1
|
Arnau-Soler A, Tremblay BL, Sun Y, Madore AM, Simard M, Kersten ETG, Ghauri A, Marenholz I, Eiwegger T, Simons E, Chan ES, Nadeau K, Sampath V, Mazer BD, Elliott S, Hampson C, Soller L, Sandford A, Begin P, Hui J, Wilken BF, Gerdts J, Bourkas A, Ellis AK, Vasileva D, Clarke A, Eslami A, Ben-Shoshan M, Martino D, Daley D, Koppelman GH, Laprise C, Lee YA, Asai Y. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2024. [PMID: 39698764 DOI: 10.1111/all.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a discussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false discovery of < 1 × 10-4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.
Collapse
Affiliation(s)
- Aleix Arnau-Soler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany
| | - Bénédicte L Tremblay
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Anne-Marie Madore
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Mathieu Simard
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Elin T G Kersten
- Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
- Department of Paediatrics, Division of Clinical Immunology and Allergy, Food Allergy and Anaphylaxis Program, the Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | - Elinor Simons
- Section of Allergy & Clinical Immunology, Department of Pediatrics & Child Health, University of Manitoba, Children's Hospital Research Institute, Winnipeg, Manitoba, Canada
| | - Edmond S Chan
- Division of Allergy, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kari Nadeau
- Department of Environmental Studies, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Vanitha Sampath
- Department of Environmental Studies, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bruce D Mazer
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Susan Elliott
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Lianne Soller
- Division of Allergy, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Sandford
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical Immunology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Department of Medicine, Service of Allergy and Clinical Immunology, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jennie Hui
- School of Population Health, University of Western Australia, Perth, Western Australia, Australia
| | - Bethany F Wilken
- School of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Adrienn Bourkas
- School of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Denitsa Vasileva
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Ann Clarke
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aida Eslami
- Département de médecine Sociale et préventive, Faculté de médecine, Université Laval, Quebec, Canada
| | - Moshe Ben-Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montréal Children's Hospital, McGill University Health Centre, Montréal, Quebec, Canada
| | - David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Denise Daley
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Catherine Laprise
- Département Des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), Berlin, Germany
| | - Yuka Asai
- Division of Dermatology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
da Silva Duarte AJ, Sanabani SS. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci 2024; 348:122713. [PMID: 38735367 DOI: 10.1016/j.lfs.2024.122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Atopic dermatitis, commonly referred to as atopic eczema, is a persistent inflammatory skin disorder that predominantly manifests in children but may endure into adulthood. Its clinical management poses challenges due to the absence of a definitive cure, and its prevalence varies across ethnicities, genders, and geographic locations. The epigenetic landscape of AD includes changes in DNA methylation, changes in histone acetylation and methylation, and regulation by non-coding RNAs. These changes affect inflammatory and immune mechanisms, and research has identified AD-specific variations in DNA methylation, particularly in the affected epidermis. Histone modifications, including acetylation, have been associated with the disruption of skin barrier function in AD, suggesting the potential therapeutic benefit of histone deacetylase inhibitors such as belinostat. Furthermore, non-coding RNAs, particularly microRNAs and long non-coding RNAs (lncRNAs), have been implicated in modulating various cellular processes central to AD pathogenesis. Therapeutic implications in AD include the potential use of DNA methylation inhibitors and histone deacetylase inhibitors to correct aberrant methylation patterns and modulate gene expression related to immune responses and skin barrier functions. Additionally, the emerging role of lncRNAs suggests the possibility of using small interfering RNAs or antisense oligonucleotides to inhibit lncRNAs and adjust their regulatory impact on gene expression. In conclusion, the importance of epigenetic elements in AD is becoming increasingly clear as studies highlight the contribution of DNA methylation, histone modifications and, control by non-coding RNAs to the onset and progression of the disease. Understanding these epigenetic changes provides valuable insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil.
| |
Collapse
|
3
|
Khatib CM, Klein-Petersen AW, Rønnstad ATM, Egeberg A, Christensen MO, Silverberg JI, Thomsen SF, Irvine AD, Thyssen JP. Increased loss-of-function filaggrin gene mutation prevalence in atopic dermatitis patients across northern latitudes indicates genetic fitness: A systematic review and meta-analysis. Exp Dermatol 2024; 33:e15130. [PMID: 38989976 DOI: 10.1111/exd.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Loss-of-function (LoF) mutations in the filaggrin gene (FLG) constitute the strongest genetic risk for atopic dermatitis (AD). A latitude-dependent difference in the prevalence of LoF FLG mutations was systematically evaluated. A systematic review and meta-analysis were performed to estimate the prevalence of LoF FLG mutations in AD patients and the general population by geography and ethnicity. Risk of bias was assessed by Newcastle-Ottawa Scale and Jadad score. StatsDirect, version 3 software was used to calculate all outcomes. PubMed and EMBASE were searched until 9th December 2021. Studies were included if they contained data on the prevalence of LoF FLG mutations in AD patients or from the general population or associations between AD and LoF FLG mutations and were authored in English. Overall, 248 studies and 229 310 AD patients and individuals of the general population were included in the quantitative analysis. The prevalence of LoF FLG mutations was 19.1% (95% CI, 17.3-21.0) in AD patients and 5.8% (95% CI, 5.3-6.2) in the general population. There was a significant positive association between AD and LoF FLG mutations in all latitudes in the Northern hemisphere, but not in all ethnicities. The prevalence of LoF FLG mutations became gradually more prevalent in populations residing farther north of the Equator but was negligible in Middle Easterners and absent in most African populations. FLG LoF mutations are common and tend to increase with northern latitude, suggesting potential clinical implications for future AD management. The existence of possible genetic fitness from FLG LoF mutations remains unknown.
Collapse
Affiliation(s)
- Casper Milde Khatib
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Alexander Egeberg
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Simon Francis Thomsen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Nagasawa CK, Bailey AO, Russell WK, Garcia-Blanco MA. Inefficient recruitment of DDX39B impedes pre-spliceosome assembly on FOXP3 introns. RNA (NEW YORK, N.Y.) 2024; 30:824-838. [PMID: 38575347 PMCID: PMC11182011 DOI: 10.1261/rna.079933.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.
Collapse
Affiliation(s)
- Chloe K Nagasawa
- Human Pathophysiology and Translational Medicine Program, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
5
|
Yellamaty R, Sharma S. Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56. J Mol Biol 2024; 436:168604. [PMID: 38729260 PMCID: PMC11168752 DOI: 10.1016/j.jmb.2024.168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly. Additionally, it has been found to be critical for interactions between components of the exon junction and transcription and export complexes to promote the loading of export receptors. Although it appears to be structurally similar to other helicase superfamily 2 members, UAP56's ability to interact with multiple different protein partners allows it to perform its various cellular functions. Herein, we describe the structure-activity relationship studies that identified protein interactions of UAP56 and its human paralog URH49 (UAP56-related helicase 49; also known as DDX39A) and are beginning to reveal molecular mechanisms by which interacting proteins and substrate RNAs may regulate these helicases. We also provide an overview of reports that have demonstrated less well-characterized roles for UAP56, including R-loop resolution and telomere maintenance. Finally, we discuss studies that indicate a potential pathogenic effect of UAP56 in the development of autoimmune diseases and cancer, and identify the association of somatic and genetic mutations in UAP56 with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan Yellamaty
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
6
|
Saheb Kashaf S, Kong HH. Adding Fuel to the Fire? The Skin Microbiome in Atopic Dermatitis. J Invest Dermatol 2024; 144:969-977. [PMID: 38530677 PMCID: PMC11034722 DOI: 10.1016/j.jid.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 03/28/2024]
Abstract
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.
Collapse
Affiliation(s)
- Sara Saheb Kashaf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Heidi H Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Schuler CF, Tsoi LC, Billi AC, Harms PW, Weidinger S, Gudjonsson JE. Genetic and Immunological Pathogenesis of Atopic Dermatitis. J Invest Dermatol 2024; 144:954-968. [PMID: 38085213 PMCID: PMC11040454 DOI: 10.1016/j.jid.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
Type 2 immune-mediated diseases give a clear answer to the issue of nature (genetics) versus nurture (environment). Both genetics and environment play vital complementary roles in the development of atopic dermatitis (AD). As a key component of the atopic march, AD demonstrates the interactive nature of genetic and environmental contributions to atopy. From sequence variants in the epithelial barrier gene encoding FLG to the hygiene hypothesis, AD combines a broad array of contributions into a single syndrome. This review will focus on the genetic contribution to AD and where genetics facilitates the elicitation or enhancement of AD pathogenesis.
Collapse
Affiliation(s)
- Charles F Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul W Harms
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephan Weidinger
- Department of Dermatology, Venereology, and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johann E Gudjonsson
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Shorey-Kendrick LE, McEvoy CT, Milner K, Harris J, Brownsberger J, Tepper RS, Park B, Gao L, Vu A, Morris CD, Spindel ER. Improvements in lung function following vitamin C supplementation to pregnant smokers are associated with buccal DNA methylation at 5 years of age. Clin Epigenetics 2024; 16:35. [PMID: 38413986 PMCID: PMC10900729 DOI: 10.1186/s13148-024-01644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND We previously reported in the "Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function" randomized clinical trial (RCT) that vitamin C (500 mg/day) supplementation to pregnant smokers is associated with improved respiratory outcomes that persist through 5 years of age. The objective of this study was to assess whether buccal cell DNA methylation (DNAm), as a surrogate for airway epithelium, is associated with vitamin C supplementation, improved lung function, and decreased occurrence of wheeze. METHODS We conducted epigenome-wide association studies (EWAS) using Infinium MethylationEPIC arrays and buccal DNAm from 158 subjects (80 placebo; 78 vitamin C) with pulmonary function testing (PFT) performed at the 5-year visit. EWAS were performed on (1) vitamin C treatment, (2) forced expiratory flow between 25 and 75% of expired volume (FEF25-75), and (3) offspring wheeze. Models were adjusted for sex, race, study site, gestational age at randomization (≤ OR > 18 weeks), proportion of epithelial cells, and latent covariates in addition to child length at PFT in EWAS for FEF25-75. We considered FDR p < 0.05 as genome-wide significant and nominal p < 0.001 as candidates for downstream analyses. Buccal DNAm measured in a subset of subjects at birth and near 1 year of age was used to determine whether DNAm signatures originated in utero, or emerged with age. RESULTS Vitamin C treatment was associated with 457 FDR significant (q < 0.05) differentially methylated CpGs (DMCs; 236 hypermethylated; 221 hypomethylated) and 53 differentially methylated regions (DMRs; 26 hyper; 27 hypo) at 5 years of age. FEF25-75 was associated with one FDR significant DMC (cg05814800), 1,468 candidate DMCs (p < 0.001), and 44 DMRs. Current wheeze was associated with 0 FDR-DMCs, 782 candidate DMCs, and 19 DMRs (p < 0.001). In 365/457 vitamin C FDR significant DMCs at 5 years of age, there was no significant interaction between time and treatment. CONCLUSIONS Vitamin C supplementation to pregnant smokers is associated with buccal DNA methylation in offspring at 5 years of age, and most methylation signatures appear to be persistent from the prenatal period. Buccal methylation at 5 years was also associated with current lung function and occurrence of wheeze, and these functionally associated loci are enriched for vitamin C associated loci. Clinical trial registration ClinicalTrials.gov, NCT01723696 and NCT03203603.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Cindy T McEvoy
- Department of Pediatrics, Pape Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kristin Milner
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julia Harris
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julie Brownsberger
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Robert S Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Annette Vu
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia D Morris
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
9
|
Drechsler Y, Dong C, Clark DE, Kaur G. Canine Atopic Dermatitis: Prevalence, Impact, and Management Strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:15-29. [PMID: 38371487 PMCID: PMC10874193 DOI: 10.2147/vmrr.s412570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
Atopic dermatitis (AD) is a common inflammatory and pruritic allergic skin disease in humans and dogs worldwide. The pathogenesis of AD is multifactorial, immunologically complex, and may involve genetic factors, epidermal barrier dysfunction, microbiome changes, immune dysregulation, and allergic sensitization. Across species, prevalence of AD is on the rise. At present, there is no cure for canine AD (CAD). The treatment for CAD is multifaceted and aimed at controlling the pruritus, associated inflammation, and infections, repairing the skin barrier function, and dietary management. This review presents data on prevalence, impact, and complex immunological interactions in AD with a focus on subsequent management of the disease in the canine population. A multimodal approach for management of CAD to address varying clinical signs and responses to therapies is discussed.
Collapse
Affiliation(s)
- Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Charli Dong
- Animal Dermatology Clinic, Pasadena, CA, USA
| | - David E Clark
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Gagandeep Kaur
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
10
|
Teo WY, Lim YYE, Sio YY, Say YH, Reginald K, Chew FT. Atopic dermatitis-associated genetic variants regulate LOC100294145 expression implicating interleukin-27 production and type 1 interferon signaling. World Allergy Organ J 2024; 17:100869. [PMID: 38298829 PMCID: PMC10827559 DOI: 10.1016/j.waojou.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Background Atopic dermatitis (AD) is a complex inflammatory disease with a strong genetic component. A singular approach of genome wide association studies (GWAS) can identify AD-associated genetic variants, but is unable to explain their functional relevance in AD. This study aims to characterize AD-associated genetic variants and elucidate the mechanisms leading to AD through a multi-omics approach. Methods GWAS identified an association between genetic variants at 6p21.32 locus and AD. Genotypes of 6p21.32 locus variants were evaluated against LOC100294145 expression in peripheral blood mononuclear cells (PBMCs). Their influence on LOC100294145 promoter activity was measured in vitro via a dual-luciferase assay. The function of LOC100294145 was then elucidated through a combination of co-expression analyses and gene enrichment with g:Profiler. Mendelian randomization was further used to assess the causal regulatory effect of LOC100294145 on its co-expressed genes. Results Minor alleles of rs116160149 and rs115388857 at 6p21.32 locus were associated with increased AD risk (p = 2.175 × 10-8, OR = 1.552; p = 2.805 × 10-9, OR = 1.55) and higher LOC100294145 expression in PBMCs (adjusted p = 0.182; 8.267 × 10-12). LOC100294145 expression was also found to be increased in those with AD (adjusted p = 3.653 × 10-2). The genotype effect of 6p21.32 locus on LOC100294145 promoter activity was further validated in vitro. Co-expression analyses predicted LOC100294145 protein's involvement in interleukin-27 and type 1 interferon signaling, which was further substantiated through mendelian randomization. Conclusion Genetic variants at 6p21.32 locus increase AD susceptibility through raising LOC100294145 expression. A multi-omics approach enabled the deduction of its pathogenesis model comprising dysregulation of hub genes involved in type 1 interferon and interleukin 27 signaling.
Collapse
Affiliation(s)
- Wei Yi Teo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Ying Eliza Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
11
|
Rusiñol L, Puig L. Multi-Omics Approach to Improved Diagnosis and Treatment of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1042. [PMID: 38256115 PMCID: PMC10815999 DOI: 10.3390/ijms25021042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis and atopic dermatitis fall within the category of cutaneous immune-mediated inflammatory diseases (IMIDs). The prevalence of IMIDs is increasing in industrialized societies, influenced by both environmental changes and a genetic predisposition. However, the exact immune factors driving these chronic, progressive diseases are not fully understood. By using multi-omics techniques in cutaneous IMIDs, it is expected to advance the understanding of skin biology, uncover the underlying mechanisms of skin conditions, and potentially devise precise and personalized approaches to diagnosis and treatment. We provide a narrative review of the current knowledge in genomics, epigenomics, and proteomics of atopic dermatitis and psoriasis. A literature search was performed for articles published until 30 November 2023. Although there is still much to uncover, recent evidence has already provided valuable insights, such as proteomic profiles that permit differentiating psoriasis from mycosis fungoides and β-defensin 2 correlation to PASI and its drop due to secukinumab first injection, among others.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
12
|
Sui JY, Eichenfield DZ, Sun BK. The role of enhancers in psoriasis and atopic dermatitis. Br J Dermatol 2023; 190:10-19. [PMID: 37658835 DOI: 10.1093/bjd/ljad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Regulatory elements, particularly enhancers, play a crucial role in disease susceptibility and progression. Enhancers are DNA sequences that activate gene expression and can be affected by epigenetic modifications, interactions with transcription factors (TFs) or changes to the enhancer DNA sequence itself. Altered enhancer activity impacts gene expression and contributes to disease. In this review, we define enhancers and the experimental techniques used to identify and characterize them. We also discuss recent studies that examine how enhancers contribute to atopic dermatitis (AD) and psoriasis. Articles in the PubMed database were identified (from 1 January 2010 to 28 February 2023) that were relevant to enhancer variants, enhancer-associated TFs and enhancer histone modifications in psoriasis or AD. Most enhancers associated with these conditions regulate genes affecting epidermal homeostasis or immune function. These discoveries present potential therapeutic targets to complement existing treatment options for AD and psoriasis.
Collapse
Affiliation(s)
- Jennifer Y Sui
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Dawn Z Eichenfield
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital of San Diego, CA, USA
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego School of Medicine, CA, USA
| |
Collapse
|
13
|
Budu-Aggrey A, Kilanowski A, Sobczyk MK, Shringarpure SS, Mitchell R, Reis K, Reigo A, Mägi R, Nelis M, Tanaka N, Brumpton BM, Thomas LF, Sole-Navais P, Flatley C, Espuela-Ortiz A, Herrera-Luis E, Lominchar JVT, Bork-Jensen J, Marenholz I, Arnau-Soler A, Jeong A, Fawcett KA, Baurecht H, Rodriguez E, Alves AC, Kumar A, Sleiman PM, Chang X, Medina-Gomez C, Hu C, Xu CJ, Qi C, El-Heis S, Titcombe P, Antoun E, Fadista J, Wang CA, Thiering E, Wu B, Kress S, Kothalawala DM, Kadalayil L, Duan J, Zhang H, Hadebe S, Hoffmann T, Jorgenson E, Choquet H, Risch N, Njølstad P, Andreassen OA, Johansson S, Almqvist C, Gong T, Ullemar V, Karlsson R, Magnusson PKE, Szwajda A, Burchard EG, Thyssen JP, Hansen T, Kårhus LL, Dantoft TM, Jeanrenaud ACSN, Ghauri A, Arnold A, Homuth G, Lau S, Nöthen MM, Hübner N, Imboden M, Visconti A, Falchi M, Bataille V, Hysi P, Ballardini N, Boomsma DI, Hottenga JJ, Müller-Nurasyid M, Ahluwalia TS, Stokholm J, Chawes B, Schoos AMM, Esplugues A, Bustamante M, Raby B, Arshad S, German C, Esko T, Milani LA, Metspalu A, Terao C, Abuabara K, Løset M, Hveem K, Jacobsson B, Pino-Yanes M, Strachan DP, Grarup N, Linneberg A, Lee YA, Probst-Hensch N, Weidinger S, Jarvelin MR, Melén E, Hakonarson H, Irvine AD, Jarvis D, Nijsten T, Duijts L, Vonk JM, Koppelmann GH, Godfrey KM, Barton SJ, Feenstra B, Pennell CE, Sly PD, Holt PG, Williams LK, Bisgaard H, Bønnelykke K, Curtin J, Simpson A, Murray C, Schikowski T, Bunyavanich S, Weiss ST, Holloway JW, Min JL, Brown SJ, Standl M, Paternoster L. European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation. Nat Commun 2023; 14:6172. [PMID: 37794016 PMCID: PMC10550990 DOI: 10.1038/s41467-023-41180-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/24/2023] [Indexed: 10/06/2023] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.
Collapse
Affiliation(s)
- Ashley Budu-Aggrey
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
- Pettenkofer School of Public Health, Ludwig-Maximilians University Munich, Munich, Germany
| | - Maria K Sobczyk
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | | | - Ruth Mitchell
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Kadri Reis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mari Nelis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Core Facility of Genomics, University of Tartu, Tartu, Estonia
| | - Nao Tanaka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, 7600, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Pol Sole-Navais
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Flatley
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jesus V T Lominchar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Ingo Marenholz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aleix Arnau-Soler
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, CH-4123, Basel, Switzerland
- University of Basel, CH-4001, Basel, Switzerland
| | - Katherine A Fawcett
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Hansjorg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Ashish Kumar
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Solna, Sweden
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Rhythm Pharmaceuticals, 222 Berkley Street, Boston, 02116, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chen Hu
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Cancan Qi
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Sarah El-Heis
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Elie Antoun
- Faculty of Medicine, University of Southampton, Southampton, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - João Fadista
- Department of Bioinformatics & Data Mining, Måløv, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Medicine, Henry Ford Health, Detroit, MI, 48104, USA
| | - Sara Kress
- Environmental Epidemiology of Lung, Brain and Skin Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Dilini M Kothalawala
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jiasong Duan
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas Hoffmann
- Institute for Human Genetics, UCSF, San Francisco, CA, 94143, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, 94158, USA
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Neil Risch
- Institute for Human Genetics, UCSF, San Francisco, CA, 94143, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, 94158, USA
| | - Pål Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, 0450, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, 0450, Oslo, Norway
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, NO-5020, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, NO-5021, Bergen, Norway
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Lung and Allergy Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agnieszka Szwajda
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Alexander C S N Jeanrenaud
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahla Ghauri
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Lau
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, CH-4123, Basel, Switzerland
- University of Basel, CH-4001, Basel, Switzerland
| | - Alessia Visconti
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
| | - Mario Falchi
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
| | - Veronique Bataille
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
- Dermatology Department, West Herts NHS Trust, Watford, UK
| | - Pirro Hysi
- Department of Twin Research & Genetics Epidemiology, Kings College London, London, UK
| | - Natalia Ballardini
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Solna, Sweden
| | - Dorret I Boomsma
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
- Institute for Health and Care Research (EMGO), VU University, Amsterdam, the Netherlands
| | - Jouke J Hottenga
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie M Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Ana Esplugues
- Nursing School, University of Valencia, FISABIO-University Jaume I-University of Valencia, Valencia, Spain
- Joint Research Unit of Epidemiology and Environmental Health, CIBERESP, Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Benjamin Raby
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Syed Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | | | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili A Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- Department of Dermatology, Clinic of Orthopaedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Young-Ae Lee
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, CH-4123, Basel, Switzerland
- University of Basel, CH-4001, Basel, Switzerland
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health,Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Solna, Sweden
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Divisions of Human Genetics and Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Faculty of Medicine, University of Iceland, 101, Reykjavík, Iceland
| | - Alan D Irvine
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | - Deborah Jarvis
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Medical Research Council and Public Health England Centre for Environment and Health, London, United Kingdom
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Gerard H Koppelmann
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sheila J Barton
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, 4101, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Medicine, Henry Ford Health, Detroit, MI, 48104, USA
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - John Curtin
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, England
| | - Angela Simpson
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, England
| | - Clare Murray
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, England
| | - Tamara Schikowski
- Environmental Epidemiology of Lung, Brain and Skin Aging, Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Josine L Min
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Sara J Brown
- Centre for Genomics and Experimental Medicine, Institute for Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, UK EH4 2XU, Scotland
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Lung Research (DZL), Munich, Germany
| | - Lavinia Paternoster
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, England.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England.
| |
Collapse
|
14
|
Halling AS, Fritz BG, Gerner T, Rinnov MR, Bay L, Knudgaard MH, Ravn NH, Trautner S, Ruge IF, Olesen C, Díiaz-Pinées Cort I, Skov L, Sørensen N, Møller Rønnstad AT, Thomsen SF, Egeberg A, Jakasa I, Kezic S, Bjarnsholt T, Thyssen JP. Reduced Skin Microbiome Diversity in Infancy Is Associated with Increased Risk of Atopic Dermatitis in High-Risk Children. J Invest Dermatol 2023; 143:2030-2038.e6. [PMID: 37085040 DOI: 10.1016/j.jid.2023.03.1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 04/23/2023]
Abstract
It is currently unknown whether alterations in the skin microbiome exist before development of atopic dermatitis (AD). In this prospective Danish birth cohort of 300 children, we examined whether skin microbiome alterations during the first 2 months of life were associated with an increased risk of AD in the first 2 years and its severity after adjustment for environmental factors and selected skin chemokine and natural moisturizing factor levels. We found no overall association between the skin microbiome at birth and age 2 months and AD during the first 2 years of life. However, when restricting the analysis to children with at least one parent with atopy, a lower alpha diversity at age 2 months was associated with an increased risk of AD (adjusted hazard ratio = 1.7, 95% confidence interval = 1.1-2.6). We observed a stronger association in children where both parents had atopy (adjusted hazard ratio = 4.4, 95% confidence interval = 1.1-18.2). The putative pathogenic role of changes in the skin microbiome on AD risk remains uncertain but may play a role in those with an atopic predisposition.
Collapse
Affiliation(s)
- Anne-Sofie Halling
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Gerner
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Maria Rasmussen Rinnov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Neonatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lene Bay
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hjorslev Knudgaard
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina Haarup Ravn
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Simon Trautner
- Department of Neonatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iben Frier Ruge
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Olesen
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Isabel Díiaz-Pinées Cort
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Simon F Thomsen
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Egeberg
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Amsterdam Public Health research institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Venereology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Tsuji G, Yamamura K, Kawamura K, Kido-Nakahara M, Ito T, Nakahara T. Regulatory Mechanism of the IL-33-IL-37 Axis via Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci 2023; 24:14633. [PMID: 37834081 PMCID: PMC10572928 DOI: 10.3390/ijms241914633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Interleukin (IL)-33 and IL-37 have been identified as novel cytokines involved in various inflammatory diseases. However, their specific roles remain largely unknown. Recent studies have shown that IL-33, which triggers inflammation, and IL-37, which suppresses it, cooperatively regulate the balance between inflammation and anti-inflammation. IL-33 and IL-37 are also deeply involved in the pathogenesis of inflammatory skin diseases such as atopic dermatitis (AD) and psoriasis. Furthermore, a signaling pathway by which aryl hydrocarbon receptor (AHR), a receptor for dioxins, regulates the expression of IL-33 and IL-37 has been revealed. Here, we outline recent findings on the mechanisms regulating IL-33 and IL-37 expression in AD and psoriasis. IL-33 expression is partially dependent on mitogen-activated protein kinase (MAPK) activation, and IL-37 has a role in suppressing MAPK in human keratinocytes. Furthermore, IL-33 downregulates skin barrier function proteins including filaggrin and loricrin, thereby downregulating the expression of IL-37, which colocalizes with these proteins. This leads to an imbalance of the IL-33-IL-37 axis, involving increased IL-33 and decreased IL-37, which may be associated with the pathogenesis of AD and psoriasis. Therefore, AHR-mediated regulation of the IL-33-IL-37 axis may lead to new therapeutic strategies for the treatment of AD and psoriasis.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Kazuhiko Yamamura
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Koji Kawamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| | - Takeshi Nakahara
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (K.K.); (M.K.-N.); (T.I.)
| |
Collapse
|
16
|
Pessôa R, Clissa PB, Sanabani SS. The Interaction between the Host Genome, Epigenome, and the Gut-Skin Axis Microbiome in Atopic Dermatitis. Int J Mol Sci 2023; 24:14322. [PMID: 37762624 PMCID: PMC10532357 DOI: 10.3390/ijms241814322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that occurs in genetically predisposed individuals. It involves complex interactions among the host immune system, environmental factors (such as skin barrier dysfunction), and microbial dysbiosis. Genome-wide association studies (GWAS) have identified AD risk alleles; however, the associated environmental factors remain largely unknown. Recent evidence suggests that altered microbiota composition (dysbiosis) in the skin and gut may contribute to the pathogenesis of AD. Examples of environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, irritants, pollution, and microbial exposure. Studies have reported alterations in the gut microbiome structure in patients with AD compared to control subjects, characterized by increased abundance of Clostridium difficile and decreased abundance of short-chain fatty acid (SCFA)-producing bacteria such as Bifidobacterium. SCFAs play a critical role in maintaining host health, and reduced SCFA production may lead to intestinal inflammation in AD patients. The specific mechanisms through which dysbiotic bacteria and their metabolites interact with the host genome and epigenome to cause autoimmunity in AD are still unknown. By understanding the combination of environmental factors, such as gut microbiota, the genetic and epigenetic determinants that are associated with the development of autoantibodies may help unravel the pathophysiology of the disease. This review aims to elucidate the interactions between the immune system, susceptibility genes, epigenetic factors, and the gut microbiome in the development of AD.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-002, Brazil;
| | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05508-220, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency LIM56/03, Instituto de Medicina Tropical de Sao Paulo, Faculdade de Medicina, University of Sao Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3º Andar, Sao Paulo 05403-000, Brazil
| |
Collapse
|
17
|
Dragan M, Chen Z, Li Y, Le J, Sun P, Haensel D, Sureshchandra S, Pham A, Lu E, Pham KT, Verlande A, Vu R, Gutierrez G, Li W, Jang C, Masri S, Dai X. Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep 2023; 24:e56214. [PMID: 37249012 PMCID: PMC10328084 DOI: 10.15252/embr.202256214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Zeyu Chen
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Present address:
Institute of PsoriasisTongji University School of MedicineShanghaiChina
| | - Yumei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Johnny Le
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Peng Sun
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Daniel Haensel
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Program in Epithelial BiologyStanford University School of MedicineStanfordCAUSA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Anh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Eddie Lu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Katherine Thanh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Amandine Verlande
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Remy Vu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Wei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Selma Masri
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Xing Dai
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Dermatology, School of MedicineUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
18
|
Grafanaki K, Antonatos C, Maniatis A, Petropoulou A, Vryzaki E, Vasilopoulos Y, Georgiou S, Gregoriou S. Intrinsic Effects of Exposome in Atopic Dermatitis: Genomics, Epigenomics and Regulatory Layers. J Clin Med 2023; 12:4000. [PMID: 37373692 DOI: 10.3390/jcm12124000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) or atopic eczema is an increasingly manifested inflammatory skin disorder of complex etiology which is modulated by both extrinsic and intrinsic factors. The exposome includes a person's lifetime exposures and their effects. We recently reviewed the extrinsic exposome's environmental risk factors that contribute to AD. The periods of pregnancy, infancy, and teenage years are recognized as crucial stages in the formation of AD, where the exposome leads to enduring impacts on the immune system. However, research is now focusing on the interactions between intrinsic pathways that are modulated by the extrinsic exposome, including genetic variation, epigenetic modifications, and signals, such as diet, stress, and microbiome interactions. As a result, immune dysregulation, barrier dysfunction, hormonal fluctuations, and skin microbiome dysbiosis are important factors contributing to AD development, and their in-depth understanding is crucial not only for AD treatment but also for similar inflammatory disorders.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Antonia Petropoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Eleftheria Vryzaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Stamatis Gregoriou
- Department of Dermatology-Venereology, Faculty of Medicine, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|
19
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Liu AW, Gillis JE, Sumpter TL, Kaplan DH. Neuroimmune interactions in atopic and allergic contact dermatitis. J Allergy Clin Immunol 2023; 151:1169-1177. [PMID: 37149370 PMCID: PMC10167546 DOI: 10.1016/j.jaci.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
The skin is a barrier organ populated by many types of skin-resident immune cells and sensory neurons. It has become increasingly appreciated that neuroimmune interactions are an important component of inflammatory diseases such as atopic dermatitis and allergic contact dermatitis. Neuropeptides secreted from nerve terminals play an important role in mediating cutaneous immune cell function, and soluble mediators derived from immune cells interact with neurons to induce itch. In this review article, we will explore emerging research describing neuronal effector functions on skin immune cells in mouse models of atopic and contact dermatitis. We will also discuss the contributions of both specific neuronal subsets and secreted immune factors to itch induction and the associated inflammatory processes. Finally, we will explore how treatment strategies have emerged around these findings and discuss the relationship between scratching and dermatitis.
Collapse
Affiliation(s)
- Andrew W Liu
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Jacob E Gillis
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
21
|
Kang M, Jung JH, Kim JY, Hong SH, Her Y. Therapeutic and Preventive Effect of Orally Administered Prebiotics on Atopic Dermatitis in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:303-315. [PMID: 37075794 DOI: 10.4168/aair.2023.15.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 05/17/2023]
Abstract
PURPOSE Recently, interest is increasing in using prebiotics, which are nutrient ingredients of live microorganism that improve the intestinal environments by promoting the growth of beneficial gut microflora. Although numerous studies have demonstrated the beneficial effects of probiotics on atopic dermatitis (AD) development, few have examined preventive and therapeutic effects of prebiotics on the onset and progression of AD. METHODS In this study, we investigated therapeutic and preventive effect of prebiotics, including β-glucan and inulin, using an oxazolone (OX)-induced AD-like mouse model. Prebiotics were orally administered 2 weeks after the end of sensitization period (therapeutic study) and 3 weeks before the initial sensitization (prevention study). The physiological and histological alterations in the skin and gut of the mice were investigated. RESULTS In the therapeutic study, the severity of skin lesions and inflammatory responses were effectively reduced after administering β-glucan and inulin, respectively. The expression level of calprotectin was significantly decreased by approximately 2-fold (P < 0.05) in the skin and gut of prebiotics-treated mice compared to the control. In addition, epidermal thickness and the number of infiltrated immune cells were markedly reduced in the dermis of prebiotics-treated mice compared <strike>with</strike> to those in the OX-induced mice (P < 0.05). These findings were same as in the prevention study. Importantly, pre-administration of β-glucan and inulin prevented the progression of AD by promoting the growth of good bacteria in the gut of OX-induced AD mice. However, the co-administration of β-glucan and inulin did not show enhanced preventive effects on these alterations. CONCLUSIONS Prebiotics has a therapeutic effect on AD in OX-induced AD mouse model. Moreover, our study suggests that prebiotics prevents the development of AD and this effect is associated with a change in gut microbiome.
Collapse
Affiliation(s)
- Minje Kang
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea.
| | - Young Her
- Department of Dermatology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Korea.
| |
Collapse
|
22
|
Bu M, Xu M, Tao S, Cui P, He B. Evaluation of Different SNP Analysis Software and Optimal Mining Process in Tree Species. Life (Basel) 2023; 13:life13051069. [PMID: 37240714 DOI: 10.3390/life13051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023] Open
Abstract
Single nucleotide polymorphism (SNP) is one of the most widely used molecular markers to help researchers understand the relationship between phenotypes and genotypes. SNP calling mainly consists of two steps, including read alignment and locus identification based on statistical models, and various software have been developed and applied in this issue. Meanwhile, in our study, very low agreement (<25%) was found among the prediction results generated by different software, which was much less consistent than expected. In order to obtain the optimal protocol of SNP mining in tree species, the algorithm principles of different alignment and SNP mining software were discussed in detail. And the prediction results were further validated based on in silico and experimental methods. In addition, hundreds of validated SNPs were provided along with some practical suggestions on program selection and accuracy improvement were provided, and we wish that these results could lay the foundation for the subsequent analysis of SNP mining.
Collapse
Affiliation(s)
- Mengjia Bu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Mengxuan Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shentong Tao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bing He
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
23
|
Ma CS. T-helper-2 cells and atopic disease: lessons learnt from inborn errors of immunity. Curr Opin Immunol 2023; 81:102298. [PMID: 36870225 DOI: 10.1016/j.coi.2023.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Inborn errors of immunity (IEI) are caused by monogenic variants that affect the host response to bacterial, viral, and fungal pathogens. As such, individuals with IEI often present with severe, recurrent, and life-threatening infections. However, the spectrum of disease due to IEI is very broad and extends to include autoimmunity, malignancy, and atopic diseases such as eczema, atopic dermatitis, and food and environmental allergies. Here, I review IEI that affect cytokine signaling pathways that dysregulate CD4+ T-cell differentiation, resulting in increased T-helper-2 (Th2) cell development, function, and pathogenicity. These are elegant examples of how rare IEI can provide unique insights into more common pathologies such as allergic disease that are impacting the general population at increased frequency.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Australia.
| |
Collapse
|
24
|
Marenholz I, Arnau-Soler A, Rosillo-Salazar OD, Lee YA. New insights from genetic studies of eczema. MED GENET-BERLIN 2023; 35:33-45. [PMID: 38835414 PMCID: PMC10842541 DOI: 10.1515/medgen-2023-2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Genome-wide association studies (GWAS) provided fundamental insight into the genetic determinants of complex allergic diseases. For eczema, 58 susceptibility loci were reported. Protein-changing variants were associated with eczema at genome-wide significance at 12 loci. The majority of risk variants were, however, located in non-coding, regulatory regions of the genome. Prioritized target genes were enriched in pathways of the immune response and of epithelial barrier function. Interestingly, a large overlap in the genetic architecture underlying different allergic diseases was identified pointing to common pathomechanisms for eczema, asthma, hay fever, and food allergy. Here, we review the most recent findings from GWAS for eczema including the role of rare variants and genetic heterogeneity in ethnically diverse populations. In addition, we provide an overview of genes underlying Mendelian disorders featuring eczematous skin inflammation.
Collapse
Affiliation(s)
- Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Aleix Arnau-Soler
- Max Delbrück Center for Molecular Medicine in Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Oscar Daniel Rosillo-Salazar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Robert-Rössle-Str. 10 13125 Berlin Germany
| | - Young-Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Robert-Rössle-Str. 10 13125 Berlin Germany
| |
Collapse
|
25
|
Margolis DJ, Duke JL, Mitra N, Berna RA, Hoffstad OJ, Wasserman JR, Dinou A, Damianos G, Kotsopoulou I, Tairis N, Ferriola DA, Mosbruger TL, Hayeck TJ, Yan AC, Monos DS. A combination of HLA-DP α and β chain polymorphisms paired with a SNP in the DPB1 3' UTR region, denoting expression levels, are associated with atopic dermatitis. Front Genet 2023; 14:1004138. [PMID: 36911412 PMCID: PMC9995861 DOI: 10.3389/fgene.2023.1004138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified. Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls. Results: Statistically significant associations with HLA-DP α and β alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (β84G or β84V) [protection]; α31Q + β84D [susceptibility] and P6: α11A + β11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3' UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression. Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronald A. Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jenna R. Wasserman
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amalia Dinou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deborah A. Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy L. Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Albert C. Yan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Section of Dermatology, Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Makowska K, Nowaczyk J, Blicharz L, Waśkiel-Burnat A, Czuwara J, Olszewska M, Rudnicka L. Immunopathogenesis of Atopic Dermatitis: Focus on Interleukins as Disease Drivers and Therapeutic Targets for Novel Treatments. Int J Mol Sci 2023; 24:ijms24010781. [PMID: 36614224 PMCID: PMC9820829 DOI: 10.3390/ijms24010781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Atopic dermatitis is a chronic, recurrent inflammatory skin disorder manifesting by eczematous lesions and intense pruritus. Atopic dermatitis develops primarily as a result of an epidermal barrier defect and immunological imbalance. Advances in understanding these pathogenetic hallmarks, and particularly the complex role of interleukins as atopic dermatitis drivers, resulted in achieving significant therapeutic breakthroughs. Novel medications involve monoclonal antibodies specifically blocking the function of selected interleukins and small molecules such as Janus kinase inhibitors limiting downstream signaling to reduce the expression of a wider array of proinflammatory factors. Nevertheless, a subset of patients remains refractory to those treatments, highlighting the complexity of atopic dermatitis immunopathogenesis in different populations. In this review, we address the immunological heterogeneity of atopic dermatitis endotypes and phenotypes and present novel interleukin-oriented therapies for this disease.
Collapse
|
27
|
Chen IL, Chung HW, Hsieh HM, Chen SC, Chen HC, Lin YC, Hung CH. The prenatal and postnatal effects of air pollution on asthma in children with atopic dermatitis. Pediatr Pulmonol 2022; 57:2724-2734. [PMID: 35927981 DOI: 10.1002/ppul.26089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Air pollution is strongly associated with asthma, but has not been determined to induce new-onset asthma development in children with atopic dermatitis (AD). WORKING HYPOTHESIS To assess whether prenatal/postnatal exposure to air pollutants triggers new-onset asthma development in children with AD. STUDY DESIGN Retrospective cohort study. PATIENT-SUBJECT SELECTION Data of patients <age 18 years diagnosed with eczema or AD between 2009 and 2019 were extracted from the multicenter Kaohsiung Medical University Hospital Research Database. Patients diagnosed with new-onset asthma were in the asthma group and patients without asthma history were in the non-asthma group. METHODOLOGY The monthly average concentration of air pollutants for 1, 3, and 5 years before the index date, and 3, 6, and 9 months prenatally were analyzed and further stratified by age, immunoglobulin (Ig) E, and the percentage of eosinophil and eosinophil cationic protein (ECP). RESULTS Postnatal exposure to airborne particulate matter (PM2.5 , PM10 ), sulfur dioxide (SO2 ), ozone (O3 ), carbon monoxide (CO), nitric oxide (NO), nitric dioxide (NO2 ), and NOx , and prenatal exposure to PM2.5 , PM10 , SO2 , NO, and NOx were significantly higher in the asthma group than in the non-asthma group. Patients having IgE above 100 IU/ml and ECP less than 24 ng/ml were significantly influenced by postnatal exposure to PM2.5 and PM10 , especially CO, to develop asthma, and those having an eosinophil count >3% were significantly influenced by prenatal exposure to PM2.5 , especially SO2 , NO, and NO2 . CONCLUSIONS Prenatal and postnatal exposure to air pollution have an association with asthma development in AD patients.
Collapse
Affiliation(s)
- I-Lun Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Hao-Wei Chung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Min Hsieh
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Community Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lin
- Division of Pharmacology and Toxicology, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Doctoral Degree Program of Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Faculty of Pediatrics, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Chen Y, Chen W. Genome-Wide Integration of Genetic and Genomic Studies of Atopic Dermatitis: Insights into Genetic Architecture and Pathogenesis. J Invest Dermatol 2022; 142:2958-2967.e8. [PMID: 35577104 DOI: 10.1016/j.jid.2022.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
Abstract
Atopic dermatitis (AD) is a common heterogeneous, chronic, itching, and inflammatory skin disease. Genetic studies have identified multiple AD susceptibility genes. However, the genetic architecture of AD has not been elucidated. In this study, we conducted a large-scale meta-analysis of AD (35,647 cases and 1,013,885 controls) to characterize the genetic basis of AD. The heritability of AD in different datasets varied from 0.6 to 7.1%. We identified 31 previously unreported genes by integrating multiomics data. Among the 31 genes, MCL1 was identified as a potential treatment target for AD by mediating gene‒drug interactions. Tissue enrichment analyses and phenome-wide association study provided strong support for the role of the hemic and immune systems in AD. Across 1,207 complex traits and diseases, genetic correlations indicated that AD shared links with multiple respiratory phenotypes. The phenome-wide Mendelian randomization analysis (Mendelian randomization‒phenome-wide association study) revealed that the age of onset of diabetes exhibited a positive causal effect on AD (inverse-variance weighted β = 0.39, SEM = 0.09, P = 2.77 × 10-5). Overall, these results provide important insights into the genetic architecture of AD and will lead to a more thorough and complete understanding of the molecular mechanisms underlying AD.
Collapse
Affiliation(s)
- Yanxuan Chen
- Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wenyan Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
29
|
Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case-Control Study in Children. J Clin Med 2022; 11:jcm11164865. [PMID: 36013110 PMCID: PMC9410399 DOI: 10.3390/jcm11164865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Atopic eczema is the most common chronic inflammatory skin disease of early childhood and is often the first manifestation of atopic march. Therefore, one challenge is to identify the risk factors associated with atopic eczema that may also be predictors of atopic disease progression. The aim of this study was to investigate the association of SNPs in hornerin (HRNR) and filaggrin-2 (FLG2) genes with childhood atopic eczema, as well as other atopic phenotypes. Genotyping for HRNR and FLG2 was performed in 188 children younger than 2 years of age, previously screened for the FLG null mutations, and followed at yearly intervals until the age of 6. We demonstrated that risk variants of HRNR rs877776[C] and FLG2 rs12568784[T] were associated with atopic eczema, allergic sensitization, and susceptibility to the complex phenotype—asthma plus eczema. These effects seem to be supplementary to the well-known associations for FLG mutations and may be modulated by gene–gene interactions. Additionally, in children with eczema, these genetic variants may also be considered, along with FLG mutations, as predictive biomarkers for eczema-associated asthma. In conclusion, our results indicate that genetic variants in the epidermal differentiation complex gene could contribute to the pathogenesis of atopic eczema and progression to subsequent allergic disease.
Collapse
|
30
|
Calabrese L, Chiricozzi A, De Simone C, Fossati B, D'Amore A, Peris K. Pharmacodynamics of Janus kinase inhibitors for the treatment of atopic dermatitis. Expert Opin Drug Metab Toxicol 2022; 18:347-355. [PMID: 35796377 DOI: 10.1080/17425255.2022.2099835] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is the most common inflammatory skin disorder. Despite the high disease burden, the therapeutic options are limited and their efficacy in controlling AD might be partially satisfactory. AREAS COVERED Most of the key mediators in AD pathogenesis act through the JAK/STAT signaling pathway, which represents a valid therapeutic target. The first generation of JAK inhibitors, namely tofacitinib and ruxolitinib, inhibit multiple JAKs, whereas newer JAK inhibitors show more selective inhibitory effects for specific JAKs. The aim of this review was to discuss the role of the JAK/STAT pathway in AD and its inhibition, with a special focus on pharmacodynamic properties. We checked the English-language literature, published in the last 15 years using PubMed, Google Scholar, and Scopus. EXPERT OPINION JAK inhibitors have different selectivity for various JAK molecules, which influences their pharmacodynamics, efficacy and safety profile. Since many key cytokines in AD signal through JAK1, and as the selective JAK1 inhibition may be effective, avoiding the concomitant inhibition of JAK2- and JAK3-dependent pathways could be associated with additional safety issues. Therefore, selective JAK1 inhibitors may represent promising therapeutic agents for AD, as they might prevent off-target effects of JAK inhibitors, especially related to the hematologic profile.
Collapse
Affiliation(s)
- Laura Calabrese
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Chiricozzi
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clara De Simone
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Barbara Fossati
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Alessandra D'Amore
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.,Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
31
|
Lamiable O, Brewerton M, Ronchese F. IL-13 in dermal type-2 dendritic cell specialization: from function to therapeutic targeting. Eur J Immunol 2022; 52:1047-1057. [PMID: 35652857 DOI: 10.1002/eji.202149677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Skin functions as a barrier protecting the host against physical, thermal, chemical changes and microbial insults. The skin is populated by several immune cell types which are crucial to host defence and to maintain self-tolerance as well as equilibrium with beneficial microbiota. Conventional dendritic cells (cDCs) are antigen-presenting cells that patrol the skin and all other non-lymphoid tissues for self or foreign antigens, then migrate to draining lymph nodes to initiate T cell responses. This review article describes recent developments on skin cDC specialization, focusing on the role of IL-13, a cytokine essential to allergic immune responses that is also secreted at steady state by type-2 innate lymphoid cells in healthy skin and is required for dermal cDC differentiation. Furthermore, we contextualize how different therapeutics that block IL-13 signaling and were recently approved for the treatment of atopic dermatitis might affect cDCs in human skin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Olivier Lamiable
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Maia Brewerton
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Department of Clinical Immunology & Allergy, Auckland City Hospital, Auckland, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| |
Collapse
|
32
|
Zhu B, Liu Y, Li J, Ni Q, Yin Z, Zhu J, Chen K, Yang X. Biologics for Non-Cancer Dermatological Diseases: Analysis on China's Clinical Trial Registration Trend From 2016 to 2020. Front Pharmacol 2022; 13:817065. [PMID: 35529441 PMCID: PMC9068892 DOI: 10.3389/fphar.2022.817065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background: In the past 5 years, China has quickly followed US's steps to approve the new drug application of biologics for dermatological diseases. There is an increasing interest in the current biologic landscape and further potentials in China. Our study aims to analyze features of clinical trials on non-cancer dermatological biologics and synthesize recent achievements and impediments, in order to forecast the development trends in China. Methods: Three registers (the Chinese Clinical Trial Registry, Center for Drug Evaluation, and ClinicalTrials.gov) were searched for clinical trials of non-cancer dermatological biologics initiated between 2016 and 2020 in mainland China. Trial information (the first posted year, sponsor type, study phase and site, recruitment status, disease, drug target, and drug registration type) and certain study design (selection of the control group, primary efficacy outcome, and inclusion of patient-reported outcome for non-phase I or II trials only) information were extracted and analyzed. Results: A total of 60 trials were identified. The number of registered dermatological biologic trials significantly increased with an annual increase of 59% from 2016 to 2020, primarily driven by psoriasis (47/60, 78.3%) and atopic dermatitis (6/60, 10.0%) trials. The tumor necrosis factor (TNF)-α and interleukin (IL)-17 remained the hottest drug targets (17/60, 28.3% for TNF-α and 18/60, 30.0% for IL-17). In addition to TNF-α and IL-17, many new psoriasis drug targets came into place since 2018 (IL-12/23) and 2019 (IL-36 and glucagon-like peptide-1 (GLP-1)). Thirty percent (18/60) of the trials were conducted for biosimilar products, all of which were sponsored by local pharmaceutical companies and 88.9% of which were targeting on TNF-α. Targets of IL-36, IL-5, and IgE were only available in trials sponsored by global companies. Conclusion: There was great progress on the innovation of dermatological biologics in the past 5 years in China in terms of surged number of clinical trials, increased biosimilars and "me-too" drugs which greatly improved patient access to novel treatments, execution of parallel clinical trials, and improved hospital GCP office and regulatory environment. Further efforts for local pharmaceutical companies should include relocating resources to exploring novel drug targets and dermatological diseases other than psoriasis or atopic dermatitis. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Beibei Zhu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jing Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qi Ni
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zheng Yin
- Real World Solutions, IQVIA, Shanghai, China
| | - Junli Zhu
- Real World Solutions, IQVIA, Shanghai, China
| | - Ken Chen
- Real World Solutions, IQVIA, Shanghai, China
| | - Xueyuan Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
33
|
Oláh P, Szlávicz E, Kuchner M, Nemmer J, Zeeuwen P, Lefèvre-Utile A, Fyhrquist N, Prast-Nielsen S, Skoog T, Serra A, Rodríguez E, Raap U, Meller S, Gyulai R, Hupé P, Kere J, Levi-Schaffer F, Tsoka S, Alexander H, Nestle FO, Schröder JM, Weidinger S, van den Bogaard E, Soumelis V, Greco D, Barker J, Lauerma A, Ranki A, Andersson B, Alenius H, Homey B. INFLUENCE OF FLG LOSS-OF-FUNCTION MUTATIONS IN HOST–MICROBE INTERACTIONS DURING ATOPIC SKIN INFLAMMATION. J Dermatol Sci 2022; 106:132-140. [DOI: 10.1016/j.jdermsci.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
34
|
Blake MK, O'Connell P, Pepelyayeva Y, Godbehere S, Aldhamen YA, Amalfitano A. ERAP1 is a critical regulator of inflammasome-mediated proinflammatory and ER stress responses. BMC Immunol 2022; 23:9. [PMID: 35246034 PMCID: PMC8895631 DOI: 10.1186/s12865-022-00481-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background In addition to its role in antigen presentation, recent reports establish a new role for endoplasmic reticulum aminopeptidase 1 (ERAP1) in innate immunity; however, the mechanisms underlying these functions are not fully defined. We previously confirmed that loss of ERAP1 functions resulted in exaggerated innate immune responses in a murine in vivo model. Here, we investigated the role of ERAP1 in suppressing inflammasome pathways and their dependence on ER stress responses. Results Using bone marrow-derived macrophages (BMDMs), we found that loss of ERAP1 in macrophages resulted in exaggerated production of IL-1β and IL-18 and augmented caspase-1 activity, relative to wild type macrophages. Moreover, an in vivo colitis model utilizing dextran sodium sulfate (DSS) confirmed increased levels of proinflammatory cytokines and chemokines in the colon of DSS treated ERAP1−/− mice as compared to identically stimulated WT mice. Interestingly, stimulated ERAP1−/− BMDMs and CD4+ T cells simultaneously demonstrated exaggerated ER stress, assessed by increased expression of ER stress-associated genes, a state that could be reverted to WT levels with use of the ER stress inhibitor Tauroursodeoxycholic acid (TUDCA). Conclusions Together, these results not only suggest that ERAP1 is important for regulating inflammasome dependent innate immune response pathways in vivo, but also propose a mechanism that underlies these changes, that may be associated with increased ER stress due to lack of normal ERAP1 functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00481-9.
Collapse
Affiliation(s)
- Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
35
|
Ham J, Shin JW, Ko BC, Kim HY. Targeting the Epithelium-Derived Innate Cytokines: From Bench to Bedside. Immune Netw 2022; 22:e11. [PMID: 35291657 PMCID: PMC8901708 DOI: 10.4110/in.2022.22.e11] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
When epithelial cells are exposed to potentially threatening external stimuli such as allergens, bacteria, viruses, and helminths, they instantly produce "alarmin" cytokines, namely, IL-33, IL-25, and TSLP. These alarmins alert the immune system about these threats, thereby mobilizing host immune defense mechanisms. Specifically, the alarmins strongly stimulate type-2 immune cells, including eosinophils, mast cells, dendritic cells, type-2 helper T cells, and type-2 innate lymphoid cells. Given that the alarm-raising role of IL-33, IL-25, and TSLP was first detected in allergic and infectious diseases, most studies on alarmins focus on their role in these diseases. However, recent studies suggest that alarmins also have a broad range of effector functions in other pathological conditions, including psoriasis, multiple sclerosis, and cancer. Therefore, this review provides an update on the epithelium-derived cytokines in both allergic and non-allergic diseases. We also review the progress of clinical trials on biological agents that target the alarmins and discuss the therapeutic potential of these agents in non-allergic diseases.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Woo Shin
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Byeong Cheol Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
36
|
Zhang F, Shi W, Liu H, Yu Y, Wang C, Wang Z, Sun L. Lack of association between CARD11 and atopic dermatitis in Chinese population. Indian J Dermatol 2022; 67:293-295. [PMID: 36386092 PMCID: PMC9644773 DOI: 10.4103/ijd.ijd_405_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Qurashi TA, Shah A, Bhat GA, Khan MS, Rasool R, Mudassar S. Atopy in Kashmir-validation from a case control study with respect to IgE and Interleukin genes. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:119. [PMID: 34814942 PMCID: PMC8609820 DOI: 10.1186/s13223-021-00623-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Increased levels of serum Immunoglobulin-E (IgE) and different genetic variants of cytokines are common biochemical manifestation in Allergy. The current study was aimed to study the association of IgE and different variants of Interleukin-4 (IL-4), and Interleukin-13 (IL-13) genes with different kind of allergies. METHODS A pre-tested questionnaire was used to collect all the dietary, life style and clinical details by a trained staff. A blood sample of 2 ml each was collected in coagulated and anti-coagulated vials. DNA and serum samples were extracted and stored until further use. Serum IgE were estimated by ELISA while as the genotypic analysis was done by PCR-RFLP methods. RESULTS Statistically a significant difference of serum IgE levels were observed among cases and controls (P < 0.05). The observed significant difference of serum IgE levels were retained among subjects who also harboured variant genotypes of IL-4 and IL-13 genes (P < 0.05). Additionally, the above genetic variants significantly modified the risk of allergy when stratification was done based on various clinical characteristics. CONCLUSION Our study suggests that increased IgE levels and in association with variant forms of IL-4 and IL-13 genes are significantly associated with different types of allergies in study population.
Collapse
Affiliation(s)
- Taha Ashraf Qurashi
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, 190006, India
| | - Gulzar Ahmad Bhat
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Mosin Saleem Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India
| | - Roohi Rasool
- Department of Immunology and Molecular Medicine, SKIMS, Srinagar, 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, 190011, India.
| |
Collapse
|
38
|
Grosche S, Marenholz I, Esparza-Gordillo J, Arnau-Soler A, Pairo-Castineira E, Rüschendorf F, Ahluwalia TS, Almqvist C, Arnold A, Baurecht H, Bisgaard H, Bønnelykke K, Brown SJ, Bustamante M, Curtin JA, Custovic A, Dharmage SC, Esplugues A, Falchi M, Fernandez-Orth D, Ferreira MAR, Franke A, Gerdes S, Gieger C, Hakonarson H, Holt PG, Homuth G, Hubner N, Hysi PG, Jarvelin MR, Karlsson R, Koppelman GH, Lau S, Lutz M, Magnusson PKE, Marks GB, Müller-Nurasyid M, Nöthen MM, Paternoster L, Pennell CE, Peters A, Rawlik K, Robertson CF, Rodriguez E, Sebert S, Simpson A, Sleiman PMA, Standl M, Stölzl D, Strauch K, Szwajda A, Tenesa A, Thompson PJ, Ullemar V, Visconti A, Vonk JM, Wang CA, Weidinger S, Wielscher M, Worth CL, Xu CJ, Lee YA. Rare variant analysis in eczema identifies exonic variants in DUSP1, NOTCH4 and SLC9A4. Nat Commun 2021; 12:6618. [PMID: 34785669 PMCID: PMC8595373 DOI: 10.1038/s41467-021-26783-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
Previous genome-wide association studies revealed multiple common variants involved in eczema but the role of rare variants remains to be elucidated. Here, we investigate the role of rare variants in eczema susceptibility. We meta-analyze 21 study populations including 20,016 eczema cases and 380,433 controls. Rare variants are imputed with high accuracy using large population-based reference panels. We identify rare exonic variants in DUSP1, NOTCH4, and SLC9A4 to be associated with eczema. In DUSP1 and NOTCH4 missense variants are predicted to impact conserved functional domains. In addition, five novel common variants at SATB1-AS1/KCNH8, TRIB1/LINC00861, ZBTB1, TBX21/OSBPL7, and CSF2RB are discovered. While genes prioritized based on rare variants are significantly up-regulated in the skin, common variants point to immune cell function. Over 20% of the single nucleotide variant-based heritability is attributable to rare and low-frequency variants. The identified rare/low-frequency variants located in functional protein domains point to promising targets for novel therapeutic approaches to eczema. Genetic studies of eczema to date have mostly explored common genetic variation. Here, the authors perform a large meta-analysis for common and rare variants and discover 8 loci associated with eczema. Over 20% of the heritability of the condition is attributable to rare variants.
Collapse
Affiliation(s)
- Sarah Grosche
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ingo Marenholz
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany
| | - Jorge Esparza-Gordillo
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany.,GlaxoSmithKline, Stevenage, UK
| | - Aleix Arnau-Soler
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | | | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Epidemiology and Preventive Medicine, University Regensburg, Regensburg, Germany
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sara J Brown
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - John A Curtin
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre and Manchester University NHS Foundation Trust, Manchester, UK
| | - Adnan Custovic
- National Lung and Heart Institute, Imperial College London, London, UK
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ana Esplugues
- Nursing School, University of Valencia, FISABIO-University Jaume I-University of Valencia Joint Research Unit of Epidemiology and Environmental Health, CIBERESP, Valencia, Spain
| | - Mario Falchi
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Manuel A R Ferreira
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sascha Gerdes
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, and Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hubner
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Pirro G Hysi
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | - Susanne Lau
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité University Medical Center, Berlin, Germany
| | - Manuel Lutz
- Institute of Genetic Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Guy B Marks
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, Australia
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Konrad Rawlik
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Colin F Robertson
- Respiratory Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Elke Rodriguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sylvain Sebert
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Angela Simpson
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre and Manchester University NHS Foundation Trust, Manchester, UK
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, and Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Dora Stölzl
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Agnieszka Szwajda
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Albert Tenesa
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Philip J Thompson
- Institute for Respiratory Health and Centre for Respiratory Health, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Alessia Visconti
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, Australia
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | | | - Chen-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands.,Department of Gastroenterology, Hepatology and Endocrinology, Centre for individualized infection medicine (CIIM), Hannover Medical School, Hannover, Germany
| | - Young-Ae Lee
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany. .,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany.
| |
Collapse
|
39
|
Adikusuma W, Irham LM, Chou WH, Wong HSC, Mugiyanto E, Ting J, Perwitasari DA, Chang WP, Chang WC. Drug Repurposing for Atopic Dermatitis by Integration of Gene Networking and Genomic Information. Front Immunol 2021; 12:724277. [PMID: 34721386 PMCID: PMC8548825 DOI: 10.3389/fimmu.2021.724277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Atopic Dermatitis (AD) is a chronic and relapsing skin disease. The medications for treating AD are still limited, most of them are topical corticosteroid creams or antibiotics. The current study attempted to discover potential AD treatments by integrating a gene network and genomic analytic approaches. Herein, the Single Nucleotide Polymorphism (SNPs) associated with AD were extracted from the GWAS catalog. We identified 70 AD-associated loci, and then 94 AD risk genes were found by extending to proximal SNPs based on r2 > 0.8 in Asian populations using HaploReg v4.1. Next, we prioritized the AD risk genes using in silico pipelines of bioinformatic analysis based on six functional annotations to identify biological AD risk genes. Finally, we expanded them according to the molecular interactions using the STRING database to find the drug target genes. Our analysis showed 27 biological AD risk genes, and they were mapped to 76 drug target genes. According to DrugBank and Therapeutic Target Database, 25 drug target genes overlapping with 53 drugs were identified. Importantly, dupilumab, which is approved for AD, was successfully identified in this bioinformatic analysis. Furthermore, ten drugs were found to be potentially useful for AD with clinical or preclinical evidence. In particular, we identified filgotinub and fedratinib, targeting gene JAK1, as potential drugs for AD. Furthermore, four monoclonal antibody drugs (lebrikizumab, tralokinumab, tocilizumab, and canakinumab) were successfully identified as promising for AD repurposing. In sum, the results showed the feasibility of gene networking and genomic information as a potential drug discovery resource.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram, Indonesia
| | - Lalu Muhammad Irham
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta, Indonesia
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Eko Mugiyanto
- Ph. D. Program in the Clinical Drug Development of Herbal Medicines, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Pekajangan Pekalongan, Pekalongan, Indonesia
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Pin Chang
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University (TMU) Research Center of Cancer Translational Medicine, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
40
|
Soliai MM, Kato A, Helling BA, Stanhope CT, Norton JE, Naughton KA, Klinger AI, Thompson EE, Clay SM, Kim S, Celedón JC, Gern JE, Jackson DJ, Altman MC, Kern RC, Tan BK, Schleimer RP, Nicolae DL, Pinto JM, Ober C. Multi-omics colocalization with genome-wide association studies reveals a context-specific genetic mechanism at a childhood onset asthma risk locus. Genome Med 2021; 13:157. [PMID: 34629083 PMCID: PMC8504130 DOI: 10.1186/s13073-021-00967-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified thousands of variants associated with asthma and other complex diseases. However, the functional effects of most of these variants are unknown. Moreover, GWASs do not provide context-specific information on cell types or environmental factors that affect specific disease risks and outcomes. To address these limitations, we used an upper airway epithelial cell (AEC) culture model to assess transcriptional and epigenetic responses to rhinovirus (RV), an asthma-promoting pathogen, and provide context-specific functional annotations to variants discovered in GWASs of asthma. METHODS Genome-wide genetic, gene expression, and DNA methylation data in vehicle- and RV-treated upper AECs were collected from 104 individuals who had a diagnosis of airway disease (n=66) or were healthy participants (n=38). We mapped cis expression and methylation quantitative trait loci (cis-eQTLs and cis-meQTLs, respectively) in each treatment condition (RV and vehicle) in AECs from these individuals. A Bayesian test for colocalization between AEC molecular QTLs and adult onset asthma and childhood onset asthma GWAS SNPs, and a multi-ethnic GWAS of asthma, was used to assign the function to variants associated with asthma. We used Mendelian randomization to demonstrate DNA methylation effects on gene expression at asthma colocalized loci. RESULTS Asthma and allergic disease-associated GWAS SNPs were specifically enriched among molecular QTLs in AECs, but not in GWASs from non-immune diseases, and in AEC eQTLs, but not among eQTLs from other tissues. Colocalization analyses of AEC QTLs with asthma GWAS variants revealed potential molecular mechanisms of asthma, including QTLs at the TSLP locus that were common to both the RV and vehicle treatments and to both childhood onset and adult onset asthma, as well as QTLs at the 17q12-21 asthma locus that were specific to RV exposure and childhood onset asthma, consistent with clinical and epidemiological studies of these loci. CONCLUSIONS This study provides evidence of functional effects for asthma risk variants in AECs and insight into RV-mediated transcriptional and epigenetic response mechanisms that modulate genetic effects in the airway and risk for asthma.
Collapse
Affiliation(s)
- Marcus M Soliai
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| | - Atsushi Kato
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Britney A Helling
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - James E Norton
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Aiko I Klinger
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emma E Thompson
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Selene M Clay
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Soyeon Kim
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Robert C Kern
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce K Tan
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert P Schleimer
- Departments of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dan L Nicolae
- Department of Statistics, University of Chicago, Chicago, IL, USA
| | - Jayant M Pinto
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Departments of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Barrier defect in atopic dermatitis - possibilities and limits of basic skin therapy. Allergol Select 2021; 5:287-292. [PMID: 34532637 PMCID: PMC8439110 DOI: 10.5414/alx02268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
The increased permeability of the skin barrier towards environmental factors such as allergens is considered a key factor in the pathogenesis of atopic dermatitis (AD). Strengthening the skin barrier through basic skin therapy represents the basis of any therapy for AD. It is well known that genetic factors as well as the skin inflammation itself contribute to the weakening of the barrier; here, recent studies have led to a deeper understanding of the complex structures of the epidermis. The possibility of counteracting the disease preventively by the use of basic skin therapy from birth on has been studied intensively in recent years. This article summarizes recent findings on the effects of basic skin therapy as a primary and secondary preventive measure.
Collapse
|
42
|
Lin TL, Wu CY, Yen JJY, Juan CK, Chang YL, Ho HJ, Chen YJ. Fracture risks in patients with atopic dermatitis: A nationwide matched cohort study. Ann Allergy Asthma Immunol 2021; 127:667-673.e2. [PMID: 34537357 DOI: 10.1016/j.anai.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The risk of osteoporosis has been explored in atopic dermatitis (AD). The long-term risk of fractures in patients with AD and the effects of various AD treatments on bone health remain to be elucidated. OBJECTIVE To evaluate the long-term risk of fractures in patients with AD. METHODS This nationwide matched cohort study was conducted using the National Health Insurance Research Database of Taiwan for the period 1997 to 2013. A total of 36,855 patients with AD and 147,420 reference subjects without AD were identified. Demographic characteristics and comorbidities were compared, and cumulative incidence of fractures was evaluated. Adjusted hazard ratios for fracture risks of AD and various AD treatments were calculated using the Cox proportional hazards model. RESULTS A total of 1518 patients (4.12%) in the AD cohort and 5579 patients (3.78%) in the reference cohort had fractures (P = .003). The mean ages were 22.6 years in both groups. The 16-year cumulative incidence of fractures in the AD cohort (8.043%) was significantly higher than that in the reference cohort (7.366%) (P = .002). Severe AD (adjusted hazard ratio [aHR], 1.31; 95% confidence interval [CI], 1.08-1.59) was independently associated with fractures. Other independent risk factors included exposure to topical (aHR, 1.21; 95% CI, 1.05-1.39) or systemic (≥10 mg/d; aHR, 1.62; 95% CI, 1.38-1.91) corticosteroids. Use of disease-modifying antirheumatic drugs (aHR, 0.71; 95% CI, 0.53-0.90) and phototherapy (aHR, 0.73; 95% CI, 0.56-0.95) was associated with a lower risk of fractures. The results were consistent across sensitivity analyses. CONCLUSION Patients with AD have a higher incidence of fractures. Severe AD is independently associated with fractures.
Collapse
Affiliation(s)
- Teng-Li Lin
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Ying Wu
- Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Public Health, China Medical University, Taichung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jeffrey J-Y Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan Mouse Clinic, Academia Sinica, Taipei, Taiwan
| | - Chao-Kuei Juan
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ling Chang
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu J Ho
- Institute of Biomedical Informatics, Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
43
|
Margolis DJ, Mitra N, Hoffstad OJ, Kim BS, Monos DS, Phillips EJ. Association of KIR Genes and MHC Class I Ligands with Atopic Dermatitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1522-1529. [PMID: 34408014 DOI: 10.4049/jimmunol.2100379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic illness that is associated with immune dysregulation. NK cell function has previously been associated with AD. NK cells directly interact with polymorphic HLA class I ligand variants using killer cell Ig-like receptors (KIRs). The purpose of this study was to identify potential associations between NK cell function and AD by evaluating variation in the presence of KIR genes as well as KIR gene interactions with the appropriate HLA class I KIR-specific ligands. Human DNA from the genetics of AD case-control study was used to genotype HLA class I KIR-specific ligands and the presence of KIR genes. In the full cohort, an increased risk of AD was noted for KIR2DL5 (1.51 [1.13, 2.01]), KIR2DS5 (1.72 [1.26, 2.34]), and KIR2DS1 (1.41 [1.04, 1.91]). Individuals with KIR2DS5 or KIR2DS1 and the HLA-C*C2 epitope were at an increased risk of AD (1.74 [1.21, 2.51] and 1.48 [1.04, 2.12], respectively). The HLA-B*-21T (TT) leader sequence increased the risk of AD across ethnicity. African Americans with KIR2DL2, KIR2DS1, KIR2DL5, and KIR2DS5 are more likely to have AD, and the risk increased for KIR2DS1 and KIR2DS5 in the presence of appropriate HLA-C C2 epitope. The risk of AD also increased for individuals with the HLA-B*-21T leader sequence. Future studies should focus on KIR gene allelic variation as well as consider cell-based measurements of KIR and the associated HLA class I epitopes.
Collapse
Affiliation(s)
- David J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ole J Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brian S Kim
- Center for the Study of Itch, Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | | |
Collapse
|
44
|
Mulick AR, Mansfield KE, Silverwood RJ, Budu-Aggrey A, Roberts A, Custovic A, Pearce N, Irvine AD, Smeeth L, Abuabara K, Langan SM. Four childhood atopic dermatitis subtypes identified from trajectory and severity of disease and internally validated in a large UK birth cohort. Br J Dermatol 2021; 185:526-536. [PMID: 33655501 PMCID: PMC8410876 DOI: 10.1111/bjd.19885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) disease activity and severity is highly variable during childhood. Early attempts to identify subtypes based on disease trajectory have assessed AD presence over time without incorporating severity. OBJECTIVES To identify childhood AD subtypes from symptom severity and trajectories, and determine associations with genetic risk factors, comorbidities and demographic and environmental variables. METHODS We split data from children in the Avon Longitudinal Study of Parents and Children birth cohort into development and validation sets. To identify subtypes, we ran latent class analyses in the development set on AD symptom reports up to age 14 years. We regressed identified subtypes on nongenetic variables in mutually adjusted, multiply imputed (genetic: unadjusted, complete case) multinomial regression analyses. We repeated analyses in the validation set and report confirmed results. RESULTS There were 11 866 children who contributed to analyses. We identified one Unaffected/Rare class (66% of children) and four AD subtypes: Severe-Frequent (4%), Moderate-Frequent (7%), Moderate-Declining (11%) and Mild-Intermittent (12%). Symptom patterns within the first two subtypes appeared more homogeneous than the last two. Filaggrin (FLG) null mutations, an AD polygenic risk score (PRS), being female, parental AD and comorbid asthma were associated with higher risk for some or all subtypes; FLG, AD-PRS and asthma associations were stronger along a subtype gradient arranged by increasing severity and frequency; FLG and AD-PRS further differentiated some phenotypes from each other. CONCLUSIONS Considering severity and AD trajectories leads to four well-defined and recognizable subtypes. The differential associations of risk factors among and between subtypes is novel and requires further research.
Collapse
Affiliation(s)
- A R Mulick
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - K E Mansfield
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - R J Silverwood
- Centre for Longitudinal Studies, Department of Social Science, University College London, London, UK
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - A Budu-Aggrey
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - A Roberts
- Nottingham Support Group for Carers of Children with Eczema, Nottingham, UK
| | - A Custovic
- National Heart & Lung Institute, Imperial College London, London, UK
| | - N Pearce
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - A D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - L Smeeth
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - K Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - S M Langan
- Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Health Data Research UK, London, UK
| |
Collapse
|
45
|
Margolis DJ, Mitra N, Duke JL, Berna R, Margolis JD, Hoffstad O, Kim BS, Yan AC, Zaenglein AL, Chiesa Fuxench Z, Dinou A, Wasserman J, Tairis N, Mosbruger TL, Ferriola D, Damianos G, Kotsopoulou I, Monos DS. Human leukocyte antigen class-I variation is associated with atopic dermatitis: A case-control study. Hum Immunol 2021; 82:593-599. [PMID: 33875297 PMCID: PMC8238855 DOI: 10.1016/j.humimm.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a common immune-medicated skin disease. Previous studies have explored the relationship between Human Leukocyte Antigen (HLA) allelic variation and AD with conflicting results. The aim was to examine HLA Class I genetic variation, specifically peptide binding groove variation, and associations with AD. A case-control study was designed to evaluate HLA class I allelic variation and binding pocket polymorphisms, using next generation sequencing on 464 subjects with AD and 388 without AD. Logistic regression was used to evaluate associations with AD by estimating odds ratios (95% confidence intervals). Significant associations were noted with susceptibility to AD (B*53:01) and protection from AD (A*01:01, A*02:01, B*07:02 and C*07:02). Evaluation of polymorphic residues in Class I binding pockets revealed six amino acid residues conferring protection against AD: A9F (HLA-A, position 9, phenylalanine) [pocket B/C], A97I [pocket C/E], A152V [pocket E], A156R [pocket D/E], B163E [pocket A] and C116S [pocket F]. These findings demonstrate that specific HLA class I components are associated with susceptibility or protection from AD. Individual amino acid residues are relevant to protection from AD and set the foundation for evaluating potential HLA Class I molecules in complex with peptides/antigens that may initiate or interfere with T-cell responses.
Collapse
Affiliation(s)
- D J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - N Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States
| | - J L Duke
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - R Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J D Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States
| | - O Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, United States
| | - B S Kim
- Division of Dermatology, Department of Medicine, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, United States
| | - A C Yan
- Division of Dermatology, Department of Medicine, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, United States
| | - A L Zaenglein
- Departments of Dermatology and Pediatrics, Pennsylvania State University/Hershey Medical Center, Hershey, PA, United States
| | - Z Chiesa Fuxench
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - A Dinou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - J Wasserman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - N Tairis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - T L Mosbruger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - D Ferriola
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - D S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
46
|
Margaritte-Jeannin P, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. Identification of OCA2 as a novel locus for the co-morbidity of asthma-plus-eczema. Clin Exp Allergy 2021; 52:70-81. [PMID: 34155719 DOI: 10.1111/cea.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co-morbidity of two of these diseases, have not been considered. This may partly explain missing heritability. OBJECTIVE To identify genetic variants specifically associated with the co-morbidity of asthma-plus-eczema. METHODS We first conducted a meta-analysis of four GWAS (Genome-Wide Association Study) of the combined asthma-plus-eczema phenotype (total of 8807 European-ancestry subjects of whom 1208 subjects had both asthma and eczema). To assess whether the association with SNP(s) was specific to the co-morbidity, we also conducted a meta-analysis of homogeneity test of association according to disease status ("asthma-plus-eczema" vs. the presence of only one disease "asthma only or eczema only"). We then used a joint test by combining the two test statistics from the co-morbidity-SNP association and the phenotypic heterogeneity of SNP effect meta-analyses. RESULTS Seven SNPs were detected for specific association to the asthma-plus-eczema co-morbidity, two with significant and five with suggestive evidence using the joint test after correction for multiple testing. The two significant SNPs are located in the OCA2 gene (Oculocutaneous Albinism II), a new locus never detected for significant evidence of association with any allergic disease. This gene is a promising candidate gene, because of its link to skin and lung diseases, and to epithelial barrier and immune mechanisms. CONCLUSION Our study underlines the importance of studying sub-phenotypes as co-morbidities to detect new susceptibility genes.
Collapse
Affiliation(s)
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Centre Intersectoriel en Santé Durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | | | | | - Erika von Mutius
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Raquel Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Catherine Laprise
- Département des Sciences Fondamentales, Centre Intersectoriel en Santé Durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | | | | |
Collapse
|
47
|
Anti-inflammatory effects of a novel phosphodiesterase-4 inhibitor, AA6216, in mouse dermatitis models. Eur J Pharmacol 2021; 906:174258. [PMID: 34139195 DOI: 10.1016/j.ejphar.2021.174258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is commonly treated with corticosteroids. However, these drugs have long-term adverse effects, representing an unmet need for new treatments. AD is associated with dysregulation of phosphodiesterase 4 (PDE4) activity in inflammatory cells and the topical PDE4 inhibitor, crisaborole, is approved by the US FDA for mild-to-moderate AD. In this study, we compared the effects of a novel PDE4 inhibitor, AA6216, with those of crisaborole on skin inflammation. We found that AA6216 is a more potent inhibitor of PDE4 and of cytokine production (TNF-α, IL-12/23p40, IL-4, IL-13, and IFN-γ) by human peripheral blood mononuclear cells (PBMCs) stimulated by phytohemagglutinin (PHA) or anti-CD3 antibodies, with IC50 values ranging from 5.9 to 47 nM. AA6216 also significantly suppressed skin inflammation in three mouse models of dermatitis. In acute and chronic oxazolone-induced dermatitis models, topical AA6216 exhibited stronger inhibitory effects on ear inflammation and cytokine production (TNFα, IL-1β, and IL-4) in skin lesions compared with crisaborole. In a Dermatophagoides farinae-induced dermatitis model, AA6216 significantly reduced the dermatitis score, based on the development of erythema/hemorrhage, scarring/dryness, edema, and excoriation/erosion, compared with a clinically used topical AD drug, tacrolimus. These results suggest the possibility that AA6216 is a novel and effective topical therapeutic agent for the treatment of dermatitis including AD.
Collapse
|
48
|
Haider S, Simpson A, Custovic A. Genetics of Asthma and Allergic Diseases. Handb Exp Pharmacol 2021; 268:313-329. [PMID: 34085121 DOI: 10.1007/164_2021_484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asthma genes have been identified through a range of approaches, from candidate gene association studies and family-based genome-wide linkage analyses to genome-wide association studies (GWAS). The first GWAS of asthma, reported in 2007, identified multiple markers on chromosome 17q21 as associates of the childhood-onset asthma. This remains the best replicated asthma locus to date. However, notwithstanding undeniable successes, genetic studies have produced relatively heterogeneous results with limited replication, and despite considerable promise, genetics of asthma and allergy has, so far, had limited impact on patient care, our understanding of disease mechanisms, and development of novel therapeutic targets. The paucity of precise replication in genetic studies of asthma is partly explained by the existence of numerous gene-environment interactions. Another important issue which is often overlooked is that of time of the assessment of the primary outcome(s) and the relevant environmental exposures. Most large GWASs use the broadest possible definition of asthma to increase the sample size, but the unwanted consequence of this is increased phenotypic heterogeneity, which dilutes effect sizes. One way of addressing this is to precisely define disease subtypes (e.g. by applying novel mathematical approaches to rich phenotypic data) and use these latent subtypes in genetic studies.
Collapse
Affiliation(s)
- Sadia Haider
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
49
|
Tanaka N, Koido M, Suzuki A, Otomo N, Suetsugu H, Kochi Y, Tomizuka K, Momozawa Y, Kamatani Y, Ikegawa S, Yamamoto K, Terao C. Eight novel susceptibility loci and putative causal variants in atopic dermatitis. J Allergy Clin Immunol 2021; 148:1293-1306. [PMID: 34116867 DOI: 10.1016/j.jaci.2021.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is the most common allergic disease in the world. While genetic components play critical roles in its pathophysiology, a large proportion of its genetic background is still unexplored. OBJECTIVES This study sought to illuminate the genetic associations with AD using genome-wide association study (GWAS) and its downstream analyses. METHODS This study conducted a GWAS for AD comprising 2,639 cases and 115,648 controls in the Japanese population, followed by a trans-ethnic meta-analysis with UK Biobank data and downstream analyses including partitioning heritability analysis by linkage disequilibrium score regression. RESULTS This study identified 17 significant susceptibility loci, among which 4 loci-AFF1, ITGB8, EHMT1, and EGR2-were novel in the Japanese GWAS. The trans-ethnic meta-analysis revealed 4 additional novel loci, namely-ZBTB38,LOC105755953/LOC101928272, TRAF3, andIQGAP1. This study found a missense variant (R243W) with a deleterious functional effect in NLRP10 and a variant altering expression of CCDC80 via enhancer expression as highly likely causal variants. These 2 regions were Asian-specific, and these population-specific associations could be explained by the frequency of causal variants. The gene-based test showed SMAD4 as an additional novel significant locus. Downstream analyses revealed substantial overlap of GWAS significant signals in enhancers of skin cells and immune cells, especially CD4 T cells. A highly shared polygenic architecture of AD between Europeans and Asians was also found. CONCLUSIONS This study identified Japanese-specific loci and novel significant loci shared by different populations. Two putative causal variants were illuminated in Japanese-specific loci. Trans-ethnic analyses revealed strong heritability enrichment in immune-related pathways, and relevant cell types shared among populations.
Collapse
Affiliation(s)
- Nao Tanaka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nao Otomo
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan; Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Suetsugu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan; Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | -
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
50
|
Schmidt AD, de Guzman Strong C. Current understanding of epigenetics in atopic dermatitis. Exp Dermatol 2021; 30:1150-1155. [PMID: 34008901 PMCID: PMC8361700 DOI: 10.1111/exd.14392] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disorder affecting up to 20% of the paediatric population worldwide. AD patients commonly exhibit dry skin and pruritus and are at a higher risk for developing asthma as well as allergic rhinitis. Filaggrin loss‐of‐function variants are the most widely replicated genetic risk factor among >40 genes associated with AD susceptibility. The prevalence of AD has tripled in the past 30 years in industrial countries around the world. This urgent public health issue has prompted the field to more thoroughly investigate the mechanisms that underlie AD pathogenesis amidst environmental exposures. Epigenetics is the study of heritable, yet reversible, modifications to the genome that affect gene expression. The past decade has seen an emergence of exciting studies identifying a role for epigenetic regulation associated with AD and at the interface of environmental factors. Such epigenetic studies have been empowered by sequencing technologies and human genome variation and epigenome maps. miRNAs that post‐transcriptionally modify gene expression and circRNAs have also been discovered to be associated with AD. Here, we review our current understanding of epigenetics associated with atopic dermatitis. We discuss studies identifying distinct DNA methylation changes in keratinocytes and T cells, eQTLs as DNA methylation switches that impact gene expression, and histone modification changes associated with AD‐related microbial dysbiosis. We further highlight the need for integrative and collaborative analyses to elucidate the impact of these epigenetic findings as potential drivers for AD pathogenesis and the translation of this new knowledge to develop newer targeted treatments.
Collapse
Affiliation(s)
- Alina D Schmidt
- Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Cristina de Guzman Strong
- Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|