our results are the first to focus exclusively on age and pain differences in GABA and Glx including younger and older controls to elucidate aging and pain contributions to brain GABAergic and glutamatergic processes. CONCLUSION Evaluation of both the neuroinhibitory and neuroexcitatory mechanisms provide promising potential for improving both our understanding of the mechanisms of chronic pain in aging and opportunities for effective, individualized treatments.
Collapse
Affiliation(s)
- Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Megan Forbes
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ronald C. Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B. Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Joseph L. Riley
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Eric S. Porges
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Delgado‐Lezama R, Bravo‐Hernández M, Franco‐Enzástiga Ú, De la Luz‐Cuellar YE, Alvarado‐Cervantes NS, Raya‐Tafolla G, Martínez‐Zaldivar LA, Vargas‐Parada A, Rodríguez‐Palma EJ, Vidal‐Cantú GC, Guzmán‐Priego CG, Torres‐López JE, Murbartián J, Felix R, Granados‐Soto V. The role of spinal cord extrasynaptic α 5 GABA A receptors in chronic pain. Physiol Rep 2021; 9:e14984. [PMID: 34409771 PMCID: PMC8374381 DOI: 10.14814/phy2.14984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic pain is an incapacitating condition that affects a large population worldwide. Until now, there is no drug treatment to relieve it. The impairment of GABAergic inhibition mediated by GABAA receptors (GABAA R) is considered a relevant factor in mediating chronic pain. Even though both synaptic and extrasynaptic GABAA inhibition are present in neurons that process nociceptive information, the latter is not considered relevant as a target for the development of pain treatments. In particular, the extrasynaptic α5 GABAA Rs are expressed in laminae I-II of the spinal cord neurons, sensory neurons, and motoneurons. In this review, we discuss evidence showing that blockade of the extrasynaptic α5 GABAA Rs reduces mechanical allodynia in various models of chronic pain and restores the associated loss of rate-dependent depression of the Hoffmann reflex. Furthermore, in healthy animals, extrasynaptic α5 GABAA R blockade induces both allodynia and hyperalgesia. These results indicate that this receptor may have an antinociceptive and pronociceptive role in healthy and chronic pain-affected animals, respectively. We propose a hypothesis to explain the relevant role of the extrasynaptic α5 GABAA Rs in the processing of nociceptive information. The data discussed here strongly suggest that this receptor could be a valid pharmacological target to treat chronic pain states.
Collapse
Affiliation(s)
| | - Mariana Bravo‐Hernández
- Neuroregeneration LaboratoryDepartment of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | | | | | | | | | | | | | | | | | - Crystell G. Guzmán‐Priego
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
| | - Jorge E. Torres‐López
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
- Hospital Regional de Alta Especialidad “Dr. Juan Graham Casasús”, VillahermosaTabascoMexico
| | | | - Ricardo Felix
- Departamento de Biología CelularCinvestavMexico CityMexico
| | - Vinicio Granados‐Soto
- Neurobiology of Pain LaboratoryDepartamento de FarmacobiologíaCinvestavMexico CityMexico
| |
Collapse
|
23
|
Rahman MA, Keck TM, Poe MM, Sharmin D, Cook JM, Fischer BD. Synergistic antihyperalgesic and antinociceptive effects of morphine and methyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (MP-III-024): a positive allosteric modulator at α2GABA A and α3GABA A receptors. Psychopharmacology (Berl) 2021; 238:1585-1592. [PMID: 33585961 PMCID: PMC8141038 DOI: 10.1007/s00213-021-05791-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
RATIONALE Opioid and GABAA receptors are both located in central nociceptive pathways, and compounds that activate these receptors have pain-relieving properties. To date, the interactive effects of concurrent administration of these compounds in preclinical models of pain-like behaviors have not been assessed. OBJECTIVE The purpose of this study was to examine the interactive effects of the μ-opioid agonist morphine and the α2GABAA and α3GABAA receptor positive allosteric modulator methyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (MP-III-024) in preclinical models of mechanical hyperalgesia and thermal nociception. METHODS The antihyperalgesic and antinociceptive effects of morphine and MP-III-024 administered alone were assessed initially, followed by fixed-ratio mixtures of MP-III-024/morphine combinations. Drug interaction data were analyzed using isobolographic and dose-addition analyses. All studies were conducted in male CD-1 mice. RESULTS In the assay of mechanical hyperalgesia, each compound produced dose-dependent antihyperalgesic effects, whereas only morphine was effective on thermal nociception. Fixed-ratio mixtures of MP-III-024/morphine were also dose-dependently effective in both procedures. These drug combination studies revealed that morphine and MP-III-024 produced supra-additive (synergistic) effects in both assays, depending on their relative proportions. CONCLUSIONS These results demonstrate an interaction between α2GABAA and α3GABAA receptor- and μ-opioid receptor-mediated signals and suggest that combination therapy may be useful for the treatment of pain-related disorders.
Collapse
Affiliation(s)
- Mohammad A. Rahman
- Rowan University, Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, Glassboro, NJ 08028, USA
| | - Thomas M. Keck
- Rowan University, Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, Glassboro, NJ 08028, USA
| | - Michael M. Poe
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, Wisconsin 53201, USA
| | - Dishary Sharmin
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, Wisconsin 53201, USA
| | - James M. Cook
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, Wisconsin 53201, USA
| | - Bradford D. Fischer
- Cooper Medical School of Rowan University, Department of Biomedical Sciences Camden, NJ 08103, USA,Corresponding Author:; Phone: (856) 361-2869
| |
Collapse
|
24
|
Lewter LA, Golani LK, Cook JM, Li JX. Blockade of α1 subtype GABAA receptors attenuates the development of tolerance to the antinociceptive effects of midazolam in rats. Behav Pharmacol 2021; 32:345-350. [PMID: 33290344 PMCID: PMC8119291 DOI: 10.1097/fbp.0000000000000614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzodiazepines bind to and act on α1-3 and α5-containing GABAA receptors. Previous studies suggest that different GABAA receptor α-subtypes mediate the various behavioral effects of benzodiazepines, which raises the possibility of combining benzodiazepines with subtype-selective GABAA receptor antagonists to improve the therapeutic profiles of benzodiazepines. This study examined the GABAA receptor subtype mediation of the tolerance to midazolam-induced antinociception in rats. Midazolam (3.2 mg/kg) significantly reduced the locomotion in rats which was prevented by the selective α1-preferring GABAA receptor antagonist β-carboline-3-carboxylate-t-butyl ester (βCCt) (3.2 mg/kg). Midazolam increased the paw withdrawal threshold as tested by the von Frey filament assay in the complete Freund's adjuvant-induced inflammatory pain model in rats, and this effect was not altered by βCCt or another α1-preferring GABAA receptor antagonist 3-propoxy-β-carboline hydrochloride (3PBC). Repeated treatment with midazolam in combination with vehicle, βCCt or 3PBC (twice daily) for 7 days led to a progressive increase of the ED50 values in the midazolam- and vehicle-treated rats, but not in other rats, suggesting the development of tolerance to midazolam but not to the combination of midazolam with α1-preferring GABAA receptor antagonists. These results suggest the essential role of the α1-subtype of GABAA receptors in mediating the development of tolerance to midazolam-induced antinociceptive effects and raise the possibility of increasing therapeutic profiles of benzodiazepines by selectively blocking specific α-subtypes of GABAA receptors.
Collapse
Affiliation(s)
- Lakeisha A. Lewter
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Lalit K Golani
- Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - James M. Cook
- Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
25
|
Sharma D, Dixit AB, Dey S, Tripathi M, Doddamani R, Sharma MC, Lalwani S, Gurjar HK, Chandra PS, Banerjee J. Increased levels of α4-containing GABA A receptors in focal cortical dysplasia: A possible cause of benzodiazepine resistance. Neurochem Int 2021; 148:105084. [PMID: 34052299 DOI: 10.1016/j.neuint.2021.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Benzodiazepines are the first choice of anti-epileptic drugs used to treat seizures. However, it has been seen that their efficacy decreases with time leading to drug insensitivity, plausibly caused by an alteration in the expression of the benzodiazepine biding site on GABAA receptors. This study was designed to investigate if the differential expression of GABAA receptor subunits α1/α4/γ2/δ across the postsynaptic sites could contribute to benzodiazepine resistance in patients with focal cortical dysplasia (FCD), the most common cause of drug resistant epilepsy in pediatric population. Differential gene and cellular expression of GABAA receptor subunits α1, α4, γ2 and δ were evaluated and validated using qPCR and immunohistochemistry. Whole cell patch clamp studies were performed on pyramidal neurons of resected cortical FCD samples to measure the spontaneous GABAA receptor activity. Upregulation of α4-and γ2-subunits containing GABAA receptors were observed at both mRNA and protein level. α1-and δ-subunits containing GABAA receptors did not show any significant changes. Flumazenil treatment did not affect the kinetics of GABAergic events in FCD; however, it significantly reduced the frequency and amplitude of spontaneous GABAergic activity in non-seizure control samples. Our results demonstrate the enhanced expression of α4-containing GABAA receptors and GABAergic activity in pyramidal neurons which in turn may contribute to benzodiazepine resistance in FCD patients.
Collapse
Affiliation(s)
- Devina Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Aparna Banerjee Dixit
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India.
| | - Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - M C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, New Delhi, India.
| | - Hitesh Kumar Gurjar
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
26
|
Li J, Zhang L, Xu C, Shen YY, Lin YH, Zhang Y, Wu HY, Chang L, Zhang YD, Chen R, Zhang ZP, Luo CX, Li F, Zhu DY. A pain killer without analgesic tolerance designed by co-targeting PSD-95-nNOS interaction and α2-containning GABA ARs. Am J Cancer Res 2021; 11:5970-5985. [PMID: 33897893 PMCID: PMC8058733 DOI: 10.7150/thno.58364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/07/2021] [Indexed: 01/22/2023] Open
Abstract
Overactivation of N-methyl-D-aspartate receptor (NMDAR) in the spinal cord dorsal horn (SDH) in the setting of injury represents a key mechanism of neuropathic pain. However, directly blocking NMDAR or its downstream signaling, interaction between postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS), causes analgesic tolerance, mainly due to GABAergic disinhibition. The aim of this study is to explore the possibility of preventing analgesic tolerance through co-targeting NMDAR downstream signaling and γ-aminobutyric acid type A receptors (GABAARs). Methods: Mechanical/thermal hyperalgesia were quantified to assess analgesic effects. Miniature postsynaptic currents were tested by patch-clamp recording to evaluate synaptic transmission in the SDH. GABA-evoked currents were tested on HEK293 cells expressing different subtypes of recombinant GABAARs to assess the selectivity of (+)-borneol and ZL006-05. The expression of α2 and α3 subunits of GABAARs and BDNF, and nNOS-PSD-95 complex levels were analyzed by western blotting and coimmunoprecipitation respectively. Open field test, rotarod test and Morris water maze task were conducted to evaluate the side-effect of ZL006-05. Results: (+)-Borneol selectively potentiated α2- and α3-containing GABAARs and prevented the disinhibition of laminae I excitatory neurons in the SDH and analgesic tolerance caused by chronic use of ZL006, a nNOS-PSD-95 blocker. A dual-target compound ZL006-05 produced by linking ZL006 and (+)-borneol through an ester bond blocked nNOS-PSD-95 interaction and potentiated α2-containing GABAAR selectively. Chronic use of ZL006-05 did not produce analgesic tolerance and unwanted side effects. Conclusion: By targeting nNOS-PSD-95 interaction and α2-containing GABAAR simultaneously, chronic use of ZL006-05 can avoid analgesic tolerance and unwanted side effects. Therefore, we offer a novel candidate drug without analgesic tolerance for treating neuropathic pain.
Collapse
|
27
|
Neumann E, Küpfer L, Zeilhofer HU. The α2/α3GABAA receptor modulator TPA023B alleviates not only the sensory but also the tonic affective component of chronic pain in mice. Pain 2021; 162:421-431. [PMID: 32773599 PMCID: PMC7808355 DOI: 10.1097/j.pain.0000000000002030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to pathological pain syndromes of neuropathic or inflammatory origin. Drugs that enhance the activity of dorsal horn α2/α3GABAARs normalize exaggerated nociceptive responses in rodents with neuropathic nerve lesions or peripheral inflammation but lack most of the typical side effects of less specific GABAergic drugs. It is however still unknown whether such drugs also reduce the clinically more relevant conscious perception of pain. Here, we investigated the effects of the α2/α3GABAAR subtype-selective modulator TPA023B on the tonic aversive component of pain in mice with peripheral inflammation or neuropathy. In neuropathic mice with a chronic constriction injury of the sciatic nerve, TPA023B not only reversed hyperalgesia to tactile and heat stimuli but also was highly effective in the conditioned place preference test. In the formalin test, TPA023B not only reduced licking of the injected paw but also reversed facial pain expression scores in the mouse grimace scale assay. Taken together, our results demonstrate that α2/α3GABAA receptor subtype-selective modulators not only reduce nociceptive withdrawal responses but also alleviate the tonic aversive components of chronic pain.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Laura Küpfer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Drug Discovery Network Zurich (DDNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Gurrell R, Whitlock M, Wei H, Shen Z, Ogden A. Safety, Tolerability, and Pharmacokinetics of Multiple Repeated Oral Doses of the α2/3/5-Subtype Selective GABA A -Positive Allosteric Modulator PF-06372865 in Healthy Volunteers. Clin Pharmacol Drug Dev 2021; 10:756-764. [PMID: 33465277 PMCID: PMC8359322 DOI: 10.1002/cpdd.912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023]
Abstract
Multiple‐dose pharmacokinetics (PK) and safety were investigated in this phase 1 study of PF‐06372865, a positive allosteric modulator of α2/3/5 subunit‐containing γ‐aminobutyric acid A receptors (NCT03351751). In 2 cohorts (7‐8 PF‐06372865 and 2 placebo in each cohort), healthy adult subjects received twice‐daily oral doses of PF‐06372865 for 21 days, which included titration in the first 7 days, followed by a maintenance dose of 25 mg twice daily (Cohort 1) and 42.5 mg twice daily (Cohort 2) for 14 days. Serial PK samples were collected on days 1 and 21. Nineteen subjects were assigned to study treatments; 18 completed the study. Approximate dose‐proportional increases in maximum plasma concentratin and area under the plasma concentration–time curve over the dosing interval were observed. PF‐06372865 was rapidly absorbed with a median time to maximum concentration of 1 to 2 hours following both single‐ and multiple‐dose administration. Mean terminal elimination half‐life on day 21 was approximately 11 hours in both cohorts. All adverse events were mild; the most frequently reported was dizziness. After titration, there were no reports of somnolence. There were no clinically significant safety findings, including a lack of withdrawal symptoms on discontinuation of treatment. These results demonstrate that PF‐06372865 is safe and well tolerated at doses estimated to achieve high receptor occupancy (>80%), a profile differentiated from nonselective benzodiazepines.
Collapse
Affiliation(s)
| | | | - Hua Wei
- Pfizer Inc., Shanghai, China
| | | | | |
Collapse
|
29
|
Knutson DE, Smith JL, Ping X, Jin X, Golani LK, Li G, Tiruveedhula VVNPB, Rashid F, Mian MY, Jahan R, Sharmin D, Cerne R, Cook JM, Witkin JM. Imidazodiazepine Anticonvulsant, KRM-II-81, Produces Novel, Non-diazepam-like Antiseizure Effects. ACS Chem Neurosci 2020; 11:2624-2637. [PMID: 32786313 DOI: 10.1021/acschemneuro.0c00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The need for improved medications for the treatment of epilepsy and chronic pain is essential. Epileptic patients typically take multiple antiseizure drugs without complete seizure freedom, and chronic pain is not fully managed with current medications. A positive allosteric modulator (PAM) of α2/3-containing GABAA receptors (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81 (8) is a lead compound in a series of imidazodiazepines. We previously reported that KRM-II-81 produces broad-based anticonvulsant and antinociceptive efficacy in rodent models and provides a wider margin over motoric side effects than that of other GABAA receptor PAMs. The present series of experiments was designed to fill key missing gaps in prior preclinical studies assessing whether KRM-II-81 could be further differentiated from nonselective GABAA receptor PAMs using the anticonvulsant diazepam (DZP) as a comparator. In multiple chemical seizure provocation models in mice, KRM-II-81 was either equally or more efficacious than DZP. Most strikingly, KRM-II-81 but not DZP blocked the development of seizure sensitivity to the chemoconvulsants cocaine and pentylenetetrazol in seizure kindling models. These and predecessor data have placed KRM-II-81 into consideration for clinical development requiring the manufacture of kilogram amounts of good manufacturing practice material. We describe here a novel synthetic route amenable to kilogram quantity production. The new biological and chemical data provide key steps forward in the development of KRM-II-81 (8) as an improved treatment option for patients suffering from epilepsy.
Collapse
Affiliation(s)
- Daniel E. Knutson
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, Indiana 46202,United States
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, Indiana 46202,United States
| | - Lalit K. Golani
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Guanguan Li
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - V. V. N. Phani Babu Tiruveedhula
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Md Yeunus Mian
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Dishary Sharmin
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - James M. Cook
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jeffrey M. Witkin
- Department of Chemistry & Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children Ascension St. Vincent, Indianapolis, Indiana 46260, United States
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, Indiana 46260, United States
| |
Collapse
|
30
|
Biggerstaff A, Kivell B, Smith JL, Mian MY, Golani LK, Rashid F, Sharmin D, Knutson DE, Cerne R, Cook JM, Witkin JM. The α2,3-selective potentiators of GABA A receptors, KRM-II-81 and MP-III-80, produce anxiolytic-like effects and block chemotherapy-induced hyperalgesia in mice without tolerance development. Pharmacol Biochem Behav 2020; 196:172996. [PMID: 32668266 DOI: 10.1016/j.pbb.2020.172996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Opiate analgesics are one of the treatment options for severe chronic pain, including late-stage cancer, chronic back pain and other disorders. The recent resurgence in opioid overdose has highlighted the serious need for alternative medicines for pain management. While a role for potentiators of α2/3-containing GABAA receptors in the modulation of pain has been known for several years, advancements in this area required data from selective compounds. KRM-II-81(5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3- yl)oxazole) and analogs selectively potentiate GABAA receptors containing α2/3 subunits and have recently been shown to attenuate pain behaviors in several acute and chronic pain models in rodents. The present study was designed to ascertain whether KRM-II-81 and the structural analog MP-III-80 (3-ethyl-5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)-1,2,4-oxadiazole) would block chemotherapeutic agent paclitaxel-induced pain in male, C57BL/6 mice. Both compounds significantly inhibited pain behaviors evoked by cold and tactile stimulation in paclitaxel-treated mice as did the neuropathic pain drug gabapentin. Subchronic dosing for 22 days with KRM-II-81 and MP-III-80 demonstrated enduring analgesic efficacy without tolerance development, while the effects of gabapentin showed evidence of tolerance development. KRM-II-81 and MP-III-80 also decreased marble-burying behavior in this mouse strain as did the anxiolytic drug chlordiazepoxide. In contrast to KRM-II-81 and MP-III-80, chlordiazepoxide had motor-impairing effects at anxiolytic-like doses. The data add to the literature documenting that these selective potentiators of α2/3-containing GABAA receptors are effective in a host of animal models used to detect novel analgesic drugs. The anxiolytic-like efficacy of these compounds fits well with the comorbidity of anxiety in patients with chronic pain and cancer.
Collapse
Affiliation(s)
- A Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - B Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - J L Smith
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA
| | - Md Y Mian
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - F Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - D Sharmin
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - D E Knutson
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - R Cerne
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA; Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - J M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J M Witkin
- Laboratory of Antiepileptic Drug Discovery, Peyton Manning Hospital for Children, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Tudeau L, Acuña MA, Albisetti GW, Neumann E, Ralvenius WT, Scheurer L, Poe M, Cook JM, Johannssen HC, Zeilhofer HU. Mice lacking spinal α2GABA A receptors: Altered GABAergic neurotransmission, diminished GABAergic antihyperalgesia, and potential compensatory mechanisms preventing a hyperalgesic phenotype. Brain Res 2020; 1741:146889. [PMID: 32439345 DOI: 10.1016/j.brainres.2020.146889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Diminished synaptic inhibition in the superficial spinal dorsal horn contributes to exaggerated pain responses that accompany peripheral inflammation and neuropathy. α2GABAA receptors (α2GABAAR) constitute the most abundant GABAAR subtype at this site and are the targets of recently identified antihyperalgesic compounds. Surprisingly, hoxb8-α2-/- mice that lack α2GABAAR from the spinal cord and peripheral sensory neurons exhibit unaltered sensitivity to acute painful stimuli and develop normal inflammatory and neuropathic hyperalgesia. Here, we provide a comprehensive analysis of GABAergic neurotransmission, of behavioral phenotypes and of possible compensatory mechanisms in hoxb8-α2-/- mice. Our results confirm that hoxb8-α2-/- mice show significantly diminished GABAergic inhibitory postsynaptic currents (IPSCs) in the superficial dorsal horn but no hyperalgesic phenotype. We also confirm that the potentiation of dorsal horn GABAergic IPSCs by the α2-preferring GABAAR modulator HZ-166 is reduced in hoxb8-α2-/- mice and that hoxb8-α2-/- mice are resistant to the analgesic effects of HZ-166. Tonic GABAergic currents, glycinergic IPSCs, and sensory afferent-evoked EPSCs did not show significant changes in hoxb8-α2-/- mice rendering a compensatory up-regulation of other GABAAR subtypes or of glycine receptors unlikely. Although expression of serotonin and of the serotonin producing enzyme tryptophan hydroxylase (TPH2) was significantly increased in the dorsal horn of hoxb8-α2-/- mice, ablation of serotonergic terminals from the lumbar spinal cord failed to unmask a nociceptive phenotype. Our results are consistent with an important contribution of α2GABAAR to spinal nociceptive control but their ablation early in development appears to activate yet-to-be identified compensatory mechanisms that protect hoxb8-α2-/- mice from hyperalgesia.
Collapse
Affiliation(s)
- Laetitia Tudeau
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - William T Ralvenius
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
32
|
Matthey A, Daali Y, Curtin F, Poncet A, Desmeules J, Besson M. GABAergic modulation of secondary hyperalgesia: A randomized controlled 4-way crossover trial with the α2-subunit preferring GABA positive allosteric modulator, N-desmethyl-clobazam in healthy volunteers. Eur J Pain 2020; 24:1094-1106. [PMID: 32171038 DOI: 10.1002/ejp.1554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022]
Abstract
The antihyperalgesic and sedative effects of the α2-subunit preferring GABAA positive allosteric modulator (GAM), N-desmethyl-clobazam (NDMC), 20 and 60 mg, were assessed in a randomized, placebo and active-controlled (clonazepam 1,5 mg), 4-way crossover study, in healthy volunteers, using the ultraviolet B-induced experimental pain model. Single (20, 40, 60 mg) and repeated doses (20 mg over 15 days) of NDMC pharmacokinetics were evaluated. Thirty-two subjects participated in the study. Primary outcome parameter was maximal change in the area of cutaneous UVB irradiation-induced secondary hyperalgesia (ASH). ASH decreased under all treatments. Mean (SD) relative change was 79 (22)%, 83 (24)%, 77 (30)% and 92 (16)% for placebo, NDMC20, NDMC60 and clonazepam, respectively. Neither absolute change nor relative change in ASH was significantly different between NDMC60 and placebo (mean difference = 2.3 cm2 [95% CI 4.0-8.5], p = .462 and 0.4% [-11.9 to 12.6], p = .952, respectively). An overall treatment effect was found on level of sedation. Compared to placebo, sedation was higher under clonazepam (mean difference = 39 mm [30-49] on a visual analogue scale, p < .001) while NDMC was free of sedative effect. NDMC pharmacokinetics after single doses showed poor absorption, but was linear. Steady-state plasma concentrations of NDMC20 were attained within 14 days, with low between-subjects variability. Mean steady-state concentration (CS-S , SD) reached 209 (22) ng/ml. NDMC absence of sedative effect and its overall well-characterized safety coming from years of utilization as a metabolite from clobazam, raise the prospect of dose escalating trials in patients to quantify its clinical utility. SIGNIFICANCE: This article, presenting the Phase I data of the new antihyperalgesic compound, α2-subunit GABAA positive allosteric modulator, N-desmethyl-clobazam (NDMC) is exploring the modulation of a new target in the treatment of neuropathic pain. Based on these results and on its preclinical properties NDMC would qualify as a good tool compound to seek confirmation of the clinical utility of selective GABA allosteric modulators in neuropathic pain patients.
Collapse
Affiliation(s)
- Alain Matthey
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - François Curtin
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Antoine Poncet
- Division of Clinical Epidemiology, Geneva University Hospitals, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Marie Besson
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
33
|
Lian JJ, Cao YQ, Li YL, Yu G, Su RB. Flumazenil-Insensitive Benzodiazepine Effects in Recombinant αβ and Neuronal GABA A Receptors. Brain Sci 2020; 10:brainsci10030150. [PMID: 32150806 PMCID: PMC7139822 DOI: 10.3390/brainsci10030150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022] Open
Abstract
Gamma-aminobutyric acid, type A (GABAA) receptors are complex heterogeneous pentamers with various drug binding sites. Several lines of evidence suggest that benzodiazepines modulate certain GABAA receptors in a flumazenil-insensitive manner, possibly via binding sites other than the classical ones. However, GABAA receptor subtypes that contain non-classical benzodiazepine binding sites are not systemically studied. The present study investigated the high-concentration effects of three benzodiazepines and their sensitivity to flumazenil on different recombinant (α1β2, α2β2, α3β2, α4β2, α5β2 and α1β3) and native neuronal GABAA receptors using the whole-cell patch-clamp electrophysiology technique. The classical benzodiazepine diazepam (200 μmol/L) and midazolam (200 μmol/L) produced flumazenil-insensitive effects on α1β2 receptor, whereas the imidazopyridine zolpidem failed to modulate the receptor. Flumazenil-insensitive effects of diazepam were also observed on the α2β2, α3β2 and α5β2, but not α4β2 receptors. Unlike β2-containing receptors, the α1β3 receptor was insensitive to diazepam. Moreover, the diazepam (200 μmol/L) effects on some cortical neurons could not be fully antagonized by flumazenil (200 μmol/L). These findings suggested that the non-classical (flumazenil-insensitive) benzodiazepine effects depended on certain receptor subtypes and benzodiazepine structures and may be important for designing of subtype- or binding site- specific drugs.
Collapse
Affiliation(s)
| | | | | | - Gang Yu
- Correspondence: ; Tel.: +86-010-66931621; Fax: +86-010-68211656
| | | |
Collapse
|
34
|
Lara CO, Burgos CF, Moraga-Cid G, Carrasco MA, Yévenes GE. Pentameric Ligand-Gated Ion Channels as Pharmacological Targets Against Chronic Pain. Front Pharmacol 2020; 11:167. [PMID: 32218730 PMCID: PMC7079299 DOI: 10.3389/fphar.2020.00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is a common detrimental condition that affects around 20% of the world population. The current drugs to treat chronic pain states, especially neuropathic pain, have a limited clinical efficiency and present significant adverse effects that complicates their regular use. Recent studies have proposed new therapeutic strategies focused on the pharmacological modulation of G-protein-coupled receptors, transporters, enzymes, and ion channels expressed on the nociceptive pathways. The present work intends to summarize recent advances on the pharmacological modulation of pentameric ligand-gated ion channels, which plays a key role in pain processing. Experimental data have shown that novel allosteric modulators targeting the excitatory nicotinic acetylcholine receptor, as well as the inhibitory GABAA and glycine receptors, reverse chronic pain-related behaviors in preclinical assays. Collectively, these evidences strongly suggest the pharmacological modulation of pentameric ligand-gated ion channels is a promising strategy towards the development of novel therapeutics to treat chronic pain states in humans.
Collapse
Affiliation(s)
- César O Lara
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Mónica A Carrasco
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| |
Collapse
|
35
|
Effects of the α2/α3-subtype-selective GABAA receptor positive allosteric modulator KRM-II-81 on pain-depressed behavior in rats: comparison with ketorolac and diazepam. Behav Pharmacol 2020; 30:452-461. [PMID: 30640180 DOI: 10.1097/fbp.0000000000000464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study examined effects of the α2/α3-subtype-selective GABAA receptor positive allosteric modulator KRM-II-81 in an assay of pain-related behavioral depression. Adult, male Sprague-Dawley rats responded for electrical brain stimulation in a frequency-rate intracranial self-stimulation (ICSS) procedure. Intraperitoneal injection of 1.8% lactic acid served as an acute noxious stimulus to depress ICSS. Effects of KRM-II-81 were evaluated in the absence and presence of the acid noxious stimulus. The NSAID ketorolac and the benzodiazepine diazepam were tested as comparators. Neither ketorolac nor KRM-II-81 altered ICSS in the absence of the acid noxious stimulus; however, diazepam produced facilitation consistent with its abuse liability. Ketorolac blocked acid-induced depression of ICSS, and effects of 1.0 mg/kg ketorolac lasted for at least 5 h. KRM-II-81 (1.0 mg/kg) produced significant antinociception after 30 min that dissipated by 60 min. Diazepam also attenuated acid-depressed ICSS, but only at doses that facilitated ICSS when administered alone. The lack of ketorolac or KRM-II-81 effects on ICSS in the absence of the acid noxious stimulus suggests low abuse liability for both compounds. The effectiveness of ketorolac to block acid-induced ICSS depression agrees with clinical analgesic efficacy of ketorolac. KRM-II-81 produced significant but less consistent and shorter-acting antinociception than ketorolac.
Collapse
|
36
|
Witkin JM, Li G, Golani LK, Xiong W, Smith JL, Ping X, Rashid F, Jahan R, Cerne R, Cook JM, Jin X. The Positive Allosteric Modulator of α2/3-Containing GABA A Receptors, KRM-II-81, Is Active in Pharmaco-Resistant Models of Epilepsy and Reduces Hyperexcitability after Traumatic Brain Injury. J Pharmacol Exp Ther 2020; 372:83-94. [PMID: 31694876 PMCID: PMC6927408 DOI: 10.1124/jpet.119.260968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The imidizodiazepine, 5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole (KRM-II-81), is selective for α2/3-containing GABAA receptors. KRM-II-81 dampens seizure activity in rodent models with enhanced efficacy and reduced motor-impairment compared with diazepam. In the present study, KRM-II-81 was studied in assays designed to detect antiepileptics with improved chances of impacting pharmaco-resistant epilepsies. The potential for reducing neural hyperactivity weeks after traumatic brain injury was also studied. KRM-II-81 suppressed convulsions in corneal-kindled mice. Mice with kainate-induced mesial temporal lobe seizures exhibited spontaneous recurrent hippocampal paroxysmal discharges that were significantly reduced by KRM-II-81 (15 mg/kg, orally). KRM-II-81 also decreased convulsions in rats undergoing amygdala kindling in the presence of lamotrigine (lamotrigine-insensitive model) (ED50 = 19 mg/kg, i.p.). KRM-II-81 reduced focal and generalized seizures in a kainate-induced chronic epilepsy model in rats (20 mg/kg, i.p., three times per day). In mice with damage to the left cerebral cortex by controlled-cortical impact, enduring neuronal hyperactivity was dampened by KRM-II-81 (10 mg/kg, i.p.) as observed through in vivo two-photon imaging of layer II/III pyramidal neurons in GCaMP6-expressing transgenic mice. No notable side effects emerged up to doses of 300 mg/kg KRM-II-81. Molecular modeling studies were conducted: docking in the binding site of the α1β3γ2L GABAA receptor showed that replacing the C8 chlorine atom of alprazolam with the acetylene of KRM-II-81 led to loss of the key interaction with α1His102, providing a structural rationale for its low affinity for α1-containing GABAA receptors compared with benzodiazepines such as alprazolam. Overall, these findings predict that KRM-II-81 has improved therapeutic potential for epilepsy and post-traumatic epilepsy. SIGNIFICANCE STATEMENT: We describe the effects of a relatively new orally bioavailable small molecule in rodent models of pharmaco-resistant epilepsy and traumatic brain injury. KRM-II-81 is more potent and generally more efficacious than standard-of-care antiepileptics. In silico docking experiments begin to describe the structural basis for the relative lack of motor impairment induced by KRM-II-81. KRM-II-81 has unique structural and anticonvulsant effects, predicting its potential as an improved antiepileptic drug and novel therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Guanguan Li
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Lalit K Golani
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Wenhui Xiong
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Jodi L Smith
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xingjie Ping
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Farjana Rashid
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rajwana Jahan
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rok Cerne
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - James M Cook
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xiaoming Jin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| |
Collapse
|
37
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
38
|
Abstract
Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia.
Collapse
Affiliation(s)
- W Wisden
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - X Yu
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - N P Franks
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
39
|
Witkin JM, Ping X, Cerne R, Mouser C, Jin X, Hobbs J, Tiruveedhula VVNPB, Li G, Jahan R, Rashid F, Kumar Golani L, Cook JM, Smith JL. The value of human epileptic tissue in the characterization and development of novel antiepileptic drugs: The example of CERC-611 and KRM-II-81. Brain Res 2019; 1722:146356. [PMID: 31369732 DOI: 10.1016/j.brainres.2019.146356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The need for improved antiepileptics is clearly mandated despite the existence of multiple existing medicines from different chemical and mechanistic classes. Standard of care agents do not fully control epilepsies and have a variety of side-effect and safety issues. Patients typically take multiple antiepileptic drugs and yet many continue to have seizures. Antiepileptic-unresponsive seizures are life-disrupting and life-threatening. One approach to seizure control is surgical resection of affected brain tissue and associated neural circuits. Although non-human brain studies can provide insight into novel antiepileptic mechanisms, human epileptic brain is the bottom-line biological substrate. Human epileptic brain can provide definitive information on the presence or absence of the putative protein targets of interest in the patient population, the potential changes in these proteins in the epileptic state, and the engagement of novel molecules and their functional impact in target tissue. In this review, we discuss data on two novel potential antiepileptic drugs. CERC-611 (LY3130481) is an AMPA receptor antagonist that selectively blocks AMPA receptors associated with the auxiliary protein TARP γ-8 and is in clinical development. KRM-II-81 is a positive allosteric modulator of GABAA receptors selectively associated with protein subunits α2 and α 3. Preclinical data on these compounds argue that patient-based biological data increase the probability that a newly discovered molecule will translate its antiepileptic potential to patients.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Rok Cerne
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Mouser
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jon Hobbs
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Guanguan Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Lalit Kumar Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Hofmann JI, Schwarz C, Rudolph U, Antkowiak B. Effects of Diazepam on Low-Frequency and High-Frequency Electrocortical γ-Power Mediated by α1- and α2-GABA A Receptors. Int J Mol Sci 2019; 20:E3486. [PMID: 31315211 PMCID: PMC6678188 DOI: 10.3390/ijms20143486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022] Open
Abstract
Patterns of spontaneous electric activity in the cerebral cortex change upon administration of benzodiazepines. Here we are testing the hypothesis that the prototypical benzodiazepine, diazepam, affects spectral power density in the low (20-50 Hz) and high (50-90 Hz) γ-band by targeting GABAA receptors harboring α1- and α2-subunits. Local field potentials (LFPs) and action potentials were recorded in the barrel cortex of wild type mice and two mutant strains in which the drug exclusively acted via GABAA receptors containing either α1- (DZα1-mice) or α2-subunits (DZα2-mice). In wild type mice, diazepam enhanced low γ-power. This effect was also evident in DZα2-mice, while diazepam decreased low γ-power in DZα1-mice. Diazepam increased correlated local LFP-activity in wild type animals and DZα2- but not in DZα1-mice. In all genotypes, spectral power density in the high γ-range and multi-unit action potential activity declined upon diazepam administration. We conclude that diazepam modifies low γ-power in opposing ways via α1- and α2-GABAA receptors. The drug's boosting effect involves α2-receptors and an increase in local intra-cortical synchrony. Furthermore, it is important to make a distinction between high- and low γ-power when evaluating the effects of drugs that target GABAA receptors.
Collapse
Affiliation(s)
- Julian I Hofmann
- Werner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany
| | - Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champain, Urbana, IL 61802-6178 USA
| | - Bernd Antkowiak
- Werner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany.
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University Tübingen, 72072 Tübingen, Germany.
| |
Collapse
|
41
|
Multiple actions of fenamates and other nonsteroidal anti-inflammatory drugs on GABAA receptors. Eur J Pharmacol 2019; 853:247-255. [DOI: 10.1016/j.ejphar.2019.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
|
42
|
Witkin JM, Cerne R, Davis PG, Freeman KB, do Carmo JM, Rowlett JK, Methuku KR, Okun A, Gleason SD, Li X, Krambis MJ, Poe M, Li G, Schkeryantz JM, Jahan R, Yang L, Guo W, Golani LK, Anderson WH, Catlow JT, Jones TM, Porreca F, Smith JL, Knopp KL, Cook JM. The α2,3-selective potentiator of GABA A receptors, KRM-II-81, reduces nociceptive-associated behaviors induced by formalin and spinal nerve ligation in rats. Pharmacol Biochem Behav 2019; 180:22-31. [PMID: 30825491 PMCID: PMC6529285 DOI: 10.1016/j.pbb.2019.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 02/03/2023]
Abstract
Clinical evidence indicates that positive allosteric modulators (PAMs) of GABAA receptors have analgesic benefit in addition to efficacy in anxiety disorders. However, the utility of GABAA receptor PAMs as analgesics is compromised by the central nervous system side effects of non-selective potentiators. A selective potentiator of GABAA receptors associated with α2/3 subunits, KRM-II-81(5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole), has demonstrated anxiolytic, anticonvulsant, and antinociceptive effects in rodents with reduced motoric side effects. The present study evaluated the potential of KRM-II-81 as a novel analgesic. Oral administration of KRM-II-81 attenuated formalin-induced flinching; in contrast, diazepam was not active. KRM-II-81 attenuated nociceptive-associated behaviors engendered by chronic spinal nerve ligation (L5/L6). Diazepam decreased locomotion of rats at the dose tested in the formalin assay (10 mg/kg) whereas KRM-II-81 produced small decreases that were not dose-dependent (10-100 mg/kg). Plasma and brain levels of KRM-II-81 were used to demonstrate selectivity for α2/3- over α1-associated GABAA receptors and to define the degree of engagement of these receptors. Plasma and brain concentrations of KRM-II-81 were positively-associated with analgesic efficacy. GABA currents from isolated rat dorsal-root ganglion cultures were potentiated by KRM-II-81 with an ED50 of 32 nM. Measures of respiratory depression were reduced by alprazolam whereas KRM-II-81 was either inactive or produced effects with lower potency and efficacy. These findings add to the growing body of data supporting the idea that α2/3-selective GABAA receptor PAMs will have efficacy and tolerability as pain medications including those for neuropathic pain. Given their predicted anxiolytic effects, α2/3-selective GABAA receptor PAMs offer an additional inroad into the management of pain.
Collapse
Affiliation(s)
- J M Witkin
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Laboratory of Antiepileptic Drug Discovery, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - R Cerne
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - K B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - J M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - J K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - K R Methuku
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - A Okun
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - S D Gleason
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - X Li
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - M J Krambis
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - M Poe
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - G Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - J M Schkeryantz
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - R Jahan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - L Yang
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - W Guo
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - L K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - W H Anderson
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - J T Catlow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - T M Jones
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - F Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - J L Smith
- Laboratory of Antiepileptic Drug Discovery, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K L Knopp
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - J M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
43
|
|
44
|
Antkowiak B, Rammes G. GABA(A) receptor-targeted drug development -New perspectives in perioperative anesthesia. Expert Opin Drug Discov 2019; 14:683-699. [DOI: 10.1080/17460441.2019.1599356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University,
Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, Experimental Anaesthesiology Section, Werner Reichardt Center for Integrative Neuroscience, Tübingen,
Germany
| | - Gerhard Rammes
- University Hospital rechts der Isar, Department of Anesthesiology, München,
Germany
| |
Collapse
|
45
|
Spinal GABA A receptors for pain control: back to the future? Br J Anaesth 2019; 123:e176-e179. [PMID: 30916021 DOI: 10.1016/j.bja.2019.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 11/21/2022] Open
|
46
|
Gurrell R, Dua P, Feng G, Sudworth M, Whitlock M, Reynolds DS, Butt RP. A randomised, placebo-controlled clinical trial with the α2/3/5 subunit selective GABAA positive allosteric modulator PF-06372865 in patients with chronic low back pain. Pain 2019; 159:1742-1751. [PMID: 29787472 DOI: 10.1097/j.pain.0000000000001267] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of PF-06372865, a subtype-selective positive allosteric modulator of the γ-aminobutyric acid type A (GABAA) receptor, on chronic low back pain was investigated in a randomised, placebo- and active-controlled phase 2 clinical trial. The parallel treatment group trial consisted of a 1-week single-blind placebo run in the phase, followed by 4-week double-blind treatment. Patients were randomised to receive either PF-06372865, naproxen, or placebo twice a day for 4 weeks. The primary end point was the numerical rating score of low back pain intensity after 4 weeks of active treatment. Secondary end points included the Roland Morris Disability Questionnaire and the Hopkins Verbal Learning Test-Revised. The trial had predefined decision rules based on the probability that PF-06372865 was better than placebo. The study was stopped at the interim analysis for futility. At this time, a total of 222 patients were randomised and the mean PF-06372865 4-week response on the low back pain intensity was 0.16 units higher (worse) than placebo (90% confidence interval -0.28 to 0.60). There were small, statistically significant reductions in the delayed recall test score with PF-06372865, as measured by Hopkins Verbal Learning Test-Revised. The effects of naproxen were in line with expectations. PF-06372865 was well tolerated. The most common treatment-related adverse events in the PF-06372865 arm were somnolence (5 mild and 4 moderate), dizziness (2 mild and 3 moderate), and nausea (2 mild). Although the reason for the lack of analgesic effect is not completely clear, it may be a result of not achieving sufficient receptor occupancy to drive efficacy.
Collapse
Affiliation(s)
- Rachel Gurrell
- Pfizer Inc, Neusentis, Granta Park, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
van Amerongen G, Siebenga PS, Gurrell R, Dua P, Whitlock M, Gorman D, Okkerse P, Hay JL, Butt RP, Groeneveld GJ. Analgesic potential of PF-06372865, an α2/α3/α5 subtype-selective GABA A partial agonist, in humans. Br J Anaesth 2019; 123:e194-e203. [PMID: 30915991 DOI: 10.1016/j.bja.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study investigated the analgesic effects of two doses (15 and 65 mg) of PF-06372865, a novel α2/α3/α5 gamma-aminobutyric acid A (GABAA) subunit selective partial positive allosteric modulator (PAM), compared with placebo and pregabalin (300 mg) as a positive control. METHODS We performed a randomised placebo-controlled crossover study (NCT02238717) in 20 healthy subjects, using a battery of pain tasks (electrical, pressure, heat, cold and inflammatory pain, including a paradigm of conditioned pain modulation). Pharmacodynamic measurements were performed at baseline and up to 10 h after dose. RESULTS A dose of 15 mg PF-06372865 increased pain tolerance thresholds (PTTs) for pressure pain at a ratio of 1.11 (90% confidence interval [CI]: 1.02, 1.22) compared with placebo. A dose of 65 mg PF-06372865 led to an increase in PTT for the cold pressor at a ratio of 1.17 (90% CI: 1.03, 1.32), and pressure pain task: 1.11 (90% CI: 1.01, 1.21). Pregabalin showed an increase in PTT for pressure pain at a ratio of 1.15 (95% CI: 1.06, 1.26) and cold pressor task: 1.31 (90% CI: 1.16, 1.48). CONCLUSION We conclude that PF-06372865 has analgesic potential at doses that do not induce significant sedation or other intolerable adverse events limiting its clinical use. In addition, the present study established the potential role for this battery of pain tasks as a tool in the development of analgesics with a novel mechanism of action, for the treatment of various pain states including neuropathic pain and to establish proof-of-concept. CLINICAL TRIALS REGISTRATION NCT0223871.
Collapse
Affiliation(s)
| | | | | | - Pinky Dua
- Early Clinical Development, Pfizer WRD, Cambridge, UK
| | - Mark Whitlock
- Early Clinical Development, Pfizer WRD, Cambridge, UK
| | - Donal Gorman
- Early Clinical Development, Pfizer WRD, Cambridge, UK
| | - Pieter Okkerse
- Centre for Human Drug Research (CHDR), Leiden, the Netherlands
| | - Justin L Hay
- Centre for Human Drug Research (CHDR), Leiden, the Netherlands
| | | | | |
Collapse
|
48
|
Mohamad FH, Has ATC. The α5-Containing GABA A Receptors-a Brief Summary. J Mol Neurosci 2019; 67:343-351. [PMID: 30607899 DOI: 10.1007/s12031-018-1246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
GABAA receptors are the major inhibitory neurotransmitter receptor in the human brain. The receptors are assembled from combination of protein subunits in pentameric complex which may consist of α1-6, β1-3, γ1-3, ρ1-3, δ, ε, θ, or π subunits. There are a theoretical > 150,000 possible assemblies and arrangements of GABAA subunits, although only a few combinations have been found in human with the most dominant consists of 2α1, 2β2, and 1γ2 in a counterclockwise arrangement as seen from the synaptic cleft. The receptors also possess binding sites for various unrelated substances including benzodiazepines, barbiturates, and anesthetics. The α5-containing GABAARs only make up ≤ 5% of the entire receptor population, but up to 25% of the receptor subtype is located in the crucial learning and memory-associated area of the brain-the hippocampus, which has ignited myriads of hypotheses and theories in regard to its role. As well as exhibiting synaptic phasic inhibition, the α5-containing receptors are also extrasynaptic and mediate tonic inhibition with continuously occurring smaller amplitude. Studies on negative-allosteric modulators for reducing this tonic inhibition have been shown to enhance learning and memory in neurological disorders such as schizophrenia, Down syndrome, and autism with a possible alternative benzodiazepine binding site. Therefore, a few α5 subunit-specific compounds have been developed to address these pharmacological needs. With its small population, the α5-containing receptors could be the key and also the answer for many untreated cognitive dysfunctions and disorders.
Collapse
Affiliation(s)
- Fatin H Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kampus Kesihatan, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kampus Kesihatan, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
49
|
Weir CJ, Mitchell SJ, Lambert JJ. Role of GABAA receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br J Anaesth 2019; 119:i167-i175. [PMID: 29161398 DOI: 10.1093/bja/aex369] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since the introduction of general anaesthetics into clinical practice, researchers have been mystified as to how these chemically disparate drugs act to produce their dramatic effects on central nervous system function and behaviour. Scientific advances, particularly during the last 25 years, have now begun to reveal the molecular mechanisms underpinning their behavioural effects. For certain i.v. general anaesthetics, such as etomidate and propofol, a persuasive case can now be made that the GABAA receptor, a major inhibitory receptor in the mammalian central nervous system, is an important target. Advances in molecular pharmacology and in genetic manipulation of rodent genes reveal that different subtypes of the GABAA receptor are responsible for mediating particular aspects of the anaesthetic behavioural repertoire. Such studies provide a better understanding of the neuronal circuitry involved in the various anaesthetic-induced behaviours and, in the future, may result in the development of novel therapeutics with a reduced propensity for side-effects.
Collapse
Affiliation(s)
- C J Weir
- Institute of Academic Anaesthesia
| | - S J Mitchell
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J J Lambert
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
50
|
Probing the molecular basis for affinity/potency- and efficacy-based subtype-selectivity exhibited by benzodiazepine-site modulators at GABAA receptors. Biochem Pharmacol 2018; 158:339-358. [DOI: 10.1016/j.bcp.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
|