1
|
Zhang K, Yuan Z, Wang S, Zhao S, Cui H, Lai Y. The abnormalities of free fatty acid metabolism in patients with hypertrophic cardiomyopathy, a single-center retrospective observational study. BMC Cardiovasc Disord 2024; 24:312. [PMID: 38902636 PMCID: PMC11188237 DOI: 10.1186/s12872-024-03925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Previous studies have shown the importance of energy deficiency and malfunctioning mitochondria in the pathophysiology of hypertrophic cardiomyopathy (HCM). There has been a little research into the relationship between plasma free fatty acids (FFA), one of the heart's main energy sources, and HCM. We evaluated its clinical importance in HCM to see if there was a link between plasma FFA metabolism and HCM. METHODS In a single-center retrospective observational study, we investigated 420 HCM patients diagnosed at Beijing Anzhen Hospital between January 1, 2018, and December 31, 2022. Meanwhile, 1372 individuals without HCM (non-HCM) were recruited. 391 non-HCM patients were chosen as controls via a propensity score matching (PSM) study with a 1:1 ratio. RESULTS FFA in HCM patients showed statistically significant correlations with creatinine (r = 0.115, p = 0.023), estimated GFR (r=-0.130, p = 0.010), BNP (r = 0.152, p = 0.007), LVEF (r=-0.227, p < 0.001), LVFS (r=-0.160, p = 0.002), and LAD (r = 0.112, p = 0.028). Higher FFA levels were found in HCM patients who had atrial fibrillation and NYHY functional classes III or IV (p = 0.015 and p = 0.022, respectively). In HCM patients, multiple linear regression analysis revealed that BNP and LVEF had independent relationships with increasing FFA (Standardized = 0.139, p = 0.013 and =-0.196, p < 0.001, respectively). CONCLUSIONS Among HCM patients, the plasma FFA concentration was lower, and those with AF and NYHY functional class III or IV had higher FFA levels, and LVEF and BNP were independently associated with increasing FFA. The findings of the study should help inspire future efforts to better understand how energy deficiency contributes to hypertrophic cardiomyopathy (HCM) development.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Zhongyu Yuan
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shengwei Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Shifeng Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Hao Cui
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yongqiang Lai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China.
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
2
|
Liu M, Lv J, Pan Z, Wang D, Zhao L, Guo X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med 2022; 9:945142. [PMID: 36093152 PMCID: PMC9448986 DOI: 10.3389/fcvm.2022.945142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
The ATP consumption in heart is very intensive to support muscle contraction and relaxation. Mitochondrion is the power plant of the cell. Mitochondrial dysfunction has long been believed as the primary mechanism responsible for the inability of energy generation and utilization in heart failure. In addition, emerging evidence has demonstrated that mitochondrial dysfunction also contributes to calcium dysregulation, oxidative stress, proteotoxic insults and cardiomyocyte death. These elements interact with each other to form a vicious circle in failing heart. The role of mitochondrial dysfunction in the pathogenesis of heart failure has attracted increasing attention. The complex signaling of mitochondrial quality control provides multiple targets for maintaining mitochondrial function. Design of therapeutic strategies targeting mitochondrial dysfunction holds promise for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Miaosen Liu
- Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liding Zhao
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiaogang Guo,
| |
Collapse
|
3
|
Li X, Flynn ER, do Carmo JM, Wang Z, da Silva AA, Mouton AJ, Omoto ACM, Hall ME, Hall JE. Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Front Cardiovasc Med 2022; 9:859253. [PMID: 35647080 PMCID: PMC9135142 DOI: 10.3389/fcvm.2022.859253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022] Open
Abstract
Clinical trials showed that sodium-glucose cotransporter 2 (SGLT2) inhibitors, a class of drugs developed for treating diabetes mellitus, improve prognosis of patients with heart failure (HF). However, the mechanisms for cardioprotection by SGLT2 inhibitors are still unclear. Mitochondrial dysfunction and oxidative stress play important roles in progression of HF. This study tested the hypothesis that empagliflozin (EMPA), a highly selective SGLT2 inhibitor, improves mitochondrial function and reduces reactive oxygen species (ROS) while enhancing cardiac performance through direct effects on the heart in a non-diabetic mouse model of HF induced by transverse aortic constriction (TAC). EMPA or vehicle was administered orally for 4 weeks starting 2 weeks post-TAC. EMPA treatment did not alter blood glucose or body weight but significantly attenuated TAC-induced cardiac dysfunction and ventricular remodeling. Impaired mitochondrial oxidative phosphorylation (OXPHOS) in failing hearts was significantly improved by EMPA. EMPA treatment also enhanced mitochondrial biogenesis and restored normal mitochondria morphology. Although TAC increased mitochondrial ROS and decreased endogenous antioxidants, EMPA markedly inhibited cardiac ROS production and upregulated expression of endogenous antioxidants. In addition, EMPA enhanced autophagy and decreased cardiac apoptosis in TAC-induced HF. Importantly, mitochondrial respiration significantly increased in ex vivo cardiac fibers after direct treatment with EMPA. Our results indicate that EMPA has direct effects on the heart, independently of reductions in blood glucose, to enhance mitochondrial function by upregulating mitochondrial biogenesis, enhancing OXPHOS, reducing ROS production, attenuating apoptosis, and increasing autophagy to improve overall cardiac function in a non-diabetic model of pressure overload-induced HF.
Collapse
Affiliation(s)
- Xuan Li
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fatty Acid Metabolism Reprogramming in Advanced Prostate Cancer. Metabolites 2021; 11:metabo11110765. [PMID: 34822423 PMCID: PMC8618281 DOI: 10.3390/metabo11110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer (PCa) is a carcinoma in which fatty acids are abundant. Fatty acid metabolism is rewired during PCa development. Although PCa can be treated with hormone therapy, after prolonged treatment, castration-resistant prostate cancer can develop and can lead to increased mortality. Changes to fatty acid metabolism occur systemically and locally in prostate cancer patients, and understanding these changes may lead to individualized treatments, especially in advanced, castration-resistant prostate cancers. The fatty acid metabolic changes are not merely reflective of oncogenic activity, but in many cases, these represent a critical factor in cancer initiation and development. In this review, we analyzed the literature regarding systemic changes to fatty acid metabolism in PCa patients and how these changes relate to obesity, diet, circulating metabolites, and peri-prostatic adipose tissue. We also analyzed cellular fatty acid metabolism in prostate cancer, including fatty acid uptake, de novo lipogenesis, fatty acid elongation, and oxidation. This review broadens our view of fatty acid switches in PCa and presents potential candidates for PCa treatment and diagnosis.
Collapse
|
5
|
The Emerging Role of Fatty Acid Synthase in Hypoxia-Induced Pulmonary Hypertensive Mouse Energy Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9990794. [PMID: 34457121 PMCID: PMC8387195 DOI: 10.1155/2021/9990794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Aims This study is aimed at examining whether fatty acid synthase (FAS) can regulate mitochondrial function in hypoxia-induced pulmonary arterial hypertension (PAH) and its related mechanism. Results The expression of FAS significantly increased in the lung tissue of mice with hypoxia-induced PAH, and its pharmacological inhibition by C75 ameliorated right ventricle cardiac function as revealed by echocardiographic analysis. Based on transmission electron microscopy and Seahorse assays, the mitochondrial function of mice with hypoxia was abnormal but was partially reversed after C75 injection. In vitro studies also showed an increase in the expression of FAS in hypoxia-induced human pulmonary artery smooth muscle cells (HPASMCs), which could be attenuated by FAS shRNA as well as C75 treatment. Meanwhile, C75 treatment reversed hypoxia-induced oxidative stress and activated PI3K/AKT signaling. shRNA-mediated inhibition of FAS reduced its expression and oxidative stress levels and improved mitochondrial respiratory capacity and ATP levels of hypoxia-induced HPASMCs. Conclusions Inhibition of FAS plays a crucial role in shielding mice from hypoxia-induced PAH, which was partially achieved through the activation of PI3K/AKT signaling, indicating that the inhibition of FAS may provide a potential future direction for reversing PAH in humans.
Collapse
|
6
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
7
|
Gropler RJ. Imaging Myocardial Metabolism. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Abstract
PURPOSE OF REVIEW Right ventricular (RV) function is an important determinant of morbidity and mortality in patients with pulmonary arterial hypertension (PAH). Although substantial progress has been made in understanding the development of RV failure in the last decennia, this has not yet resulted in the development of RV selective therapies. In this review, we will discuss the current status on the treatment of RV failure and potential novel therapeutic strategies that are currently being investigated in clinical trials. RECENT FINDINGS Increased afterload results in elevated wall tension. Consequences of increased wall tension include autonomic disbalance, metabolic shift and inflammation, negatively affecting RV contractility. Compromised RV systolic function and low cardiac output activate renin-angiotensin aldosterone system, which leads to fluid retention and further increase in RV wall tension. This vicious circle can be interrupted by directly targeting the determinants of RV wall tension; preload and afterload by PAH-medications and diuretics, but is also possibly by restoring neurohormonal and metabolic disbalance, and inhibiting maladaptive inflammation. A variety of RV selective drugs are currently being studied in clinical trials. SUMMARY Nowadays, afterload reduction is still the cornerstone in treatment of PAH. New treatments targeting important pathobiological determinants of RV failure directly are emerging.
Collapse
Affiliation(s)
- Joanne A. Groeneveldt
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam
| | - Frances S. de Man
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam
| | - Berend E. Westerhof
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam
- Section of Systems Physiology, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Reddy YNV, Borlaug BA, O’Connor CM, Gersh BJ. Novel approaches to the management of chronic systolic heart failure: future directions and unanswered questions. Eur Heart J 2019; 41:1764-1774. [DOI: 10.1093/eurheartj/ehz364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Despite improvements in outcomes in the last few decades for heart failure (HF) with reduced ejection fraction (HFrEF), there still remains a need for novel therapies as many patients incompletely recover with existing therapies and progress to advanced HF. In this review, we will discuss recent advances in the management of HFrEF with a focus on upcoming therapies that hold the greatest promise for clinical use. We will discuss novel pharmacological therapies and areas of uncertainty with existing therapies. We will also discuss the potential utility and controversy surrounding novel interventions for HF such as percutaneous mitral valve repair, atrial fibrillation ablation, and other emerging interventions with positive signals for benefit in HFrEF. Finally, we will summarize the current state of stem cell and gene therapy for HFrEF and future directions.
Collapse
Affiliation(s)
- Yogesh N V Reddy
- The Department of Cardiovascular Medicine, Mayo Clinic Rochester, 200 First Street SW, MN 55906, USA
| | - Barry A Borlaug
- The Department of Cardiovascular Medicine, Mayo Clinic Rochester, 200 First Street SW, MN 55906, USA
| | | | - Bernard J Gersh
- The Department of Cardiovascular Medicine, Mayo Clinic Rochester, 200 First Street SW, MN 55906, USA
| |
Collapse
|
10
|
Masarwi M, DeSchiffart A, Ham J, Reagan MR. Multiple Myeloma and Fatty Acid Metabolism. JBMR Plus 2019; 3:e10173. [PMID: 30918920 PMCID: PMC6419611 DOI: 10.1002/jbm4.10173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/03/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) accounts for 13% to 15% of all blood cancers1 and is characterized by the proliferation of malignant cells within the bone marrow (BM). Despite important advances in treatment, most patients become refractory and relapse with the disease. As MM tumors grow in the BM, they disrupt hematopoiesis, create monoclonal protein spikes in the blood, initiate systemic organ and immune system shutdown,2 and induce painful osteolytic lesions caused by overactive osteoclasts and inhibited osteoblasts.3, 4 MM cells are also extremely dependent on the BM niche, and targeting the BM niche has been clinically transformative for inhibiting the positive-feedback "vicious cycle" between MM cells and osteoclasts that leads to bone resorption and tumor proliferation.5, 6, 7, 8 Bone marrow adipocytes (BMAs) are dynamic, secretory cells that have complex effects on osteoblasts and tumor cells, but their role in modifying the MM cell phenotype is relatively unexplored.9, 10, 11, 12, 13 Given their active endocrine function, capacity for direct cell-cell communication, correlation with aging and obesity (both MM risk factors), potential roles in bone disease, and physical proximity to MM cells, it appears that BMAs support MM cells.14, 15, 16, 17 This supposition is based on research from many laboratories, including our own. Therapeutically targeting the BMA may prove to be equally transformative in the clinic if the pathways through which BMAs affect MM cells can be determined. In this review, we discuss the potential for BMAs to provide free fatty acids to myeloma cells to support their growth and evolution. We highlight certain proteins in MM cells responsible for fatty acid uptake and oxidation and discuss the potential for therapeutically targeting fatty acid metabolism or BMAs from where they may be derived. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Majdi Masarwi
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA
| | - Abigail DeSchiffart
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA
| | - Justin Ham
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA
| | - Michaela R. Reagan
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMEUSA
- University of Maine Graduate School of Biomedical Science and EngineeringOronoMEUSA
- Sackler School of Graduate Biomedical SciencesTufts UniversityBostonMAUSA
| |
Collapse
|
11
|
Mansor LS, Sousa Fialho MDL, Yea G, Coumans WA, West JA, Kerr M, Carr CA, Luiken JJFP, Glatz JFC, Evans RD, Griffin JL, Tyler DJ, Clarke K, Heather LC. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovasc Res 2018; 113:737-748. [PMID: 28419197 PMCID: PMC5437367 DOI: 10.1093/cvr/cvx045] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Aims The type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed that pharmacologically inhibiting fatty acid uptake, as the primary step in the pathway, would provide an alternative mechanism to rebalance metabolism and prevent lipid accumulation following hypoxic stress. Methods and results Hearts from type 2 diabetic and control male Wistar rats were perfused in normoxia, hypoxia and reoxygenation, with the FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO) infused 4 min before hypoxia. SSO infusion into diabetic hearts decreased the fatty acid oxidation rate by 29% and myocardial triglyceride concentration by 48% compared with untreated diabetic hearts, restoring fatty acid metabolism to control levels following hypoxia-reoxygenation. SSO infusion increased the glycolytic rate by 46% in diabetic hearts during hypoxia, increased pyruvate dehydrogenase activity by 53% and decreased lactate efflux rate by 56% compared with untreated diabetic hearts during reoxygenation. In addition, SSO treatment of diabetic hearts increased intermediates within the second span of the Krebs cycle, namely fumarate, oxaloacetate, and the FAD total pool. The cardiac dysfunction in diabetic hearts following decreased oxygen availability was prevented by SSO-infusion prior to the hypoxic stress. Infusing SSO into diabetic hearts increased rate pressure product by 60% during hypoxia and by 32% following reoxygenation, restoring function to control levels. Conclusions Diabetic hearts have limited metabolic flexibility and cardiac dysfunction when stressed, which can be rapidly rectified by reducing fatty acid uptake with the FAT/CD36 inhibitor, SSO. This novel therapeutic approach not only reduces fat oxidation but also lipotoxicity, by targeting the primary step in the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Latt S Mansor
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Maria da Luz Sousa Fialho
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Georgina Yea
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Will A Coumans
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - James A West
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Matthew Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
12
|
Nabeebaccus AA, Zoccarato A, Hafstad AD, Santos CX, Aasum E, Brewer AC, Zhang M, Beretta M, Yin X, West JA, Schröder K, Griffin JL, Eykyn TR, Abel ED, Mayr M, Shah AM. Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation. JCI Insight 2017; 2:96184. [PMID: 29263294 PMCID: PMC5752273 DOI: 10.1172/jci.insight.96184] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4–dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial. Nox4 reprograms intermediary metabolism in the heart through an ATF4-mediated enhancement of protein O-GlcNAcylation, and the resulting switch to increased fatty acid oxidation protects the overloaded heart.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Anna Zoccarato
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Anne D Hafstad
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom.,Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Celio Xc Santos
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alison C Brewer
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Min Zhang
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Matteo Beretta
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Xiaoke Yin
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - James A West
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Frankfurt am Main, Germany
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thomas R Eykyn
- Division of Imaging Sciences & Biomedical Engineering, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - E Dale Abel
- Department of Medicine and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manuel Mayr
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| |
Collapse
|
13
|
Samson N, Paulin R. Epigenetics, inflammation and metabolism in right heart failure associated with pulmonary hypertension. Pulm Circ 2017; 7:572-587. [PMID: 28628000 PMCID: PMC5841893 DOI: 10.1177/2045893217714463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for both morbidity and mortality in pulmonary arterial hypertension (PAH), but also occurs in numerous other common diseases and conditions, including left ventricle dysfunction. RVF remains understudied compared with left ventricular failure (LVF). However, right and left ventricles have many differences at the morphological level or the embryologic origin, and respond differently to pressure overload. Therefore, knowledge from the left ventricle cannot be extrapolated to the right ventricle. Few studies have focused on the right ventricle and have permitted to increase our knowledge on the right ventricular-specific mechanisms driving decompensation. Here we review basic principles such as mechanisms accounting for right ventricle hypertrophy, dysfunction, and transition toward failure, with a focus on epigenetics, inflammatory, and metabolic processes.
Collapse
Affiliation(s)
- Nolwenn Samson
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
14
|
Tavares de Melo MD, Giorgi MCP, Assuncao AN, Dantas RN, Araujo Filho JDA, Parga Filho JR, Bierrenbach ALDS, de Lima CR, Soares J, Meneguetti JC, Mady C, Hajjar LA, Kalil Filho R, Bocchi EA, Salemi VMC. Decreased glycolytic metabolism in non-compaction cardiomyopathy by 18F-fluoro-2-deoxyglucose positron emission tomography: new insights into pathophysiological mechanisms and clinical implications. Eur Heart J Cardiovasc Imaging 2017; 18:915-921. [PMID: 28379356 DOI: 10.1093/ehjci/jex036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/28/2022] Open
Abstract
Aims The pathophysiological mechanisms of left ventricular non-compaction cardiomyopathy (LVNC) remain controversial. This study performed combined 18F-fluoro-2-deoxyglucose dynamic positron emission tomography (FDG-PET) and 99mTc-sestamibi single-photon emission computed tomography (SPECT) studies to evaluate myocardial glucose metabolism and perfusion in patients with LVNC and their clinical implications. Methods and results Thirty patients (41 ± 12 years, 53% male) with LVNC, diagnosed by cardiovascular magnetic resonance (CMR) criteria, and eight age-matched healthy controls (42 ± 12 years, 50% male) were prospectively recruited to undergo FDG-PET with measurement of the myocardial glucose uptake rate (MGU) and SPECT to investigate perfusion-metabolism patterns. Patients with LVNC had lower global MGU compared with that in controls (36.9 ± 8.8 vs. 44.6 ± 5.4 μmol/min/100 g, respectively, P = 0.02). Of 17 LV segments, MGU levels were significantly reduced in 8, and also a reduction was observed when compacted segments from LVNC were compared with the segments from control subjects (P < 0.001). Perfusion defects were also found in 15 (50%) patients (45 LV segments: 64.4% match, and 35.6% mismatch perfusion-metabolism pattern). Univariate and multivariate analyses showed that beta-blocker therapy was associated with increased MGU (beta coefficient = 10.1, P = 0.008). Moreover, a gradual increase occurred in MGU across the beta-blocker dose groups (P for trend = 0.01). Conclusion The reduction of MGU documented by FDG-PET in LVNC supports the hypothesis that a cellular metabolic pathway may play a role in the pathophysiology of LVNC. The beneficial effect of beta-blocker mediating myocardial metabolism in the clinical course of LVNC requires further investigation.
Collapse
Affiliation(s)
- Marcelo Dantas Tavares de Melo
- Heart Failure Unit, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44. Cerqueira César, São Paulo, 05403-000, Brazil
| | - Maria Clementina Pinto Giorgi
- Nuclear Medicine Department, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44. Cerqueira César, São Paulo, 05403-000, Brazil
| | - Antonildes Nascimento Assuncao
- Cardiovascular Magnetic Resonance and Computed Tomography Sector, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Nery Dantas
- Cardiovascular Magnetic Resonance and Computed Tomography Sector, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jose de Arimateia Araujo Filho
- Cardiovascular Magnetic Resonance and Computed Tomography Sector, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jose Rodrigues Parga Filho
- Cardiovascular Magnetic Resonance and Computed Tomography Sector, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Camila Rocon de Lima
- Heart Failure Unit, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44. Cerqueira César, São Paulo, 05403-000, Brazil
| | - José Soares
- Nuclear Medicine Department, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44. Cerqueira César, São Paulo, 05403-000, Brazil
| | - José Claudio Meneguetti
- Nuclear Medicine Department, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44. Cerqueira César, São Paulo, 05403-000, Brazil
| | - Charles Mady
- Cardiomyopathy Unit (CM), Department of Cardiopneumology, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Roberto Kalil Filho
- Indeed Teaching and Research Institute, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Heart Failure Unit, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44. Cerqueira César, São Paulo, 05403-000, Brazil
| | - Vera Maria Cury Salemi
- Heart Failure Unit, Heart Institute (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44. Cerqueira César, São Paulo, 05403-000, Brazil
| |
Collapse
|
15
|
Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis. Int J Mol Sci 2016; 17:ijms17071061. [PMID: 27384557 PMCID: PMC4964437 DOI: 10.3390/ijms17071061] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa.
Collapse
|
16
|
Impact of Patient Preparation on the Diagnostic Performance of 18F-FDG PET in Cardiac Sarcoidosis. Clin Nucl Med 2016; 41:e327-39. [DOI: 10.1097/rlu.0000000000001063] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Inhibition of Lipid Oxidation Increases Glucose Metabolism and Enhances 2-Deoxy-2-[(18)F]Fluoro-D-Glucose Uptake in Prostate Cancer Mouse Xenografts. Mol Imaging Biol 2016; 17:529-38. [PMID: 25561013 PMCID: PMC4493937 DOI: 10.1007/s11307-014-0814-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose Prostate cancer (PCa) is the second most common cause of cancer-related death among men in the United States. Due to the lipid-driven metabolic phenotype of PCa, imaging with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is suboptimal, since tumors tend to have low avidity for glucose. Procedures We have used the fat oxidation inhibitor etomoxir (2-[6-(4-chlorophenoxy)-hexyl]oxirane-2-carboxylate) that targets carnitine-palmitoyl-transferase-1 (CPT-1) to increase glucose uptake in PCa cell lines. Small hairpin RNA specific for CPT1A was used to confirm the glycolytic switch induced by etomoxir in vitro. Systemic etomoxir treatment was used to enhance [18F]FDG-positron emission tomography ([18F]FDG-PET) imaging in PCa xenograft mouse models in 24 h. Results PCa cells significantly oxidize more of circulating fatty acids than benign cells via CPT-1 enzyme, and blocking this lipid oxidation resulted in activation of the Warburg effect and enhanced [18F]FDG signal in PCa mouse models. Conclusions Inhibition of lipid oxidation plays a major role in elevating glucose metabolism of PCa cells, with potential for imaging enhancement that could also be extended to other cancers. Electronic supplementary material The online version of this article (doi:10.1007/s11307-014-0814-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Ryan JJ, Archer SL. Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation 2015; 131:1691-702. [PMID: 25964279 DOI: 10.1161/circulationaha.114.006979] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John J Ryan
- From Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.)
| | - Stephen L Archer
- From Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.).
| |
Collapse
|
19
|
Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart. PLoS One 2015; 10:e0130894. [PMID: 26098939 PMCID: PMC4476748 DOI: 10.1371/journal.pone.0130894] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/25/2015] [Indexed: 01/26/2023] Open
Abstract
Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.
Collapse
|
20
|
Talati M, Hemnes A. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy. Pulm Circ 2015; 5:269-78. [PMID: 26064451 DOI: 10.1086/681227] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex, multifactorial disease in which an increase in pulmonary vascular resistance leads to increased afterload on the right ventricle (RV), causing right heart failure and death. Our understanding of the pathophysiology of RV dysfunction in PAH is limited but is constantly improving. Increasing evidence suggests that in PAH RV dysfunction is associated with various components of metabolic syndrome, such as insulin resistance, hyperglycemia, and dyslipidemia. The relationship between RV dysfunction and fatty acid/glucose metabolites is multifaceted, and in PAH it is characterized by a shift in utilization of energy sources toward increased glucose utilization and reduced fatty acid consumption. RV dysfunction may be caused by maladaptive fatty acid metabolism resulting from an increase in fatty acid uptake by fatty acid transporter molecule CD36 and an imbalance between glucose and fatty acid oxidation in mitochondria. This leads to lipid accumulation in the form of triglycerides, diacylglycerol, and ceramides in the cytoplasm, hallmarks of lipotoxicity. Current interventions in animal models focus on improving RV dysfunction through altering fatty acid oxidation rates and limiting lipid accumulation, but more specific and effective therapies may be available in the coming years based on current research. In conclusion, a deeper understanding of the complex mechanisms of the metabolic remodeling of the RV will aid in the development of targeted treatments for RV failure in PAH.
Collapse
Affiliation(s)
- Megha Talati
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 2015; 21:805-21. [PMID: 26039447 DOI: 10.1016/j.cmet.2015.05.014] [Citation(s) in RCA: 896] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetyl-coenzyme A (acetyl-CoA) is a central metabolic intermediate. The abundance of acetyl-CoA in distinct subcellular compartments reflects the general energetic state of the cell. Moreover, acetyl-CoA concentrations influence the activity or specificity of multiple enzymes, either in an allosteric manner or by altering substrate availability. Finally, by influencing the acetylation profile of several proteins, including histones, acetyl-CoA controls key cellular processes, including energy metabolism, mitosis, and autophagy, both directly and via the epigenetic regulation of gene expression. Thus, acetyl-CoA determines the balance between cellular catabolism and anabolism by simultaneously operating as a metabolic intermediate and as a second messenger.
Collapse
Affiliation(s)
- Federico Pietrocola
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| |
Collapse
|
22
|
Apoptotic efficacy of etomoxir in human acute myeloid leukemia cells. Cooperation with arsenic trioxide and glycolytic inhibitors, and regulation by oxidative stress and protein kinase activities. PLoS One 2014; 9:e115250. [PMID: 25506699 PMCID: PMC4266683 DOI: 10.1371/journal.pone.0115250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022] Open
Abstract
Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25–200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic efficacy of ATO and (with some limitations) 2-deoxy-D-glucose which, although clinically important anti-tumour agents, exhibit low efficacy in monotherapy.
Collapse
|
23
|
Vakrou S, Abraham MR. Hypertrophic cardiomyopathy: a heart in need of an energy bar? Front Physiol 2014; 5:309. [PMID: 25191275 PMCID: PMC4137386 DOI: 10.3389/fphys.2014.00309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) has been recently recognized as the most common inherited cardiovascular disorder, affecting 1 in 500 adults worldwide. HCM is characterized by myocyte hypertrophy resulting in thickening of the ventricular wall, myocyte disarray, interstitial and/or replacement fibrosis, decreased ventricular cavity volume and diastolic dysfunction. HCM is also the most common cause of sudden death in the young. A large proportion of patients diagnosed with HCM have mutations in sarcomeric proteins. However, it is unclear how these mutations lead to the cardiac phenotype, which is variable even in patients carrying the same causal mutation. Abnormalities in calcium cycling, oxidative stress, mitochondrial dysfunction and energetic deficiency have been described constituting the basis of therapies in experimental models of HCM and HCM patients. This review focuses on evidence supporting the role of cellular metabolism and mitochondria in HCM.
Collapse
Affiliation(s)
- Styliani Vakrou
- Division of Cardiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - M Roselle Abraham
- Division of Cardiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
24
|
Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 2014; 115:176-88. [PMID: 24951766 DOI: 10.1161/circresaha.113.301129] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The right ventricle (RV) is the major determinant of functional state and prognosis in pulmonary arterial hypertension. RV hypertrophy (RVH) triggered by pressure overload is initially compensatory but often leads to RV failure. Despite similar RV afterload and mass some patients develop adaptive RVH (concentric with retained RV function), while others develop maladaptive RVH, characterized by dilatation, fibrosis, and RV failure. The differentiation of adaptive versus maladaptive RVH is imprecise, but adaptive RVH is associated with better functional capacity and survival. At the molecular level, maladaptive RVH displays greater impairment of angiogenesis, adrenergic signaling, and metabolism than adaptive RVH, and these derangements often involve the left ventricle. Clinically, maladaptive RVH is characterized by increased N-terminal pro-brain natriuretic peptide levels, troponin release, elevated catecholamine levels, RV dilatation, and late gadolinium enhancement on MRI, increased (18)fluorodeoxyglucose uptake on positron emission tomography, and QTc prolongation on the ECG. In maladaptive RVH there is reduced inotrope responsiveness because of G-protein receptor kinase-mediated downregulation, desensitization, and uncoupling of β-adrenoreceptors. RV ischemia may result from capillary rarefaction or decreased right coronary artery perfusion pressure. Maladaptive RVH shares metabolic abnormalities with cancer including aerobic glycolysis (resulting from a forkhead box protein O1-mediated transcriptional upregulation of pyruvate dehydrogenase kinase), and glutaminolysis (reflecting ischemia-induced cMyc activation). Augmentation of glucose oxidation is beneficial in experimental RVH and can be achieved by inhibition of pyruvate dehydrogenase kinase, fatty acid oxidation, or glutaminolysis. Therapeutic targets in RV failure include chamber-specific abnormalities of metabolism, angiogenesis, adrenergic signaling, and phosphodiesterase-5 expression. The ability to restore RV function in experimental models challenges the dogma that RV failure is irreversible without regression of pulmonary vascular disease.
Collapse
Affiliation(s)
- John J Ryan
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.)
| | - Stephen L Archer
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A.).
| |
Collapse
|
25
|
Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, Cimic A, Sirintrapun SJ, Glodé LM, Eckel RH, Cramer SD. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther 2014; 13:2361-71. [PMID: 25122071 DOI: 10.1158/1535-7163.mct-14-0183] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy among Western men and accounts for the second leading cause of cancer-related deaths. Prostate cancer tends to grow slowly and recent studies suggest that it relies on lipid fuel more than on aerobic glycolysis. However, the biochemical mechanisms governing the relationships between lipid synthesis, lipid utilization, and cancer growth remain unknown. To address the role of lipid metabolism in prostate cancer, we have used etomoxir and orlistat, clinically safe drugs that block lipid oxidation and lipid synthesis/lipolysis, respectively. Etomoxir is an irreversible inhibitor of the carnitine palmitoyltransferase (CPT1) enzyme that decreases β oxidation in the mitochondria. Combinatorial treatments using etomoxir and orlistat resulted in synergistic decreased viability in LNCaP, VCaP, and patient-derived benign and prostate cancer cells. These effects were associated with decreased androgen receptor expression, decreased mTOR signaling, and increased caspase-3 activation. Knockdown of CPT1A enzyme in LNCaP cells resulted in decreased palmitate oxidation but increased sensitivity to etomoxir, with inactivation of AKT kinase and activation of caspase-3. Systemic treatment with etomoxir in nude mice resulted in decreased xenograft growth over 21 days, underscoring the therapeutic potential of blocking lipid catabolism to decrease prostate cancer tumor growth.
Collapse
Affiliation(s)
- Isabel R Schlaepfer
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado.
| | - Leah Rider
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | | | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Colton T Pac
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Adela Cimic
- Department of Pathology, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - S Joseph Sirintrapun
- Department of Pathology, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - L Michael Glodé
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Robert H Eckel
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
26
|
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:919-33. [PMID: 24721265 DOI: 10.1016/j.bbalip.2014.03.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/01/2023]
Abstract
The enzyme lipoprotein lipase (LPL), originally identified as the clearing factor lipase, hydrolyzes triglycerides present in the triglyceride-rich lipoproteins VLDL and chylomicrons. LPL is primarily expressed in tissues that oxidize or store fatty acids in large quantities such as the heart, skeletal muscle, brown adipose tissue and white adipose tissue. Upon production by the underlying parenchymal cells, LPL is transported and attached to the capillary endothelium by the protein GPIHBP1. Because LPL is rate limiting for plasma triglyceride clearance and tissue uptake of fatty acids, the activity of LPL is carefully controlled to adjust fatty acid uptake to the requirements of the underlying tissue via multiple mechanisms at the transcriptional and post-translational level. Although various stimuli influence LPL gene transcription, it is now evident that most of the physiological variation in LPL activity, such as during fasting and exercise, appears to be driven via post-translational mechanisms by extracellular proteins. These proteins can be divided into two main groups: the liver-derived apolipoproteins APOC1, APOC2, APOC3, APOA5, and APOE, and the angiopoietin-like proteins ANGPTL3, ANGPTL4 and ANGPTL8, which have a broader expression profile. This review will summarize the available literature on the regulation of LPL activity in various tissues, with an emphasis on the response to diverse physiological stimuli.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| |
Collapse
|
27
|
Abstract
Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. Metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | | |
Collapse
|
28
|
Abozguia K, Phan TT, Shivu GN, Maher AR, Ahmed I, Wagenmakers A, Frenneaux MP. Reducedin vivoskeletal muscle oxygen consumption in patients with chronic heart failure-A study using Near Infrared Spectrophotometry (NIRS). Eur J Heart Fail 2014; 10:652-7. [DOI: 10.1016/j.ejheart.2008.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 04/25/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022] Open
Affiliation(s)
- Khalid Abozguia
- Department of Cardiovascular Medicine; Medical School, University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Thanh Trung Phan
- Department of Cardiovascular Medicine; Medical School, University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Ganesh Nallur Shivu
- Department of Cardiovascular Medicine; Medical School, University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Abdul R. Maher
- Department of Cardiovascular Medicine; Medical School, University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Ibrar Ahmed
- Department of Cardiovascular Medicine; Medical School, University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Anton Wagenmakers
- School of Sport and Exercise Sciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Michael P. Frenneaux
- Department of Cardiovascular Medicine; Medical School, University of Birmingham; Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
29
|
Hughey CC, Ma L, James FD, Bracy DP, Wang Z, Wasserman DH, Rottman JN, Hittel DS, Shearer J. Mesenchymal stem cell transplantation for the infarcted heart: therapeutic potential for insulin resistance beyond the heart. Cardiovasc Diabetol 2013; 12:128. [PMID: 24007410 PMCID: PMC3847505 DOI: 10.1186/1475-2840-12-128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/30/2013] [Indexed: 12/28/2022] Open
Abstract
Background This study aimed to evaluate the efficacy of mesenchymal stem cell (MSC) transplantation to mitigate abnormalities in cardiac-specific and systemic metabolism mediated by a combination of a myocardial infarction and diet-induced insulin resistance. Methods C57BL/6 mice were high-fat fed for eight weeks prior to induction of a myocardial infarction via chronic ligation of the left anterior descending coronary artery. MSCs were administered directly after myocardial infarction induction through a single intramyocardial injection. Echocardiography was performed prior to the myocardial infarction as well as seven and 28 days post-myocardial infarction. Hyperinsulinemic-euglycemic clamps coupled with 2-[14C]deoxyglucose were employed 36 days post-myocardial infarction (13 weeks of high-fat feeding) to assess systemic insulin sensitivity and insulin-mediated, tissue-specific glucose uptake in the conscious, unrestrained mouse. High-resolution respirometry was utilized to evaluate cardiac mitochondrial function in saponin-permeabilized cardiac fibers. Results MSC administration minimized the decline in ejection fraction following the myocardial infarction. The greater systolic function in MSC-treated mice was associated with increased in vivo cardiac glucose uptake and enhanced mitochondrial oxidative phosphorylation efficiency. MSC therapy promoted reductions in fasting arterial glucose and fatty acid concentrations. Additionally, glucose uptake in peripheral tissues including skeletal muscle and adipose tissue was elevated in MSC-treated mice. Enhanced glucose uptake in these tissues was associated with improved insulin signalling as assessed by Akt phosphorylation and prevention of a decline in GLUT4 often associated with high-fat feeding. Conclusions These studies provide insight into the utility of MSC transplantation as a metabolic therapy that extends beyond the heart exerting beneficial systemic effects on insulin action.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 2500 University Drive N,W,, Calgary, AB, Canada, T2N 1N4.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Archer SL, Fang YH, Ryan JJ, Piao L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ 2013; 3:144-52. [PMID: 23662191 PMCID: PMC3641722 DOI: 10.4103/2045-8932.109960] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a syndrome in which pulmonary vascular cross sectional area and compliance are reduced by vasoconstriction, vascular remodeling, and inflammation. Vascular remodeling results in part from increased proliferation and impaired apoptosis of vascular cells. The resulting increase in afterload promotes right ventricular hypertrophy (RVH) and RV failure. Recently identified mitochondrial-metabolic abnormalities in PAH, notably pyruvate dehydrogenase kinase-mediated inhibition of pyruvate dehydrogenase (PDH), result in aerobic glycolysis in both the lung vasculature and RV. This glycolytic shift has diagnostic importance since it is detectable early in experimental PAH by increased lung and RV uptake of 18F-fluorodeoxyglucose on positron emission tomography. The metabolic shift also has pathophysiologic and therapeutic relevance. In RV myocytes, the glycolytic switch reduces contractility while in the vasculature it renders cells hyperproliferative and apoptosis-resistant. Reactivation of PDH can be achieved directly by PDK inhibition (using dichloroacetate), or indirectly via activating the Randle cycle, using inhibitors of fatty acid oxidation (FAO), trimetazidine and ranolazine. In experimental PAH and RVH, PDK inhibition increases glucose oxidation, enhances RV function, regresses pulmonary vascular disease by reducing proliferation and enhancing apoptosis, and restores cardiac repolarization. FAO inhibition increases RV glucose oxidation and RV function in experimental RVH. The trigger for metabolic remodeling in the RV and lung differ. In the RV, metabolic remodeling is likely triggered by ischemia (due to microvascular rarefaction and/or reduced coronary perfusion pressure). In the vasculature, metabolic changes result from redox-mediated activation of transcription factors, including hypoxia-inducible factor 1α, as a consequence of epigenetic silencing of SOD2 and/or changes in mitochondrial fission/fusion. Randomized controlled trials are required to assess whether the benefits of enhancing glucose oxidation are realized in patients with PAH.
Collapse
Affiliation(s)
- Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Abstract
Ranolazine is currently approved for use in chronic angina. The basis for this use is likely related to inhibition of late sodium channels with resultant beneficial downstream effects. Randomized clinical trials have demonstrated an improvement in exercise capacity and reduction in angina episodes with ranolazine. This therapeutic benefit occurs without the hemodynamic effects seen with the conventional antianginal agents. The inhibition of late sodium channels as well as other ion currents has a central role in the potential use of ranolazine in ischemic heart disease, arrhythmias, and heart failure. Despite its QTc-prolonging action, albeit minimal, clinical data have not shown a predisposition to torsades de pointes, and the medication has shown a reasonable safety profile even in those with structural heart disease. In this article we present the experimental and clinical data that support its current therapeutic role, and provide insight into potential future clinical applications.
Collapse
Affiliation(s)
- Nael Hawwa
- Internal Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
32
|
Abstract
Visceral fat accumulation is located upstream of metabolic syndrome. Recent progress in adipocyte biology has clarified the molecular mechanism for pathophysiology of metabolic syndrome and its related disorders. In this review we summarize adiponectin and aquaporin 7 (AQP7) in the role of metabolic syndrome and cardiovascular diseases.
Collapse
Affiliation(s)
- Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| | | | | |
Collapse
|
33
|
Mizukoshi K, Suzuki K, Yoneyama K, Kamijima R, Kou S, Takai M, Izumo M, Hayashi A, Ohtaki E, Akashi YJ, Osada N, Omiya K, Harada T, Nobuoka S, Miyake F. Early diastolic function during exertion influences exercise intolerance in patients with hypertrophic cardiomyopathy. J Echocardiogr 2012; 11:9-17. [PMID: 27278427 DOI: 10.1007/s12574-012-0150-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/23/2012] [Accepted: 10/04/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) patients with preserved left ventricular ejection fraction (LVEF) often develop dyspnea and exercise intolerance. Diastolic dysfunction may contribute to exercise intolerance in these patients. This study aimed to clarify our hypothesis as to whether diastolic function rather than systolic function would be associated with exercise intolerance in HCM using two-dimensional (2D) speckle tracking echocardiography during exercise. METHODS Thirty-three HCM patients (mean age 59.3 ± 15.7 years) underwent 2D speckle tracking echocardiography at rest and during submaximal semi-supine bicycle exercise. Global longitudinal strain (LS), LS rate during systole (LSRs), early diastole (LSRe), and late diastole (LSRa) were measured. The symptom-limited cardiopulmonary exercise testing was performed using a cycle ergometer for measuring the peak oxygen consumption (peak [Formula: see text]). RESULTS In the multivariate linear regression analysis, peak [Formula: see text] did not associate with strain or strain rate at rest. However, peak [Formula: see text] correlated with LS (β = -0.403, p = 0.007), LSRe (β = 6.041, p = 0.001), and LSRa (β = 5.117, p = 0.021) during exercise after adjustment for age, gender, and heart rate. The first quartile peak [Formula: see text] (14.2 mL/min/kg) was assessed to predict exercise intolerance. The C-statistic of delta LSRe was 0.74, which was relatively greater than that of delta LS (0.70) and delta LSRa (0.58), indicating that early diastolic function rather than systolic and late diastolic function affects exercise intolerance. CONCLUSIONS LSRe during exercise is closely associated with the peak [Formula: see text]. Early diastolic function during exercise is an important determinant of exercise capacity in patients with HCM.
Collapse
Affiliation(s)
- Kei Mizukoshi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kengo Suzuki
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Kihei Yoneyama
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Ryo Kamijima
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Seisyou Kou
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Manabu Takai
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masaki Izumo
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Akio Hayashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | | | - Yoshihiro J Akashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naohiko Osada
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kazuto Omiya
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Tomoo Harada
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Sachihiko Nobuoka
- Department of Laboratory Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Fumihiko Miyake
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
34
|
Maeda N. Implications of aquaglyceroporins 7 and 9 in glycerol metabolism and metabolic syndrome. Mol Aspects Med 2012; 33:665-75. [DOI: 10.1016/j.mam.2012.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
35
|
Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC. Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS One 2012; 7:e45243. [PMID: 23028874 PMCID: PMC3448606 DOI: 10.1371/journal.pone.0045243] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background Insulin resistance impairs nitric oxide (NO) bioavailability and obesity promotes a state of chronic inflammation and damages the vascular endothelium. Phosphodiesterase-5 inhibitors restore NO signaling and may reduce circulating inflammatory markers, and improve metabolic parameters through a number of mechanisms. We hypothesized that daily administration of the PDE-5 inhibitor, tadalafil (TAD) will attenuate inflammation, improve fasting plasma glucose and triglyceride levels, body weight, and reduce infarct size after ischemia/reperfusion injury in obese, diabetic mice. Methods Twenty leptin receptor null (db/db) mice underwent treatment with TAD (1 mg/Kg) or 10% DMSO for 28 days. Body weight and fasting plasma glucose levels were determined weekly. Upon completion, hearts were isolated and subjected to 30 min global ischemia followed by 60 min reperfusion in a Langendorff model. Plasma samples were taken for cytokine analysis and fasting triglyceride levels. Infarct size was measured using computer morphometry of tetrazolium stained sections. Additionally, ventricular cardiomyocytes were isolated and subjected to 40 min of simulated ischemia and reoxygenation. Necrosis was determined using trypan blue exclusion and LDH release assay and apoptosis was assessed by TUNEL assay after 1 h or 18 h of reoxygenation, respectively. Results Treatment with TAD caused a reduction in infarct size in the diabetic heart (23.2±1.5 vs. 47.8±3.7%, p<0.01, n = 6/group), reduced fasting glucose levels (292±31.8 vs. 511±19.3 mg/dL, p<0.001) and fasting triglycerides (43.3±21 vs. 129.7±29 mg/dL, p<0.05) as compared to DMSO, however body weight was not significantly reduced. Circulating tumor necrosis factor-α and interleukin-1β were reduced after treatment compared to control (257±16.51 vs. 402.3±17.26 and 150.8±12.55 vs. 264±31.85 pg/mL, respectively; P<0.001) Isolated cardiomyocytes from TAD-treated mice showed reduced apoptosis and necrosis. Conclusion We have provided the first evidence that TAD therapy ameliorates circulating inflammatory cytokines and chemokines in a diabetic animal model while improving fasting glucose levels and reducing infarct size following ischemia-reperfusion injury in the heart.
Collapse
Affiliation(s)
- Amit Varma
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nicholas N. Hoke
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David E. Durrant
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fadi N. Salloum
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rakesh C. Kukreja
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
36
|
He L, Kim T, Long Q, Liu J, Wang P, Zhou Y, Ding Y, Prasain J, Wood PA, Yang Q. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 2012; 126:1705-16. [PMID: 22932257 DOI: 10.1161/circulationaha.111.075978] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Carnitine palmitoyltransferase-1 (CPT1) is a rate-limiting step of mitochondrial β-oxidation by controlling the mitochondrial uptake of long-chain acyl-CoAs. The muscle isoform, CPT1b, is the predominant isoform expressed in the heart. It has been suggested that inhibiting CPT1 activity by specific CPT1 inhibitors exerts protective effects against cardiac hypertrophy and heart failure. However, clinical and animal studies have shown mixed results, thereby creating concerns about the safety of this class of drugs. Preclinical studies using genetically modified animal models should provide a better understanding of targeting CPT1 to evaluate it as a safe and effective therapeutic approach. METHODS AND RESULTS Heterozygous CPT1b knockout (CPT1b(+/-)) mice were subjected to transverse aorta constriction-induced pressure overload. These mice showed overtly normal cardiac structure/function under the basal condition. Under a severe pressure-overload condition induced by 2 weeks of transverse aorta constriction, CPT1b(+/-) mice were susceptible to premature death with congestive heart failure. Under a milder pressure-overload condition, CPT1b(+/-) mice exhibited exacerbated cardiac hypertrophy and remodeling compared with wild-type littermates. There were more pronounced impairments of cardiac contraction with greater eccentric cardiac hypertrophy in CPT1b(+/-) mice than in control mice. Moreover, the CPT1b(+/-) heart exhibited exacerbated mitochondrial abnormalities and myocardial lipid accumulation with elevated triglycerides and ceramide content, leading to greater cardiomyocyte apoptosis. CONCLUSIONS CPT1b deficiency can cause lipotoxicity in the heart under pathological stress, leading to exacerbation of cardiac pathology. Therefore, caution should be exercised in the clinical use of CPT1 inhibitors.
Collapse
Affiliation(s)
- Lan He
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Webb 435, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Van der Mieren G, Nevelsteen I, Vanderper A, Oosterlinck W, Flameng W, Herijgers P. Angiotensin-converting enzyme inhibition and food restriction in diabetic mice do not correct the increased sensitivity for ischemia-reperfusion injury. Cardiovasc Diabetol 2012; 11:89. [PMID: 22853195 PMCID: PMC3444392 DOI: 10.1186/1475-2840-11-89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/18/2012] [Indexed: 01/14/2023] Open
Abstract
Background The number of patients with diabetes or the metabolic syndrome reaches epidemic proportions. On top of their diabetic cardiomyopathy, these patients experience frequent and severe cardiac ischemia-reperfusion (IR) insults, which further aggravate their degree of heart failure. Food restriction and angiotensin-converting enzyme inhibition (ACE-I) are standard therapies in these patients but the effects on cardiac IR injury have never been investigated. In this study, we tested the hypothesis that 1° food restriction and 2° ACE-I reduce infarct size and preserve cardiac contractility after IR injury in mouse models of diabetes and the metabolic syndrome. Methods C57Bl6/J wild type (WT) mice, leptin deficient ob/ob (model for type II diabetes) and double knock-out (LDLR-/-;ob/ob, further called DKO) mice with combined leptin and LDL-receptor deficiency (model for metabolic syndrome) were used. The effects of 12 weeks food restriction or ACE-I on infarct size and load-independent left ventricular contractility after 30 min regional cardiac ischemia were investigated. Differences between groups were analyzed for statistical significance by Student’s t-test or factorial ANOVA followed by a Fisher’s LSD post hoc test. Results Infarct size was larger in ob/ob and DKO versus WT. Twelve weeks of ACE-I improved pre-ischemic left ventricular contractility in ob/ob and DKO. Twelve weeks of food restriction, with a weight reduction of 35-40%, or ACE-I did not reduce the effect of IR. Conclusion ACE-I and food restriction do not correct the increased sensitivity for cardiac IR-injury in mouse models of type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Gerry Van der Mieren
- Department of Cardiovascular Sciences, Research Unit Experimental Cardiac Surgery, K.U. Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Malloy CR, Merritt ME, Sherry AD. Could 13C MRI assist clinical decision-making for patients with heart disease? NMR IN BIOMEDICINE 2011; 24:973-9. [PMID: 21608058 PMCID: PMC3174329 DOI: 10.1002/nbm.1718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/25/2011] [Accepted: 02/22/2011] [Indexed: 05/08/2023]
Abstract
Even at this early stage of development, it is clear that the imaging of hyperpolarized (13)C-enriched molecules and their metabolic products offers a new approach to the study of the physiology and disease of the heart. The technology is practical in humans and, for this reason, we consider whether a role in clinical decision-making should motivate further development. The range of interventions available to treat coronary and valvular heart disease is already extensive, and new options are imminent. Yet the appropriate management of patients with left ventricular dysfunction can be challenging because the mechanism of reduced function may be unclear and the ability of the ventricle to respond to therapy may be difficult to predict. Pyruvate is a promising early target for development as a diagnostic agent because it lies at a critical branch point in cardiac biochemistry. The rate of metabolism of hyperpolarized pyruvate to CO(2) relative to lactate may prove to be a useful indicator of preserved mitochondrial function, and therefore provide a specific signal of viable myocardium. Other species including physiological substrates and nonphysiological molecules may provide additional information. Once suitable technology becomes available, it is likely that clinical research will progress quickly. The ability to monitor directly specific metabolic pathways may lead to an improvement in the selection of patients who will benefit from interventions, pharmacologic or otherwise.
Collapse
Affiliation(s)
- Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568, USA.
| | | | | |
Collapse
|
39
|
Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wiig P, Rehman J, Archer SL. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle's cycle. J Mol Med (Berl) 2011; 90:31-43. [PMID: 21874543 DOI: 10.1007/s00109-011-0804-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/02/2011] [Accepted: 08/10/2011] [Indexed: 12/19/2022]
Abstract
Right ventricular hypertrophy (RVH) and RV failure are major determinants of prognosis in pulmonary hypertension and congenital heart disease. In RVH, there is a metabolic shift from glucose oxidation (GO) to glycolysis. Directly increasing GO improves RV function, demonstrating the susceptibility of RVH to metabolic intervention. However, the effects of RVH on fatty acid oxidation (FAO), the main energy source in adult myocardium, are unknown. We hypothesized that partial inhibitors of FAO (pFOXi) would indirectly increase GO and improve RV function by exploiting the reciprocal relationship between FAO and GO (Randle's cycle). RVH was induced in adult Sprague-Dawley rats by pulmonary artery banding (PAB). pFOXi were administered orally to prevent (trimetazidine, 0.7 g/L for 8 weeks) or regress (ranolazine 20 mg/day or trimetazidine for 1 week, beginning 3 weeks post-PAB) RVH. Metabolic, hemodynamic, molecular, electrophysiologic, and functional comparisons with sham rats were performed 4 or 8 weeks post-PAB. Metabolism was quantified in RV working hearts, using a dual-isotope technique, and in isolated RV myocytes, using a Seahorse Analyzer. PAB-induced RVH did not cause death but reduced cardiac output and treadmill walking distance and elevated plasma epinephrine levels. Increased RV FAO in PAB was accompanied by increased carnitine palmitoyltransferase expression; conversely, GO and pyruvate dehydrogenase (PDH) activity were decreased. pFOXi decreased FAO and restored PDH activity and GO in PAB, thereby increasing ATP levels. pFOXi reduced the elevated RV glycogen levels in RVH. Trimetazidine and ranolazine increased cardiac output and exercise capacity and attenuated exertional lactic acidemia in PAB. RV monophasic action potential duration and QTc interval prolongation in RVH normalized with trimetazidine. pFOXi also decreased the mild RV fibrosis seen in PAB. Maladaptive increases in FAO reduce RV function in PAB-induced RVH. pFOXi inhibit FAO, which increases GO and enhances RV function. Trimetazidine and ranolazine have therapeutic potential in RVH.
Collapse
Affiliation(s)
- Yong-Hu Fang
- Medicine/Cardiology, University of Chicago, 5841 South Maryland Avenue (MC6080), Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bao W, Aravindhan K, Alsaid H, Chendrimada T, Szapacs M, Citerone DR, Harpel MR, Willette RN, Lepore JJ, Jucker BM. Albiglutide, a long lasting glucagon-like peptide-1 analog, protects the rat heart against ischemia/reperfusion injury: evidence for improving cardiac metabolic efficiency. PLoS One 2011; 6:e23570. [PMID: 21887274 PMCID: PMC3162574 DOI: 10.1371/journal.pone.0023570] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/20/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency. METHODS/PRINCIPAL FINDINGS Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide. CONCLUSION/SIGNIFICANCE Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function.
Collapse
Affiliation(s)
- Weike Bao
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Karpagam Aravindhan
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Hasan Alsaid
- Clinical Imaging Center, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Thimmaiah Chendrimada
- Clinical Imaging Center, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Matthew Szapacs
- Platform Technology and Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - David R. Citerone
- Platform Technology and Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Mark R. Harpel
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Robert N. Willette
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - John J. Lepore
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Beat M. Jucker
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 2011; 43:1729-38. [PMID: 21871578 DOI: 10.1016/j.biocel.2011.08.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/27/2011] [Accepted: 08/09/2011] [Indexed: 12/25/2022]
Abstract
Heart failure is a consequence of progressive deterioration of cardiac performance. Little is known about the role of impaired oxidative phosphorylation in the progression of the disease, since previous studies of mitochondrial injuries are restricted to end-stage chronic heart failure. The present study aimed at evaluating the involvement of mitochondrial dysfunction in the development of human heart failure. We measured the control of oxidative phosphorylation with high-resolution respirometry in permeabilized myocardial fibres from donor hearts (controls), and patients with no or mild heart failure but presenting with heart disease, or chronic heart failure due to dilated or ischemic cardiomyopathy. The capacity of the phosphorylation system exerted a strong limitation on oxidative phosphorylation in the human heart, estimated at 121 pmol O(2)s(-1)mg(-1) in the healthy left ventricle. In heart disease, a specific defect of the phosphorylation system, Complex I-linked respiration, and mass-specific fatty acid oxidation were identified. These early defects were also significant in chronic heart failure, where the capacities of the oxidative phosphorylation and electron transfer systems per cardiac tissue mass were decreased with all tested substrate combinations, suggesting a decline of mitochondrial density. Oxidative phosphorylation and electron transfer system capacities were higher in ventricles compared to atria, but the impaired mitochondrial quality was identical in the four cardiac chambers of chronic heart failure patients. Coupling was preserved in heart disease and chronic heart failure, in contrast to the mitochondrial dysfunction observed after prolonged cold storage of cardiac tissue. Mitochondrial defects in the phosphorylation system, Complex I respiration and mass-specific fatty acid oxidation occurred early in the development of heart failure. Targeting these mitochondrial injuries with metabolic therapy may offer a promising approach to delay the progression of heart disease.
Collapse
Affiliation(s)
- Hélène Lemieux
- D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
42
|
Camara AKS, Bienengraeber M, Stowe DF. Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Front Physiol 2011; 2:13. [PMID: 21559063 PMCID: PMC3082167 DOI: 10.3389/fphys.2011.00013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/24/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | | | | |
Collapse
|
43
|
Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H, Frenneaux M. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 2010; 122:1562-9. [PMID: 20921440 DOI: 10.1161/circulationaha.109.934059] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy patients exhibit myocardial energetic impairment, but a causative role for this energy deficiency in the pathophysiology of hypertrophic cardiomyopathy remains unproven. We hypothesized that the metabolic modulator perhexiline would ameliorate myocardial energy deficiency and thereby improve diastolic function and exercise capacity. METHODS AND RESULTS Forty-six consecutive patients with symptomatic exercise limitation (peak Vo(2) <75% of predicted) caused by nonobstructive hypertrophic cardiomyopathy (mean age, 55±0.26 years) were randomized to perhexiline 100 mg (n=24) or placebo (n=22). Myocardial ratio of phosphocreatine to adenosine triphosphate, an established marker of cardiac energetic status, as measured by (31)P magnetic resonance spectroscopy, left ventricular diastolic filling (heart rate normalized time to peak filling) at rest and during exercise using radionuclide ventriculography, peak Vo(2), symptoms, quality of life, and serum metabolites were assessed at baseline and study end (4.6±1.8 months). Perhexiline improved myocardial ratios of phosphocreatine to adenosine triphosphate (from 1.27±0.02 to 1.73±0.02 versus 1.29±0.01 to 1.23±0.01; P=0.003) and normalized the abnormal prolongation of heart rate normalized time to peak filling between rest and exercise (0.11±0.008 to -0.01±0.005 versus 0.15±0.007 to 0.11±0.008 second; P=0.03). These changes were accompanied by an improvement in primary end point (peak Vo(2)) (22.2±0.2 to 24.3±0.2 versus 23.6±0.3 to 22.3±0.2 mL · kg(-1) · min(-1); P=0.003) and New York Heart Association class (P<0.001) (all P values ANCOVA, perhexiline versus placebo). CONCLUSIONS In symptomatic hypertrophic cardiomyopathy, perhexiline, a modulator of substrate metabolism, ameliorates cardiac energetic impairment, corrects diastolic dysfunction, and increases exercise capacity. This study supports the hypothesis that energy deficiency contributes to the pathophysiology and provides a rationale for further consideration of metabolic therapies in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Khalid Abozguia
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med (Berl) 2010; 88:1011-20. [PMID: 20820751 DOI: 10.1007/s00109-010-0679-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/25/2022]
Abstract
Right ventricular failure (RVF) is the leading cause of death in pulmonary arterial hypertension (PAH). Some patients with pulmonary hypertension are adaptive remodelers and develop RV hypertrophy (RVH) but retain RV function; others are maladaptive remodelers and rapidly develop RVF. The cause of RVF is unclear and understudied and most PAH therapies focus on regressing pulmonary vascular disease. Studies in animal models and human RVH suggest that there is reduced glucose oxidation and increased glycolysis in both adaptive and maladaptive RVH. The metabolic shift from oxidative mitochondrial metabolism to the less energy efficient glycolytic metabolism may reflect myocardial ischemia. We hypothesize that in maladaptive RVH a vicious cycle of RV ischemia and transcription factor activation causes a shift from oxidative to glycolytic metabolism thereby ultimately promoting RVF. Interrupting this cycle, by reducing ischemia or enhancing glucose oxidation, might be therapeutic. Dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, has beneficial effects on RV function and metabolism in experimental RVH, notably improving glucose oxidation and enhancing RV function. This suggests the mitochondrial dysfunction in RVH may be amenable to therapy. In this mini review, we describe the role of impaired mitochondrial metabolism in RVH, using rats with adaptive (pulmonary artery banding) or maladaptive (monocrotaline-induced pulmonary hypertension) RVH as models of human disease. We will discuss the possible mechanisms, relevant transcriptional factors, and the potential of mitochondrial metabolic therapeutics in RVH and RVF.
Collapse
Affiliation(s)
- Lin Piao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
45
|
A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 2010; 38:841-60. [DOI: 10.1042/bst0380841] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In addition to their normal physiological role in ATP production and metabolism, mitochondria exhibit a dark side mediated by the opening of a non-specific pore in the inner mitochondrial membrane. This mitochondrial permeability transition pore (MPTP) causes the mitochondria to breakdown rather than synthesize ATP and, if unrestrained, leads to necrotic cell death. The MPTP is opened in response to Ca2+ overload, especially when accompanied by oxidative stress, elevated phosphate concentration and adenine nucleotide depletion. These conditions are experienced by the heart and brain subjected to reperfusion after a period of ischaemia as may occur during treatment of a myocardial infarction or stroke and during heart surgery. In the present article, I review the properties, regulation and molecular composition of the MPTP. The evidence for the roles of CyP-D (cyclophilin D), the adenine nucleotide translocase and the phosphate carrier are summarized and other potential interactions with outer mitochondrial membrane proteins are discussed. I then review the evidence that MPTP opening mediates cardiac reperfusion injury and that MPTP inhibition is cardioprotective. Inhibition may involve direct pharmacological targeting of the MPTP, such as with cyclosporin A that binds to CyP-D, or indirect inhibition of MPTP opening such as with preconditioning protocols. These invoke complex signalling pathways to reduce oxidative stress and Ca2+ load. MPTP inhibition also protects against congestive heart failure in hypertensive animal models. Thus the MPTP is a very promising pharmacological target for clinical practice, especially once more specific drugs are developed.
Collapse
|
46
|
Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, Desvergne B, Müller M, Kersten S. Induction of Cardiac Angptl4 by Dietary Fatty Acids Is Mediated by Peroxisome Proliferator-Activated Receptor β/δ and Protects Against Fatty Acid–Induced Oxidative Stress. Circ Res 2010; 106:1712-21. [DOI: 10.1161/circresaha.110.217380] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rationale
:
Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart.
Objective
:
To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences.
Methods and Results
:
Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)β/δ
−/−
and not PPARα
−/−
mice and was blunted on siRNA-mediated PPARβ/δ knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARβ/δ but not PPARα to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding.
Conclusions
:
Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARβ/δ is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid–induced oxidative stress.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Laeticia Lichtenstein
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Tatjana Degenhardt
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Mark V. Boekschoten
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Marc van Bilsen
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Beatrice Desvergne
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Michael Müller
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Sander Kersten
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| |
Collapse
|
47
|
Left ventricular strain and untwist in hypertrophic cardiomyopathy: relation to exercise capacity. Am Heart J 2010; 159:825-32. [PMID: 20435192 PMCID: PMC2877779 DOI: 10.1016/j.ahj.2010.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/02/2010] [Indexed: 11/20/2022]
Abstract
Background Nonobstructive hypertrophic cardiomyopathy (nHCM) is often associated with reduced exercise capacity despite hyperdynamic systolic function as measured by left ventricular ejection fraction. We sought to examine the importance of left ventricular strain, twist, and untwist as predictors of exercise capacity in nHCM patients. Methods Fifty-six nHCM patients (31 male and mean age of 52 years) and 43 age- and gender-matched controls were enrolled. We measured peak oxygen consumption (peak Vo2) and acquired standard echocardiographic images in all participants. Two-dimensional speckle tracking was applied to measure rotation, twist, untwist rate, strain, and strain rate. Results The nHCM patients exhibited marked exercise limitation compared with controls (peak Vo2 23.28 ± 6.31 vs 37.70 ± 7.99 mL/[kg min], P < .0001). Left ventricular ejection fraction in nHCM patients and controls was similar (62.76% ± 9.05% vs 62.48% ± 5.82%, P = .86). Longitudinal, radial, and circumferential strain and strain rate were all significantly reduced in nHCM patients compared with controls. There was a significant delay in 25% of untwist in nHCM compared with controls. Both systolic and diastolic apical rotation rates were lower in nHCM patients. Longitudinal systolic and diastolic strain rate correlated significantly with peak Vo2 (r = −0.34, P = .01 and r = 0.36, P = .006, respectively). Twenty-five percent untwist correlated significantly with peak Vo2 (r = 0.36, P = .006). Conclusions In nHCM patients, there are widespread abnormalities of both systolic and diastolic function. Reduced strain and delayed untwist contribute significantly to exercise limitation in nHCM patients.
Collapse
|
48
|
Shivu GN, Phan TT, Abozguia K, Ahmed I, Wagenmakers A, Henning A, Narendran P, Stevens M, Frenneaux M. Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus. Circulation 2010; 121:1209-15. [PMID: 20194884 DOI: 10.1161/circulationaha.109.873273] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asymptomatic subjects with diabetes mellitus have an impaired cardiac energetics status that may play a significant role in the development of heart failure. In the present study, we assessed the role of microvascular dysfunction in the development of impaired cardiac energetics in subjects with type 1 diabetes mellitus. METHODS AND RESULTS Twenty-five asymptomatic subjects with type 1 diabetes mellitus (mean age +/-1 SD 33+/-8 years) and 26 age-, sex-, and body mass index-matched healthy control subjects (32+/-8 years old) were recruited into the study. The type 1 diabetes mellitus subjects were divided into 2 age-matched groups (newly diagnosed [<5 years] and longer-duration [>10 years] diabetes) to assess the impact of microvascular disease. All subjects had an echocardiogram and an exercise ECG performed, followed by magnetic resonance spectroscopy and stress magnetic resonance imaging. Compared with healthy control subjects, the phosphocreatine/gamma-ATP ratio was reduced significantly both in subjects with longer-term (2.1+/-0.5 versus 1.5+/-0.4, P<0.000) and newly diagnosed (2.1+/-0.5 versus 1.6+/-0.2, P<0.000) diabetes. The phosphocreatine/gamma-ATP ratio was similar in newly diagnosed diabetes subjects and those with longer-term disease (1.6+/-0.2 versus 1.5+/-0.4, P=0.32). The mean myocardial perfusion reserve index in the longer-term type 1 diabetes mellitus subjects was significantly lower than in healthy control subjects (1.7+/-0.6 versus 2.3+/-0.4, P=0.005). On univariate analysis, there was no significant correlation of phosphocreatine/gamma-ATP ratio with myocardial perfusion reserve index (r=0.21, P=0.26). CONCLUSIONS We demonstrate that young subjects with uncomplicated type 1 diabetes mellitus have impaired myocardial energetics irrespective of the duration of diabetes and that the impaired cardiac energetics status is independent of coronary microvascular function. We postulate that impairment of cardiac energetics in these subjects primarily results from metabolic dysfunction rather than microvascular impairment.
Collapse
Affiliation(s)
- G Nallur Shivu
- Department of Cardiovascular Medicine, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:1402-15. [PMID: 19168026 DOI: 10.1016/j.bbabio.2008.12.017] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 01/17/2023]
Abstract
Like Dr. Jeckyll and Mr. Hyde, mitochondria possess two distinct persona. Under normal physiological conditions they synthesise ATP to meet the energy needs of the beating heart. Here calcium acts as a signal to balance the rate of ATP production with ATP demand. However, when the heart is overloaded with calcium, especially when this is accompanied by oxidative stress, mitochondria embrace their darker side, and induce necrotic cell death of the myocytes. This happens acutely in reperfusion injury and chronically in congestive heart failure. Here calcium overload, adenine nucleotide depletion and oxidative stress combine forces to induce the opening of a non-specific pore in the mitochondrial membrane, known as the mitochondrial permeability transition pore (mPTP). The molecular nature of the mPTP remains controversial but current evidence implicates a matrix protein, cyclophilin-D (CyP-D) and two inner membrane proteins, the adenine nucleotide translocase (ANT) and the phosphate carrier (PiC). Inhibition of mPTP opening can be achieved with inhibitors of each component, but targeting CyP-D with cyclosporin A (CsA) and its non-immunosuppressive analogues is the best described. In animal models, inhibition of mPTP opening by either CsA or genetic ablation of CyP-D provides strong protection from both reperfusion injury and congestive heart failure. This confirms the mPTP as a promising drug target in human cardiovascular disease. Indeed, the first clinical trials have shown CsA treatment improves recovery after treatment of a coronary thrombosis with angioplasty.
Collapse
Affiliation(s)
- Andrew P Halestrap
- Department of Biochemistry and Bristol Heart Institute, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
50
|
Affiliation(s)
- Andreas S Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|