1
|
Leitao E, MacKenzie H. Ian Manners (1961-2023): Learning to Fly. Angew Chem Int Ed Engl 2024; 63:e202408692. [PMID: 38818737 DOI: 10.1002/anie.202408692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ian Manners, an internationally renowned main-group and materials scientist, passed away on December 3, 2023. He will be remembered as a brilliant researcher, an avid birdwatching enthusiast, Pink Floyd fan, and champion of his students who had a profoundly positive impact on those around him.
Collapse
Affiliation(s)
- Erin Leitao
- School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Harvey MacKenzie
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
2
|
Jin B, Hu L, Li X. Mesogenic Ordering-Driven Self-Assembly of Liquid Crystalline Block Copolymers in Solution. Chemistry 2024; 30:e202400312. [PMID: 38454618 DOI: 10.1002/chem.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
With the development of nanotechnology, the preparation of polymeric nanoparticles with nicely defined structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Particularly, by introducing mesogenic ordering as the driving force for the solution-state self-assembly of liquid crystalline (LC) block copolymers (BCPs), micellar nanostructures with different morphologies, especially anisotropic morphologies, can be easily prepared. This review summarizes the recent progress in the solution-state self-assembly of LC BCPs and is mostly focused on four main related aspects, including an in-depth understanding of the mesogenic ordering-driven self-assembly, precise assembly methods, utilization of these methods to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a systematic summary of previous studies but also to provide some useful thinking for the future development of this field.
Collapse
Affiliation(s)
- Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingjuan Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Key Laboratory of High Energy Density Materials, MOE. Beijing, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
3
|
Jiang J, Nikbin E, Liu Y, Lei S, Ye G, Howe JY, Manners I, Winnik MA. Defect-Induced Secondary Crystals Drive Two-Dimensional to Three-Dimensional Morphological Evolution in the Co-Self-Assembly of Polyferrocenylsilane Block Copolymer and Homopolymer. J Am Chem Soc 2023; 145:28096-28110. [PMID: 38088827 DOI: 10.1021/jacs.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Bottom-up fabrication protocols for uniform 3D hierarchical structures in solution are rare. We report two different approaches to fabricate uniform 3D spherulites and their precursors using mixtures of poly(ferrocenyldimethylsilane) (PFS) block copolymer (BCP) and PFS homopolymer (HP). Both protocols are designed to promote defects in 2D assemblies that serve as intermediate structures. In a multistep seeded growth protocol, we add the BCP/HP mixture to (1D) rod-like PFS micelles in a selective solvent as first-generation seeds. This leads to 2D platelet structures. If this step is conducted at a high supersaturation, secondary crystals form on the basal surface of these platelets. Co-crystallization and rapid crystallization of BCP/HP promote the formation of defects that act as nucleation sites for secondary crystals, resulting in multilayer platelets. This is the key step. The multilayer platelets serve as second-generation seeds upon subsequent addition of BCP/HP blends and, with increasing supersaturation, lead to the sequential formation of uniform (3D) hedrites, sheaves, and spherulites. Similar structures can also be obtained by a simple one-pot direct self-assembly (heating-cooling-aging) protocol of PFS BCP/HP blends. In this case, for a carefully chosen but narrow temperature range, PFS HPs nucleate formation of uniform structures, and the annealing temperature regulates the supersaturation level. In both protocols, the competitive crystallization kinetics of HP/BCP affects the morphology. Both protocols exhibit broad generality. We believe the morphological transformation from 2D to 3D structures, regulated by defect formation, co-crystallization, and supersaturation levels, could apply to various semicrystalline polymers. Moreover, the 3D structures are sufficiently robust to serve as recoverable carriers for nanoparticle catalysts, exhibiting valuable catalytic activity and opening new possibilities for applications requiring exquisite 3D structures.
Collapse
Affiliation(s)
- Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ehsan Nikbin
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Gang Ye
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
4
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Mukouyama Y, Nakato Y. Self-organization in an Open Reaction Network for Developing High-function Organized Molecular Systems. Chemphyschem 2023; 24:e202200847. [PMID: 36629322 DOI: 10.1002/cphc.202200847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Self-organized molecular systems such as liposomes and supramolecules have attracted considerable attention due to their characteristic properties. An open reaction network (ORN) is another interesting candidate for such systems; however, no stabilization mechanism has been clarified. This work reveals, by computer simulation and experiments, that a network of irreversible processes such as an ORN can be stabilized by self-organization through a full balance between all the involved irreversible processes, thus forming a steady state. The formation of a steady state indicates that a large spontaneous order is formed; specifically, self-organization occurs. Computer simulations also reveal that such a steady state characteristically evolves toward a high-efficiency state through the development of highly ordered structures. These findings indicate that ORN provides a new method for developing high-function organized molecular systems, such as an efficient catalytic system in a composite of ORN and equilibrium molecular structures such as supramolecules and polymers.
Collapse
Affiliation(s)
- Yoshiharu Mukouyama
- Division of Science, College of Science and Engineering, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan
| | - Yoshihiro Nakato
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 560-8531, Toyonaka, Osaka, Japan
| |
Collapse
|
6
|
Ma J, Ma C, Huang X, de Araujo PHH, Goyal AK, Lu G, Feng C. Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. FUNDAMENTAL RESEARCH 2023; 3:93-101. [PMID: 38933561 PMCID: PMC11197544 DOI: 10.1016/j.fmre.2022.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Fragmentation/disassembly of fiber-like micelles generated by living crystalline-driven self-assembly (CDSA) is usually encountered in aqueous media, which hinders the applications of micelles. Herein, we report the generation of uniform fiber-like micelles consisting of a π-conjugated oligo(p-phenylenevinylene) core and a cross-linking silica shell with grafted poly(ethylene glycol) (PEG) chains by the combination of living CDSA, silica chemistry and surface grafting-onto strategy. Owing to the presence of crosslinking silica shell and the outmost PEG chains, the resulting micelles exhibit excellent dispersity and colloidal stability in PBS buffer, BSA aqueous solution and upon heating at 80 °C for 2 h without micellar fragmentation/disassembly. The micelles also show negligible cytotoxicity toward both HeLa cervical cancer and HEK239T human embryonic kidney cell lines. Interestingly, micelles with L n of 156 nm show the "stealth" property with no significant uptake by HeLa cells, whereas some certain amounts of micelles with L n of 535 nm can penetrate into HeLa cells, showing length-dependent cellular uptake behaviors. These results provide a route to prepare uniform, colloidally stable fiber-like nanostructures with tunable length and functions derived for biomedical applications.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pedro Henrique Hermes de Araujo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis-SC, 88040-970, SC, Brazil
| | - Amit Kumal Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Tehsil-Kishangarh-305 801 Distt.-Ajmer, Rajasthan, India
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Shi Y, Lv Q, Tao Y, Ma Y, Wang X. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022; 61:e202208768. [DOI: 10.1002/anie.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ying‐Li Shi
- Department of Electrical and Electronic Engineering Xi'an Jiaotong-Liverpool University Suzhou Jiangsu 215123 P. R. China
| | - Qiang Lv
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Chen Tao
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ying‐Xin Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong 255000 P. R. China
| | - Xue‐Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
8
|
Lei S, Tian J, Kang Y, Zhang Y, Manners I. AIE-Active, Stimuli-Responsive Fluorescent 2D Block Copolymer Nanoplatelets Based on Corona Chain Compression. J Am Chem Soc 2022; 144:17630-17641. [PMID: 36107414 DOI: 10.1021/jacs.2c07133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregation-induced emission (AIE) represents a powerful tool in nanoscience as a result of enhanced luminescence in the condensed state. Although AIEgenic materials have been utilized in a wide range of applications, well-defined self-assembled nanoparticles with tailorable and uniform dimensions and morphology remain challenging to access. Herein, we use the seeded growth, living crystallization-driven self-assembly (CDSA) method to prepare size-tunable and uniform AIE-active 2D nanoplatelets from amphiphilic block copolymer (BCP) precursors with a crystallizable core-forming block and a corona-forming block to which tetraphenylethene (TPE) groups were covalently grafted as AIE-active pendants. The nanoplatelets were formed as a result of a solvophobicity-induced 1D to 2D morphology preference change, which accompanied the seeded growth of a BCP with a quaternized corona-forming block bearing the TPE luminogen. The 2D nanoplatelets exhibited a solvent-responsive fluorescent emission, and examples with coronas containing homogeneously distributed AIE-active TPE groups and Hg(II)-capturing thymine units exhibited excellent performance as proof-of-concept "turn-on" sensors for Hg(II) detection with a rapid response, high selectivity, and a low detection limit (5-125 × 10-9 M, i.e., 1-25 ppb). The fluorescence intensity was found to be nonlinear with respect to analyte concentration and to increase with the area of the nanoplatelet. This behavior is consistent with a cooperative mechanism based on changes in the steric compression of the corona chains, which gives rise to a restriction of the intramolecular motion (RIM) effect.
Collapse
Affiliation(s)
- Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yuetong Kang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
9
|
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yilan Ye
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Shi YL, Lv Q, Tao YC, Ma YX, Wang XD. Design and Growth of Branched Organic Crystals: Recent Advances and Future Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying-Li Shi
- The University of Hong Kong Physics The University of Hong Kong 999077 Hong Kong HONG KONG
| | - Qiang Lv
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Yi-Chen Tao
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) CHINA
| | - Ying-Xin Ma
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xue-Dong Wang
- Soochow University Institute of Functional Nano and Soft Materials 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu 215123 Suzhou CHINA
| |
Collapse
|
11
|
Sun H, Chen S, Li X, Leng Y, Zhou X, Du J. Lateral growth of cylinders. Nat Commun 2022; 13:2170. [PMID: 35449206 PMCID: PMC9023456 DOI: 10.1038/s41467-022-29863-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The precise control of the shape, size and microstructure of nanomaterials is of high interest in chemistry and material sciences. However, living lateral growth of cylinders is still very challenging. Herein, we propose a crystallization-driven fusion-induced particle assembly (CD-FIPA) strategy to prepare cylinders with growing diameters by the controlled fusion of spherical micelles self-assembled from an amphiphilic homopolymer. The spherical micelles are heated upon glass transition temperature (Tg) to break the metastable state to induce the aggregation and fusion of the amorphous micelles to form crystalline cylinders. With the addition of extra spherical micelles, these micelles can attach onto and fuse with the cylinders, showing the living character of the lateral growth of cylinders. Computer simulations and mathematical calculations are preformed to reveal the total energy changes of the nanostructures during the self-assembly and CD-FIPA process. Overall, we demonstrated a CD-FIPA concept for preparing cylinders with growing diameters.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China.
| | - Shuai Chen
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China. .,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China.
| |
Collapse
|
12
|
Shi B, Shen D, Li W, Wang G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol Rapid Commun 2022; 43:e2200071. [PMID: 35343014 DOI: 10.1002/marc.202200071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of copolymers containing crystallizable block in solution has received increasing attentions in the past few years. Various strategies including crystallization-driven self-assembly (CDSA) and polymerization-induced CDSA (PI-CDSA) have been widely developed. Abundant self-assembly morphologies were captured and advanced applications have been attempted. In this review, the synthetic strategies including the mechanisms and characteristics are highlighted, the survey on the advanced applications of crystalline nano-assemblies are collected. This review is hoped to depict a comprehensive outline for self-assembly of copolymers containing crystallizable block in recent years and to prompt the development of the self-assembly technology in interdisciplinary field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ding Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
13
|
Cai J, Manners I, Qiu H. "Self-Adaptive" Coassembly of Colloidal "Saturn-like" Host-Guest Complexes Enabled by Toroidal Micellar Rubber Bands. J Am Chem Soc 2022; 144:5734-5738. [PMID: 35324193 DOI: 10.1021/jacs.2c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The creation of inclusion complexes with "Saturn-like" geometries has attracted increasing attention for supramolecular systems, but expansion of the concept to nanoscale colloidal systems remains a challenge. Here, we report a strategy to assemble toroidal polyisoprene-b-poly(2-vinylpyridine) (PI-b-P2VP) block copolymer micelles with a PI core and a P2VP corona and inorganic (e.g., silica) nanoparticles of variable shape and dimensions into "Saturn-like" constructs with high fidelity and yield. The precise nesting of the nanoparticles between the toroidal building units is realized by virtue of hydrogen bonding and self-adaptive expansion of the flexible toroidal units enabled by a flexible, low Tg PI core. Once the toroidal units are cross-linked, the self-adaptive feature is lost and coassembly yields instead out-of-cavity bound nanoparticles. "Saturn-like" assemblies can also be formed along silica nanosphere-decorated cylindrical micelles or, alternatively, at the hydroxyl-functionalized termini of cylindrical micelles to yield colloidal [3]rotaxanes.
Collapse
Affiliation(s)
- Jiandong Cai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ian Manners
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
|
15
|
Lee D, Kim J, Ku KH, Li S, Shin JJ, Kim B. Poly(vinylpyridine)-Containing Block Copolymers for Smart, Multicompartment Particles. Polym Chem 2022. [DOI: 10.1039/d2py00150k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicompartment particles generated by the self-assembly of block copolymers (BCPs) have received considerable attention due to their unique morphologies and functionalities. A class of important building blocks for multicomponent particles...
Collapse
|
16
|
Ma J, Lu G, Huang X, Feng C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun (Camb) 2021; 57:13259-13274. [PMID: 34816824 DOI: 10.1039/d1cc04825b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Conjugated-polymer-based nanofibers (CPNFs) of controlled length, composition and morphology are promising for a broad range of emerging applications in optoelectronics, biomedicine and catalysis, owing to the morphological merits of fiber-like nanostructures and structural attributes of π-conjugated polymers. Living crystallization-driven self-assembly (CDSA) of π-conjugated-polymer-containing block copolymers (BCPs) has emerged as an efficient strategy to prepare CPNFs with precise dimensional and structural controllability by taking advantage of the crystallinity of π-conjugated polymers. In this review, recent advances in the generation of CPNFs have been highlighted. The influence of the structure of π-conjugated-polymer-containing BCPs and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CDSA of π-conjugated-polymer-containing BCPs. In addition, the properties of CPNFs as well as their potential applications have been illustrated. Finally, we put forward the current challenges and research directions in the field of CPNFs.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
17
|
Ferreira WT, Hong HA, Hess M, Adams JRG, Wood H, Bakun K, Tan S, Baccigalupi L, Ferrari E, Brisson A, Ricca E, Teresa Rejas M, Meijer WJJ, Soloviev M, Cutting SM. Micellar Antibiotics of Bacillus. Pharmaceutics 2021; 13:pharmaceutics13081296. [PMID: 34452257 PMCID: PMC8399155 DOI: 10.3390/pharmaceutics13081296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
Members of the Bacillus genus, particularly the “Bacillus subtilis group”, are known to produce amphipathic lipopeptides with biosurfactant activity. This includes the surfactins, fengycins and iturins that have been associated with antibacterial, antifungal, and anti-viral properties. We have screened a large collection of Bacillus, isolated from human, animal, estuarine water and soil samples and found that the most potent lipopeptide producers are members of the species Bacillus velezensis. B. velezensis lipopeptides exhibited anti-bacterial activity which was localised on the surface of both vegetative cells and spores. Interestingly, lipopeptide micelles (6–10 nm diameter) were detectable in strains exhibiting the highest levels of activity. Micelles were stable (heat and gastric stable) and shown to entrap other antimicrobials produced by the host bacterium (exampled here was the dipeptide antibiotic chlorotetaine). Commercially acquired lipopeptides did not exhibit similar levels of inhibitory activity and we suspect that micelle formation may relate to the particular isomeric forms produced by individual bacteria. Using naturally produced micelle formulations we demonstrated that they could entrap antimicrobial compounds (e.g., clindamycin, vancomycin and resveratrol). Micellar incorporation of antibiotics increased activity. Bacillus is a prolific producer of antimicrobials, and this phenomenon could be exploited naturally to augment antimicrobial activity. From an applied perspective, the ability to readily produce Bacillus micelles and formulate with drugs enables a possible strategy for enhanced drug delivery.
Collapse
Affiliation(s)
- William T. Ferreira
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Huynh A. Hong
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Mateusz Hess
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - James R. G. Adams
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Hannah Wood
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK; (H.W.); (K.B.)
| | - Karolina Bakun
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK; (H.W.); (K.B.)
| | - Sisareuth Tan
- Laboratoire d’Imagerie Moléculaire et Nano-Bio-Technologie, UMR-CBMN CNRS-Université de Bordeaux-IPB, 33607 Pessac, France; (S.T.); (A.B.)
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80126 Napoli, Italy;
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK;
| | - Alain Brisson
- Laboratoire d’Imagerie Moléculaire et Nano-Bio-Technologie, UMR-CBMN CNRS-Université de Bordeaux-IPB, 33607 Pessac, France; (S.T.); (A.B.)
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80126 Napoli, Italy;
| | - María Teresa Rejas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain; (M.T.R.); (W.J.J.M.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain; (M.T.R.); (W.J.J.M.)
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Simon M. Cutting
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK; (H.W.); (K.B.)
- Correspondence:
| |
Collapse
|
18
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
19
|
Shyshov O, Haridas SV, Pesce L, Qi H, Gardin A, Bochicchio D, Kaiser U, Pavan GM, von Delius M. Living supramolecular polymerization of fluorinated cyclohexanes. Nat Commun 2021; 12:3134. [PMID: 34035277 PMCID: PMC8149861 DOI: 10.1038/s41467-021-23370-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.
Collapse
Affiliation(s)
| | | | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Dresden, Germany
| | - Andrea Gardin
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland
- Department of Physics, Università degli studi di Genova, Genova, Italy
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano-Viganello, Switzerland.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Ulm, Germany.
| |
Collapse
|
20
|
Hu R, Gao L, Cai C, Lin J, Chen Z, Wang L. Intermicellar Polymerization and Intramicellar Cyclization: A Supramolecular Ring–Chain Competition Reaction. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rui Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zuowei Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Luo M, Jin B, Luo Y, Li X. Supramicellar Nanofibrils with End-to-End Coupled Uniform Cylindrical Micelle Subunits via One-Step Assembly from a Liquid Crystalline Block Copolymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mingyan Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bixin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
- Experimental Centre of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
23
|
Hils C, Manners I, Schöbel J, Schmalz H. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers (Basel) 2021; 13:1481. [PMID: 34064413 PMCID: PMC8125556 DOI: 10.3390/polym13091481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable block has emerged to be a powerful and highly relevant method for the production of one- and two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This gives access to a multitude of potential applications, from hierarchical self-assembly to complex superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization. Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized, alternating corona segmentation, are highly interesting, as this feature provides striking advantages concerning interfacial activity, functionalization, and confinement effects. Hence, this review aims to provide an overview of the current state of the art with respect to self-assembly concepts, properties, and applications of patchy micelles with crystalline cores formed by CDSA. We have also included a more general discussion on the CDSA process and highlight block-type co-micelles as a special type of patchy micelle, due to similarities of the corona structure if the size of the blocks is well below 100 nm.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Judith Schöbel
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany;
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
24
|
Zhang Y, Pearce S, Eloi JC, Harniman RL, Tian J, Cordoba C, Kang Y, Fukui T, Qiu H, Blackburn A, Richardson RM, Manners I. Dendritic Micelles with Controlled Branching and Sensor Applications. J Am Chem Soc 2021; 143:5805-5814. [DOI: 10.1021/jacs.1c00770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jean-Charles Eloi
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Cristina Cordoba
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8P 1A1, Canada
| | - Yuetong Kang
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Tomoya Fukui
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Huibin Qiu
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 201210, China
| | - Arthur Blackburn
- Department of Physics and Astronomy, University of Victoria, Victoria BC V8P 1A1, Canada
| | - Robert M. Richardson
- H H Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
25
|
MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021; 12:4661-4682. [PMID: 34163727 PMCID: PMC8179577 DOI: 10.1039/d0sc06878k] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 μm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
Collapse
Affiliation(s)
- Liam MacFarlane
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Jiandong Cai
- Department of Chemistry, University of Victoria British Columbia Canada
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ian Manners
- Department of Chemistry, University of Victoria British Columbia Canada
| |
Collapse
|
26
|
Peterson GI, Yang S, Choi TL. Direct formation of nano-objects via in situ self-assembly of conjugated polymers. Polym Chem 2021. [DOI: 10.1039/d0py01389g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of the polymer self-assembly method “in situ nanoparticlization of conjugated polymers” is discussed in this Perspective.
Collapse
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Sanghee Yang
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
27
|
Ma C, Wang Z, Huang X, Lu G, Manners I, Winnik MA, Feng C. Water-Dispersible, Colloidally Stable, Surface-Functionalizable Uniform Fiberlike Micelles Containing a π-Conjugated Oligo(p-phenylenevinylene) Core of Controlled Length. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
28
|
Hicks GEJ, Jarrett-Wilkins CN, Panchuk JR, Manion JG, Seferos DS. Oxidation promoted self-assembly of π-conjugated polymers. Chem Sci 2020; 11:6383-6392. [PMID: 34094104 PMCID: PMC8159418 DOI: 10.1039/d0sc00806k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Self-assembly is an attractive strategy for organizing molecules into ordered structures that can span multiple length scales. Crystallization Driven Self-Assembly (CDSA) involves a block copolymer with a crystallizable core-forming block and an amorphous corona-forming block that aggregate into micelles with a crystalline core in solvents that are selective for the corona block. CDSA requires core- and corona-forming blocks with very different solubilities. This hinders its use for the self-assembly of purely π-conjugated block copolymers since blocks with desirable optoelectronic properties tend to have similar solubilities. Further, this approach is not readily reversible, precluding stimulus-responsive assembly and disassembly. Here, we demonstrate that selective oxidative doping of one block of a fully π-conjugated block copolymer promotes the self-assembly of redox-responsive micelles. Heteroatom substitution in polychalcogenophenes enables the modulation of the intrinsic polymer oxidation potential. We show that oxidized micelles with a narrow size distribution form spontaneously and disassemble in response to a chemical reductant. This method expands the scope of π-conjugated polymers that can undergo controlled self-assembly and introduces reversible, redox-responsive self-assembly of π-conjugated polymers.
Collapse
Affiliation(s)
- Garion E J Hicks
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Charles N Jarrett-Wilkins
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jenny R Panchuk
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Joseph G Manion
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Dwight S Seferos
- Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
29
|
Tao D, Wang Z, Huang X, Tian M, Lu G, Manners I, Winnik MA, Feng C. Continuous and Segmented Semiconducting Fiber-like Nanostructures with Spatially Selective Functionalization by Living Crystallization-Driven Self-Assembly. Angew Chem Int Ed Engl 2020; 59:8232-8239. [PMID: 32022396 DOI: 10.1002/anie.202000327] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 11/11/2022]
Abstract
Fiber-like π-conjugated nanostructures are important components of flexible organic electronic and optoelectronic devices. To broaden the range of potential applications, one needs to control not only the length of these nanostructures, but the introduction of diverse functionality with spatially selective control. Here we report the synthesis of a crystalline-coil block copolymer of oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) (OPV5 -b-P2VP44 ), in which the basicity and coordinating/chelating ability of the P2VP segment provide a landscape for the incorporation of a variety of functional inorganic NPs. Through a self-seeding strategy, we were able to prepare monodisperse fiber-like micelles of OPV5 -b-P2VP44 with lengths ranging from 50 to 800 nm. Significantly, the exposed two ends of OPV core of these fiber-like micelles remained active toward further epitaxial deposition of OPV5 -b-PNIPAM49 and OPV5 -b-P2VP44 to generate uniform A-B-A and B-A-B-A-B segmented block comicelles with tunable lengths for each block. The P2VP domains in these (co-)micelles can be selectively decorated with inorganic and polymeric nanoparticles as well as metal oxide coatings, to afford hybrid fiber-like nanostructures. This work provides a versatile strategy toward the fabrication of narrow length dispersity continuous and segmented π-conjugated OPV-containing fiber-like micelles with the capacity to be decorated in a spatially selective way with varying functionalities.
Collapse
Affiliation(s)
- Daliao Tao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Mingwei Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
30
|
Tao D, Wang Z, Huang X, Tian M, Lu G, Manners I, Winnik MA, Feng C. Continuous and Segmented Semiconducting Fiber‐like Nanostructures with Spatially Selective Functionalization by Living Crystallization‐Driven Self‐Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daliao Tao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mingwei Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Ian Manners
- Department of ChemistryUniversity of Victoria 3800 Finnerty Road Victoria BC V8P 5C2 Canada
| | - Mitchell A. Winnik
- Department of ChemistryUniversity of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto Toronto ON M5S 3E2 Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional MoleculesCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
31
|
Cui Y, Wang Z, Huang X, Lu G, Manners I, Winnik MA, Feng C. How a Small Change of Oligo(p-phenylenevinylene) Chain Length Affects Self-Seeding of Oligo(p-phenylenevinylene)-Containing Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
32
|
Tao D, Cui Y, Huang X, Lu G, Manners I, Winnik MA, Feng C. Mechanistic study of the formation of fiber-like micelles with a π-conjugated oligo(p-phenylenevinylene) core. J Colloid Interface Sci 2020; 560:50-58. [DOI: 10.1016/j.jcis.2019.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022]
|
33
|
Hils C, Dulle M, Sitaru G, Gekle S, Schöbel J, Frank A, Drechsler M, Greiner A, Schmalz H. Influence of patch size and chemistry on the catalytic activity of patchy hybrid nonwovens. NANOSCALE ADVANCES 2020; 2:438-452. [PMID: 36133996 PMCID: PMC9419548 DOI: 10.1039/c9na00607a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 06/16/2023]
Abstract
In this work, we provide a detailed study on the influence of patch size and chemistry on the catalytic activity of patchy hybrid nonwovens in the gold nanoparticle (Au NP) catalysed alcoholysis of dimethylphenylsilane in n-butanol. The nonwovens were produced by coaxial electrospinning, employing a polystyrene solution as the core and a dispersion of spherical or worm-like patchy micelles with functional, amino group-bearing patches (dimethyl and diisopropyl amino groups as anchor groups for Au NP) as the shell. Subsequent loading by dipping into a dispersion of preformed Au NPs yields the patchy hybrid nonwovens. In terms of NP stabilization, i.e., preventing agglomeration, worm-like micelles with poly(N,N-dimethylaminoethyl methacrylamide) (PDMA) patches are most efficient. Kinetic studies employing an extended 1st order kinetics model, which includes the observed induction periods, revealed a strong dependence on the accessibility of the Au NPs' surface to the reactants. The accessibility is controlled by the swellability of the functional patches in n-butanol, which depends on both patch chemistry and size. As a result, significantly longer induction (t ind) and reaction (t R) times were observed for the 1st catalysis cycles in comparison to the 10th cycles and nonwovens with more polar PDMA patches show a significantly lower t R in the 1st catalysis cycle. Thus, the unique patchy surface structure allows tailoring the properties of this "tea-bag"-like catalyst system in terms of NP stabilization and catalytic performance, which resulted in a significant reduction of t R to about 4 h for an optimized system.
Collapse
Affiliation(s)
- Christian Hils
- Macromolecular Chemistry II, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Martin Dulle
- JCNS-1/ICS-1, Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Gabriel Sitaru
- Biofluid Simulation and Modeling, Theoretische Physik VI, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Judith Schöbel
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4, 9747 AG Groningen The Netherlands
| | - Andreas Frank
- Macromolecular Chemistry I, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Markus Drechsler
- Bavarian Polymer Institute, Keylab Optical and Electron Microscopy, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Andreas Greiner
- Macromolecular Chemistry II, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
- Bavarian Polymer Institute, Keylab Synthesis and Molecular Characterization, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Holger Schmalz
- Macromolecular Chemistry II, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
- Bavarian Polymer Institute, Keylab Synthesis and Molecular Characterization, University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
34
|
Kitamoto Y, Pan Z, Prabhu DD, Isobe A, Ohba T, Shimizu N, Takagi H, Haruki R, Adachi SI, Yagai S. One-shot preparation of topologically chimeric nanofibers via a gradient supramolecular copolymerization. Nat Commun 2019; 10:4578. [PMID: 31594942 PMCID: PMC6783438 DOI: 10.1038/s41467-019-12654-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/20/2019] [Indexed: 01/12/2023] Open
Abstract
Supramolecular polymers have emerged in the last decade as highly accessible polymeric nanomaterials. An important step toward finely designed nanomaterials with versatile functions, such as those of natural proteins, is intricate topological control over their main chains. Herein, we report the facile one-shot preparation of supramolecular copolymers involving segregated secondary structures. By cooling non-polar solutions containing two monomers that individually afford helically folded and linearly extended secondary structures, we obtain unique nanofibers with coexisting distinct secondary structures. A spectroscopic analysis of the formation process of such topologically chimeric fibers reveals that the monomer composition varies gradually during the polymerization due to the formation of heteromeric hydrogen-bonded intermediates. We further demonstrate the folding of these chimeric fibers by light-induced deformation of the linearly extended segments.
Collapse
Affiliation(s)
- Yuichi Kitamoto
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Ziyan Pan
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Deepak D Prabhu
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Tomonori Ohba
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
35
|
Jarrett-Wilkins CN, Musgrave RA, Hailes RLN, Harniman RL, Faul CFJ, Manners I. Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Rebecca A. Musgrave
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Rebekah L. N. Hailes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
36
|
Zhao X, Shan G. PSMA-b-PNIPAM copolymer micelles with both a hydrophobic segment and a hydrophilic terminal group: synthesis, micelle formation, and characterization. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04556-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Hierarchical self-assembly of organic heterostructure nanowires. Nat Commun 2019; 10:3839. [PMID: 31451699 PMCID: PMC6710268 DOI: 10.1038/s41467-019-11731-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022] Open
Abstract
Organic heterostructures (OHSs) integrating the intrinsic heterostructure characters as well as the organic semiconductor properties have attracted intensive attention in material chemistry. However, the precise bottom-up synthesis of OHSs is still challenging owing to the general occurrence of homogeneous-nucleation and the difficult manipulation of noncovalent interactions. Herein, we present the rational synthesis of the longitudinally/horizontally-epitaxial growth of one-dimensional OHSs including triblock and core/shell nanowires with quantitatively-manipulated microstructure via a hierarchical self-assembly method by regulating the noncovalent interactions: hydrogen bond (−15.66 kcal mol−1) > halogen bond (−4.90 kcal mol−1) > π-π interaction (−0.09 kcal mol−1). In the facet-selective epitaxial growth strategy, the lattice-matching and the surface-interface energy balance respectively facilitate the realization of triblock and core/shell heterostructures. This hierarchical self-assembly approach opens up avenues to the fine synthesis of OHSs. We foresee application possibilities in integrated optoelectronics, such as the nanoscale multiple input/out optical logic gate with high-fidelity signal. Organic heterostructures attract attention in material chemistry but the precise bottom-up synthesis is still challenging. Herein the authors present a hierarchical self-assembly approach to synthesize one-dimensional organic heterostructures by regulating the noncovalent interactions.
Collapse
|
38
|
Wagner W, Wehner M, Stepanenko V, Würthner F. Supramolecular Block Copolymers by Seeded Living Polymerization of Perylene Bisimides. J Am Chem Soc 2019; 141:12044-12054. [PMID: 31304748 DOI: 10.1021/jacs.9b04935] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Living covalent polymerization has been a subject of intense research for many decades and has culminated in the synthesis of a large variety of block copolymers (BCPs) with structural and functional diversity. In contrast, the research on supramolecular BCPs is still in its infancy and their generation by living processes remains a challenge. Here we report the formation of supramolecular block copolymers by two-component seeded living polymerization of properly designed perylene bisimides (PBIs) under precise kinetic control. Our detailed studies on thermodynamically and kinetically controlled supramolecular polymerization of three investigated PBIs, which contain hydrogen-bonding amide side groups in imide position and chlorine, methoxy, or methylthio substituents in 1,7 bay-positions, revealed that these PBIs form kinetically metastable H-aggregates, which can be transformed into the thermodynamically favored J-aggregates by seed-induced living polymerization. We show here that copolymerization of kinetically trapped states of one PBI with seeds of another PBI leads to the formation of supramolecular block copolymers by chain-growth process from the seed termini as confirmed by UV/vis spectroscopy and atomic force microscopy (AFM). This work demonstrates for the first time the formation of triblock supramolecular polymer architectures with A-B-A and B-A-B block pattern by alternate two-component seeded polymerization in a living manner.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany.,Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Marius Wehner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany.,Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany.,Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| |
Collapse
|
39
|
Wang Y, Shao F, Sauvé ER, Tonge CM, Hudson ZM. Self-assembly of giant bottlebrush block copolymer surfactants from luminescent organic electronic materials. SOFT MATTER 2019; 15:5421-5430. [PMID: 31243420 DOI: 10.1039/c9sm00931k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bottlebrush copolymers have shown promise as building blocks for self-assembled nanomaterials due to their reduced chain entanglement relative to linear polymers and their ability to self-assemble with remarkably low critical micelle concentrations (CMCs). Concurrently, the preparation of bottlebrush polymers from organic electronic materials has recently been described, allowing multiple optoelectronic functions to be incorporated along the length of single bottlebrush strands. Here we describe the self-assembly of bottlebrush surfactants containing soluble n-butyl acrylate blocks and carbazole-based organic semiconductors, which self-assemble in selective solvent to give spherical micelles with CMCs below 54 nM. These narrowly dispersed structures were stable in solution at high dilution over periods of months, and could further be functionalized with fluorescent dyes to give micelles with quantum yields of 100%. These results demonstrate that bottlebrush-based nanostructures can be formed from organic semiconductor building blocks, opening the door to the preparation of fluorescent or redox-active micelles from giant polymeric surfactants.
Collapse
Affiliation(s)
- Yonghui Wang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Feng Shao
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Ethan R Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Christopher M Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
40
|
Introduction of Reversible Urethane Bonds Based on Vanillyl Alcohol for Efficient Self-Healing of Polyurethane Elastomers. Molecules 2019; 24:molecules24122201. [PMID: 31212813 PMCID: PMC6637387 DOI: 10.3390/molecules24122201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 11/21/2022] Open
Abstract
Urethane groups formed by reacting phenolic hydroxyl groups with isocyanates are known to be reversible at high temperatures. To investigate the intrinsic self-healing of polyurethane via a reversible urethane group, we synthesized vanillyl alcohol (VA)-based polyurethanes. The phenolic hydroxyl group of vanillyl alcohol allows the introduction of a reversible urethane group into the polyurethane backbone. Particularly, we investigated the effects of varying the concentration of reversible urethane groups on the self-healing of the polyurethane, and we proposed a method that improved the mobility of the molecules contributing to the self-healing process. The concentration of reversible urethane groups in the polyurethanes was controlled by varying the vanillyl alcohol content. Increasing the concentration of the reversible urethane group worsened the self-healing property by increasing hydrogen bonding and microphase separation, which consequently decreased the molecular mobility. On the other hand, after formulating a modified chain extender (m-CE), hydrogen bonding and microphase separation decreased, and the mobility (and hence the self-healing efficiency) of the molecules improved. In VA40-10 (40% VA; 10% m-CE) heated to 140 °C, the self-healing efficiency reached 96.5% after 30 min, a 139% improvement over the control polyurethane elastomer (PU). We conclude that the self-healing and mechanical properties of polyurethanes might be tailored for applications by adjusting the vanillyl alcohol content and modifying the chain extender.
Collapse
|
41
|
One-pot universal initiation-growth methods from a liquid crystalline block copolymer. Nat Commun 2019; 10:2397. [PMID: 31160633 PMCID: PMC6546696 DOI: 10.1038/s41467-019-10341-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 05/01/2019] [Indexed: 11/08/2022] Open
Abstract
The construction of hierarchical nanostructures with precise morphological and dimensional control has been one of the ultimate goals of contemporary materials science and chemistry, and the emulation of tailor-made nanoscale superstructures realized in the nature, using artificial building blocks, poses outstanding challenges. Herein we report a one-pot strategy to precisely synthesize hierarchical nanostructures through an in-situ initiation-growth process from a liquid crystalline block copolymer. The assembly process, analogous to living chain polymerization, can be triggered by small-molecule, macromolecule or even nanoobject initiators to produce various hierarchical superstructures with highly uniform morphologies and finely tunable dimensions. Because of the high degree of controllability and predictability, this assembly strategy opens the avenue to the design and construction of hierarchical structures with broad utility and accessibility.
Collapse
|
42
|
Adelizzi B, Van Zee NJ, de Windt LNJ, Palmans ARA, Meijer EW. Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization. J Am Chem Soc 2019; 141:6110-6121. [PMID: 30889358 DOI: 10.1021/jacs.9b01089] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular copolymers are an emerging class of materials, and in the last years their potential has been demonstrated on a broad scale. Implementing noncovalent polymers with multiple components can bring together useful features such as dynamicity and new functionalities. However, mastering and tuning the microstructure of these systems is still an open challenge. In this Perspective, we aim to trace the general principles of supramolecular copolymerization by analyzing them through the lens of the well-established field of covalent copolymerization. Our goal is to delineate guidelines to classify and analyze supramolecular copolymers in order to create a fruitful platform to design and investigate new multicomponent systems.
Collapse
Affiliation(s)
| | - Nathan J Van Zee
- Chimie Moléculaire, Macromoléculaire, et Matériaux, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI)-CNRS, UMR-7167 , Paris Sciences et Lettres (PSL) Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | |
Collapse
|
43
|
Toyoda R, Sakamoto R, Fukui N, Matsuoka R, Tsuchiya M, Nishihara H. A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification. SCIENCE ADVANCES 2019; 5:eaau0637. [PMID: 30613768 PMCID: PMC6314875 DOI: 10.1126/sciadv.aau0637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping.
Collapse
Affiliation(s)
- Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Naoya Fukui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryota Matsuoka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mizuho Tsuchiya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Oliver AM, Spontak RJ, Manners I. Solution self-assembly of ABC triblock terpolymers with a central crystallizable poly(ferrocenyldimethylsilane) core-forming segment. Polym Chem 2019. [DOI: 10.1039/c8py01830h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and solution self-assembly behavior of a range of linear ABC triblock terpolymers with a central crystallizable poly(ferrocenyldimethylsilane) core-forming segment have been explored.
Collapse
Affiliation(s)
- Alex M. Oliver
- Department of Chemistry
- University of Victoria
- Victoria
- Canada
- School of Chemistry
| | - Richard J. Spontak
- Departments of Chemical and Biomolecular Engineering and Materials Science and Engineering
- North Carolina State University
- Raleigh
- USA
| | - Ian Manners
- Department of Chemistry
- University of Victoria
- Victoria
- Canada
- School of Chemistry
| |
Collapse
|
45
|
Guerin G, Molev G, Pichugin D, Rupar PA, Qi F, Cruz M, Manners I, Winnik MA. Effect of Concentration on the Dissolution of One-Dimensional Polymer Crystals: A TEM and NMR Study. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gerald Guerin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Gregory Molev
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Paul A. Rupar
- School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
| | - Fei Qi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Menandro Cruz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
46
|
Qiu H, Oliver AM, Gwyther J, Cai J, Harniman RL, Hayward DW, Manners I. Uniform Toroidal Micelles via the Solution Self-Assembly of Block Copolymer–Homopolymer Blends Using a “Frustrated Crystallization” Approach. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Alex M. Oliver
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Jessica Gwyther
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jiandong Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Dominic W. Hayward
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
47
|
Lee DW, Kim HN, Lee DS. Design of Azomethine Diols for Efficient Self-Healing of Strong Polyurethane Elastomers. Molecules 2018; 23:E2928. [PMID: 30423985 PMCID: PMC6278415 DOI: 10.3390/molecules23112928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
Azomethine diols (AMDs) were synthesized by condensation between a terephthalic aldehyde, polyether diamine, and ethanol amine. The synthesized AMDs were employed to introduce azomethine groups into the backbones of polyurethane elastomers (PUEs). Different AMDs were designed to control the concentration and distribution of azomethine groups in PUEs. In this study, we explored the intrinsic self-healing of AMD-based PUEs by azomethine metathesis. Particularly, the effects of the concentration and distribution of the azomethine groups on the AMD-based PUEs were considered. Consequently, as the azomethine group concentration increased and the distribution became denser, the self-healing properties improved. With AMD3-40, the self-healing efficiency reached 86% at 130 °C after 30 min. This represents a 150% improvement over the control PUE. Additionally, as the AMD content increased, the mechanical properties improved. With AMD3-40, the tensile strength reached 50 MPa. Therefore, we concluded that the self-healing and mechanical properties of PUEs can potentially be tailored for applications by adjusting the concentration and design of AMD structure for PUEs.
Collapse
Affiliation(s)
- Dae-Woo Lee
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Jeonju 54896, Korea.
| | - Han-Na Kim
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Jeonju 54896, Korea.
| | - Dai-Soo Lee
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Jeonju 54896, Korea.
| |
Collapse
|
48
|
Schöbel J, Hils C, Weckwerth A, Schlenk M, Bojer C, Stuart MCA, Breu J, Förster S, Greiner A, Karg M, Schmalz H. Strategies for the selective loading of patchy worm-like micelles with functional nanoparticles. NANOSCALE 2018; 10:18257-18268. [PMID: 30238948 DOI: 10.1039/c8nr05935g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Block copolymer self-assembly in solution paves the way for the construction of well-defined compartmentalized nanostructures. These are excellent templates for the incorporation and stabilisation of nanoparticles (NPs), giving rise to highly relevant applications in the field of catalysis or sensing. However, the regio-selective incorporation of NPs in specific compartments is still an issue, especially concerning the loading with different NP types. Using crystallisation-driven self-assembly (CDSA), functional worm-like crystalline-core micelles (wCCMs) with a tailor-made, nanometre-sized patchy corona were prepared as versatile templates for the incorporation and stabilisation of metal and metal oxide NPs. Different strategies, like ligand exchange or co-precipitation of polymer stabilised NPs with one surface patch, were developed that allow the incorporation of NPs in specific regions of the patchy wCCM corona. Independent of the NP type and the incorporation method, the NPs showed no tendency for agglomeration and were fixed within the corona patches of the wCCMs. The binary loading of patchy micelles with metal and metal oxide NPs was realised by combining different loading strategies, yielding hybrids with homogeneously dispersed NPs guided by the patchy structure of the template.
Collapse
Affiliation(s)
- Judith Schöbel
- Makromolekulare Chemie II, Universität Bayreuth, 95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pelras T, Mahon CS, Nonappa, Ikkala O, Gröschel AH, Müllner M. Polymer Nanowires with Highly Precise Internal Morphology and Topography. J Am Chem Soc 2018; 140:12736-12740. [DOI: 10.1021/jacs.8b08870] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Théophile Pelras
- School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, 2006 New South Wales, Australia
- The University of Sydney Nano Institute, Sydney, 2006 New South Wales, Australia
| | - Clare S. Mahon
- School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, 2006 New South Wales, Australia
| | - Nonappa
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - André H. Gröschel
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Markus Müllner
- School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, 2006 New South Wales, Australia
- The University of Sydney Nano Institute, Sydney, 2006 New South Wales, Australia
| |
Collapse
|
50
|
Li L, Zhou F, Li Y, Chen X, Zhang Z, Zhou N, Zhu X. Cooperation of Amphiphilicity and Smectic Order in Regulating the Self-Assembly of Cholesterol-Functionalized Brush-Like Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11034-11041. [PMID: 30133294 DOI: 10.1021/acs.langmuir.8b01946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle morphology significantly affects the application of nanometer-scale materials. Understanding nanoparticle formation mechanisms and directing morphological control in nanoparticle self-assembly processes have received wide attention. Herein, a series of brush-like amphiphilic liquid crystalline block copolymers, PChEMA m- b-POEGMA n, containing cholesteryl mesogens with different hydrophobic/hydrophilic block ratios were designed and synthesized. The self-assembly behaviors of the resulting PChEMA m- b-POEGMA n block copolymers in different solvents (tetrahydrofuran/H2O, 1,4-dioxane/H2O, and N, N-dimethylformamide) were investigated in detail. Desirable micellar aggregates with well-organized architectures, including short cylindrical micelles, nanofibers, fringed platelets, and ellipsoidal vesicles with smectic micellar cores, were observed in 1,4-dioxane/H2O with an increasing hydrophobic block ratio. Although both amphiphilicity and smectic order governed the self-assembly, these two factors were differently balanced in the different solvents. This unique supramolecular system provides a new strategy for the design of advanced functional nanomaterials with tunable morphologies.
Collapse
Affiliation(s)
- Lishan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Feng Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Xiaofang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
- Global Institute of Software Technology , No. 5, Qingshan Road , Suzhou National Hi-Tech District, Suzhou 215163 , China
| |
Collapse
|