1
|
Zheng Q, Huang Y, Mu C, Hu X, Lai CSW. Selective Modulation of Fear Memory in Non-Rapid Eye Movement Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400662. [PMID: 39382074 PMCID: PMC11600212 DOI: 10.1002/advs.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/20/2024] [Indexed: 10/10/2024]
Abstract
Sleep stabilizes memories for their consolidation, but how to modify specific fear memory during sleep remains unclear. Here, it is reported that using targeted memory reactivation (TMR) to reactivate prior fear learning experience in non-slow wave sleep (NS) inhibits fear memory consolidation, while TMR during slow wave sleep (SWS) enhances fear memory in mice. Replaying conditioned stimulus (CS) during sleep affects sleep spindle occurrence, leading to the reduction or enhancement of slow oscillation-spindle (SO-spindle) coupling in NS and SWS, respectively. Optogenetic inhibition of pyramidal neurons in the frontal association cortex (FrA) during TMR abolishes the behavioral effects of NS-TMR and SWS-TMR by modulating SO-spindle coupling. Notably, calcium imaging of the L2/3 pyramidal neurons in the FrA shows that CS during SWS selectively enhances the activity of neurons previously activated during fear conditioning (FC+ neurons), which significantly correlates with CS-elicited spindle power spectrum density. Intriguingly, these TMR-induced calcium activity changes of FC+ neurons further correlate with mice freezing behavior, suggesting their contributions to the consolidation of fear memories. The findings indicate that TMR can selectively weaken or strengthen fear memory, in correlation with modulating SO-spindle coupling and the reactivation of FC+ neurons during substages of non-rapid eye movement (NREM) sleep.
Collapse
Affiliation(s)
- Qiyu Zheng
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong KongChina
| | - Yuhua Huang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Changrui Mu
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Xiaoqing Hu
- Department of PsychologyFaculty of Social SciencesThe University of Hong KongHong KongSARChina
- The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| | - Cora Sau Wan Lai
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong KongChina
- The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
2
|
Sifuentes Ortega R, Peigneux P. Does targeted memory reactivation during slow-wave sleep and rapid eye movement sleep have differential effects on mnemonic discrimination and generalization? Sleep 2024; 47:zsae114. [PMID: 38766994 DOI: 10.1093/sleep/zsae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Targeted memory reactivation (TMR), or the presentation of learning-related cues during sleep, has been shown to benefit memory consolidation for specific memory traces when applied during non-rapid eye movement (NREM) sleep. Prior studies suggest that TMR during rapid eye movement (REM) sleep may play a role in memory generalization processes, but evidence remains scarce. We tested the hypothesis that TMR exerts a differential effect on distinct mnemonic processes as a function of the sleep state (REM vs. NREM) in which TMR is delivered. Mnemonic discrimination and generalization of semantic categories were investigated using an adapted version of the Mnemonic Similarity Task, before and after sleep. Forty-eight participants encoded pictures from eight semantic categories, each associated with a sound. In the pre-sleep immediate test, they had to discriminate "old" (targets) from "similar" (lures) or "new" (foils) pictures. During sleep, half of the sounds were replayed in slow wave sleep (SWS) or REM sleep. Recognition, discrimination, and generalization memory indices were tested in the morning. These indices did not differ between SWS and REM TMR groups or reactivated and non-reactivated item categories. Additional results suggest a positive effect of TMR on performance for highly similar items mostly relying on mnemonic discrimination processes. During sleep, EEG activity after cue presentation increased in the delta-theta and sigma band in the SWS group, and in the beta band in the REM TMR group. These results do not support the hypothesis of differential processing of novel memory traces when TMR is administered in distinctive physiological sleep states.
Collapse
Affiliation(s)
- Rebeca Sifuentes Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
4
|
Yao Z, Xia T, Wei J, Zhang Z, Lin X, Zhang D, Qin P, Ma Y, Hu X. Reactivating cue approached positive personality traits during sleep promotes positive self-referential processing. iScience 2024; 27:110341. [PMID: 39055925 PMCID: PMC11269284 DOI: 10.1016/j.isci.2024.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
People preferentially endorse positive personality traits as more self-descriptive than negative ones, a positivity self-referential bias. Here, we investigated how to enhance positive self-referential processing, integrating wakeful cue-approach training task (CAT) and sleep-based targeted memory reactivation (TMR). In the CAT, participants gave speeded motor responses to cued positive personality traits. In a subsequent nap, we unobtrusively re-played half of the trained positive traits during slow-wave sleep (TMR). Upon awakening, CAT+TMR facilitated participants' speed in endorsing positive traits in immediate tests, and rendered participants endorse more positive traits as self-descriptive after one week. Notably, these enhancements were associated with the directionality of cue-related 1-4 Hz slow traveling waves (STW) that propagate across brain regions. Specifically, anterior-to-posterior backward STW was positively associated with these benefits, whereas forward STW showed negative associations. These findings demonstrate the potential benefits of integrated wakeful cue-approach training and sleep-based memory reactivation in strengthening positive self-referential processing.
Collapse
Affiliation(s)
- Ziqing Yao
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tao Xia
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jinwen Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Xuanyi Lin
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Center for Sleep & Circadian Biology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiaoqing Hu
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
5
|
Chen D, Xia T, Yao Z, Zhang L, Hu X. Modulating social learning-induced evaluation updating during human sleep. NPJ SCIENCE OF LEARNING 2024; 9:43. [PMID: 38971834 PMCID: PMC11227583 DOI: 10.1038/s41539-024-00255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
People often change their evaluations upon learning about their peers' evaluations, i.e., social learning. Given sleep's vital role in consolidating daytime experiences, sleep may facilitate social learning, thereby further changing people's evaluations. Combining a social learning task and the sleep-based targeted memory reactivation technique, we asked whether social learning-induced evaluation updating can be modulated during sleep. After participants had indicated their initial evaluation of snacks, they learned about their peers' evaluations while hearing the snacks' spoken names. During the post-learning non-rapid-eye-movement sleep, we re-played half of the snack names (i.e., cued snack) to reactivate the associated peers' evaluations. Upon waking up, we found that the social learning-induced evaluation updating further enlarged for both cued and uncued snacks. Examining sleep electroencephalogram (EEG) activity revealed that cue-elicited delta-theta EEG power and the overnight N2 sleep spindle density predicted post-sleep evaluation updating for cued but not for uncued snacks. These findings underscore the role of sleep-mediated memory reactivation and the associated neural activity in supporting social learning-induced evaluation updating.
Collapse
Affiliation(s)
- Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lingqi Zhang
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
6
|
Schreiner T, Griffiths BJ, Kutlu M, Vollmar C, Kaufmann E, Quach S, Remi J, Noachtar S, Staudigl T. Spindle-locked ripples mediate memory reactivation during human NREM sleep. Nat Commun 2024; 15:5249. [PMID: 38898100 PMCID: PMC11187142 DOI: 10.1038/s41467-024-49572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Memory consolidation relies in part on the reactivation of previous experiences during sleep. The precise interplay of sleep-related oscillations (slow oscillations, spindles and ripples) is thought to coordinate the information flow between relevant brain areas, with ripples mediating memory reactivation. However, in humans empirical evidence for a role of ripples in memory reactivation is lacking. Here, we investigated the relevance of sleep oscillations and specifically ripples for memory reactivation during human sleep using targeted memory reactivation. Intracranial electrophysiology in epilepsy patients and scalp EEG in healthy participants revealed that elevated levels of slow oscillation - spindle activity coincided with the read-out of experimentally induced memory reactivation. Importantly, spindle-locked ripples recorded intracranially from the medial temporal lobe were found to be correlated with the identification of memory reactivation during non-rapid eye movement sleep. Our findings establish ripples as key-oscillation for sleep-related memory reactivation in humans and emphasize the importance of the coordinated interplay of the cardinal sleep oscillations.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Merve Kutlu
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Vollmar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Remi
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
7
|
Siefert EM, Uppuluri S, Mu J, Tandoc MC, Antony JW, Schapiro AC. Memory Reactivation during Sleep Does Not Act Holistically on Object Memory. J Neurosci 2024; 44:e0022242024. [PMID: 38604779 PMCID: PMC11170671 DOI: 10.1523/jneurosci.0022-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation where some features are enhanced over others.
Collapse
Affiliation(s)
- Elizabeth M Siefert
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sindhuja Uppuluri
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jianing Mu
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marlie C Tandoc
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - James W Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, California 93407
| | - Anna C Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
8
|
Hoffman LJ, Foley JM, Tanrıverdi B, Chein J, Olson IR. Awake targeted memory reactivation doesn't work. Mem Cognit 2024:10.3758/s13421-024-01576-x. [PMID: 38744776 DOI: 10.3758/s13421-024-01576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Memories are pliable and can be biased by post-encoding information. In targeted memory reactivation (TMR) studies, participants encode information then sleep, during which time sounds or scents that were previously associated with the encoded images are re-presented in an effort to trigger reactivation of the associated memory traces. Upon subsequent testing, memory for reactivated items is often enhanced. Is sleep essential for this process? The literature on awake TMR is small and findings are mixed. Here, we asked English-speaking adults to learn Japanese vocabulary words. During a subsequent active rest phase, participants played Tetris while sound cues associated with the vocabulary words were presented. Results showed that when memories were reactivated, they were either disrupted (Experiment 1) or unaffected (Experiments 2, 3). These findings indicate that awake TMR is not beneficial, and may actually impair subsequent memory. These findings have important implications for research on memory consolidation and reactivation.
Collapse
Affiliation(s)
- Linda J Hoffman
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Julia M Foley
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Büşra Tanrıverdi
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Jason Chein
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
9
|
Guttesen AÁV, Denis D, Gaskell MG, Cairney SA. Delineating memory reactivation in sleep with verbal and non-verbal retrieval cues. Cereb Cortex 2024; 34:bhae183. [PMID: 38745557 PMCID: PMC11094403 DOI: 10.1093/cercor/bhae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep supports memory consolidation via the reactivation of newly formed memory traces. One way to investigate memory reactivation in sleep is by exposing the sleeping brain to auditory retrieval cues; a paradigm known as targeted memory reactivation. To what extent the acoustic properties of memory cues influence the effectiveness of targeted memory reactivation, however, has received limited attention. We addressed this question by exploring how verbal and non-verbal memory cues affect oscillatory activity linked to memory reactivation in sleep. Fifty-one healthy male adults learned to associate visual stimuli with spoken words (verbal cues) and environmental sounds (non-verbal cues). Subsets of the verbal and non-verbal memory cues were then replayed during sleep. The voice of the verbal cues was either matched or mismatched to learning. Memory cues (relative to unheard control cues) prompted an increase in theta/alpha and spindle power, which have been heavily implicated in sleep-associated memory processing. Moreover, verbal memory cues were associated with a stronger increase in spindle power than non-verbal memory cues. There were no significant differences between the matched and mismatched verbal cues. Our findings suggest that verbal memory cues may be most effective for triggering memory reactivation in sleep, as indicated by an amplified spindle response.
Collapse
Affiliation(s)
- Anna á V Guttesen
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| | - M Gareth Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| | - Scott A Cairney
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
10
|
Denis D, Payne JD. Targeted Memory Reactivation during Nonrapid Eye Movement Sleep Enhances Neutral, But Not Negative, Components of Memory. eNeuro 2024; 11:ENEURO.0285-23.2024. [PMID: 38769012 PMCID: PMC11140657 DOI: 10.1523/eneuro.0285-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Emotionally salient components of memory are preferentially remembered at the expense of accompanying neutral information. This emotional memory trade-off is enhanced over time, and possibly sleep, through a process of memory consolidation. Sleep is believed to benefit memory through a process of reactivation during nonrapid eye movement sleep (NREM). Here, targeted memory reactivation (TMR) was used to manipulate the reactivation of negative and neutral memories during NREM sleep. Thirty-one male and female participants encoded composite scenes containing either a negative or neutral object superimposed on an always neutral background. During NREM sleep, sounds associated with the scene object were replayed, and memory for object and background components was tested the following morning. We found that TMR during NREM sleep improved memory for neutral, but not negative scene objects. This effect was associated with sleep spindle activity, with a larger spindle response following TMR cues predicting TMR effectiveness for neutral items only. These findings therefore do not suggest a role of NREM memory reactivation in enhancing the emotional memory trade-off across a 12 h period but do align with growing evidence of spindle-mediated memory reactivation in service of neutral declarative memory.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom,
| | - Jessica D Payne
- Department of Psychology, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
11
|
Baselgia S, Kasten FH, Herrmann CS, Rasch B, Paβmann S. No Benefit in Memory Performance after Nocturnal Memory Reactivation Coupled with Theta-tACS. Clocks Sleep 2024; 6:211-233. [PMID: 38651390 PMCID: PMC11036246 DOI: 10.3390/clockssleep6020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Targeted memory reactivation (TMR) is an effective technique to enhance sleep-associated memory consolidation. The successful reactivation of memories by external reminder cues is typically accompanied by an event-related increase in theta oscillations, preceding better memory recall after sleep. However, it remains unclear whether the increase in theta oscillations is a causal factor or an epiphenomenon of successful TMR. Here, we used transcranial alternating current stimulation (tACS) to examine the causal role of theta oscillations for TMR during non-rapid eye movement (non-REM) sleep. Thirty-seven healthy participants learned Dutch-German word pairs before sleep. During non-REM sleep, we applied either theta-tACS or control-tACS (23 Hz) in blocks (9 min) in a randomised order, according to a within-subject design. One group of participants received tACS coupled with TMR time-locked two seconds after the reminder cue (time-locked group). Another group received tACS in a continuous manner while TMR cues were presented (continuous group). Contrary to our predictions, we observed no frequency-specific benefit of theta-tACS coupled with TMR during sleep on memory performance, neither for continuous nor time-locked stimulation. In fact, both stimulation protocols blocked the TMR-induced memory benefits during sleep, resulting in no memory enhancement by TMR in both the theta and control conditions. No frequency-specific effect was found on the power analyses of the electroencephalogram. We conclude that tACS might have an unspecific blocking effect on memory benefits typically observed after TMR during non-REM sleep.
Collapse
Affiliation(s)
- Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Florian H. Kasten
- Centre de Recherche Cerveau & Cognition, CNRS & Université Toulouse III Paul Sabatier, 31062 Toulouse, France;
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany;
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Sven Paβmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
12
|
Siefert E, Uppuluri S, Mu. J, Tandoc M, Antony J, Schapiro A. Memory reactivation during sleep does not act holistically on object memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571683. [PMID: 38168451 PMCID: PMC10760132 DOI: 10.1101/2023.12.14.571683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation process where some features are enhanced over others.
Collapse
Affiliation(s)
- E.M. Siefert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S. Uppuluri
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J. Mu.
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - M.C. Tandoc
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - A.C. Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
13
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
14
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Respiration modulates sleep oscillations and memory reactivation in humans. Nat Commun 2023; 14:8351. [PMID: 38110418 PMCID: PMC10728072 DOI: 10.1038/s41467-023-43450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The beneficial effect of sleep on memory consolidation relies on the precise interplay of slow oscillations and spindles. However, whether these rhythms are orchestrated by an underlying pacemaker has remained elusive. Here, we tested the relationship between respiration, which has been shown to impact brain rhythms and cognition during wake, sleep-related oscillations and memory reactivation in humans. We re-analysed an existing dataset, where scalp electroencephalography and respiration were recorded throughout an experiment in which participants (N = 20) acquired associative memories before taking a nap. Our results reveal that respiration modulates the emergence of sleep oscillations. Specifically, slow oscillations, spindles as well as their interplay (i.e., slow-oscillation_spindle complexes) systematically increase towards inhalation peaks. Moreover, the strength of respiration - slow-oscillation_spindle coupling is linked to the extent of memory reactivation (i.e., classifier evidence in favour of the previously learned stimulus category) during slow-oscillation_spindles. Our results identify a clear association between respiration and memory consolidation in humans and highlight the role of brain-body interactions during sleep.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marit Petzka
- Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Luo T, Liu C. The impact of feedback on metacognition: Enhancing in easy tasks, impeding in difficult ones. Conscious Cogn 2023; 116:103601. [PMID: 37951007 DOI: 10.1016/j.concog.2023.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Metacognition refers to the ability to monitor and introspect upon cognitive performance. Abundant research suggests that individual metacognition is easily affected by feedback in daily life, but how feedback affects metacognition in perceptual decision-making remains unclear. Here we investigated how trial-by-trial feedback shapes perceptual metacognition in two experiments with either high (n = 82) or low difficulty (n = 90). Participants were randomly divided into a feedback group in which participants received trial-by-trial performance feedback or a no-feedback group. Results showed that, in the high-difficulty task, participants in the feedback group revealed inferior metacognitive performance than the no-feedback group, manifested as decreased metacognitive efficiency while controlling for performance sensitivity. In the low-difficulty task, however, participants in the feedback group had higher metacognitive efficiency than the no-feedback group. The distinct patterns of findings in the two experiments indicate that whether feedback promotes or impedes metacognition is adjusted by task difficulty.
Collapse
Affiliation(s)
- Tieyong Luo
- School of Psychology, Shaanxi Normal University, China
| | - Cuizhen Liu
- School of Psychology, Shaanxi Normal University, China.
| |
Collapse
|
16
|
Liu J, Xia T, Chen D, Yao Z, Zhu M, Antony JW, Lee TMC, Hu X. Item-specific neural representations during human sleep support long-term memory. PLoS Biol 2023; 21:e3002399. [PMID: 37983253 PMCID: PMC10695382 DOI: 10.1371/journal.pbio.3002399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding how individual memories are reactivated during sleep is essential in theorizing memory consolidation. Here, we employed the targeted memory reactivation (TMR) paradigm to unobtrusively replaying auditory memory cues during human participants' slow-wave sleep (SWS). Using representational similarity analysis (RSA) on cue-elicited electroencephalogram (EEG), we found temporally segregated and functionally distinct item-specific neural representations: the early post-cue EEG activity (within 0 to 2,000 ms) contained comparable item-specific representations for memory cues and control cues, signifying effective processing of auditory cues. Critically, the later EEG activity (2,500 to 2,960 ms) showed greater item-specific representations for post-sleep remembered items than for forgotten and control cues, indicating memory reprocessing. Moreover, these later item-specific neural representations were supported by concurrently increased spindles, particularly for items that had not been tested prior to sleep. These findings elucidated how external memory cues triggered item-specific neural representations during SWS and how such representations were linked to successful long-term memory. These results will benefit future research aiming to perturb specific memory episodes during sleep.
Collapse
Affiliation(s)
- Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Tao Xia
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Danni Chen
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ziqing Yao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Minrui Zhu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - James W. Antony
- Department of Psychology & Child Development, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Tatia M. C. Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xiaoqing Hu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, People’s Republic of China
| |
Collapse
|
17
|
Wick A, Rasch B. Targeted memory reactivation during slow-wave sleep vs. sleep stage N2: no significant differences in a vocabulary task. Learn Mem 2023; 30:192-200. [PMID: 37726143 PMCID: PMC10547374 DOI: 10.1101/lm.053683.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
Sleep supports memory consolidation, and slow-wave sleep (SWS) in particular is assumed to benefit the consolidation of verbal learning material. Re-exposure to previously learned words during SWS with a technique known as targeted memory reactivation (TMR) consistently benefits memory. However, TMR has also been successfully applied during sleep stage N2, though a direct comparison between words selectively reactivated during SWS versus N2 is still missing. Here, we directly compared the effects of N2 TMR and SWS TMR on memory performance in a vocabulary learning task in a within-subject design. Thirty-four healthy young participants (21 in the main sample and 13 in an additional sample) learned 120 Dutch-German word pairs before sleep. Participants in the main sample slept for ∼8 h during the night, while participants in the additional sample slept ∼3 h. We reactivated the Dutch words selectively during N2 and SWS in one single night. Forty words were not cued. Participants in the main sample recalled the German translations of the Dutch words after sleep in the morning, while those in the additional sample did so at 2:00 a.m. As expected, we observed no differences in recall performance between words reactivated during N2 and SWS. However, we failed to find an overall memory benefit of reactivated over nonreactivated words. Detailed time-frequency analyses showed that words played during N2 elicited stronger characteristic oscillatory responses in several frequency bands, including spindle and theta frequencies, compared with SWS. These oscillatory responses did not vary with the memory strengths of individual words. Our results question the robustness and replicability of the TMR benefit on memory using our Dutch vocabulary learning task. We discuss potential boundary conditions for vocabulary reactivation paradigms and, most importantly, see the need for further replication studies, ideally including multiple laboratories and larger sample sizes.
Collapse
Affiliation(s)
- Anna Wick
- Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
18
|
Conessa A, Debarnot U, Siegler I, Boutin A. Sleep-related motor skill consolidation and generalizability after physical practice, motor imagery, and action observation. iScience 2023; 26:107314. [PMID: 37520714 PMCID: PMC10374463 DOI: 10.1016/j.isci.2023.107314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Sleep benefits the consolidation of motor skills learned by physical practice, mainly through periodic thalamocortical sleep spindle activity. However, motor skills can be learned without overt movement through motor imagery or action observation. Here, we investigated whether sleep spindle activity also supports the consolidation of non-physically learned movements. Forty-five electroencephalographic sleep recordings were collected during a daytime nap after motor sequence learning by physical practice, motor imagery, or action observation. Our findings reveal that a temporal cluster-based organization of sleep spindles underlies motor memory consolidation in all groups, albeit with distinct behavioral outcomes. A daytime nap offers an early sleep window promoting the retention of motor skills learned by physical practice and motor imagery, and its generalizability toward the inter-manual transfer of skill after action observation. Findings may further have practical impacts with the development of non-physical rehabilitation interventions for patients having to remaster skills following peripherical or brain injury.
Collapse
Affiliation(s)
- Adrien Conessa
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| | - Ursula Debarnot
- University Lyon, UCBL-Lyon 1, Inter-University Laboratory of Human Movement Biology, EA7424, 69622 Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Isabelle Siegler
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| | - Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- Université d’Orléans, CIAMS, 45067 Orléans, France
| |
Collapse
|
19
|
Xia T, Antony JW, Paller KA, Hu X. Targeted memory reactivation during sleep influences social bias as a function of slow-oscillation phase and delta power. Psychophysiology 2023; 60:e14224. [PMID: 36458473 PMCID: PMC10085833 DOI: 10.1111/psyp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
To understand how memories are reactivated and consolidated during sleep, experimenters have employed the unobtrusive re-presentation of memory cues from a variety of pre-sleep learning tasks. Using this procedure, known as targeted memory reactivation (TMR), we previously found that reactivation of counter-social-bias training during post-training sleep could selectively enhance training effects in reducing unintentional social biases. Here, we describe re-analyses of electroencephalographic (EEG) data from this previous study to characterize neurophysiological correlates of TMR-induced bias reduction. We found that TMR benefits in bias reduction were associated with (a) the timing of memory-related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b) cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was at a fixed rate in this study and not contingent on the slow-oscillation phase, cues were found to be clustered in slow-oscillation upstates for those participants with stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000 ms after cue onset was also linked with larger TMR benefits. These electrophysiological results substantiate the claim that memory reactivation altered social bias in the original study, while also informing neural explanations of these benefits. Future research should consider these sleep physiology parameters in relation to TMR applications and to memory reactivation in general.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
| | - James W. Antony
- Department of Psychology, Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, USA
| | - Ken A. Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
20
|
Whitmore NW, Paller KA. Sleep disruption by memory cues selectively weakens reactivated memories. Learn Mem 2023; 30:63-69. [PMID: 36921983 PMCID: PMC10027237 DOI: 10.1101/lm.053615.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
A widely accepted view in memory research is that recently stored information can be reactivated during sleep, leading to memory strengthening. Two recent studies have shown that this effect can be reversed in participants with highly disrupted sleep. To test whether weakening of reactivated memories can result directly from sleep disruption, in this experiment we varied the intensity of memory reactivation cues such that some produced sleep arousals. Prior to sleep, participants (local community members) learned the locations of 75 objects, each accompanied by a sound naturally associated with that object. Location recall was tested before and after sleep, and a subset of the sounds was presented during sleep to provoke reactivation of the corresponding locations. Reactivation with sleep arousal weakened memories, unlike the improvement typically found after reactivation without sleep arousal. We conclude that reactivated memories can be selectively weakened during sleep, and that memory reactivation may strengthen or weaken memories depending on additional factors such as concurrent sleep disruption.
Collapse
Affiliation(s)
- Nathan W Whitmore
- Department of Psychology, Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 02139, USA
- Fluid Interfaces Group, Massachusetts Institute of Technology, Cambridge, Massachusetts 60208, USA
| | - Ken A Paller
- Department of Psychology, Cognitive Neuroscience Program, Northwestern University, Evanston, Illinois 02139, USA
| |
Collapse
|
21
|
Abdellahi MEA, Koopman ACM, Treder MS, Lewis PA. Targeting targeted memory reactivation: Characteristics of cued reactivation in sleep. Neuroimage 2023; 266:119820. [PMID: 36535324 DOI: 10.1016/j.neuroimage.2022.119820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted memory reactivation (TMR) is a technique in which sensory cues associated with memories during wake are used to trigger memory reactivation during subsequent sleep. The characteristics of such cued reactivation, and the optimal placement of TMR cues, remain to be determined. We built an EEG classification pipeline that discriminated reactivation of right- and left-handed movements and found that cues which fall on the up-going transition of the slow oscillation (SO) are more likely to elicit a classifiable reactivation. We also used a novel machine learning pipeline to predict the likelihood of eliciting a classifiable reactivation after each TMR cue using the presence of spindles and features of SOs. Finally, we found that reactivations occurred either immediately after the cue or one second later. These findings greatly extend our understanding of memory reactivation and pave the way for development of wearable technologies to efficiently enhance memory through cueing in sleep.
Collapse
Affiliation(s)
- Mahmoud E A Abdellahi
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff CF24 4HQ, United Kingdom.
| | - Anne C M Koopman
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff CF24 4HQ, United Kingdom
| | - Matthias S Treder
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Penelope A Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
22
|
Xia T, Yao Z, Guo X, Liu J, Chen D, Liu Q, Paller KA, Hu X. Updating memories of unwanted emotions during human sleep. Curr Biol 2023; 33:309-320.e5. [PMID: 36584677 PMCID: PMC9979073 DOI: 10.1016/j.cub.2022.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Post-learning sleep contributes to memory consolidation. Yet it remains contentious whether sleep affords opportunities to modify or update emotional memories, particularly when people would prefer to forget those memories. Here, we attempted to update memories during sleep, using spoken positive words paired with cues to recent memories of aversive events. Affective updating using positive words during human non-rapid eye movement (NREM) sleep, compared with using neutral words instead, reduced negative affective judgments in post-sleep tests, suggesting that the recalled events were perceived as less aversive. Electroencephalogram (EEG) analyses showed that positive words modulated theta and spindle/sigma activity; specifically, to the extent that theta power was larger for the positive words than for the memory cues that followed, participants judged the memory cues less negatively. Moreover, to the extent that sigma power was larger for the positive words than for the memory cues that followed, participants forgot more episodic details about aversive events. Notably, when the onset of individual positive words coincided with the up-phase of slow oscillations (a state characterized by increased cortical excitability during NREM sleep), affective updating was more successful. In sum, we altered the affective content of memories via the strategic pairing of positive words and memory cues during sleep, linked with EEG theta power increases and the slow oscillation up-phase. These findings suggest novel possibilities for modifying unwanted memories during sleep, which would not require people to consciously confront memories that they prefer to avoid.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xue Guo
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian 116029, China.
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China.
| |
Collapse
|
23
|
Joensen BH, Harrington MO, Berens SC, Cairney SA, Gaskell MG, Horner AJ. Targeted memory reactivation during sleep can induce forgetting of overlapping memories. LEARNING & MEMORY (COLD SPRING HARBOR, N.Y.) 2022; 29:401-411. [PMID: 36253007 PMCID: PMC9578373 DOI: 10.1101/lm.053594.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Memory reactivation during sleep can shape new memories into a long-term form. Reactivation of memories can be induced via the delivery of auditory cues during sleep. Although this targeted memory reactivation (TMR) approach can strengthen newly acquired memories, research has tended to focus on single associative memories. It is less clear how TMR affects retention for overlapping associative memories. This is critical, given that repeated retrieval of overlapping associations during wake can lead to forgetting, a phenomenon known as retrieval-induced forgetting (RIF). We asked whether a similar pattern of forgetting occurs when TMR is used to cue reactivation of overlapping pairwise associations during sleep. Participants learned overlapping pairs—learned separately, interleaved with other unrelated pairs. During sleep, we cued a subset of overlapping pairs using TMR. While TMR increased retention for the first encoded pairs, memory decreased for the second encoded pairs. This pattern of retention was only present for pairs not tested prior to sleep. The results suggest that TMR can lead to forgetting, an effect similar to RIF during wake. However, this effect did not extend to memories that had been strengthened via retrieval prior to sleep. We therefore provide evidence for a reactivation-induced forgetting effect during sleep.
Collapse
Affiliation(s)
- Bárður H Joensen
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.,Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | | | - Sam C Berens
- School of Psychology, University of Sussex, Falmer BN1 9QH, United Kingdom
| | - Scott A Cairney
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| | - M Gareth Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York YO10 5DD, United Kingdom.,York Biomedical Research Institute, University of York, York YO10 5NG, United Kingdom
| |
Collapse
|
24
|
Grigg-Damberger MM, Foldvary-Schaefer N. Sleep Biomarkers Help Predict the Development of Alzheimer Disease. J Clin Neurophysiol 2022; 39:327-334. [PMID: 35239558 DOI: 10.1097/wnp.0000000000000818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY Middle-aged or older adults who self-report sleep-wake disorders are at an increased risk for incident dementia, mild cognitive impairment, and Alzheimer disease. Dementia in people with mild cognitive impairment and Alzheimer disease who complain of sleep-wake disorders progress faster than those without sleep-wake disorders. Removal of amyloid-beta and tau tangles occurs preferentially in non-rapid eye movement 3 sleep and fragmented or insufficient sleep may lead to accumulation of these neurotoxins even in preclinical stages. Selective atrophy in the medial temporal lobe on brain MRI has been shown to predict impaired coupling of slow oscillations and sleep spindles. Impaired slow wave-spindle coupling has been shown to correlate with impaired overnight memory consolidation. Whereas, a decrease in the amplitude of 0.6 to 1 Hz slow wave activity predicts higher cortical Aβ burden on amyloid PET scans. Overexpression of the wake-promoting neurotransmitter orexin may predispose patients with mild cognitive impairment and Alzheimer disease to increased wakefulness, decreasing time they need to clear from the brain the neurotoxic accumulation of amyloid-beta and especially tau. More research exploring these relationships is needed and continuing.
Collapse
|
25
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
26
|
Wang JY, Heck KL, Born J, Ngo HVV, Diekelmann S. No difference between slow oscillation up- and down-state cueing for memory consolidation during sleep. J Sleep Res 2022; 31:e13562. [PMID: 35166422 DOI: 10.1111/jsr.13562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
The beneficial effects of sleep for memory consolidation are assumed to rely on the reactivation of memories in conjunction with the coordinated interplay of sleep rhythms like slow oscillations and spindles. Specifically, slow oscillations are assumed to provide the temporal frame for spindles to occur in the slow oscillations up-states, enabling a redistribution of reactivated information within hippocampal-neocortical networks for long-term storage. Memory reactivation can also be triggered externally by presenting learning-associated cues (like odours or sounds) during sleep, but it is presently unclear whether there is an optimal time-window for the presentation of such cues in relation to the phase of the slow oscillations. In the present within-subject comparison, participants (n = 16) learnt word-pairs visually presented with auditory cues of the first syllable. These syllables were subsequently used for real-time cueing either in the up- or down-state of endogenous slow oscillations. Contrary to our hypothesis, we found differences in memory performance neither between up- and down-state cueing, nor between word-pairs that were cued versus uncued. In the up-state cueing condition, higher amounts of rapid eye movement sleep were associated with better memory for cued contents, whereas higher amounts of slow-wave sleep were associated with better memory for uncued contents. Evoked response analyses revealed signs of cue processing in both conditions. Interestingly, both up- and down-state cueing evoked a similar spindle response with the induced slow oscillations up-state at ~1000 ms post-cue. We speculate that our cueing procedure triggered generalised reactivation processes that facilitated the consolidation of both cued and uncued memories irrespective of the slow oscillation phase.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany.,State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Katharina L Heck
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University Tübingen, Tübingen, Germany
| | - Hong-Viet V Ngo
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Hubbard RJ, Zadeh I, Jones AP, Robert B, Bryant NB, Clark VP, Pilly PK. Brain connectivity alterations during sleep by closed-loop transcranial neurostimulation predict metamemory sensitivity. Netw Neurosci 2021; 5:734-756. [PMID: 34746625 PMCID: PMC8567828 DOI: 10.1162/netn_a_00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/15/2021] [Indexed: 12/23/2022] Open
Abstract
Metamemory involves the ability to correctly judge the accuracy of our memories. The retrieval of memories can be improved using transcranial electrical stimulation (tES) during sleep, but evidence for improvements to metamemory sensitivity is limited. Applying tES can enhance sleep-dependent memory consolidation, which along with metamemory requires the coordination of activity across distributed neural systems, suggesting that examining functional connectivity is important for understanding these processes. Nevertheless, little research has examined how functional connectivity modulations relate to overnight changes in metamemory sensitivity. Here, we developed a closed-loop short-duration tES method, time-locked to up-states of ongoing slow-wave oscillations, to cue specific memory replays in humans. We measured electroencephalographic (EEG) coherence changes following stimulation pulses, and characterized network alterations with graph theoretic metrics. Using machine learning techniques, we show that pulsed tES elicited network changes in multiple frequency bands, including increased connectivity in the theta band and increased efficiency in the spindle band. Additionally, stimulation-induced changes in beta-band path length were predictive of overnight changes in metamemory sensitivity. These findings add new insights into the growing literature investigating increases in memory performance through brain stimulation during sleep, and highlight the importance of examining functional connectivity to explain its effects. Numerous studies have demonstrated a clear link between sleep and memory—namely, memories are consolidated during sleep, leading to more stable and long-lasting representations. We have previously shown that tagging episodes with specific patterns of brain stimulation during encoding and replaying those patterns during sleep can enhance this consolidation process to improve confidence and decision-making of memories (metamemory). Here, we extend this work to examine network-level brain changes that occur following stimulation during sleep that predict metamemory improvements. Using graph theoretic and machine-learning methods, we found that stimulation-induced changes in beta-band path length predicted overnight improvements in metamemory. This novel finding sheds new light on the neural mechanisms of memory consolidation and suggests potential applications for improving metamemory.
Collapse
Affiliation(s)
- Ryan J Hubbard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Iman Zadeh
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Aaron P Jones
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Natalie B Bryant
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| |
Collapse
|
28
|
Samanta A, van Rongen LS, Rossato JI, Jacobse J, Schoenfeld R, Genzel L. Sleep Leads to Brain-Wide Neural Changes Independent of Allocentric and Egocentric Spatial Training in Humans and Rats. Cereb Cortex 2021; 31:4970-4985. [PMID: 34037203 PMCID: PMC8491695 DOI: 10.1093/cercor/bhab135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
Sleep is important for memory consolidation and systems consolidation in particular, which is thought to occur during sleep. While there has been a significant amount of research regarding the effect of sleep on behavior and certain mechanisms during sleep, evidence that sleep leads to consolidation across the system has been lacking until now. We investigated the role of sleep in the consolidation of spatial memory in both rats and humans using a watermaze task involving allocentric- and egocentric-based training. Analysis of immediate early gene expression in rodents, combined with functional magnetic resonance imaging in humans, elucidated similar behavioral and neural effects in both species. Sleep had a beneficial effect on behavior in rats and a marginally significant effect in humans. Interestingly, sleep led to changes across multiple brain regions at the time of retrieval in both species and in both training conditions. In rats, sleep led to increased gene expression in the hippocampus, striatum, and prefrontal cortex. In the humans, sleep led to an activity increase in brain regions belonging to the executive control network and a decrease in activity in regions belonging to the default mode network. Thus, we provide cross-species evidence for system-level memory consolidation occurring during sleep.
Collapse
Affiliation(s)
- Anumita Samanta
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Laurens S van Rongen
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands
| | - Janine I Rossato
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Justin Jacobse
- Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| | - Robby Schoenfeld
- Institute of Psychology, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Lisa Genzel
- Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6500GL, Netherlands.,Centre for Cognitive and Neural Systems, The University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Carbone J, Bibián C, Reischl P, Born J, Forcato C, Diekelmann S. The effect of zolpidem on targeted memory reactivation during sleep. Learn Mem 2021; 28:307-318. [PMID: 34400532 PMCID: PMC8372567 DOI: 10.1101/lm.052787.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
According to the active system consolidation theory, memory consolidation during sleep relies on the reactivation of newly encoded memory representations. This reactivation is orchestrated by the interplay of sleep slow oscillations, spindles, and theta, which are in turn modulated by certain neurotransmitters like GABA to enable long-lasting plastic changes in the memory store. Here we asked whether the GABAergic system and associated changes in sleep oscillations are functionally related to memory reactivation during sleep. We administered the GABAA agonist zolpidem (10 mg) in a double-blind placebo-controlled study. To specifically focus on the effects on memory reactivation during sleep, we experimentally induced such reactivations by targeted memory reactivation (TMR) with learning-associated reminder cues presented during post-learning slow-wave sleep (SWS). Zolpidem significantly enhanced memory performance with TMR during sleep compared with placebo. Zolpidem also increased the coupling of fast spindles and theta to slow oscillations, although overall the power of slow spindles and theta was reduced compared with placebo. In an uncorrected exploratory analysis, memory performance was associated with slow spindle responses to TMR in the zolpidem condition, whereas it was associated with fast spindle responses in placebo. These findings provide tentative first evidence that GABAergic activity may be functionally implicated in memory reactivation processes during sleep, possibly via its effects on slow oscillations, spindles and theta as well as their interplay.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Carlos Bibián
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Reischl
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Departamento de Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires C1106ACD, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Witkowski S, Noh S, Lee V, Grimaldi D, Preston AR, Paller KA. Does memory reactivation during sleep support generalization at the cost of memory specifics? Neurobiol Learn Mem 2021; 182:107442. [PMID: 33892076 PMCID: PMC8187329 DOI: 10.1016/j.nlm.2021.107442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/11/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Sleep is important for memory, but does it favor consolidation of specific details or extraction of generalized information? Both may occur together when memories are reactivated during sleep, or a loss of certain memory details may facilitate generalization. To examine these issues, we tested memory in participants who viewed landscape paintings by six artists. Paintings were cropped to show only a section of the scene. During a learning phase, each painting section was presented with the artist's name and with a nonverbal sound that had been uniquely associated with that artist. In a test of memory for specifics, participants were shown arrays of six painting sections, all by the same artist. Participants attempted to select the one that was seen in the learning phase. Generalization was tested by asking participants to view new paintings and, for each one, decide which of the six artists created it. After this testing, participants had a 90-minute sleep opportunity with polysomnographic monitoring. When slow-wave sleep was detected, three of the sound cues associated with the artists were repeatedly presented without waking the participants. After sleep, participants were again tested for memory specifics and generalization. Memory reactivation during sleep due to the sound cues led to a relative decline in accuracy on the specifics test, which could indicate the transition to a loss of detail that facilitates generalization, particularly details such as the borders. Generalization performance showed very little change after sleep and was unaffected by the sound cues. Although results tentatively implicate sleep in memory transformation, further research is needed to examine memory change across longer time periods.
Collapse
Affiliation(s)
- Sarah Witkowski
- Department of Psychology, Northwestern University, Evanston, IL, United States.
| | - Sharon Noh
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Victoria Lee
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Daniela Grimaldi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Alison R Preston
- Department of Psychology, University of Texas at Austin, Austin, TX, United States; Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States; Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
31
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nat Commun 2021; 12:3112. [PMID: 34035303 PMCID: PMC8149676 DOI: 10.1038/s41467-021-23520-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Sleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Marit Petzka
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
32
|
Picard-Deland C, Nielsen T. Targeted memory reactivation has a sleep stage-specific delayed effect on dream content. J Sleep Res 2021; 31:e13391. [PMID: 34018262 DOI: 10.1111/jsr.13391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/29/2022]
Abstract
Although new learning is known to reappear in later dream scenarios, the timing of such reappearances remains unclear. Sometimes, references to new learning occur relatively quickly, 1 day post-learning (day-residue effect); at other times there may be a substantive delay, 5-7 days, before such references appear (dream-lag effect). We studied temporal delays in dream reactivation following the learning of a virtual reality (VR) flying task using 10-day home sleep/dream logs, and how these might be influenced by targeted memory reactivation (TMR). Participants were exposed twice to a VR task in the sleep laboratory; once before and once after a 2-hr opportunity to nap (n = 65) or to read (n = 32). Auditory cues associated with the VR task were replayed in either wake, rapid eye movement (REM) sleep, slow-wave sleep (SWS) or were not replayed. Although we previously showed that TMR cueing did not have an immediate effect on dream content, in the present study we extend these results by showing that TMR in sleep has instead a delayed effect on task-dream reactivations: participants dreamed more about the task 1-2 days later when TMR was applied in REM sleep and 5-6 days later when it was applied in SWS sleep, compared to participants with no cueing. Findings may help explain the temporal relationships between dream and memory reactivations and clarify the occurrence of day-residue and dream-lag phenomena.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream and Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Tore Nielsen
- Dream and Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Department of Psychiatry and Addictology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
33
|
Picard-Deland C, Aumont T, Samson-Richer A, Paquette T, Nielsen T. Whole-body procedural learning benefits from targeted memory reactivation in REM sleep and task-related dreaming. Neurobiol Learn Mem 2021; 183:107460. [PMID: 34015442 DOI: 10.1016/j.nlm.2021.107460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Sleep facilitates memory consolidation through offline reactivations of memory traces. Dreaming may play a role in memory improvement and may reflect these memory reactivations. To experimentally address this question, we used targeted memory reactivation (TMR), i.e., application, during sleep, of a stimulus that was previously associated with learning, to assess whether it influences task-related dream imagery (or task-dream reactivations). Specifically, we asked if TMR or task-dream reactivations in either slow-wave (SWS) or rapid eye movement (REM) sleep benefit whole-body procedural learning. Healthy participants completed a virtual reality (VR) flying task prior to and following a morning nap or rest period during which task-associated tones were readministered in either SWS, REM sleep, wake or not at all. Findings indicate that learning benefits most from TMR when applied in REM sleep compared to a Control-sleep group. REM dreams that reactivated kinesthetic elements of the VR task (e.g., flying, accelerating) were also associated with higher improvement on the task than were dreams that reactivated visual elements (e.g., landscapes) or that had no reactivations. TMR did not itself influence dream content but its effects on performance were greater when coexisting with task-dream reactivations in REM sleep. Findings may help explain the mechanistic relationships between dream and memory reactivations and may contribute to the development of sleep-based methods to optimize complex skill learning.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Tomy Aumont
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Arnaud Samson-Richer
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tyna Paquette
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tore Nielsen
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Zhang J, Yetton B, Whitehurst LN, Naji M, Mednick SC. The effect of zolpidem on memory consolidation over a night of sleep. Sleep 2021; 43:5824815. [PMID: 32330272 DOI: 10.1093/sleep/zsaa084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Nonrapid eye movement sleep boosts hippocampus-dependent, long-term memory formation more so than wake. Studies have pointed to several electrophysiological events that likely play a role in this process, including thalamocortical sleep spindles (12-15 Hz). However, interventional studies that directly probe the causal role of spindles in consolidation are scarce. Previous studies have used zolpidem, a GABA-A agonist, to increase sleep spindles during a daytime nap and promote hippocampal-dependent episodic memory. The current study investigated the effect of zolpidem on nighttime sleep and overnight improvement of episodic memories. METHODS We used a double-blind, placebo-controlled within-subject design to test the a priori hypothesis that zolpidem would lead to increased memory performance on a word-paired associates task by boosting spindle activity. We also explored the impact of zolpidem across a range of other spectral sleep features, including slow oscillations (0-1 Hz), delta (1-4 Hz), theta (4-8 Hz), sigma (12-15 Hz), as well as spindle-SO coupling. RESULTS We showed greater memory improvement after a night of sleep with zolpidem, compared to placebo, replicating a prior nap study. Additionally, zolpidem increased sigma power, decreased theta and delta power, and altered the phase angle of spindle-SO coupling, compared to placebo. Spindle density, theta power, and spindle-SO coupling were associated with next-day memory performance. CONCLUSIONS These results are consistent with the hypothesis that sleep, specifically the timing and amount of sleep spindles, plays a causal role in the long-term formation of episodic memories. Furthermore, our results emphasize the role of nonrapid eye movement theta activity in human memory consolidation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cognitive Sciences, University of California, Irvine
| | - Ben Yetton
- Department of Cognitive Sciences, University of California, Irvine
| | | | - Mohsen Naji
- Department of Medicine, University of California, San Diego
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine
| |
Collapse
|
35
|
Schechtman E, Lampe A, Wilson BJ, Kwon E, Anderson MC, Paller KA. Sleep reactivation did not boost suppression-induced forgetting. Sci Rep 2021; 11:1383. [PMID: 33446812 PMCID: PMC7809483 DOI: 10.1038/s41598-020-80671-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep's role in memory consolidation is widely acknowledged, but its role in weakening memories is still debated. Memory weakening is evolutionary beneficial and makes an integral contribution to cognition. We sought evidence on whether sleep-based memory reactivation can facilitate memory suppression. Participants learned pairs of associable words (e.g., DIET-CREAM) and were then exposed to hint words (e.g., DIET) and instructed to either recall ("think") or suppress ("no-think") the corresponding target words (e.g., CREAM). As expected, suppression impaired retention when tested immediately after a 90-min nap. To test if reactivation could selectively enhance memory suppression during sleep, we unobtrusively presented one of two sounds conveying suppression instructions during sleep, followed by hint words. Results showed that targeted memory reactivation did not enhance suppression-induced forgetting. Although not predicted, post-hoc analyses revealed that sleep cues strengthened memory, but only for suppressed pairs that were weakly encoded before sleep. The results leave open the question of whether memory suppression can be augmented during sleep, but suggest strategies for future studies manipulating memory suppression during sleep. Additionally, our findings support the notion that sleep reactivation is particularly beneficial for weakly encoded information, which may be prioritized for consolidation.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Eunbi Kwon
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
36
|
Schechtman E, Antony JW, Lampe A, Wilson BJ, Norman KA, Paller KA. Multiple memories can be simultaneously reactivated during sleep as effectively as a single memory. Commun Biol 2021; 4:25. [PMID: 33398075 PMCID: PMC7782847 DOI: 10.1038/s42003-020-01512-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023] Open
Abstract
Memory consolidation involves the reactivation of memory traces during sleep. If different memories are reactivated each night, how much do they interfere with one another? We examined whether reactivating multiple memories incurs a cost to sleep-related benefits by contrasting reactivation of multiple memories versus single memories during sleep. First, participants learned the on-screen location of different objects. Each object was part of a semantically coherent group comprised of either one, two, or six items (e.g., six different cats). During sleep, sounds were unobtrusively presented to reactivate memories for half of the groups (e.g., "meow"). Memory benefits for cued versus non-cued items were independent of the number of items in the group, suggesting that reactivation occurs in a simultaneous and promiscuous manner. Intriguingly, sleep spindles and delta-theta power modulations were sensitive to group size, reflecting the extent of previous learning. Our results demonstrate that multiple memories may be consolidated in parallel without compromising each memory's sleep-related benefit. These findings highlight alternative models for parallel consolidation that should be considered in future studies.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - James W Antony
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
37
|
Reactivation during sleep with incomplete reminder cues rather than complete ones stabilizes long-term memory in humans. Commun Biol 2020; 3:733. [PMID: 33277601 PMCID: PMC7718244 DOI: 10.1038/s42003-020-01457-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/31/2020] [Indexed: 01/15/2023] Open
Abstract
Reactivation by reminder cues labilizes memories during wakefulness, requiring reconsolidation to persist. In contrast, during sleep, cued reactivation seems to directly stabilize memories. In reconsolidation, incomplete reminders are more effective in reactivating memories than complete reminders by inducing a mismatch, i.e. a discrepancy between expected and actual events. Whether mismatch is likewise detected during sleep is unclear. Here we test whether cued reactivation during sleep is more effective for mismatch-inducing incomplete than complete reminders. We first establish that only incomplete but not complete reminders labilize memories during wakefulness. When complete or incomplete reminders are presented during 40-min sleep, both reminders are equally effective in stabilizing memories. However, when extending the retention interval for another 7 hours (following 40-min sleep), only incomplete but not complete reminders stabilize memories, regardless of the extension containing wakefulness or sleep. We propose that, during sleep, only incomplete reminders initiate long-term memory stabilization via mismatch detection. Forcato et al. show that incomplete reminder cues rather than complete ones stabilize human memories during sleep. This study suggests that only incomplete reminders initiate long-term memory stabilization via mismatch detection during sleep.
Collapse
|
38
|
|
39
|
|
40
|
Phase-based coordination of hippocampal and neocortical oscillations during human sleep. Commun Biol 2020; 3:176. [PMID: 32313064 PMCID: PMC7170909 DOI: 10.1038/s42003-020-0913-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/25/2020] [Indexed: 01/09/2023] Open
Abstract
During sleep, new memories undergo a gradual transfer from hippocampal (HPC) to neocortical (NC) sites. Precisely timed neural oscillations are thought to mediate this sleep-dependent memory consolidation, but exactly how sleep oscillations instantiate the HPC-NC dialog remains elusive. Employing overnight invasive electroencephalography in ten neurosurgical patients, we identified three broad classes of phase-based communication between HPC and lateral temporal NC. First, we observed interregional phase synchrony for non-rapid eye movement (NREM) spindles, and N2 and rapid eye movement (REM) theta activity. Second, we found asymmetrical N3 cross-frequency phase-amplitude coupling between HPC slow oscillations (SOs) and NC activity spanning the delta to high-gamma/ripple bands, but not in the opposite direction. Lastly, N2 theta and NREM spindle synchrony were themselves modulated by HPC SOs. These forms of interregional communication emphasize the role of HPC SOs in the HPC-NC dialog, and may offer a physiological basis for the sleep-dependent reorganization of mnemonic content.
Collapse
|
41
|
Schreiner T, Staudigl T. Electrophysiological signatures of memory reactivation in humans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190293. [PMID: 32248789 PMCID: PMC7209925 DOI: 10.1098/rstb.2019.0293] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reactivation of neural activity that was present during the encoding of an event is assumed to be essential for human episodic memory retrieval and the consolidation of memories during sleep. Pioneering animal work has already established a crucial role of memory reactivation to prepare and guide behaviour. Research in humans is now delineating the neural processes involved in memory reactivation during both wakefulness and sleep as well as their functional significance. Focusing on the electrophysiological signatures of memory reactivation in humans during both memory retrieval and sleep-related consolidation, this review provides an overview of the state of the art in the field. We outline recent advances, methodological developments and open questions and specifically highlight commonalities and differences in the neuronal signatures of memory reactivation during the states of wakefulness and sleep. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Thomas Schreiner
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
42
|
Canales-Johnson A, Merlo E, Bekinschtein TA, Arzi A. Neural Dynamics of Associative Learning during Human Sleep. Cereb Cortex 2020; 30:1708-1715. [PMID: 31690927 PMCID: PMC7132910 DOI: 10.1093/cercor/bhz197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
Recent evidence indicates that humans can learn entirely new information during sleep. To elucidate the neural dynamics underlying sleep-learning, we investigated brain activity during auditory–olfactory discriminatory associative learning in human sleep. We found that learning-related delta and sigma neural changes are involved in early acquisition stages, when new associations are being formed. In contrast, learning-related theta activity emerged in later stages of the learning process, after tone–odor associations were already established. These findings suggest that learning new associations during sleep is signaled by a dynamic interplay between slow-waves, sigma, and theta activity.
Collapse
Affiliation(s)
- Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.,Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez 9170022, Santiago, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Universidad Católica del Maule 3460000, Talca, Chile
| | - Emiliano Merlo
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.,IFIBIO-Houssay, Facultad de Medicina, Universidad de Buenos Aires-CONICET 1121, Buenos Aires, Argentina.,School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | | | - Anat Arzi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
43
|
No effect of targeted memory reactivation during sleep on retention of vocabulary in adolescents. Sci Rep 2020; 10:4255. [PMID: 32144326 PMCID: PMC7060261 DOI: 10.1038/s41598-020-61183-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/23/2020] [Indexed: 11/08/2022] Open
Abstract
Re-exposure of newly acquired vocabulary during sleep improves later memory recall in healthy adults. The success of targeted memory reactivation (TMR) during sleep presumably depends on the presence of slow oscillations (i.e., EEG activity at a frequency of about 0.75 Hz). As slow oscillating activity is at its maximum during adolescence, we hypothesized that TMR is even more beneficial at this developmental stage. In the present study, adolescents aged 11 to 13 learnt Dutch vocabulary in the evening and were tested on recall performance the next morning. Half of the words were presented via loudspeakers during post-learning periods of NREM (Non Rapid Eye Movement) sleep in order to stimulate memory reactivation. Unexpectedly, TMR during sleep did not improve memory on the behavioral level in adolescents. On the oscillatory level, successful reactivation during sleep resulted in the characteristic increase in theta power over frontal brain regions, as reported in adults. However, we observed no increase in spindle power during successful reactivation. Possible factors that may explain the lacking effect of TMR in adolescents in this study such as differences in learning abilities and pre-sleep performance levels are discussed.
Collapse
|
44
|
Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychol Bull 2020; 146:218-244. [PMID: 32027149 PMCID: PMC7144680 DOI: 10.1037/bul0000223] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted memory reactivation (TMR) is a methodology employed to manipulate memory processing during sleep. TMR studies have great potential to advance understanding of sleep-based memory consolidation and corresponding neural mechanisms. Research making use of TMR has developed rapidly, with over 70 articles published in the last decade, yet no quantitative analysis exists to evaluate the overall effects. Here we present the first meta-analysis of sleep TMR, compiled from 91 experiments with 212 effect sizes (N = 2,004). Based on multilevel modeling, overall sleep TMR was highly effective (Hedges' g = 0.29, 95% CI [0.21, 0.38]), with a significant effect for two stages of non-rapid-eye-movement (NREM) sleep (Stage NREM 2: Hedges' g = 0.32, 95% CI [0.04, 0.60]; and slow-wave sleep: Hedges' g = 0.27, 95% CI [0.20, 0.35]). In contrast, TMR was not effective during REM sleep nor during wakefulness in the present analyses. Several analysis strategies were used to address the potential relevance of publication bias. Additional analyses showed that TMR improved memory across multiple domains, including declarative memory and skill acquisition. Given that TMR can reinforce many types of memory, it could be useful for various educational and clinical applications. Overall, the present meta-analysis provides substantial support for the notion that TMR can influence memory storage during NREM sleep, and that this method can be useful for understanding neurocognitive mechanisms of memory consolidation. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Larry Y. Cheng
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Man Hey Chiu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Ken A. Paller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
45
|
Schechtman E, Witkowski S, Lampe A, Wilson BJ, Paller KA. Targeted memory reactivation during sleep boosts intentional forgetting of spatial locations. Sci Rep 2020; 10:2327. [PMID: 32047183 PMCID: PMC7012837 DOI: 10.1038/s41598-020-59019-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Although we experience thousands of distinct events on a daily basis, relatively few are committed to memory. The human capacity to intentionally control which events will be remembered has been demonstrated using learning procedures with instructions to purposely avoid committing specific items to memory. In this study, we used a variant of the item-based directed-forgetting procedure and instructed participants to memorize the location of some images but not others on a grid. These instructions were conveyed using a set of auditory cues. Then, during an afternoon nap, we unobtrusively presented a cue that was used to instruct participant to avoid committing the locations of some images to memory. After sleep, memory was worse for to-be-forgotten image locations associated with the presented sound relative to those associated with a sound that was not presented during sleep. We conclude that memory processing during sleep can serve not only to secure memory storage but also to weaken it. Given that intentional suppression may be used to weaken unpleasant memories, such sleep-based strategies may help accelerate treatments for memory-related disorders such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - Sarah Witkowski
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
46
|
Gorgoni M, D'Atri A, Scarpelli S, Reda F, De Gennaro L. Sleep electroencephalography and brain maturation: developmental trajectories and the relation with cognitive functioning. Sleep Med 2020; 66:33-50. [PMID: 31786427 DOI: 10.1016/j.sleep.2019.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - A D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - S Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - F Reda
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - L De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
47
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
48
|
Abstract
It has long been known that sleep supports memory consolidation. Two recent studies now shed light on how sleep spindles, characteristic 11-16 Hz activity bursts, contribute critically to memory processing during the night.
Collapse
|
49
|
Tambini A, Davachi L. Awake Reactivation of Prior Experiences Consolidates Memories and Biases Cognition. Trends Cogn Sci 2019; 23:876-890. [PMID: 31445780 DOI: 10.1016/j.tics.2019.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023]
Abstract
After experiences are encoded into memory, post-encoding reactivation mechanisms have been proposed to mediate long-term memory stabilization and transformation. Spontaneous reactivation of hippocampal representations, together with hippocampal-cortical interactions, are leading candidate mechanisms for promoting systems-level memory strengthening and reorganization. While the replay of spatial representations has been extensively studied in rodents, here we review recent fMRI work that provides evidence for spontaneous reactivation of nonspatial, episodic event representations in the human hippocampus and cortex, as well as for experience-dependent alterations in systems-level hippocampal connectivity. We focus on reactivation during awake post-encoding periods, relationships between reactivation and subsequent behavior, how reactivation is modulated by factors that influence consolidation, and the implications of persistent reactivation for biasing ongoing perception and cognition.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, USA; Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
50
|
Shao Y, Wang B, Sornborger AT, Tao L. A Mechanism for Synaptic Copy Between Neural Circuits. Neural Comput 2019; 31:1964-1984. [PMID: 31393825 DOI: 10.1162/neco_a_01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cortical oscillations are central to information transfer in neural systems. Significant evidence supports the idea that coincident spike input can allow the neural threshold to be overcome and spikes to be propagated downstream in a circuit. Thus, an observation of oscillations in neural circuits would be an indication that repeated synchronous spiking may be enabling information transfer. However, for memory transfer, in which synaptic weights must be being transferred from one neural circuit (region) to another, what is the mechanism? Here, we present a synaptic transfer mechanism whose structure provides some understanding of the phenomena that have been implicated in memory transfer, including nested oscillations at various frequencies. The circuit is based on the principle of pulse-gated, graded information transfer between neural populations.
Collapse
Affiliation(s)
- Yuxiu Shao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Binxu Wang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China, and Neuroscience Program, Washington University, St. Louis, MO 63130, U.S.A.
| | - Andrew T Sornborger
- Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.
| | - Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, and Center for Quantitative Biology, Peking University, Beijing, 100871, China
| |
Collapse
|