1
|
Sun H, Xie C, Kaw HY, Cai T, Liu L, Liu H, Shang HB, Li D. Gravity-assisted gradient size exclusion separation of microparticles by gap-modifiable silicon nanowire arrays. Talanta 2024; 280:126728. [PMID: 39191107 DOI: 10.1016/j.talanta.2024.126728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The separation and detection of microparticles within complex samples pose substantial challenges due to the intricate variations in size and concentration. A strategy employing gravity-assisted gradient size exclusion principle based on controllable gap sizes on the surface of silicon nanowire arrays (SiNWAs) has been established to achieve the separation of microparticles with diverse sizes. The formation of gradient gap sizes was accomplished by meticulously investigating the impact of oxidation-reduction reactions through metal-assisted chemical etching. Particles of different sizes were initially aggregated at the accumulation base, followed by a sequential size exclusion process within the finely regulated 0.9-12.5 μm gradient-gap-sized separation region facilitated with gravity-assisted, leading to a comprehensive separation of microparticles based on their respective size differences, progressing from small to large. The effective separation of four model-sized microparticles demonstrated a separation degree of ≥2.7, purity of ≥96.1 %, RSDs of ≤4.6 %, and a separation capacity of up to 107 particles. The separation efficacy of this gradient-sized chip was verified by evaluating the more complex atmospheric particulates with varying sizes, which exhibited separation degree ranging between 2 and 10. This method offers a precise separation range, easily adjustable separation sizes, and simple operation, rendering it a versatile tool for separating complex samples.
Collapse
Affiliation(s)
- Huaze Sun
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Chenchen Xie
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Han Yeong Kaw
- NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Tianpei Cai
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Lu Liu
- Pathology and Pathophysiology, Medical College, Yanbian University, Park Road 977, Yanji City, 133002, Jilin Province, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Donghao Li
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
2
|
Peng S, Yan L, You R, Lu Y, Liu Y, Li L. Cationic cellulose dispersed Ag NCs/C-CNF paper-based SERS substrate with high homogeneity for creatinine and uric acid detection. Int J Biol Macromol 2024:136724. [PMID: 39437960 DOI: 10.1016/j.ijbiomac.2024.136724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
To overcome the problems of easy aggregation, poor reproducibility and homogeneity of metal nanosols, a SERS substrate with good sensitivity, homogeneity and reproducibility was designed and prepared for the detection of disease markers in urine. Silver nanocubes (Ag NCs) were firstly prepared and then dispersed in cationic cellulose (C-CNF) to form a homogeneous gel, which was dropped on a filter paper to develop a substrate with good SERS activity. This substrate combines the superior SERS properties of Ag NCs with the stability of C-CNF and has a minimum detection concentration of 10-9 M for R6G. The homogeneity of this substrate was good and the RSD value was much <20 %. The SERS substrate was employed for the quantification of creatinine and uric acid, with linear ranges were 5 × 10-3-5 × 10-7 M and 10-2-10-6 M. The recoveries of creatinine and uric acid were calculated to be 98.3 % ~ 103.12 % and 96.72 % ~ 104.48 %, respectively, in the spike recovery experiments, with the relative standard deviations of <10 %. The experimental results show that the method can provide a scientific and reliable experimental basis for screening, condition monitoring and treatment of kidney and other diseases.
Collapse
Affiliation(s)
- Shirun Peng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Linjun Yan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China.
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fuzhou, Fujian 350007, China
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.
| |
Collapse
|
3
|
Gülmüs M, Possmayer T, Tilmann B, Butler P, Sharp ID, Menezes LDS, Maier SA, Sortino L. Photoluminescence modal splitting via strong coupling in hybrid Au/WS 2/GaP nanoparticle-on-mirror cavities. NANOSCALE 2024; 16:18843-18851. [PMID: 39302648 DOI: 10.1039/d4nr03166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
By integrating dielectric and metallic components, hybrid nanophotonic devices present promising opportunities for manipulating nanoscale light-matter interactions. Here, we investigate hybrid nanoparticle-on-mirror optical cavities, where semiconductor WS2 monolayers are positioned between gallium phosphide (GaP) nanoantennas and a gold mirror, thereby establishing extreme confinement of optical fields. Prior to integration of the mirror, we observe an intermediate coupling regime from GaP nanoantennas covered with WS2 monolayers. Upon introduction of the mirror, enhanced interactions lead to modal splitting in the exciton photoluminescence spectra, spatially localized within the dielectric-metallic gap. Using a coupled harmonic oscillator model, we extract an average Rabi splitting energy of 22.6 meV at room temperature, at the onset of the strong coupling regime. Moreover, the characteristics of polaritonic emission are revealed by the increasing Lorentzian linewidth and energy blueshift with increasing excitation power. Our findings highlight hybrid nanophotonic structures as novel platforms for controlling light-matter coupling with atomically thin materials.
Collapse
Affiliation(s)
- Merve Gülmüs
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
| | - Thomas Possmayer
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
| | - Benjamin Tilmann
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
| | - Paul Butler
- Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
- Physics Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Ian D Sharp
- Walter Schottky Institute, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
- Physics Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2BW, UK
| | - Luca Sortino
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
| |
Collapse
|
4
|
Javaid Z, Iqbal MA, Javeed S, Maidin SS, Morsy K, Shati AA, Choi JR. Reviewing advances in nanophotonic biosensors. Front Chem 2024; 12:1449161. [PMID: 39318420 PMCID: PMC11420028 DOI: 10.3389/fchem.2024.1449161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Biosensing, a promising branch of exploiting nanophotonic devices, enables meticulous detection of subwavelength light, which helps to analyze and manipulate light-matter interaction. The improved sensitivity of recent high-quality nanophotonic biosensors has enabled enhanced bioanalytical precision in detection. Considering the potential of nanophotonics in biosensing, this article summarizes recent advances in fabricating nanophotonic and optical biosensors, focusing on their sensing function and capacity. We typically classify these types of biosensors into five categories: phase-driven, resonant dielectric nanostructures, plasmonic nanostructures, surface-enhanced spectroscopies, and evanescent-field, and review the importance of enhancing sensor performance and efficacy by addressing some major concerns in nanophotonic biosensing, such as overcoming the difficulties in controlling biological specimens and lowering their costs for ease of access. We also address the possibility of updating these technologies for immediate implementation and their impact on enhancing safety and health.
Collapse
Affiliation(s)
- Zunaira Javaid
- Department of Biochemistry, Kinnaird College for Women University, Lahore, Pakistan
| | - Muhammad Aamir Iqbal
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Saher Javeed
- Department of Physics, Government College University Lahore, Lahore, Pakistan
| | - Siti Sarah Maidin
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ali A. Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Bartschmid T, Menath J, Roemling L, Vogel N, Atalay F, Farhadi A, Bourret GR. Au Nanoparticles@Si Nanowire Oligomer Arrays for SERS: Dimers Are Best. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41379-41389. [PMID: 39057191 PMCID: PMC11310913 DOI: 10.1021/acsami.4c10004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
We report the synthesis of vertically aligned silicon nanowire (VA-SiNW) oligomer arrays coated with Au nanoparticle (NP) monolayers via a combination of colloidal lithography, metal-assisted chemical etching, and directed NP assembly. Arrays of SiNW monomers (i.e., isolated NWs), dimers, and tetramers are synthesized, decorated with AuNPs, and tested for their performance in surface-enhanced Raman spectroscopy. The ∼20 nm AuNPs easily enter within the ca. 40 nm gaps of the SiNW oligomers, thus reaching the hot spot region. At 785 nm excitation, the AuNPs@SiNW dimer arrays provide the highest Raman signal, in agreement with electromagnetic simulations showing a high electric field enhancement at the Au/Si interface within the dimer gap region.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Johannes Menath
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Lukas Roemling
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Furkan Atalay
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| |
Collapse
|
6
|
Yang J, Dang T, Ma S, Tang S, Ding Y, Seki M, Tabata H, Matsui H. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO 3 Semiconductor Nanorods with Strong Light Scattering in the Visible Regime. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39048517 DOI: 10.1021/acsami.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO3 (α-MoO3) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 108 and a low detection limit of 5 × 10-9 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO3 NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tang Dang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuting Ma
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Siyi Tang
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Ding
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Munetoshi Seki
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Zhang Y, Chang K, Ogunlade B, Herndon L, Tadesse LF, Kirane AR, Dionne JA. From Genotype to Phenotype: Raman Spectroscopy and Machine Learning for Label-Free Single-Cell Analysis. ACS NANO 2024; 18:18101-18117. [PMID: 38950145 DOI: 10.1021/acsnano.4c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Raman spectroscopy has made significant progress in biosensing and clinical research. Here, we describe how surface-enhanced Raman spectroscopy (SERS) assisted with machine learning (ML) can expand its capabilities to enable interpretable insights into the transcriptome, proteome, and metabolome at the single-cell level. We first review how advances in nanophotonics-including plasmonics, metamaterials, and metasurfaces-enhance Raman scattering for rapid, strong label-free spectroscopy. We then discuss ML approaches for precise and interpretable spectral analysis, including neural networks, perturbation and gradient algorithms, and transfer learning. We provide illustrative examples of single-cell Raman phenotyping using nanophotonics and ML, including bacterial antibiotic susceptibility predictions, stem cell expression profiles, cancer diagnostics, and immunotherapy efficacy and toxicity predictions. Lastly, we discuss exciting prospects for the future of single-cell Raman spectroscopy, including Raman instrumentation, self-driving laboratories, Raman data banks, and machine learning for uncovering biological insights.
Collapse
Affiliation(s)
- Yirui Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Babatunde Ogunlade
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Liam Herndon
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Loza F Tadesse
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Jameel Clinic for AI & Healthcare, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda R Kirane
- Department of Surgery, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
8
|
Adachi M, Sugimoto H, Morita K, Maruyama T, Fujii M. Scattering/Fluorescence Dual-Mode Imaging in MnO 2-Coated Silicon Nanospheres for Cancer Cell Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33963-33970. [PMID: 38910448 DOI: 10.1021/acsami.4c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A tumor microenvironment (TME)-responsive nanoprobe composed of a fluorescent dye-decorated silicon (Si) nanosphere core and a thin MnO2 shell is proposed for simple and intelligent detection of cancer cells. The Si nanosphere core with diameters of 100-200 nm provides environment-independent Mie scattering imaging, while, simultaneously, the MnO2 shell provides the capability to switch the on/off state of the dye fluorescence reacted to the glutathione (GSH) and/or H2O2 levels in a cancer cell. Si-MnO2 core-shell nanosphere probes are fabricated in a solution-based process from crystalline Si nanosphere cores. The fluorescence switching under exposure to GSH is demonstrated, and the mechanism is discussed based on detailed optical characterizations including single-particle spectroscopy. Different types of human cells are incubated with the nanoprobes, and a proof of concept experiment is performed. From the combination of the robust scattering images and GSH- and H2O2-sensitive fluorescence images, the feasibility of cancer cell detection by the multimodal nanoprobes is demonstrated.
Collapse
Affiliation(s)
- Masato Adachi
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
9
|
Jain K, Pandey A, Wang H, Chung T, Nemati A, Kanchanawong P, Sheetz MP, Cai H, Changede R. TiO 2 Nano-Biopatterning Reveals Optimal Ligand Presentation for Cell-Matrix Adhesion Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309284. [PMID: 38340044 PMCID: PMC11126362 DOI: 10.1002/adma.202309284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Nanoscale organization of transmembrane receptors is critical for cellular functions, enabled by the nanoscale engineering of bioligand presentation. Previously, a spatial threshold of ≤60 nm for integrin binding ligands in cell-matrix adhesion is demonstrated using monoliganded gold nanoparticles. However, the ligand geometric arrangement is limited to hexagonal arrays of monoligands, while plasmonic quenching limits further investigation by fluorescence-based high-resolution imaging. Here, these limitations are overcome with dielectric TiO2 nanopatterns, eliminating fluorescence quenching, thus enabling super-resolution fluorescence microscopy on nanopatterns. By dual-color super-resolution imaging, high precision and consistency among nanopatterns, bioligands, and integrin nanoclusters are observed, validating the high quality and integrity of both nanopattern functionalization and passivation. By screening TiO2 nanodiscs with various diameters, an increase in fibroblast cell adhesion, spreading area, and Yes-associated protein (YAP) nuclear localization on 100 nm diameter compared with smaller diameters was observed. Focal adhesion kinase is identified as the regulatory signal. These findings explore the optimal ligand presentation when the minimal requirements are sufficiently fulfilled in the heterogenous extracellular matrix network of isolated binding regions with abundant ligands. Integration of high-fidelity nano-biopatterning with super-resolution imaging allows precise quantitative studies to address early signaling events in response to receptor clustering and their nanoscale organization.
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Ashish Pandey
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Hao Wang
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Taerin Chung
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Arash Nemati
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Haogang Cai
- Tech4Health Institute and Department of Radiology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, New York University, Brooklyn, NY, USA
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- TeOra Pte. Ltd, Singapore, Singapore
| |
Collapse
|
10
|
Le Ru EC, Auguié B. Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS NANO 2024; 18:9773-9783. [PMID: 38529815 DOI: 10.1021/acsnano.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this Perspective, we provide an overview of the core concepts around surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs), including both theoretical and experimental considerations: EF definitions, the distinction between maximum and average EFs, EF distribution and hot-spot localization, EF measurement and its order of magnitude. We then highlight some of the current challenges in this field, focusing on a selection of topics that we feel are both topical and important: analyte-capture onto a SERS substrate, surface-enhanced resonant Raman scattering, orientation/tensorial effects, and nonradiative effects. We hope this Perspective can provide a platform to reflect on the past 50 years of SERS and its future.
Collapse
Affiliation(s)
- Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Baptiste Auguié
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
11
|
Fukuta T, Kato R, Tanaka T, Yano TA. Fabrication of Mie-resonant silicon nanoparticles using laser annealing for surface-enhanced fluorescence spectroscopy. MICROSYSTEMS & NANOENGINEERING 2024; 10:45. [PMID: 38560726 PMCID: PMC10978982 DOI: 10.1038/s41378-024-00666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024]
Abstract
Silicon nanostructures with unique Mie resonances have garnered considerable attention in the field of nanophotonics. Here, we present a simple and efficient method for the fabrication of silicon (Si) nanoparticle substrates using continuous-wave (CW) laser annealing. The resulting silicon nanoparticles exhibit Mie resonances in the visible region, and their resonant wavelengths can be precisely controlled. Notably, laser-annealed silicon nanoparticle substrates show a 60-fold enhancement in fluorescence. This tunable and fluorescence-enhancing silicon nanoparticle platform has tremendous potential for highly sensitive fluorescence sensing and biomedical imaging applications.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| | - Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| | - Takuo Tanaka
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| | - Taka-aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198 Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0109 Japan
| |
Collapse
|
12
|
Martínez-García MÁ, Martín-Cano D. Coherent Electron-Vibron Interactions in Surface-Enhanced Raman Scattering (SERS). PHYSICAL REVIEW LETTERS 2024; 132:093601. [PMID: 38489641 DOI: 10.1103/physrevlett.132.093601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
In this Letter we identify coherent electron-vibron interactions between near-resonant and nonresonant electronic levels that contribute beyond standard optomechanical models for off-resonant or resonance surface-enhanced Raman scattering (SERS). By developing an open-system quantum model using first molecular interaction principles, we show how the Raman interference of both resonant and nonresonant contributions can provide several orders of magnitude modifications of the SERS peaks with respect to former optomechanical models and over the fluorescence backgrounds. This cooperative optomechanical mechanism allows for generating an enhancement of nonclassical photon pair correlations between Stokes and anti-Stokes photons, which can be detected by photon-counting measurements. Our results demonstrate Raman enhancements and suppressions of coherent nature that significantly impact the standard estimations of the optomechanical contribution from SERS spectra and their quantum mechanical observable effects.
Collapse
Affiliation(s)
- Miguel Á Martínez-García
- Departamento de Físíca Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Diego Martín-Cano
- Departamento de Físíca Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E28049 Madrid, Spain
| |
Collapse
|
13
|
Ozawa K, Adachi M, Sugimoto H, Fujii M. Photoluminescence from FRET pairs coupled with Mie-resonant silicon nanospheres. NANOSCALE 2024; 16:4039-4046. [PMID: 38344928 DOI: 10.1039/d3nr06290b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Optically resonant nanoparticles decorated with donor-acceptor molecular pairs have been attracting attention for applications as nanoprobes in bioimaging and biosensing. We produced composite nanoparticles composed of donor-acceptor molecular pairs and silicon nanospheres (Si NSs) with diameters of 100-200 nm exhibiting Mie resonances in the visible range and studied the effect of Mie resonances on their photoluminescence properties. We showed that the photoluminescence spectra are strongly modified by Mie resonances and the spectral shape is controlled in a wide range by the Si NS size; by controlling the size, we can achieve the photoluminescence maximum from that of a donor molecule to that of an acceptor molecule almost continuously. From the photoluminescence decay properties in combination with theoretical calculations, we showed that the observed strong modification of the spectral shape is mainly due to the Purcell effect on donor and acceptor molecules, and the effect of Mie resonances on the Förster resonance energy transfer (FRET) rate is relatively small. We also showed that because of the large Purcell effect and the small FRET rate enhancement, Mie resonances decrease the FRET efficiency.
Collapse
Affiliation(s)
- Keisuke Ozawa
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Masato Adachi
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
14
|
Córdova-Castro RM, van Dam B, Lauri A, Maier SA, Sapienza R, De Wilde Y, Izeddin I, Krachmalnicoff V. Single-emitter super-resolved imaging of radiative decay rate enhancement in dielectric gap nanoantennas. LIGHT, SCIENCE & APPLICATIONS 2024; 13:7. [PMID: 38167240 PMCID: PMC10761855 DOI: 10.1038/s41377-023-01349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
High refractive index dielectric nanoantennas strongly modify the decay rate via the Purcell effect through the design of radiative channels. Due to their dielectric nature, the field is mainly confined inside the nanostructure and in the gap, which is hard to probe with scanning probe techniques. Here we use single-molecule fluorescence lifetime imaging microscopy (smFLIM) to map the decay rate enhancement in dielectric GaP nanoantenna dimers with a median localization precision of 14 nm. We measure, in the gap of the nanoantenna, decay rates that are almost 30 times larger than on a glass substrate. By comparing experimental results with numerical simulations we show that this large enhancement is essentially radiative, contrary to the case of plasmonic nanoantennas, and therefore has great potential for applications such as quantum optics and biosensing.
Collapse
Affiliation(s)
- R Margoth Córdova-Castro
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Bart van Dam
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
| | - Alberto Lauri
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
- Chair in Hybrid Nanosystems, Ludwig-Maximilians Universität München, Muenchen, Germany
| | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK
| | - Yannick De Wilde
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France
| | - Ignacio Izeddin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, Paris, France.
| | | |
Collapse
|
15
|
Golparvar A, Thenot L, Boukhayma A, Carrara S. Soft Epidermal Paperfluidics for Sweat Analysis by Ratiometric Raman Spectroscopy. BIOSENSORS 2023; 14:12. [PMID: 38248389 PMCID: PMC10812966 DOI: 10.3390/bios14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The expanding interest in digital biomarker analysis focused on non-invasive human bodily fluids, such as sweat, highlights the pressing need for easily manufactured and highly efficient soft lab-on-skin solutions. Here, we report, for the first time, the integration of microfluidic paper-based devices (μPAD) and non-enhanced Raman-scattering-enabled optical biochemical sensing (Raman biosensing). Their integration merges the enormous benefits of μPAD, with high potential for commercialization and use in resource-limited settings, with biorecognition-element-free (but highly selective) optical Raman biosensing. The introduced thin (0.36 mm), ultra-lightweight (0.19 g), and compact footprint (3 cm2) opto-paperfluidic sweat patch is flexible, stretchable, and conforms, irritation-free, to hairless or minimally haired body regions to enable swift sweat collection. As a great advantage, this new bio-chemical sensory system excels through its absence of onboard biorecognition elements (bioreceptor-free) and omission of plasmonic nanomaterials. The proposed easy fabrication process is adaptable to mass production by following a fully sustainable and cost-effective process utilizing only basic tools by avoiding typically employed printing or laser patterning. Furthermore, efficient collection and transportation of precise sweat volumes, driven exclusively by the wicking properties of porous materials, shows high efficiency in liquid transportation and reduces biosensing latency by a factor of 5 compared to state-of-the-art epidermal microfluidics. The proposed unit enables electronic chip-free and imaging-less visual sweat loss quantification as well as optical biochemical analysis when coupled with Raman spectroscopy. We investigated the multimodal quantification of sweat urea and lactate levels ex vivo (with syntactic sweat including +30 sweat analytes on porcine skin) and achieved a linear dynamic range from 0 to 100 mmol/L during fully dynamic continuous flow characterization.
Collapse
Affiliation(s)
- Ata Golparvar
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | - Lucie Thenot
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | | | - Sandro Carrara
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| |
Collapse
|
16
|
Zhou H, Ren Z, Li D, Xu C, Mu X, Lee C. Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons. Nat Commun 2023; 14:7316. [PMID: 37952033 PMCID: PMC10640644 DOI: 10.1038/s41467-023-43127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
One of the fundamental hurdles in infrared spectroscopy is the failure of molecular identification when their infrared vibrational fingerprints overlap. Refractive index (RI) is another intrinsic property of molecules associated with electronic polarizability, but with limited contribution to molecular identification in mixed environments currently. Here, we investigate the coupling mode of localized surface plasmon and surface phonon polaritons for vibrational de-overlapping. The coupling mode is sensitive to the molecular refractive index, attributed to the RI-induced vibrational variations of surface phonon polaritons (SPhP) within the Reststrahlen band, referred to as RI-dependent SPhP vibrations. The RI-dependent SPhP vibrations are linked to molecular RI features. According to the deep-learning-augmented demonstration of bond-breaking-bond-making dynamic profiling in biological reaction, we substantiate that the RI-dependent SPhP vibrations effectively disentangle overlapping vibrational modes, achieving a 92% identification accuracy even for the strongly overlapping vibrational modes in the reaction. Our findings offer insights into the realm of light-matter interaction and provide a valuable toolkit for biomedicine applications.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, P. R. China.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117583, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu, 215123, China.
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
17
|
Lu X, Tognazzi A, Cino AC, De Angelis C, Xu G, Zhang T, Shishmarev D. High-aspect-ratio dielectric pillar with nanocavity backed by metal substrate in the infrared range. OPTICS EXPRESS 2023; 31:39213-39221. [PMID: 38018005 DOI: 10.1364/oe.506208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
We investigated absorption and field enhancements of shallow nanocavities on top of high-aspect-ratio dielectric pillars in the infrared range. The structure includes a high-aspect-ratio nanopillar array of high refractive index, with nano-cavities on top of the pillars, and a metal plane at the bottom. The enhancement factor of electric field intensity reaches 3180 in the nanocavities and peak absorption reaches 99%. We also investigated the finite-size effect of the presented structure to simulate real experiments. Due to its narrow absorption bandwidth 3.5 nm, it can work as a refractive index sensor with sensitivity 297.5 nm/RIU and figure of merit 85. This paves the way to directly control light field at the nanoscales in the infrared light range. The investigated nanostructure will find applications in multifunctional photonics devices such as chips for culturing cells, refractive index sensors, biosensors of single molecule detection and nonlinear sensors.
Collapse
|
18
|
Hasebe H, Sugimoto H, Katsurayama Y, Furuyama T, Fujii M. Photosensitizing Metasurface Empowered by Enhanced Magnetic Field of Toroidal Dipole Resonance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302519. [PMID: 37345569 DOI: 10.1002/smll.202302519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Photochemical reaction exploiting an excited triplet state (T1 ) of a molecule requires two steps for the excitation, i.e., electronic transition from the ground (S0 ) to singlet excited (S1 ) states and intersystem crossing to the T1 state. A dielectric metasurface coupled with photosensitizer that enables energy efficient photochemical reaction via the enhanced S0 →T1 magnetic dipole transition is developed. In the direct S0 →T1 transition, the photon energy of several hundreds of meV is saved compared to the conventional S0 → S1 →T1 transition. To maximize the magnetic field intensity on the surface, a silicon (Si) nanodisk array metasurface with toroidal dipole resonances is designed. The surface of the metasurface is functionalized with ruthenium (Ru(II)) complexes that work as a photosensitizer for singlet oxygen generation. In the coupled system, the rate of the direct S0 →T1 transition of Ru(II) complexes is 41-fold enhanced at the toroidal dipole resonance of a Si nanodisk array. The enhancement of a singlet oxygen generation rate is observed when the toroidal dipole resonance of a Si nanodisk array is matched with the direct S0 →T1 transition wavelength of Ru(II) complexes.
Collapse
Affiliation(s)
- Hiroaki Hasebe
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Kobe, 657-8501, Japan
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Kobe, 657-8501, Japan
- JST-PRESTO, Honcho 4-1-8, Saitama, 332-0012, Japan
| | - Yoshino Katsurayama
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Taniyuki Furuyama
- JST-PRESTO, Honcho 4-1-8, Saitama, 332-0012, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Kobe, 657-8501, Japan
| |
Collapse
|
19
|
Du XJ, Tang XT, Xie B, Ma L, Hu ML, He J, Yang ZJ. Turning whispering-gallery-mode responses through Fano interferences in coupled all-dielectric block-disk cavities. OPTICS EXPRESS 2023; 31:29380-29391. [PMID: 37710739 DOI: 10.1364/oe.500562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Here, we theoretically demonstrate a strategy for efficiently turning whispering-gallery-mode (WGM) responses of a subwavelength dielectric disk through their near-field couplings with common low-order electromagnetic resonances of a dielectric block. Both simulations and an analytical coupled oscillator model show that the couplings are Fano interferences between dark high-quality WGMs and bright modes of the block. The responses of a WGM in the coupled system are highly dependent on the strengths and the relative phases of the block modes, the coupling strength, and the decay rate of the WGM. The WGM responses of coupled systems can exceed that of the individual disk. In addition, such a configuration will also facilitate the excitation of WGMs by a normal incident plane wave in experiments. These results could enable new applications for enhancing light-matter interactions.
Collapse
|
20
|
Chung T, Wang H, Cai H. Dielectric metasurfaces for next-generation optical biosensing: a comparison with plasmonic sensing. NANOTECHNOLOGY 2023; 34:10.1088/1361-6528/ace117. [PMID: 37352839 PMCID: PMC10416613 DOI: 10.1088/1361-6528/ace117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/22/2023] [Indexed: 06/25/2023]
Abstract
In the past decades, nanophotonic biosensors have been extended from the extensively studied plasmonic platforms to dielectric metasurfaces. Instead of plasmonic resonance, dielectric metasurfaces are based on Mie resonance, and provide comparable sensitivity with superior resonance bandwidth, Q factor, and figure-of-merit. Although the plasmonic photothermal effect is beneficial in many biomedical applications, it is a fundamental limitation for biosensing. Dielectric metasurfaces solve the ohmic loss and heating problems, providing better repeatability, stability, and biocompatibility. We review the high-Q resonances based on various physical phenomena tailored by meta-atom geometric designs, and compare dielectric and plasmonic metasurfaces in refractometric, surface-enhanced, and chiral sensing for various biomedical and diagnostic applications. Departing from conventional spectral shift measurement using spectrometers, imaging-based and spectrometer-less biosensing are highlighted, including single-wavelength refractometric barcoding, surface-enhanced molecular fingerprinting, and integrated visual reporting. These unique modalities enabled by dielectric metasurfaces point to two important research directions. On the one hand, hyperspectral imaging provides massive information for smart data processing, which not only achieve better biomolecular sensing performance than conventional ensemble averaging, but also enable real-time monitoring of cellular or microbial behaviour in physiological conditions. On the other hand, a single metasurface can integrate both functions of sensing and optical output engineering, using single-wavelength or broadband light sources, which provides simple, fast, compact, and cost-effective solutions. Finally, we provide perspectives in future development on metasurface nanofabrication, functionalization, material, configuration, and integration, towards next-generation optical biosensing for ultra-sensitive, portable/wearable, lab-on-a-chip, point-of-care, multiplexed, and scalable applications.
Collapse
Affiliation(s)
- Taerin Chung
- Tech4Health Institute, New York University Langone Health, New York, NY 10016, United States of America
- Department of Radiology, New York University Langone Health, New York, NY 10016, United States of America
| | - Hao Wang
- Tech4Health Institute, New York University Langone Health, New York, NY 10016, United States of America
- Department of Radiology, New York University Langone Health, New York, NY 10016, United States of America
| | - Haogang Cai
- Tech4Health Institute, New York University Langone Health, New York, NY 10016, United States of America
- Department of Radiology, New York University Langone Health, New York, NY 10016, United States of America
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, United States of America
| |
Collapse
|
21
|
Kuttruff J, Romanelli M, Pedrueza-Villalmanzo E, Allerbeck J, Fregoni J, Saavedra-Becerril V, Andréasson J, Brida D, Dmitriev A, Corni S, Maccaferri N. Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas. Nat Commun 2023; 14:3875. [PMID: 37414750 DOI: 10.1038/s41467-023-39413-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Molecular polaritons are hybrid light-matter states that emerge when a molecular transition strongly interacts with photons in a resonator. At optical frequencies, this interaction unlocks a way to explore and control new chemical phenomena at the nanoscale. Achieving such control at ultrafast timescales, however, is an outstanding challenge, as it requires a deep understanding of the dynamics of the collectively coupled molecular excitation and the light modes. Here, we investigate the dynamics of collective polariton states, realized by coupling molecular photoswitches to optically anisotropic plasmonic nanoantennas. Pump-probe experiments reveal an ultrafast collapse of polaritons to pure molecular transition triggered by femtosecond-pulse excitation at room temperature. Through a synergistic combination of experiments and quantum mechanical modelling, we show that the response of the system is governed by intramolecular dynamics, occurring one order of magnitude faster with respect to the uncoupled excited molecule relaxation to the ground state.
Collapse
Affiliation(s)
- Joel Kuttruff
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Marco Romanelli
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Esteban Pedrueza-Villalmanzo
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96, Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96, Göteborg, Sweden
| | - Jonas Allerbeck
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Jacopo Fregoni
- Department of Physics, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Valeria Saavedra-Becerril
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96, Göteborg, Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96, Göteborg, Sweden
| | - Daniele Brida
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faïencerie, L-1511, Luxembourg, Luxembourg
| | - Alexandre Dmitriev
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 96, Gothenburg, Sweden.
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
- CNR Institute of Nanoscience, via Campi 213/A, 41125, Modena, Italy.
| | - Nicolò Maccaferri
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la Faïencerie, L-1511, Luxembourg, Luxembourg.
- Department of Physics, Umeå University, Linnaeus väg 24, 901 87, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
22
|
Xu L, Geng J, Shi L, Cui W, Qiu M. Impact of film thickness in laser-induced periodic structures on amorphous Si films. FRONTIERS OF OPTOELECTRONICS 2023; 16:16. [PMID: 37338710 DOI: 10.1007/s12200-023-00071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/23/2023] [Indexed: 06/21/2023]
Abstract
We report self-organized periodic nanostructures on amorphous silicon thin films by femtosecond laser-induced oxidation. The dependence of structural periodicity on the thickness of silicon films and the substrate materials is investigated. The results reveal that when silicon film is 200 nm, the period of self-organized nanostructures is close to the laser wavelength and is insensitive to the substrates. In contrast, when the silicon film is 50 nm, the period of nanostructures is much shorter than the laser wavelength, and is dependent on the substrates. Furthermore, we demonstrate that, for the thick silicon films, quasi-cylindrical waves dominate the formation of periodic nanostructures, while for the thin silicon films, the formation originates from slab waveguide modes. Finite-difference time-domain method-based numerical simulations support the experimental discoveries.
Collapse
Affiliation(s)
- Liye Xu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Liping Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weicheng Cui
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, 310024, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|
23
|
Nguyen DD, Lee S, Kim I. Recent Advances in Metaphotonic Biosensors. BIOSENSORS 2023; 13:631. [PMID: 37366996 PMCID: PMC10296124 DOI: 10.3390/bios13060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Metaphotonic devices, which enable light manipulation at a subwavelength scale and enhance light-matter interactions, have been emerging as a critical pillar in biosensing. Researchers have been attracted to metaphotonic biosensors, as they solve the limitations of the existing bioanalytical techniques, including the sensitivity, selectivity, and detection limit. Here, we briefly introduce types of metasurfaces utilized in various metaphotonic biomolecular sensing domains such as refractometry, surface-enhanced fluorescence, vibrational spectroscopy, and chiral sensing. Further, we list the prevalent working mechanisms of those metaphotonic bio-detection schemes. Furthermore, we summarize the recent progress in chip integration for metaphotonic biosensing to enable innovative point-of-care devices in healthcare. Finally, we discuss the impediments in metaphotonic biosensing, such as its cost effectiveness and treatment for intricate biospecimens, and present a prospect for potential directions for materializing these device strategies, significantly influencing clinical diagnostics in health and safety.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seho Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
24
|
Li Z, Jiang N, Gao X, Shi J, Wei Z, Zheng H, Shen C. Meta-Atom Coupling Induced Chiral Hotspot in Silicon Nitride Staggered Nanorods Meta-Surface. J Phys Chem Lett 2023; 14:3307-3312. [PMID: 36988312 DOI: 10.1021/acs.jpclett.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Dielectric meta-surfaces have emerged as an effective way for fabricating chiral optical devices, and the chiral meta-surfaces are usually constituted by periodic chiral meta-atom structures. Here, we report a chiral meta-surface consisting of nonchiral silicon nitride rectangular nanorods. The chiral hotspots are generated between the staggered nanorods due to the coupling between the two nearest neighbor nanorod units. 14.6% macroscopic circular dichroism (CD) is achieved experimentally with larger area staggered nanorods. Meanwhile, we demonstrate that the wavelength tuning capability of this design from 696 to 820 nm by simply modulating the overlap length of nanorods. Our work highlights the mechanisms for CD hotspot generation without complex chiral units, which paves a novel way for future on-chip photon-spin selective devices.
Collapse
Affiliation(s)
- Ziying Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nai Jiang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Gao
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Shi
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongming Wei
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Houzhi Zheng
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Adachi M, Sugimoto H, Nishimura Y, Morita K, Ogino C, Fujii M. Fluorophore-Decorated Mie Resonant Silicon Nanosphere for Scattering/Fluorescence Dual-Mode Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207318. [PMID: 36693778 DOI: 10.1002/smll.202207318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Inorganic nanoparticles with multiple functions have been attracting attention as multimodal nanoprobes in bioimaging, biomolecule detection, and medical diagnosis and treatment. A drawback of conventional metallic nanoparticle-based nanoprobes is the Ohmic losses that lead to fluorescence quenching of attached molecules and local heating under light irradiation. Here, metal-free nanoprobes capable of scattering/fluorescence dual-mode imaging are developed. The nanoprobes are composed of a silicon nanosphere core having efficient Mie scattering in the visible to near infrared range and a fluorophore doped silica shell. The dark-field scattering and photoluminescence images/spectra for nanoprobes made from different size silicon nanospheres and different kinds of fluorophores are studied by single particle spectroscopy. The fluorescence spectra are strongly modified by the Mie modes of a silicon nanosphere core. By comparing scattering and fluorescence spectra and calculated Purcell factors, the fluorescence enhancement factor is quantitatively discussed. In vitro scattering/fluorescence imaging studies on human cancer cells demonstrate that the developed nanoparticles work as scattering/fluorescence dual-mode imaging nanoprobes.
Collapse
Affiliation(s)
- Masato Adachi
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
26
|
Yang S, Allen JA, Hong C, Arnold KP, Weiss SM, Ndukaife JC. Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams. PHYSICAL REVIEW LETTERS 2023; 130:083802. [PMID: 36898095 DOI: 10.1103/physrevlett.130.083802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Photonic crystal cavities with bowtie defects that combine ultrahigh Q and ultralow mode volume are theoretically studied for low-power nanoscale optical trapping. By harnessing the localized heating of the water layer near the bowtie region, combined with an applied alternating current electric field, this system provides long-range electrohydrodynamic transport of particles with average radial velocities of 30 μm/s towards the bowtie region on demand by switching the input wavelength. Once transported to a given bowtie region, synergistic interaction of optical gradient and attractive negative thermophoretic forces stably trap a 10 nm quantum dot in a potential well with a depth of 10 k_{B}T using a mW input power.
Collapse
Affiliation(s)
- Sen Yang
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Joshua A Allen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Kellen P Arnold
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Sharon M Weiss
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C Ndukaife
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
27
|
Verma S, Rahman B. Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. SENSORS (BASEL, SWITZERLAND) 2023; 23:1290. [PMID: 36772328 PMCID: PMC9921925 DOI: 10.3390/s23031290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work, we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate (LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm. Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface plasmon resonance (SPR). The influences of the structural dimensions have been investigated to optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for use in various sensing applications.
Collapse
|
28
|
Jang J, Jeong M, Lee J, Kim S, Yun H, Rho J. Planar Optical Cavities Hybridized with Low-Dimensional Light-Emitting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203889. [PMID: 35861661 DOI: 10.1002/adma.202203889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional light-emitting materials have been actively investigated due to their unprecedented optical and optoelectronic properties that are not observed in their bulk forms. However, the emission from low-dimensional light-emitting materials is generally weak and difficult to use in nanophotonic devices without being amplified and engineered by optical cavities. Along with studies on various planar optical cavities over the last decade, the physics of cavity-emitter interactions as well as various integration methods are investigated deeply. These integrations not only enhance the light-matter interaction of the emitters, but also provide opportunities for realizing nanophotonic devices based on the new physics allowed by low-dimensional emitters. In this review, the fundamentals, strengths and weaknesses of various planar optical resonators are first provided. Then, commonly used low-dimensional light-emitting materials such as 0D emitters (quantum dots and upconversion nanoparticles) and 2D emitters (transition-metal dichalcogenide and hexagonal boron nitride) are discussed. The integration of these emitters and cavities and the expect interplay between them are explained in the following chapters. Finally, a comprehensive discussion and outlook of nanoscale cavity-emitter integrated systems is provided.
Collapse
Affiliation(s)
- Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huichang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
29
|
Raj D, Scaglione F, Rizzi P. Rapid Fabrication of Fe and Pd Thin Films as SERS-Active Substrates via Dynamic Hydrogen Bubble Template Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:135. [PMID: 36616045 PMCID: PMC9824498 DOI: 10.3390/nano13010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Fe and Pd thin film samples have been fabricated in a rapid fashion utilizing the versatile technique of dynamic hydrogen bubble template (DHBT) method via potentiostatic electrodeposition over a copper substrate. The morphology of the samples is dendritic, with the composition being directly proportional to the deposition time. All the samples have been tested as SERS substrates for the detection of Rhodamine 6G (R6G) dye. The samples perform very well, with the best performance shown by the Pd samples. The lowest detectable R6G concentration was found to be 10-6 M (479 μgL-1) by one of the Pd samples with the deposition time of 180 s. The highest enhancement of signals noticed in this sample can be attributed to its morphology, which is more nanostructured compared to other samples, which is extremely conducive to the phenomenon of localized surface plasmon resonance (LSPR). Overall, these samples are cheaper, easy to prepare with a rapid fabrication method, and show appreciable SERS performance.
Collapse
|
30
|
Ma C, Zhou F, Huang P, Li M, Zhao F, Feng Z, Liu Y, Li X, Guan BO, Chen K. Deterministic Excitation of Polarization-Sensitive Extrinsic Anapole State in Si Nanodisk Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204883. [PMID: 36323588 DOI: 10.1002/smll.202204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle clusters provide new degrees of freedom for light control due to their mutual interaction compared with an individual one. Here, the authors demonstrate theoretically and experimentally a type of optical anapole (a nonradiating state) termed as extrinsic anapole, with mode field spreading across Si nanodisk dimers unlike the intrinsic one that is confined within individual nanodisks. The extrinsic anapole is sensitive to the polarized excitation. When the electric vector E of excitation is perpendicular to the dimer axis, the coupled toroidal dipole (TD) mode is largely enhanced and broadened to be spectrally overlapped with the electric dipole (ED) mode. The destructive interference of these two modes results in the generation of the extrinsic anapole. However, it vanishes when E is parallel to the dimer axis. Such polarization dependence can be relieved with the participation of the third nanodisk. Scattering spectra of Si nanodisk trimers stay almost unchanged under different polarized excitations, although the near-field distributions are quite different. Finally, enhanced white-light emission is observed in Si nanodisk clusters, which can be attributed to the near-infrared absorption enhancement induced by extrinsic anapole states. The findings manifest that high-index all-dielectric nanodisk clusters are promising for light manipulation based on mode interference.
Collapse
Affiliation(s)
- Churong Ma
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Fangrong Zhou
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Pengfei Huang
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Meng Li
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Feng Zhao
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Ziwei Feng
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Ying Liu
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiangping Li
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Bai-Ou Guan
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Kai Chen
- Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
31
|
Syubaev S, Gordeev I, Modin E, Terentyev V, Storozhenko D, Starikov S, Kuchmizhak AA. Security labeling and optical information encryption enabled by laser-printed silicon Mie resonators. NANOSCALE 2022; 14:16618-16626. [PMID: 36317669 DOI: 10.1039/d2nr04179k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fighting against the falsification of valuable items remains a crucial social-threatening challenge stimulating a never-ending search for novel anti-counterfeiting strategies. The demanding security labels must simultaneously address multiple requirements (high density of the recorded information, high protection degree, etc.) and be realized via scalable and inexpensive technologies. Here, the direct reproducible femtosecond-laser patterning of thin glass-supported amorphous (α-)Si films is proposed for optical information encryption and the scalable and highly reproducible fabrication of security labels composed of Raman-active hemispherical Si nanoparticles (NPs). Laser printing conditions allow the precise control of the diameter of the formed NPs ensuring translation of their dipolar Mie resonance position within the entire visible spectral range. Two-temperature molecular dynamics simulations clarify the origin of α-Si NP formation by rupture of the molten Si layer driven by a negative GPa-range pressure near the liquid-solid interface. Arrangement of the laser-printed Mie-resonant NP allows the creation of hidden security labels offering several easy-to-realize information encryption strategies (for example, local laser-induced post-crystallization or mixing Mie-resonant and non-resonant NPs), additional protection modalities, facile Raman mapping readout and dense information recording (up to 60 000 dots per inch) close to the optical diffraction limit. The developed fabrication strategy is simple, inexpensive, and scalable and can be realized based on cheap Earth-abundant materials and commercially-available equipment justifying its practical applicability and attractiveness for anti-counterfeit and security applications.
Collapse
Affiliation(s)
- Sergey Syubaev
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia.
| | - Ilya Gordeev
- Joint Institute for High Temperatures of RAS, Moscow, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, Avda Tolosa 76, 20018 Donostia-San Sebastian, Spain
| | - Vadim Terentyev
- Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitriy Storozhenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia.
| | - Sergei Starikov
- The Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universitat Bochum, Germany.
| | - Aleksandr A Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia.
- Far Eastern Federal University, Vladivostok 690091, Russia
| |
Collapse
|
32
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
33
|
Abdelraouf OAM, Wang Z, Liu H, Dong Z, Wang Q, Ye M, Wang XR, Wang QJ, Liu H. Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications. ACS NANO 2022; 16:13339-13369. [PMID: 35976219 DOI: 10.1021/acsnano.2c04628] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metasurfaces, a two-dimensional (2D) form of metamaterials constituted by planar meta-atoms, exhibit exotic abilities to tailor electromagnetic (EM) waves freely. Over the past decade, tremendous efforts have been made to develop various active materials and incorporate them into functional devices for practical applications, pushing the research of tunable metasurfaces to the forefront of nanophotonics. Those active materials include phase change materials (PCMs), semiconductors, transparent conducting oxides (TCOs), ferroelectrics, liquid crystals (LCs), atomically thin material, etc., and enable intriguing performances such as fast switching speed, large modulation depth, ultracompactness, and significant contrast of optical properties under external stimuli. Integration of such materials offers substantial tunability to the conventional passive nanophotonic platforms. Tunable metasurfaces with multifunctionalities triggered by various external stimuli bring in rich degrees of freedom in terms of material choices and device designs to dynamically manipulate and control EM waves on demand. This field has recently flourished with the burgeoning development of physics and design methodologies, particularly those assisted by the emerging machine learning (ML) algorithms. This review outlines recent advances in tunable metasurfaces in terms of the active materials and tuning mechanisms, design methodologies, and practical applications. We conclude this review paper by providing future perspectives in this vibrant and fast-growing research field.
Collapse
Affiliation(s)
- Omar A M Abdelraouf
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ziyu Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Hailong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Ming Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Renshaw Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qi Jie Wang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
34
|
Bartschmid T, Farhadi A, Musso ME, Goerlitzer ESA, Vogel N, Bourret GR. Self-Assembled Au Nanoparticle Monolayers on Silicon in Two- and Three-Dimensions for Surface-Enhanced Raman Scattering Sensing. ACS APPLIED NANO MATERIALS 2022; 5:11839-11851. [PMID: 36062062 PMCID: PMC9425434 DOI: 10.1021/acsanm.2c01904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 05/05/2023]
Abstract
Gold nanoparticle/silicon composites are canonical substrates for sensing applications because of their geometry-dependent physicochemical properties and high sensing activity via surface-enhanced Raman spectroscopy (SERS). The self-assembly of gold nanoparticles (AuNPs) synthesized via wet-chemistry on functionalized flat silicon (Si) and vertically aligned Si nanowire (VA-SiNW) arrays is a simple and cost-effective approach to prepare such substrates. Herein, we report on the critical parameters that influence nanoparticle coverage, aggregation, and assembly sites in two- and three-dimensions to prepare substrates with homogeneous optical properties and SERS activity. We show that the degree of AuNP aggregation on flat Si depends on the silane used for the Si functionalization, while the AuNP coverage can be adjusted by the incubation time in the AuNP solution, both of which directly affect the substrate properties. In particular, we report the reproducible synthesis of nearly touching AuNP chain monolayers where the AuNPs are separated by nanoscale gaps, likely to be formed due to the capillary forces generated during the drying process. Such substrates, when used for SERS sensing, produce a uniform and large enhancement of the Raman signal due to the high density of hot spots that they provide. We also report the controlled self-assembly of AuNPs on VA-SiNW arrays, which can provide even higher Raman signal enhancement. The directed assembly of the AuNPs in specific regions of the SiNWs with a control over NP density and monolayer morphology (i.e., isolated vs nearly touching NPs) is demonstrated, together with its influence on the resulting SERS activity.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Maurizio E. Musso
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| |
Collapse
|
35
|
Abedin S, Li Y, Sifat AA, Roy K, Potma EO. Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas. NANO LETTERS 2022; 22:6685-6691. [PMID: 35960899 PMCID: PMC11168587 DOI: 10.1021/acs.nanolett.2c02040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) takes advantage of surface plasmon resonances supported on metallic nanostructures to amplify the coherent Raman response of target molecules. While these metallic antennas have found significant success in SE-CARS studies, photoinduced morphological changes to the nanoantenna under ultrafast excitation introduce significant hurdles in terms of stability and reproducilibty. These hurdles need to be overcome in order to establish SE-CARS as a reliable tool for rapid biomolecular sensing. Here, we address this challenge by performing molecular CARS measurements enhanced by nanoantennas made from high-index dielectric particles with more favorable thermal properties. We present the first experimental demonstration of enhanced molecular CARS signals observed at Si nanoantennas, which offer much improved thermal stability compared to their metallic counterparts.
Collapse
Affiliation(s)
- Shamsul Abedin
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Yong Li
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Abid Anjum Sifat
- Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, United States
| | - Khokan Roy
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, United States
| |
Collapse
|
36
|
Mu H, Wang Y, Lv J, Yi Z, Yang L, Chu PK, Liu C. Electric field enhancement by a hybrid dielectric-metal nanoantenna with a toroidal dipole contribution. APPLIED OPTICS 2022; 61:7125-7131. [PMID: 36256330 DOI: 10.1364/ao.466124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic nanocavities enable extreme light-matter interactions by pushing light down to the nanoscale. The numerical simulation is carried out systematically on the slotted Φ-shaped Si disk system with the super-dipole mode based on the analysis of the scattering strength of electric and toroidal dipoles. New blocks are introduced to the zero-field strength region of a slotted Si disk system as a function of the field enhancement factors. The far-field scattering characteristics and near-field electromagnetic field distributions are investigated by a multipole decomposition analysis to elucidate the intrinsic causes of the field enhancement. In the hybrid metal-dielectric nanoantenna, the Φ-shaped Si structure is prepared by superimposing Au nanoantennas for further field enhancement. In addition, the effects of the placement of an electric dipole emitter on the Purcell factor are derived. The geometric volume of the system is increased, and the electric field strength is improved, leading to an electric field increase of ∼30. Coupling between the super-dipole mode of the dielectric nanostructure and plasmonic modes of the metallic nanoantenna produces an enhancement as large as 16 times. Our results reveal a greatly enhanced super-dipole mode by electromagnetic coupling in composite structures, which will play a significant role in enhanced nonlinear photonics, near-field enhancement spectroscopy, and strong photon-exciton coupling.
Collapse
|
37
|
Li D, Aubertin K, Onidas D, Nizard P, Félidj N, Gazeau F, Mangeney C, Luo Y. Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1795. [PMID: 35362261 DOI: 10.1002/wnan.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an emerging powerful vibrational technique offering unprecedented opportunities in biomedical science for the sensitive detection of biomarkers and the imaging and tracking of biological samples. Conventional SERS detection is based on the use of plasmonic substrates (e.g., Au and Ag nanostructures), which exhibit very high enhancement factors (EF = 1010 -1011 ) but suffers from serious limitations, including light-induced local heating effect due to ohmic loss and expensive price. These drawbacks may limit detection accuracy and large-scaled practical applications. In this review, we focus on alternative approaches based on plasmon-free SERS detection on low-cost nanostructures, such as carbons, oxides, chalcogenides, polymers, silicons, and so forth. The mechanism of non-plasmonic SERS detection has been attributed to interfacial charge transfer between the substrate and the adsorbed molecules, with no photothermal side-effects but usually less EF compared with plasmonic nanostructures. The strategies to improve Raman signal detection, through the tailoring of substrate composition, structure, and surface chemistry, is reviewed and discussed. The biomedical applications, for example, SERS cell characterization, biosensing, and bioimaging are also presented, highlighting the importance of substrate surface functionalization to achieve sensitive, accurate analysis, and excellent biocompatibility. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Da Li
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Kelly Aubertin
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Delphine Onidas
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Philippe Nizard
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Nordin Félidj
- ITODYS, CNRS UMR 7086, Université Paris Cité, 15, rue Jean Antoine de Baïf, Paris, France
| | - Florence Gazeau
- MSC, CNRS UMR 7057, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Claire Mangeney
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| | - Yun Luo
- LCBPT, CNRS UMR 8601, Université Paris Cité, 45, rue des Saints-Pères, Paris, France
| |
Collapse
|
38
|
Abedin S, Roy K, Jin X, Xia H, Brueck SRJ, Potma EO. Surface-enhanced coherent anti-Stokes Raman scattering of molecules near metal-dielectric nanojunctions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:8760-8767. [PMID: 39253366 PMCID: PMC11382608 DOI: 10.1021/acs.jpcc.2c01642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We discuss an experimental configuration consisting of {Au film}-molecule-{Au particle} or {Au film}-molecule-{Si particle} nanojunctions for performing wide-field surface-enhanced CARS (SE-CARS) measurements in a reproducible and controllable manner. While the allowable illumination dosage in the {Au film}-molecule-{Au particle} case is limited by the strong two-photon background from the gold, we successfully generate a detectable coherent Raman response from a molecular monolayer using the lowest reported average power densities to-date. With a vision to minimize the two-photon background and the intrinsic losses observed in all-metal plasmonic systems, we examine the possibility of using high-index dielectric particles on top of a thin metal film to generate strong nanoscopic hotspots. We demonstrate repeatable SE-CARS measurements at the {Au film}-molecule-{Si particle} heterojunction, underlining the usability of this experimental geometry. This work paves the way for the development of next-generation of chemical and biomolecular sensing assays that can minimize some of the major drawbacks encountered in fragile and lossy all-metal plasmonic systems.
Collapse
Affiliation(s)
- Shamsul Abedin
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Khokan Roy
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Xin Jin
- Armonica Technologies, Inc., Albuquerque, NM 87110, USA
| | - Hui Xia
- Armonica Technologies, Inc., Albuquerque, NM 87110, USA
| | - S R J Brueck
- Armonica Technologies, Inc., Albuquerque, NM 87110, USA
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Liebel M, Calderon I, Pazos-Perez N, van Hulst NF, Alvarez-Puebla RA. Widefield SERS for High-Throughput Nanoparticle Screening. Angew Chem Int Ed Engl 2022; 61:e202200072. [PMID: 35107845 DOI: 10.1002/anie.202200072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Surface-enhanced Raman scattering (SERS) imaging is a powerful technology with unprecedent potential for ultrasensitive chemical analysis. Point-by-point scanning and often excessively long spectral acquisition-times hamper the broad exploitation of the full analytical potential of SERS. Here, we introduce large-scale SERS particle screening (LSSPS), a multiplexed widefield screening approach to particle characterization, which is 500-1000 times faster than typical confocal Raman implementations. Beyond its higher throughput, LSSPS simultaneously quantifies both the sample's Raman and Rayleigh scattering to directly quantify the fraction of SERS-active particles which allows for an unprecedented correlation of SERS activity with particle size. .
Collapse
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Irene Calderon
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
| | - Nicolas Pazos-Perez
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
| | - Niek F van Hulst
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.,ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain.,ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
40
|
Design and Optimization of All-Dielectric Fluorescence Enhancing Metasurfaces: Towards Advanced Metasurface-Assisted Optrodes. BIOSENSORS 2022; 12:bios12050264. [PMID: 35624565 PMCID: PMC9138857 DOI: 10.3390/bios12050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
The need for miniaturized biological sensors which can be easily integrated into medical needles and catheters for in vivo liquid biopsies with ever-increasing performances has stimulated the interest of researchers in lab-on-fiber (LOF) technology. LOF devices arise from the integration of functional materials at the nanoscale on the tip of optical fibers, thus endowing a simple optical fiber with advanced functionalities and enabling the realization of high-performance LOF biological sensors. Consequently, in 2017, we demonstrated the first optical fiber meta-tip (OFMT), consisting of the integration of plasmonic metasurfaces (MSs) on the optical fiber end-face which represented a major breakthrough along the LOF technology roadmap. Successively, we demonstrated that label-free biological sensors based on the plasmonic OFMT are able to largely overwhelm the performance of a standard plasmonic LOF sensor, in view of the extraordinary light manipulation capabilities of plasmonic array exploiting phase gradients. To further improve the overall sensitivity, a labelled sensing strategy is here suggested. To this end, we envision the possibility to realize a novel class of labelled LOF optrodes based on OFMT, where an all-dielectric MS, designed to enhance the fluorescence emission by a labelled target molecule, is integrated on the end-face of a multimode fiber (MMF). We present a numerical environment to compute the fluorescence enhancement factor collected by the MMF, when on its tip a Silicon MS is laid, consisting of an array of cylindrical nanoantennas, or of dimers or trimers of cylindrical nanoantennas. According to the numerical results, a suitable design of the dielectric MS allows for a fluorescence enhancement up to three orders of magnitudes. Moreover, a feasibility study is carried out to verify the possibility to fabricate the designed MSs on the termination of multimode optical fibers using electron beam lithography followed by reactive ion etching. Finally, we analyze a real application scenario in the field of biosensing and evaluate the degradation in the fluorescence enhancement performances, taking into account the experimental conditions. The present work, thus, provides the main guidelines for the design and development of advanced LOF devices based on the fluorescence enhancement for labelled biosensing applications.
Collapse
|
41
|
Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement. PHOTONICS 2022. [DOI: 10.3390/photonics9040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
High-index dielectrics have recently been regarded as promising building blocks in nanophotonics owing to optical electric and magnetic Mie resonances. In particular, silicon is gaining great interest as the backbone of modern technology. Here, silicon dimer nanocavities with different sizes of silicon nanospheres were constructed using a probe nanomanipulation method and interacted with a few-layered R6G membrane to investigate the enhancement of electric and magnetic mode coupling. The evidence of the enhancement of fluorescence and slightly prolonged lifetime of R6G indicated the existence of nanocavities. In addition, the simulated electric and magnetic field distributions and decomposed mode of nanocavity were used to analyze the contribution of electric and magnetic modes to the R6G enhanced fluorescence. Such silicon dimer is a flexible nanocavity with electric and magnetic mode enhancement and has promising applications in sensing and all-dielectric metamaterials or nanophotonic devices.
Collapse
|
42
|
Bozkurt A, Joshi C, Mirhosseini M. Deep sub-wavelength localization of light and sound in dielectric resonators. OPTICS EXPRESS 2022; 30:12378-12386. [PMID: 35472874 DOI: 10.1364/oe.455248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Optomechanical crystals provide coupling between phonons and photons by confining them to commensurate wavelength-scale dimensions. We present a new concept for designing optomechanical crystals capable of achieving unprecedented coupling rates by confining optical and mechanical waves to deep sub-wavelength dimensions. Our design is based on a dielectric bowtie unit cell with an effective optical/mechanical mode volume of 7.6 × 10-3(λ/nSi)3/1.2×10-3 λ mech 3. We present results from numerical modeling, indicating a single-photon optomechanical coupling of 2.2 MHz with experimentally viable parameters. Monte Carlo simulations are used to demonstrate the design's robustness against fabrication disorder.
Collapse
|
43
|
Vavrinsky E, Esfahani NE, Hausner M, Kuzma A, Rezo V, Donoval M, Kosnacova H. The Current State of Optical Sensors in Medical Wearables. BIOSENSORS 2022; 12:217. [PMID: 35448277 PMCID: PMC9029995 DOI: 10.3390/bios12040217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 05/04/2023]
Abstract
Optical sensors play an increasingly important role in the development of medical diagnostic devices. They can be very widely used to measure the physiology of the human body. Optical methods include PPG, radiation, biochemical, and optical fiber sensors. Optical sensors offer excellent metrological properties, immunity to electromagnetic interference, electrical safety, simple miniaturization, the ability to capture volumes of nanometers, and non-invasive examination. In addition, they are cheap and resistant to water and corrosion. The use of optical sensors can bring better methods of continuous diagnostics in the comfort of the home and the development of telemedicine in the 21st century. This article offers a large overview of optical wearable methods and their modern use with an insight into the future years of technology in this field.
Collapse
Affiliation(s)
- Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia
| | - Niloofar Ebrahimzadeh Esfahani
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Michal Hausner
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Vratislav Rezo
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Helena Kosnacova
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
44
|
Liebel M, Calderon I, Pazos‐Perez N, Hulst NF, Alvarez‐Puebla RA. Widefield SERS for High‐Throughput Nanoparticle Screening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Matz Liebel
- ICFO - Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels Barcelona Spain
| | - Irene Calderon
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
| | - Nicolas Pazos‐Perez
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
| | - Niek F. Hulst
- ICFO - Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology Castelldefels Barcelona Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| | - Ramon A. Alvarez‐Puebla
- Department of Physical and Inorganic Chemistry and EMaS Universitat Rovira i Virgili Tarragona Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
| |
Collapse
|
45
|
Altug H, Oh SH, Maier SA, Homola J. Advances and applications of nanophotonic biosensors. NATURE NANOTECHNOLOGY 2022; 17:5-16. [PMID: 35046571 DOI: 10.1038/s41565-021-01045-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Nanophotonic devices, which control light in subwavelength volumes and enhance light-matter interactions, have opened up exciting prospects for biosensing. Numerous nanophotonic biosensors have emerged to address the limitations of the current bioanalytical methods in terms of sensitivity, throughput, ease-of-use and miniaturization. In this Review, we provide an overview of the recent developments of label-free nanophotonic biosensors using evanescent-field-based sensing with plasmon resonances in metals and Mie resonances in dielectrics. We highlight the prospects of achieving an improved sensor performance and added functionalities by leveraging nanostructures and on-chip and optoelectronic integration, as well as microfluidics, biochemistry and data science toolkits. We also discuss open challenges in nanophotonic biosensing, such as reducing the overall cost and handling of complex biological samples, and provide an outlook for future opportunities to improve these technologies and thereby increase their impact in terms of improving health and safety.
Collapse
Affiliation(s)
- Hatice Altug
- Laboratory of Bionanophotonic Systems, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut Munich, Faculty of Physics, Ludwig-Maximilians Universität München, Munich, Germany.
- Department of Physics, Imperial College London, London, UK.
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
46
|
Dell'Olio F. Multiplexed Liquid Biopsy and Tumor Imaging Using Surface-Enhanced Raman Scattering. BIOSENSORS 2021; 11:449. [PMID: 34821665 PMCID: PMC8615571 DOI: 10.3390/bios11110449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
| |
Collapse
|
47
|
Revealing DNA Structure at Liquid/Solid Interfaces by AFM-Based High-Resolution Imaging and Molecular Spectroscopy. Molecules 2021; 26:molecules26216476. [PMID: 34770895 PMCID: PMC8587808 DOI: 10.3390/molecules26216476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
DNA covers the genetic information in all living organisms. Numerous intrinsic and extrinsic factors may influence the local structure of the DNA molecule or compromise its integrity. Detailed understanding of structural modifications of DNA resulting from interactions with other molecules and surrounding environment is of central importance for the future development of medicine and pharmacology. In this paper, we review the recent achievements in research on DNA structure at nanoscale. In particular, we focused on the molecular structure of DNA revealed by high-resolution AFM (Atomic Force Microscopy) imaging at liquid/solid interfaces. Such detailed structural studies were driven by the technical developments made in SPM (Scanning Probe Microscopy) techniques. Therefore, we describe here the working principles of AFM modes allowing high-resolution visualization of DNA structure under native (liquid) environment. While AFM provides well-resolved structure of molecules at nanoscale, it does not reveal the chemical structure and composition of studied samples. The simultaneous information combining the structural and chemical details of studied analyte allows achieve a comprehensive picture of investigated phenomenon. Therefore, we also summarize recent molecular spectroscopy studies, including Tip-Enhanced Raman Spectroscopy (TERS), on the DNA structure and its structural rearrangements.
Collapse
|
48
|
Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nat Commun 2021; 12:6063. [PMID: 34663795 PMCID: PMC8523570 DOI: 10.1038/s41467-021-26262-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Single photon emitters in atomically-thin semiconductors can be deterministically positioned using strain induced by underlying nano-structures. Here, we couple monolayer WSe2 to high-refractive-index gallium phosphide dielectric nano-antennas providing both optical enhancement and monolayer deformation. For single photon emitters formed on such nano-antennas, we find very low (femto-Joule) saturation pulse energies and up to 104 times brighter photoluminescence than in WSe2 placed on low-refractive-index SiO2 pillars. We show that the key to these observations is the increase on average by a factor of 5 of the quantum efficiency of the emitters coupled to the nano-antennas. This further allows us to gain new insights into their photoluminescence dynamics, revealing the roles of the dark exciton reservoir and Auger processes. We also find that the coherence time of such emitters is limited by intrinsic dephasing processes. Our work establishes dielectric nano-antennas as a platform for high-efficiency quantum light generation in monolayer semiconductors. Single photon emitters (SPEs) in 2D semiconductors can be deterministically positioned using localized strain induced by underlying nanostructures. Here, the authors show SPE coupling in WSe2 to GaP dielectric nanoantennas, substantially increasing quantum efficiency and photoluminescence brightness.
Collapse
|
49
|
Zheng M, Fang G. Luminescence enhancement of lead halide perovskite light-emitting diodes with plasmonic metal nanostructures. NANOSCALE 2021; 13:16427-16447. [PMID: 34590647 DOI: 10.1039/d1nr05667k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal halide perovskites, as newly emerging light emitters, have been attracting considerable attention on luminescent materials and devices, due to their superior optoelectronic properties and potential practical applications. Recently, perovskite light-emitting diodes (PeLEDs) based on lead halide perovskites (LHPs) have been largely designed and intensively studied in laboratory platforms. However, to satisfy demand and promote their commercialization, it is crucial to improve the efficiency and stability of PeLEDs. Accordingly, the surface-plasmon (SP) effect provides a promising approach to enhance their luminescence, which is realized by incorporating plasmonic metal nanostructures (NSs) into PeLEDs. This review presents a comprehensive overview of the research status and prospect on LHP-based plasmonic PeLEDs together with the corresponding perovskite light-emission films (PeLEFs). Firstly, the recent development of the PeLEDs is briefly introduced. Secondly, the mechanisms and photophysics of the PeLEDs by SP manipulation are simply illustrated and analyzed. Then, the recent progress and achievements on the theoretical and experimental results of SP effect applications in the PeLEDs together with PeLEFs are presented in detail and systematically reviewed. Next, the current challenges and future directions of the PeLEDs are shown and discussed. Finally, a critical summary and outlook of the PeLEDs are summarized and proposed. Our results indicate that this new class of LHP-based plasmonic PeLEDs presents future research fields and demonstrates promising applications in lighting and displays, and further luminescence enhancement in exciton radiation processes and light extraction techniques are a hopeful route to obtain high-performance PeLEDs.
Collapse
Affiliation(s)
- Mingfei Zheng
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | - Guojia Fang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
50
|
Rosales SA, Albella P, González F, Gutiérrez Y, Moreno F. CDDA: extension and analysis of the discrete dipole approximation for chiral systems. OPTICS EXPRESS 2021; 29:30020-30034. [PMID: 34614734 DOI: 10.1364/oe.434061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Discrete dipole approximation (DDA) is a computational method broadly used to solve light scattering problems. In this work, we propose an extension of DDA that we call Chiral-DDA (CDDA), to study light-chiral matter interactions with the capability of describing the underlying physics behind. Here, CDDA is used to solve and analyze the interaction of a nanoantenna (either metallic or dielectric) with a chiral molecule located in its near field at different positions. Our method allowed to relate near field interactions with far field spectral response of the system, elucidating the role that the nanoantenna electric and magnetic polarizabilities play in the coupling with a chiral molecule. In general, this is not straightforward with other methods. We believe that CDDA has the potential to help researchers revealing some of the still unclear mechanisms responsible for the chiral signal enhancements induced by nanoantennas.
Collapse
|