1
|
Ikenouchi T, Nitta J, Inaba O, Negishi M, Amemiya M, Kono T, Yamamoto T, Murata K, Kawamura I, Goto K, Nishimura T, Takamiya T, Inamura Y, Ihara K, Tao S, Sato A, Takigawa M, Ebana Y, Miyazaki S, Sasano T, Furukawa T. Embryological Classification of Arrhythmogenic Triggers Initiating Atrial Fibrillation. J Am Coll Cardiol 2024; 84:2116-2128. [PMID: 39453361 DOI: 10.1016/j.jacc.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent multifactorial arrhythmia associated with specific single-nucleotide polymorphisms (SNPs). Pulmonary vein (PV) isolation is an established treatment for AF; however, recurrence risk remains caused by AF triggers beyond the PVs. Understanding the embryological origins of these triggers could improve treatment outcomes. OBJECTIVES This study aimed to investigate the association between embryologically categorized AF triggers, clinical and genetic backgrounds, and postablation prognosis. METHODS In cohort 1, comprising 3,067 patients with AF undergoing PV isolation, the clinical characteristics and outcomes were analyzed. Among them, 815 patients underwent genetic analysis using AF-associated SNPs (cohort 2). Patients were delineated based on the developmental origin of the AF triggers: common PV, sinus venosus (SV), and primitive atrium (PA). RESULTS SV-origin extra-PV AF triggers occurred in 20.3% (n = 622) of patients, whereas PA-origin triggers occurred in 11.9% (n = 365) of patients in cohort 1. Multivariate analysis of cohort 2 revealed that female sex, lower body mass index, absence of hypertension, rs2634073 near PITX2, and rs6584555 in NEURL1 were associated with SV-AF, whereas nonparoxysmal AF and rs2634073 near PITX2 were predictors of PA-AF. The PA group had a significantly higher arrhythmia recurrence rate after repeated procedures than the common PV (HR: 1.75; 95% CI: 1.34-2.29; P < 0.001) and SV-AF (HR: 1.31; 95% CI: 1.19-1.45; P < 0.001) groups with more de novo AF triggers. However, the incidence of adverse events did not differ significantly among the 3 groups. CONCLUSIONS SV-derived AF triggers may have hereditary factors with a favorable postablation prognosis, whereas PA-derived triggers are linked to AF persistence and poor ablation response. Variants near PITX2 may play a pivotal role in extra-PV triggers.
Collapse
Affiliation(s)
- Takashi Ikenouchi
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan; Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Junichi Nitta
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Osamu Inaba
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Miho Negishi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miki Amemiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikazu Kono
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Tasuku Yamamoto
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuya Murata
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Iwanari Kawamura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Goto
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nishimura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Takamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukihiro Inamura
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Tao
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Sato
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Masateru Takigawa
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Ebana
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinsuke Miyazaki
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Houmsse A, Malhotra N, Smith SA, El Refaey M. Atrial Fibrillation in Black American Patients: A Review of Genetics, Risk Factors, and Outcomes. Heart Rhythm 2024:S1547-5271(24)03540-9. [PMID: 39515500 DOI: 10.1016/j.hrthm.2024.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the U.S., impacting six million Americans with numbers projected to increase to 12 million by 2030. Racial paradox difference in the incidence and prevalence of AF exists among Black and White Americans. Black Americans are less prone to develop AF than White Americans, but they display a higher burden of modifiable risk factors for cardiovascular disease and higher rates of ischemic stroke. Data pertaining to the American Heart Association Life's Simple 7 (LS7) health metrics show that Black Americans have suboptimal LS7 scores compared to White Americans on average despite lower genetic predisposition to AF. This trend suggests the impact of cardiovascular health on the development and progression of AF. Social, genetic and lifestyle risk factors have been shown to play a role in the racial paradox and AF outcomes in Black Americans. This review will summarize factors contributing to the racial paradox and will discuss suggestions for improved health outcomes in Black Americans with AF.
Collapse
Affiliation(s)
- Aseel Houmsse
- Postbaccalaureate Premedical Program, College of Professional Studies, Northeastern University, Boston, MA, United States
| | - Nipun Malhotra
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sakima A Smith
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
3
|
Liu N, Hsu J, Mahajan G, Sun H, Laurita KR, Naga Prasad SV, Barnard J, Van Wagoner DR, Kothapalli CR, Chung MK, Smith JD. Common SYNE2 Genetic Variant Associated With Atrial Fibrillation Lowers Expression of Nesprin-2α1 With Downstream Effects on Nuclear and Electrophysiological Traits. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004750. [PMID: 39355904 PMCID: PMC11522946 DOI: 10.1161/circgen.124.004750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Atrial fibrillation GWAS (genome-wide association studies) identified significant associations for rs1152591 and linked variants in the SYNE2 gene encoding Nesprin-2, which connects the nuclear membrane with the cytoskeleton. METHODS Reporter gene vector transfection and CRISPR-Cas9 editing were used to identify the causal variant regulating the expression of SYNE2α1. After SYNE2 knockdown or SYNE2α1 overexpression in human stem cell-derived cardiomyocytes, nuclear phenotypes were assessed by imaging and atomic force microscopy. Gene expression was assessed by RNAseq and gene set enrichment analysis. Fura-2 AM staining assessed calcium transients. Optical mapping assessed action potential duration and conduction velocity. RESULTS The risk allele of rs1152591 had lower promoter and enhancer activity and was significantly associated with lower expression of the short SYNE2α1 isoform in human stem cell-derived cardiomyocytes, without an effect on the expression of the full-length SYNE2 mRNA. SYNE2α1 overexpression had dominant negative effects on the nucleus with its overexpression or SYNE2 knockdown leading to increased nuclear area and decreased nuclear stiffness. Gene expression results from SYNE2α1 overexpression demonstrated both concordant and nonconcordant effects with SYNE2 knockdown. SYNE2α1 overexpression had a gain of function on electrophysiology, leading to significantly faster calcium reuptake and decreased assessed action potential duration, while SYNE2 knockdown showed both shortened assessed action potential duration and decreased conduction velocity. CONCLUSIONS rs1152591 was identified as a causal atrial fibrillation variant, with the risk allele decreasing SYNE2α1 expression. Downstream effects of SYNE2α1 overexpression include changes in nuclear stiffness and electrophysiology, which may contribute to the mechanism for the risk allele's association with AF.
Collapse
Affiliation(s)
- Nana Liu
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
| | - Jeffrey Hsu
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
| | - Gautam Mahajan
- Dept of Chemical and Biomedical Engineering, Cleveland State University
| | - Han Sun
- Dept of Quantitative Health Sciences
| | - Kenneth R. Laurita
- Dept of Medicine and Biomedical Engineering, Metrohealth Campus, Cleveland, OH
| | | | | | | | | | - Mina K. Chung
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
- Dept of Cardiovascular Medicine, Cleveland Clinic
| | - Jonathan D. Smith
- Depts of Cardiovascular & Metabolic Sciences, Cardiovascular Medicine
- Dept of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
4
|
Woltz RL, Zheng Y, Choi W, Ngo K, Trinh P, Ren L, Thai PN, Harris BJ, Han Y, Rouen KC, Mateos DL, Jian Z, Chen-Izu Y, Dickson EJ, Yamoah EN, Yarov-Yarovoy V, Vorobyov I, Zhang XD, Chiamvimonvat N. Atomistic mechanisms of the regulation of small-conductance Ca 2+-activated K + channel (SK2) by PIP2. Proc Natl Acad Sci U S A 2024; 121:e2318900121. [PMID: 39288178 PMCID: PMC11441529 DOI: 10.1073/pnas.2318900121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
Collapse
Grants
- OT2 OD026580 NIH HHS
- T32 HL086350 NHLBI NIH HHS
- NIH R01 DC016099 HHS | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
- I01 CX001490 CSRD VA
- T32 GM136597 NIGMS NIH HHS
- R01 DC016099 NIDCD NIH HHS
- NIH F32 HL151130 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Anton 2 allocation MCB210014P Pittsburgh Supercomputing Center
- NIH T32 HL86350 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL158961 NHLBI NIH HHS
- R01 HL137228 NHLBI NIH HHS
- T32 GM007377 NIGMS NIH HHS
- R01 HL174001 NHLBI NIH HHS
- F32 HL151130 NHLBI NIH HHS
- R01 HL128537 NHLBI NIH HHS
- NIH R01 HL085727 NIH R01 HL085844 NIH R01 HL137228 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL152681 NHLBI NIH HHS
- R01 HL085727 NHLBI NIH HHS
- R01 GM116961 NIGMS NIH HHS
- NIH R01 HL152681 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AG060504 NIA NIH HHS
- R35 GM149211 NIGMS NIH HHS
- I01 BX000576 BLRD VA
- NIH R01 AG060504 and NIH 2P01 AG051443 HHS | NIH | National Institute on Aging (NIA)
- R01 HL085844 NHLBI NIH HHS
- NIH R01 HL158961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH R35 GM149211 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P01 AG051443 NIA NIH HHS
- NIH R01 HL128537 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Ryan L. Woltz
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Yang Zheng
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Woori Choi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Khoa Ngo
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Pauline Trinh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Lu Ren
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA94305
| | - Phung N. Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Brandon J. Harris
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Yanxiao Han
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Kyle C. Rouen
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Diego Lopez Mateos
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, CA95616
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA95616
| | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Ebenezer N. Yamoah
- Department of Translational Neuroscience, University of Arizona College of Medicine, Phoenix, AZ85004
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA95616
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Pharmacology, University of California, Davis, CA95616
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616
- Department of Pharmacology, University of California, Davis, CA95616
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA95655
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ85004
| |
Collapse
|
5
|
Wu CI, Chen IC, Chen YY, Chen YM, Lin YJ, Hsieh YC, Chen SA. Susceptibility of atrial fibrillation in genetic architecture and heritability: A genome-wide association study in Taiwan. Heart Rhythm 2024; 21:1656-1657. [PMID: 38574792 DOI: 10.1016/j.hrthm.2024.03.1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yun-Yu Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ming Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Biomedical Science, Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chen Hsieh
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
6
|
Hagendorff A, Stöbe S, Helfen A, Knebel F, Altiok E, Beckmann S, Bekfani T, Binder T, Ewers A, Hamadanchi A, Ten Freyhaus H, Groscheck T, Haghi D, Knierim J, Kruck S, Lenk K, Merke N, Pfeiffer D, Dorta ER, Ruf T, Sinning C, Wunderlich NC, Brandt R, Ewen S. Echocardiographic assessment of atrial, ventricular, and valvular function in patients with atrial fibrillation-an expert proposal by the german working group of cardiovascular ultrasound. Clin Res Cardiol 2024:10.1007/s00392-024-02491-6. [PMID: 39186180 DOI: 10.1007/s00392-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 08/27/2024]
Abstract
Echocardiography in patients with atrial fibrillation is challenging due to the varying heart rate. Thus, the topic of this expert proposal focuses on an obvious gap in the current recommendations about diagnosis and treatment of atrial fibrillation (AF)-the peculiarities and difficulties of echocardiographic imaging. The assessment of systolic and diastolic function-especially in combination with valvular heart diseases-by echocardiography can basically be done by averaging the results of echocardiographic measurements of the respective parameters or by the index beat approach, which uses a representative cardiac cycle for measurement. Therefore, a distinction must be made between the functionally relevant status, which is characterized by the averaging method, and the best possible hemodynamic status, which is achieved with the most optimal left ventricular (LV) filling according to the index beat method with longer previous RR intervals. This proposal focuses on left atrial and left ventricular function and deliberately excludes problems of echocardiography when assessing left atrial appendage in terms of its complexity. Echocardiography of the left atrial appendage is therefore reserved for its own expert proposal.
Collapse
Affiliation(s)
- Andreas Hagendorff
- Department of Cardiology, University Hospital Leipzig AöR, Leipzig, Germany.
| | - Stephan Stöbe
- Department of Cardiology, University Hospital Leipzig AöR, Leipzig, Germany
| | - Andreas Helfen
- Department of Kardiologie, Katholische St. Paulus Gesellschaft, St. Marien Hospital Lünen, Lünen, Germany
| | - Fabian Knebel
- Department of Internal Medicine II, Cardiology, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Ertunc Altiok
- Department of Cardiology, Angiology, and Intensive Medicine, University Hospital Aachen, Aachen, Germany
| | - Stephan Beckmann
- Privatpraxis Kardiologie, Beckmann Ehlers Und Partner, Berlin-Grunewald, Germany
| | - Tarek Bekfani
- Department of Cardiology and Angiology, University Hospital Magdeburg AöR, Magdeburg, Germany
| | - Thomas Binder
- Department of Cardiology, University Hospital AKH Wien, Vienna, Austria
| | - Aydan Ewers
- Department of Cardiology and Angiology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Ali Hamadanchi
- Department of Cardiology, University of Jena, Jena, Germany
| | - Henrik Ten Freyhaus
- Department of Internal Medicine III, Cardiology, University of Cologne, Cologne, Germany
| | - Thomas Groscheck
- Department of Cardiology and Angiology, University Hospital Magdeburg AöR, Magdeburg, Germany
| | - Dariush Haghi
- Kardiologische Praxisklinik Ludwigshafen-Akademische Lehrpraxis of the University of Mannheim, Ludwigshafen, Germany
| | - Jan Knierim
- Department of Internal Medicine and Cardiology, Paulinenkrankenhaus Berlin, Berlin, Germany
| | - Sebastian Kruck
- Praxis Für Kardiologie Cardio Centrum Ludwigsburg, Ludwigsburg, Germany
| | - Karsten Lenk
- Department of Cardiology, University Hospital Leipzig AöR, Leipzig, Germany
| | - Nicolas Merke
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Charité Berlin, Berlin, Germany
| | | | - Elena Romero Dorta
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité Berlin, University of Berlin, Campus Mitte, Berlin, Germany
| | - Tobias Ruf
- Department of Cardiology, Center of Cardiology, Heart Valve Center, University Medical Center Mainz, University of Mainz, Mainz, Germany
| | - Christoph Sinning
- Department of Cardiology, German Centre of Cardiovascular Research (DZHK), University Heart and Vascular Center Hamburg, Hamburg, Germany
| | | | - Roland Brandt
- Department of Cardiology, Kerckhoff Klinik GmbH, Bad Nauheim, Germany
| | - Sebastian Ewen
- Department of Cardiology and Intensive Care Medicine, Schwarzwald-Baar Klinik, Villingen-Schwenningen, Germany
- University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany
| |
Collapse
|
7
|
Petzl AM, Jabbour G, Cadrin-Tourigny J, Pürerfellner H, Macle L, Khairy P, Avram R, Tadros R. Innovative approaches to atrial fibrillation prediction: should polygenic scores and machine learning be implemented in clinical practice? Europace 2024; 26:euae201. [PMID: 39073570 PMCID: PMC11332604 DOI: 10.1093/europace/euae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Atrial fibrillation (AF) prediction and screening are of important clinical interest because of the potential to prevent serious adverse events. Devices capable of detecting short episodes of arrhythmia are now widely available. Although it has recently been suggested that some high-risk patients with AF detected on implantable devices may benefit from anticoagulation, long-term management remains challenging in lower-risk patients and in those with AF detected on monitors or wearable devices as the development of clinically meaningful arrhythmia burden in this group remains unknown. Identification and prediction of clinically relevant AF is therefore of unprecedented importance to the cardiologic community. Family history and underlying genetic markers are important risk factors for AF. Recent studies suggest a good predictive ability of polygenic risk scores, with a possible additive value to clinical AF prediction scores. Artificial intelligence, enabled by the exponentially increasing computing power and digital data sets, has gained traction in the past decade and is of increasing interest in AF prediction using a single or multiple lead sinus rhythm electrocardiogram. Integrating these novel approaches could help predict AF substrate severity, thereby potentially improving the effectiveness of AF screening and personalizing the management of patients presenting with conditions such as embolic stroke of undetermined source or subclinical AF. This review presents current evidence surrounding deep learning and polygenic risk scores in the prediction of incident AF and provides a futuristic outlook on possible ways of implementing these modalities into clinical practice, while considering current limitations and required areas of improvement.
Collapse
Affiliation(s)
- Adrian M Petzl
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Gilbert Jabbour
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
- Heartwise (heartwise.ai), Montreal Heart Institute, Montreal, Canada
| | - Julia Cadrin-Tourigny
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Helmut Pürerfellner
- Department of Internal Medicine 2/Cardiology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Laurent Macle
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Paul Khairy
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
| | - Robert Avram
- Heartwise (heartwise.ai), Montreal Heart Institute, Montreal, Canada
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Rafik Tadros
- Electrophysiology Service, Department of Medicine, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, 5000 rue Bélanger, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
8
|
Owais A, Barney M, Ly OT, Brown G, Chen H, Sridhar A, Pavel A, Khetani SR, Darbar D. Genetics and Pharmacogenetics of Atrial Fibrillation: A Mechanistic Perspective. JACC Basic Transl Sci 2024; 9:918-934. [PMID: 39170958 PMCID: PMC11334418 DOI: 10.1016/j.jacbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 08/23/2024]
Abstract
The heritability of atrial fibrillation (AF) is well established. Over the last decade genetic architecture of AF has been unraveled by genome-wide association studies and family-based studies. However, the translation of these genetic discoveries has lagged owing to an incomplete understanding of the pathogenic mechanisms underlying the genetic variants, challenges in classifying variants of uncertain significance (VUS), and limitations of existing disease models. We review the mechanistic insight provided by basic science studies regarding AF mechanisms, recent developments in high-throughput classification of VUS, and advances in bioengineered cardiac models for developing personalized therapy for AF.
Collapse
Affiliation(s)
- Asia Owais
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Miles Barney
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Olivia Thao Ly
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Grace Brown
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arif Pavel
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
9
|
Kukendrarajah K, Farmaki AE, Lambiase PD, Schilling R, Finan C, Floriaan Schmidt A, Providencia R. Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies. EBioMedicine 2024; 105:105194. [PMID: 38941956 PMCID: PMC11260865 DOI: 10.1016/j.ebiom.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development. METHODS Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF. FINDINGS 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development. INTERPRETATION Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF. FUNDING KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.
Collapse
Affiliation(s)
- Kishore Kukendrarajah
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom.
| | - Aliki-Eleni Farmaki
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom; Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom
| | - Richard Schilling
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Amand Floriaan Schmidt
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, the Netherlands
| | - Rui Providencia
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| |
Collapse
|
10
|
Linna-Kuosmanen S, Vuori M, Kiviniemi T, Palmu J, Niiranen T. Genetics, transcriptomics, metagenomics, and metabolomics in the pathogenesis and prediction of atrial fibrillation. Eur Heart J Suppl 2024; 26:iv33-iv40. [PMID: 39099578 PMCID: PMC11292413 DOI: 10.1093/eurheartjsupp/suae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The primary cellular substrates of atrial fibrillation (AF) and the mechanisms underlying AF onset remain poorly characterized and therefore, its risk assessment lacks precision. While the use of omics may enable discovery of novel AF risk factors and narrow down the cellular pathways involved in AF pathogenesis, the work is far from complete. Large-scale genome-wide association studies and transcriptomic analyses that allow an unbiased, non-candidate-gene-based delineation of molecular changes associated with AF in humans have identified at least 150 genetic loci associated with AF. However, only few of these loci have been thoroughly mechanistically dissected, indicating that much remains to be discovered for targeted diagnostics and therapeutics. Metabolomics and metagenomics, on the other hand, add to the understanding of AF downstream of the primary substrate and integrate the signalling of environmental and host factors, respectively. These two rapidly developing fields have already provided several correlates of prevalent and incident AF that require additional validation in external cohorts and experimental studies. In this review, we take a look at the recent developments in genetics, transcriptomics, metagenomics, and metabolomics and how they may aid in improving the discovery of AF risk factors and shed light into the molecular mechanisms leading to AF onset.
Collapse
Affiliation(s)
- Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Matti Vuori
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Tuomas Kiviniemi
- Department of Internal Medicine, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Joonatan Palmu
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku, Finland
| |
Collapse
|
11
|
Seo Y, Bae H, Lee C. Bayesian colocalization of GWAS and eQTL signals reveals cell type-specific genes and regulatory variants for susceptibility to subtypes of ischemic stroke. Comput Biol Chem 2024; 110:108086. [PMID: 38744227 DOI: 10.1016/j.compbiolchem.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
A colocalization analysis of genome-wide association study (GWAS) signals and expression quantitative trait loci (eQTL) was conducted to pinpoint target genes and their regulatory nucleotide variants for subtypes of ischemic stroke. We utilized GWAS data from prominent meta-analysis consortia (MEGASTROKE and GIGASTROKE) and single-cell eQTL data in brain and blood tissues to enhance accuracy and minimize noise inherent in bulk RNA-seq. Employing Bayesian colocalization methods, we identified ten shared loci between GWAS and eQTL signals, targeting five eGenes. Specifically, RAPH1 and ICA1L were discovered for small vessel stroke (SVS), whereas SCYL3, CAV1, and CAV2 were for cardioembolic stroke (CS). However, no findings have been made for large artery stroke. The exploration and subsequent functional analysis of causal variants within the colocalized regions revealed their regulatory roles, particularly as enhancer variants (e.g., rs144505847 and rs72932755 targeting ICA1L; rs629234 targeting SCYL3; rs3807989 targeting CAV1 and CAV2). Notably, our study unveiled that all eQTL for CS were identified in oligodendrocytes, while those for SVS were across excitatory neurons, astrocytes, and oligodendrocyte precursor cells. This underscores the heterogeneous tissue-specific genetic factors by subtypes of ischemic stroke. The study emphasizes the need for intensive research efforts to discover causative genes and variants, unravelling the cell type-specific genetic architecture of ischemic stroke subtypes. This knowledge is crucial for advancing our understanding of the underlying pathophysiology and paving the way for precision neurology applications.
Collapse
Affiliation(s)
- Yunji Seo
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, South Korea
| | - Hojin Bae
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, South Korea
| | - Chaeyoung Lee
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, South Korea.
| |
Collapse
|
12
|
Jiang Y, Peng Y, Tian Q, Cheng Z, Feng B, Hu J, Xia L, Guo H, Xia K, Zhou L, Hu Z. Intergenic sequences harboring potential enhancer elements contribute to Axenfeld-Rieger syndrome by regulating PITX2. JCI Insight 2024; 9:e177032. [PMID: 38592784 PMCID: PMC11141933 DOI: 10.1172/jci.insight.177032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Recent studies have uncovered that noncoding sequence variants may relate to Axenfeld-Rieger syndrome (ARS), a rare developmental anomaly with genetic heterogeneity. However, how these genomic regions are functionally and structurally associated with ARS is still unclear. In this study, we performed genome-wide linkage analysis and whole-genome sequencing in a Chinese family with ARS and identified a heterozygous deletion of about 570 kb (termed LOH-1) in the intergenic sequence between paired-like homeodomain transcription factor 2 (PITX2) and family with sequence similarity 241 member A. Knockout of LOH-1 homologous sequences caused ARS phenotypes in mice. RNA-Seq and real-time quantitative PCR revealed a significant reduction in Pitx2 gene expression in LOH-1-/- mice, while forkhead box C1 expression remained unchanged. ChIP-Seq and bioinformatics analysis identified a potential enhancer region (LOH-E1) within LOH-1. Deletion of LOH-E1 led to a substantial downregulation of the PITX2 gene. Mechanistically, we found a sequence (hg38 chr4:111,399,594-111,399,691) that is on LOH-E1 could regulate PITX2 by binding to RAD21, a critical component of the cohesin complex. Knockdown of RAD21 resulted in reduced PITX2 expression. Collectively, our findings indicate that a potential enhancer sequence that is within LOH-1 may regulate PITX2 expression remotely through cohesin-mediated loop domains, leading to ARS when absent.
Collapse
Affiliation(s)
- Yizheng Jiang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Yu Peng
- Department of Medical Genetics, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi Tian
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Zhe Cheng
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Bei Feng
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Junping Hu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Lu Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Hui Guo
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Kun Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
- MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| |
Collapse
|
13
|
Yfanti C, Vestbjerg B, Van't Westende J, Edvardsson N, Monfort LM, Olesen MS, Bentzen BH, Grunnet M, Eveleens Maarse BC, Diness JG, Kemme MJB, Sørensen U, Moerland M, van Esdonk MJ, Klaassen ES, Gal P, Holst AG. A phase 1 trial of AP30663, a K Ca2 channel inhibitor in development for conversion of atrial fibrillation. Br J Clin Pharmacol 2024; 90:1027-1035. [PMID: 37990600 DOI: 10.1111/bcp.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
AIMS AP30663 is a novel compound under development for pharmacological conversion of atrial fibrillation by targeting the small conductance Ca2+ activated K+ (KCa2) channel. The aim of this extension phase 1 study was to test AP30663 at higher single doses compared to the first-in-human trial. METHODS Sixteen healthy male volunteers were randomized into 2 cohorts: 6- and 8-mg/kg intravenous single-dose administration of AP30663 vs. placebo. Safety, pharmacokinetic and pharmacodynamic data were collected. RESULTS AP30663 was associated with mild and transient infusion site reactions with no clustering of other adverse events but with an estimated maximum mean QTcF interval prolongation of 45.2 ms (95% confidence interval 31.5-58.9) in the 6 mg/kg dose level and 50.4 ms (95% confidence interval 36.7-64.0) with 8 mg/kg. Pharmacokinetics was dose proportional with terminal half-life of around 3 h. CONCLUSION AP30663 in doses up to 8 mg/kg was associated with mild and transient infusion site reactions and an increase of the QTcF interval. Supporting Information support that the QTc effect may be explained by an off-target inhibition of the IKr channel.
Collapse
Affiliation(s)
| | | | | | - Nils Edvardsson
- Acesion Pharma ApS, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Bo Hjorth Bentzen
- Acesion Pharma ApS, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | - Boukje C Eveleens Maarse
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | - Pim Gal
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | | |
Collapse
|
14
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Ahn HJ, An HY, Ryu G, Lim J, Sun C, Song H, Choi SY, Lee H, Maurer T, Nachun D, Kwon S, Lee SR, Lip GYH, Oh S, Jaiswal S, Koh Y, Choi EK. Clonal haematopoiesis of indeterminate potential and atrial fibrillation: an east Asian cohort study. Eur Heart J 2024; 45:778-790. [PMID: 38231881 DOI: 10.1093/eurheartj/ehad869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND AND AIMS Both clonal haematopoiesis of indeterminate potential (CHIP) and atrial fibrillation (AF) are age-related conditions. This study investigated the potential role of CHIP in the development and progression of AF. METHODS Deep-targeted sequencing of 24 CHIP mutations (a mean depth of coverage = 1000×) was performed in 1004 patients with AF and 3341 non-AF healthy subjects. Variant allele fraction ≥ 2.0% indicated the presence of CHIP mutations. The association between CHIP and AF was evaluated by the comparison of (i) the prevalence of CHIP mutations between AF and non-AF subjects and (ii) clinical characteristics discriminated by CHIP mutations within AF patients. Furthermore, the risk of clinical outcomes-the composite of heart failure, ischaemic stroke, or death-according to the presence of CHIP mutations in AF was investigated from the UK Biobank cohort. RESULTS The mean age was 67.6 ± 6.9 vs. 58.5 ± 6.5 years in AF (paroxysmal, 39.0%; persistent, 61.0%) and non-AF cohorts, respectively. CHIP mutations with a variant allele fraction of ≥2.0% were found in 237 (23.6%) AF patients (DNMT3A, 13.5%; TET2, 6.6%; and ASXL1, 1.5%) and were more prevalent than non-AF subjects [356 (10.7%); P < .001] across the age. After multivariable adjustment (age, sex, smoking, body mass index, diabetes, and hypertension), CHIP mutations were 1.4-fold higher in AF [adjusted odds ratio (OR) 1.38; 95% confidence interval 1.10-1.74, P < .01]. The ORs of CHIP mutations were the highest in the long-standing persistent AF (adjusted OR 1.50; 95% confidence interval 1.14-1.99, P = .004) followed by persistent (adjusted OR 1.44) and paroxysmal (adjusted OR 1.33) AF. In gene-specific analyses, TET2 somatic mutation presented the highest association with AF (adjusted OR 1.65; 95% confidence interval 1.05-2.60, P = .030). AF patients with CHIP mutations were older and had a higher prevalence of diabetes, a longer AF duration, a higher E/E', and a more severely enlarged left atrium than those without CHIP mutations (all P < .05). In UK Biobank analysis of 21 286 AF subjects (1297 with CHIP and 19 989 without CHIP), the CHIP mutation in AF is associated with a 1.32-fold higher risk of a composite clinical event (heart failure, ischaemic stroke, or death). CONCLUSIONS CHIP mutations, primarily DNMT3A or TET2, are more prevalent in patients with AF than non-AF subjects whilst their presence is associated with a more progressive nature of AF and unfavourable clinical outcomes.
Collapse
Affiliation(s)
- Hyo-Jeong Ahn
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hong Yul An
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Gangpyo Ryu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jiwoo Lim
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Choonghyun Sun
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Han Song
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Su-Yeon Choi
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Heesun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Taylor Maurer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Soonil Kwon
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - So-Ryoung Lee
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Chest and Heart Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
- Cancer Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
16
|
Shahjahan, Dey JK, Dey SK. Translational bioinformatics approach to combat cardiovascular disease and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:221-261. [PMID: 38448136 DOI: 10.1016/bs.apcsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bioinformatics is an interconnected subject of science dealing with diverse fields including biology, chemistry, physics, statistics, mathematics, and computer science as the key fields to answer complicated physiological problems. Key intention of bioinformatics is to store, analyze, organize, and retrieve essential information about genome, proteome, transcriptome, metabolome, as well as organisms to investigate the biological system along with its dynamics, if any. The outcome of bioinformatics depends on the type, quantity, and quality of the raw data provided and the algorithm employed to analyze the same. Despite several approved medicines available, cardiovascular disorders (CVDs) and cancers comprises of the two leading causes of human deaths. Understanding the unknown facts of both these non-communicable disorders is inevitable to discover new pathways, find new drug targets, and eventually newer drugs to combat them successfully. Since, all these goals involve complex investigation and handling of various types of macro- and small- molecules of the human body, bioinformatics plays a key role in such processes. Results from such investigation has direct human application and thus we call this filed as translational bioinformatics. Current book chapter thus deals with diverse scope and applications of this translational bioinformatics to find cure, diagnosis, and understanding the mechanisms of CVDs and cancers. Developing complex yet small or long algorithms to address such problems is very common in translational bioinformatics. Structure-based drug discovery or AI-guided invention of novel antibodies that too with super-high accuracy, speed, and involvement of considerably low amount of investment are some of the astonishing features of the translational bioinformatics and its applications in the fields of CVDs and cancers.
Collapse
Affiliation(s)
- Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
17
|
Vinciguerra M, Dobrev D, Nattel S. Atrial fibrillation: pathophysiology, genetic and epigenetic mechanisms. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100785. [PMID: 38362554 PMCID: PMC10866930 DOI: 10.1016/j.lanepe.2023.100785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
Atrial fibrillation (AF) is the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence dramatically increases with age and could reach up to ∼10% in the elderly. The management of AF is a complex issue that is object of extensive ongoing basic and clinical research, it depends on its genetic and epigenetic causes, and it varies considerably geographically and also according to the ethnicity. Mechanistically, over the last decade, Genome Wide Association Studies have uncovered over 100 genetic loci associated with AF, and have shown that European ancestry is associated with elevated risk of AF. These AF-associated loci revolve around different types of disturbances, including inflammation, electrical abnormalities, and structural remodeling. Moreover, the discovery of epigenetic regulatory mechanisms, involving non-coding RNAs, DNA methylation and histone modification, has allowed unravelling what modifications reshape the processes leading to arrhythmias. Our review provides a current state of the field regarding the identification and functional characterization of AF-related genetic and epigenetic regulatory networks, including ethnic differences. We discuss clear and emerging connections between genetic regulation and pathophysiological mechanisms of AF.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Liverpool Centre for Cardiovascular Science, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Surapaneni AL, Schlosser P, Rhee EP, Cheng S, Jain M, Alotaiabi M, Coresh J, Grams ME. Eicosanoids and Related Metabolites Associated with ESKD in a Community-Based Cohort. KIDNEY360 2024; 5:57-64. [PMID: 38047655 PMCID: PMC10833602 DOI: 10.34067/kid.0000000000000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Key Points High-throughput eicosanoid profiling can identify metabolites that may play a protective role in the development of kidney disease. In contrast to many other nonlipid metabolites, eicosanoid levels are minimally related with kidney filtration cross-sectionally. Background Eicosanoids are derivatives of polyunsaturated fatty acids and participate in the inflammatory response and the maintenance of endothelial function. Specific eicosanoids have been linked to various diseases, including hypertension and asthma, and may also reduce renal blood flow. A systematic investigation of eicosanoid-related metabolites and adverse kidney outcomes could identify key mediators of kidney disease and inform ongoing work in drug development. Methods Profiling of eicosanoid-related metabolites was performed in 9650 participants in the Atherosclerosis Risk in Communities Study (visit 2; mean age, 57 years). The associations between metabolite levels and the development of ESKD was investigated using Cox proportional hazards regression (n =256 events; median follow-up, 25.5 years). Metabolites with statistically significant associations with ESKD were evaluated for a potential causal role using bidirectional Mendelian randomization techniques, linking genetic instruments for eicosanoid levels to genomewide association study summary statistics of eGFR. Results The 223 eicosanoid-related metabolites that were profiled and passed quality control (QC) were generally uncorrelated with eGFR in cross-sectional analyses (median Spearman correlation, −0.03; IQR, −0.05 to 0.002). In models adjusted for multiple covariates, including baseline eGFR, three metabolites had statistically significant associations with ESKD (P value < 0.05/223). These included a hydroxyoctadecenoic acid, a dihydroxydocosapentaenoic acid, and arachidonic acid, with higher levels of the former two protective against ESKD and higher levels of arachidonic acid having a positive association with risk of ESKD. Mendelian randomization analyses suggested a causal role for the hydroxyoctadecenoic and arachidonic acid in determining eGFR. Spectral analysis identified the former metabolite as either 11-hydroxy-9-octadecenoic acid or 10-hydroxy-11-octadecenoic acid. Conclusions High-throughput eicosanoid profiling can identify metabolites that may play a protective role in the development of kidney disease.
Collapse
Affiliation(s)
- Aditya L. Surapaneni
- Division of Precision Medicine, New York University School of Medicine, New York, New York
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Eugene P. Rhee
- Endocrine Unit, Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Susan Cheng
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts
- Division of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, California
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, California
| | - Mona Alotaiabi
- Departments of Medicine and Pharmacology, University of California, San Diego, California
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E. Grams
- Division of Precision Medicine, New York University School of Medicine, New York, New York
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
19
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
20
|
Ayinde H, Markson F, Ogbenna UK, Jackson L. Addressing racial differences in the management of atrial fibrillation: Focus on black patients. J Natl Med Assoc 2023:S0027-9684(23)00142-6. [PMID: 38114334 DOI: 10.1016/j.jnma.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, affecting between 3 and 6 million people in the United States. It is associated with a reduced quality of life and increased risk of stroke, cognitive decline, heart failure and death. Black patients have a lower prevalence of AF than White patients but are more likely to suffer worse outcomes with the disease. It is important that stakeholders understand the disproportionate burden of disease and management gaps that exists among Black patients living with AF. Appropriate treatments, including aggressive risk factor control, early referral to cardiovascular specialists and improving healthcare access may bridge some of the gaps in management and improve outcomes.
Collapse
Affiliation(s)
- Hakeem Ayinde
- Cardiology Associates of Fredericksburg, Fredericksburg, VA, USA.
| | - Favour Markson
- Department of Medicine, Lincoln Medical Center, Bronx, NY, USA
| | - Ugonna Kevin Ogbenna
- Department of Medicine, Michigan State University College of Osteopathic Medicine, Lansing, MI, USA
| | - Larry Jackson
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
21
|
Grzeczka A, Graczyk S, Kordowitzki P. DNA Methylation and Telomeres-Their Impact on the Occurrence of Atrial Fibrillation during Cardiac Aging. Int J Mol Sci 2023; 24:15699. [PMID: 37958686 PMCID: PMC10650750 DOI: 10.3390/ijms242115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in humans. AF is characterized by irregular and increased atrial muscle activation. This high-frequency activation obliterates the synchronous work of the atria and ventricles, reducing myocardial performance, which can lead to severe heart failure or stroke. The risk of developing atrial fibrillation depends largely on the patient's history. Cardiovascular diseases are considered aging-related pathologies; therefore, deciphering the role of telomeres and DNA methylation (mDNA), two hallmarks of aging, is likely to contribute to a better understanding and prophylaxis of AF. In honor of Prof. Elizabeth Blackburn's 75th birthday, we dedicate this review to the discovery of telomeres and her contribution to research on aging.
Collapse
Affiliation(s)
| | | | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Szosa Bydgoska 13, 87-100 Torun, Poland
| |
Collapse
|
22
|
Sasano T, Ihara K, Tanaka T, Furukawa T. Risk stratification of atrial fibrillation and stroke using single nucleotide polymorphism and circulating biomarkers. PLoS One 2023; 18:e0292118. [PMID: 37824462 PMCID: PMC10569505 DOI: 10.1371/journal.pone.0292118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common sustained arrhythmia, and it causes a high rate of complications such as stroke. It is known that AF begins as paroxysmal form and gradually progresses to persistent form, and sometimes it is difficult to identify paroxysmal AF (PAF) before having stroke. The aim of this study is to evaluate the risk of PAF and stroke using genetic analysis and circulating biomarkers. MATERIALS AND METHODS A total of 600 adult subjects were enrolled (300 from PAF and control groups). Peripheral blood was drawn to identify the genetic variation and biomarkers. Ten single nucleotide polymorphisms (SNPs) were analyzed, and circulating cell-free DNA (cfDNA) was measured from plasma. Four microRNAs (miR-99a-5p, miR-192-5p, miR-214-3p, and miR-342-5p) were quantified in serum using quantitative RT-PCR. RESULTS Genotyping identified 4 single nucleotide polymorphisms (SNPs) that were significantly associated with AF (rs6817105, rs3807989, rs10824026, and rs2106261), and the genetic risk score using 4 SNPs showed the area under the curve (AUC) of 0.631. Circulating miRNAs and cfDNA did not show significant differences between PAF and control groups. The concentration of cfDNA was significantly higher in patients with a history of stroke, and the AUC was 0.950 to estimate the association with stroke. CONCLUSION The risk of AF could be assessed by genetic risk score. Furthermore, the risk of stroke might be evaluated by plasma cfDNA level.
Collapse
Affiliation(s)
- Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshihiro Tanaka
- Bioresourse Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
23
|
Herrera NT, Zhang X, Ni H, Maleckar MM, Heijman J, Dobrev D, Grandi E, Morotti S. Dual effects of the small-conductance Ca 2+-activated K + current on human atrial electrophysiology and Ca 2+-driven arrhythmogenesis: an in silico study. Am J Physiol Heart Circ Physiol 2023; 325:H896-H908. [PMID: 37624096 PMCID: PMC10659325 DOI: 10.1152/ajpheart.00362.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.
Collapse
Affiliation(s)
- Nathaniel T Herrera
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Mary M Maleckar
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Jordi Heijman
- Department of Cardiology, Faculty of Health, Medicine, and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Faculty of Medicine, West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
24
|
Al-Kaisey A, Wong GR, Young P, Chieng D, Hawson J, Anderson R, Sugumar H, Nalliah C, Prabhu M, Johnson R, Soka M, Tarr I, Bakshi A, Yu C, Lacaze P, Giannoulatou E, McLellan A, Lee G, Kistler PM, Fatkin D, Kalman JM. Polygenic risk scores are associated with atrial electrophysiologic substrate abnormalities and outcomes after atrial fibrillation catheter ablation. Heart Rhythm 2023; 20:1188-1194. [PMID: 36804918 PMCID: PMC10522415 DOI: 10.1016/j.hrthm.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Affiliation(s)
- Ahmed Al-Kaisey
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey R Wong
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Young
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - David Chieng
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Heart Centre, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Joshua Hawson
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Anderson
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Hariharan Sugumar
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Heart Centre, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Chrishan Nalliah
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Magdalena Soka
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Ingrid Tarr
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Andrew Bakshi
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Chenglong Yu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Alex McLellan
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter M Kistler
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Heart Centre, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Rhee EP, Surapaneni AL, Schlosser P, Alotaibi M, Yang YN, Coresh J, Jain M, Cheng S, Yu B, Grams ME. A genome-wide association study identifies 41 loci associated with eicosanoid levels. Commun Biol 2023; 6:792. [PMID: 37524825 PMCID: PMC10390489 DOI: 10.1038/s42003-023-05159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Eicosanoids are biologically active derivatives of polyunsaturated fatty acids with broad relevance to health and disease. We report a genome-wide association study in 8406 participants of the Atherosclerosis Risk in Communities Study, identifying 41 loci associated with 92 eicosanoids and related metabolites. These findings highlight loci required for eicosanoid biosynthesis, including FADS1-3, ELOVL2, and numerous CYP450 loci. In addition, significant associations implicate a range of non-oxidative lipid metabolic processes in eicosanoid regulation, including at PKD2L1/SCD and several loci involved in fatty acyl-CoA metabolism. Further, our findings highlight select clearance mechanisms, for example, through the hepatic transporter encoded by SLCO1B1. Finally, we identify eicosanoids associated with aspirin and non-steroidal anti-inflammatory drug use and demonstrate the substantial impact of genetic variants even for medication-associated eicosanoids. These findings shed light on both known and unknown aspects of eicosanoid metabolism and motivate interest in several gene-eicosanoid associations as potential functional participants in human disease.
Collapse
Affiliation(s)
- Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.
| | - Aditya L Surapaneni
- Division of Precision Medicine, New York University School of Medicine, New York, NY, USA
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mona Alotaibi
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Yueh-Ning Yang
- Department of Epidemiology, Human Genetics & Environmental Sciences and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Susan Cheng
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics & Environmental Sciences and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Morgan E Grams
- Division of Precision Medicine, New York University School of Medicine, New York, NY, USA.
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
26
|
Kim K, Blackwell DJ, Yuen SL, Thorpe MP, Johnston JN, Cornea RL, Knollmann BC. The selective RyR2 inhibitor ent-verticilide suppresses atrial fibrillation susceptibility caused by Pitx2 deficiency. J Mol Cell Cardiol 2023; 180:1-9. [PMID: 37080450 PMCID: PMC10330243 DOI: 10.1016/j.yjmcc.2023.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/25/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and morbidity. The strongest genetic risk factors for AF in humans are variants on chromosome 4q25, near the paired-like homeobox transcription factor 2 gene PITX2. Although mice deficient in Pitx2 (Pitx2+/-) have increased AF susceptibility, the mechanism remains controversial. Recent evidence has implicated hyperactivation of the cardiac ryanodine receptor (RyR2) in Pitx2 deficiency, which may be associated with AF susceptibility. We investigated pacing-induced AF susceptibility and spontaneous Ca2+ release events in Pitx2 haploinsufficient (+/-) mice and isolated atrial myocytes to test the hypothesis that hyperactivity of RyR2 increases susceptibility to AF, which can be prevented by a potent and selective RyR2 channel inhibitor, ent-verticilide. Compared with littermate wild-type Pitx2+/+, the frequency of Ca2+ sparks and spontaneous Ca2+ release events increased in permeabilized and intact atrial myocytes from Pitx2+/- mice. Atrial burst pacing consistently increased the incidence and duration of AF in Pitx2+/- mice. The RyR2 inhibitor ent-verticilide significantly reduced the frequency of spontaneous Ca2+ release in intact atrial myocytes and attenuated AF susceptibility with reduced AF incidence and duration. Our data demonstrate that RyR2 hyperactivity enhances SR Ca2+ leak and AF inducibility in Pitx2+/- mice via abnormal Ca2+ handling. Therapeutic targeting of hyperactive RyR2 in AF using ent-verticilide may be a viable mechanism-based approach to treat atrial arrhythmias caused by Pitx2 deficiency.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madelaine P Thorpe
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Kandola MS, Kulm S, Kim LK, Markowitz SM, Liu CF, Thomas G, Ip JE, Lerman BB, Elemento O, Cheung JW. Population-Level Prevalence of Rare Variants Associated With Atrial Fibrillation and its Impact on Patient Outcomes. JACC Clin Electrophysiol 2023; 9:1137-1146. [PMID: 36669898 DOI: 10.1016/j.jacep.2022.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Whole exome sequencing may identify rare pathogenic/likely pathogenic variants (LPVs) that are linked to atrial fibrillation (AF). The impact of LPVs associated with AF on a population level on outcomes is unclear. OBJECTIVES This study sought to examine the association of LPVs with AF and their impact on clinical outcomes using the UK Biobank, a national repository of participants with available whole exome sequencing data. METHODS A total of 200,631 individuals in the UK Biobank were studied. Incident and prevalent AF, comorbidities, and outcomes were identified using self-reported assessments and hospital stay operative, and death registry records. LPVs were determined using arrhythmia and cardiomyopathy gene panels with LOFTEE and ClinVar to predict variants of functional significance. RESULTS Compared with control subjects, there was a modestly increased prevalence of LPVs among 9,585 patients with AF (2.0% vs 1.7%, respectively; P = 0.01). Among those with prevalent AF at <45 years of age, 4.2% were LPV carriers. LPVs in TTN and PKP2 were associated with AF with adjusted odds ratios of 2.69 (95% CI: 1.57-4.61) and 2.69 (95% CI: 1.54-4.68), respectively. There was no significant difference in combined ischemic stroke, heart failure hospitalization, and mortality among patients who have AF with and without LPVs (25.1% vs 23.8%; P = 0.49). Among participants with AF and available cardiac magnetic resonance imaging data, LPV carriers had lower left ventricular ejection fractions than non-LPV carriers (42% vs 52%; P = 0.027). CONCLUSIONS Patients with AF had a modestly increased prevalence of LPVs. Among reference arrhythmia and cardiomyopathy genes, the contribution of rare variants to AF risk at a population level is modest and its impact on outcomes appears to be limited, despite an association of LPVs with reduced left ventricular ejection fraction among patients with AF.
Collapse
Affiliation(s)
- Manjinder S Kandola
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA
| | - Scott Kulm
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Luke K Kim
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA
| | - Steven M Markowitz
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA
| | - Christopher F Liu
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA
| | - George Thomas
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA
| | - James E Ip
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA
| | - Bruce B Lerman
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jim W Cheung
- Weill Cornell Cardiovascular Outcomes Research Group, Department of Medicine, Division of Cardiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, New York, USA.
| |
Collapse
|
28
|
Igarashi W, Takagi D, Okada D, Kobayashi D, Oka M, Io T, Ishii K, Ono K, Yamamoto H, Okamoto Y. Bioinformatic Identification of Potential RNA Alterations on the Atrial Fibrillation Remodeling from Human Pulmonary Veins. Int J Mol Sci 2023; 24:10501. [PMID: 37445678 DOI: 10.3390/ijms241310501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent persistent arrhythmia. Many genes have been reported as a genetic background for AF. However, most transcriptome analyses of AF are limited to the atrial samples and have not been evaluated by multiple cardiac regions. In this study, we analyzed the expression levels of protein-coding and long noncoding RNAs (lncRNAs) in six cardiac regions by RNA-seq. Samples were donated from six subjects with or without persistent AF for left atria, left atrial appendages, right atria, sinoatrial nodes, left ventricles, right ventricles, and pulmonary veins (PVs), and additional four right atrial appendages samples were collected from patients undergoing mitral valve replacement. In total, 23 AF samples were compared to 23 non-AF samples. Surprisingly, the most influenced heart region in gene expression by AF was the PV, not the atria. The ion channel-related gene set was significantly enriched upon analysis of these significant genes. In addition, some significant genes are cancer-related lncRNAs in PV in AF. A co-expression network analysis could detect the functional gene clusters. In particular, the cancer-related lncRNA, such as SAMMSON and FOXCUT, belong to the gene network with the cancer-related transcription factor FOXC1. Thus, they may also play an aggravating role in the pathogenesis of AF, similar to carcinogenesis. In the least, this study suggests that (1) RNA alteration is most intense in PVs and (2) post-transcriptional gene regulation by lncRNA may contribute to the progression of AF. Through the screening analysis across the six cardiac regions, the possibility that the PV region can play a role other than paroxysmal triggering in the pathogenesis of AF was demonstrated for the first time. Future research with an increase in the number of PV samples will lead to a novel understanding of the pathophysiology of AF.
Collapse
Affiliation(s)
- Wataru Igarashi
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Daichi Takagi
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan
| | - Daiki Kobayashi
- Department of Cell Physiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Miho Oka
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 541-0056, Japan
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 541-0056, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Faculty of Medicine, Yamagata University, Iida-Nishi, Yamagata 990-9585, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Hiroshi Yamamoto
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yosuke Okamoto
- Department of Cell Physiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
29
|
Patel KK, Venkatesan C, Abdelhalim H, Zeeshan S, Arima Y, Linna-Kuosmanen S, Ahmed Z. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genomics 2023; 17:47. [PMID: 37270590 DOI: 10.1186/s40246-023-00498-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) contribute to about 45% of all cardiovascular disease (CVD) deaths in the USA and around the globe. Due to the complex nature, progression, inherent genetic makeup, and heterogeneity of CVDs, personalized treatments are believed to be critical. To improve the deciphering of CVD mechanisms, we need to deeply investigate well-known and identify novel genes that are responsible for CVD development. With the advancements in sequencing technologies, genomic data have been generated at an unprecedented pace to foster translational research. Correct application of bioinformatics using genomic data holds the potential to reveal the genetic underpinnings of various health conditions. It can help in the identification of causal variants for AF, HF, and other CVDs by moving beyond the one-gene one-disease model through the integration of common and rare variant association, the expressed genome, and characterization of comorbidities and phenotypic traits derived from the clinical information. In this study, we examined and discussed variable genomic approaches investigating genes associated with AF, HF, and other CVDs. We collected, reviewed, and compared high-quality scientific literature published between 2009 and 2022 and accessible through PubMed/NCBI. While selecting relevant literature, we mainly focused on identifying genomic approaches involving the integration of genomic data; analysis of common and rare genetic variants; metadata and phenotypic details; and multi-ethnic studies including individuals from ethnic minorities, and European, Asian, and American ancestries. We found 190 genes associated with AF and 26 genes linked to HF. Seven genes had implications in both AF and HF, which are SYNPO2L, TTN, MTSS1, SCN5A, PITX2, KLHL3, and AGAP5. We listed our conclusion, which include detailed information about genes and SNPs associated with AF and HF.
Collapse
Affiliation(s)
- Kush Ketan Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Cynthia Venkatesan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Yuichiro Arima
- Developmental Cardiology Laboratory, International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto City, Kumamoto, Japan
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Zeeshan Ahmed
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
30
|
Wang S, Onyeaghala GC, Pankratz N, Nelson HH, Thyagarajan B, Tang W, Norby FL, Ugoji C, Joshu CE, Gomez CR, Couper DJ, Coresh J, Platz EA, Prizment AE. Associations between MICA and MICB Genetic Variants, Protein Levels, and Colorectal Cancer: Atherosclerosis Risk in Communities (ARIC). Cancer Epidemiol Biomarkers Prev 2023; 32:784-794. [PMID: 36958849 PMCID: PMC10239349 DOI: 10.1158/1055-9965.epi-22-1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND The MHC class I chain-related protein A (MICA) and protein B (MICB) participate in tumor immunosurveillance and may be important in colorectal cancer, but have not been examined in colorectal cancer development. METHODS sMICA and sMICB blood levels were measured by SomaScan in Visit 2 (1990-92, baseline) and Visit 3 (1993-95) samples in cancer-free participants in the Atherosclerosis Risk in Communities Study. We selected rs1051792, rs1063635, rs2516448, rs3763288, rs1131896, rs2596542, and rs2395029 that were located in or in the vicinity of MICA or MICB and were associated with cancer or autoimmune diseases in published studies. SNPs were genotyped by the Affymetrix Genome-Wide Human SNP Array. We applied linear and Cox proportional hazards regressions to examine the associations of preselected SNPs with sMICA and sMICB levels and colorectal cancer risk (236 colorectal cancers, 8,609 participants) and of sMICA and sMICB levels with colorectal cancer risk (312 colorectal cancers, 10,834 participants). In genetic analyses, estimates adjusted for ancestry markers were meta-analyzed. RESULTS Rs1051792-A, rs1063635-A, rs2516448-C, rs3763288-A, rs2596542-T, and rs2395029-G were significantly associated with decreased sMICA levels. Rs2395029-G, in the vicinity of MICA and MICB, was also associated with increased sMICB levels. Rs2596542-T was significantly associated with decreased colorectal cancer risk. Lower sMICA levels were associated with lower colorectal cancer risk in males (HR = 0.68; 95% confidence interval, 0.49-0.96) but not in females (Pinteraction = 0.08). CONCLUSIONS Rs2596542-T associated with lower sMICA levels was associated with decreased colorectal cancer risk. Lower sMICA levels were associated with lower colorectal cancer risk in males. IMPACT These findings support an importance of immunosurveillance in colorectal cancer.
Collapse
Affiliation(s)
- Shuo Wang
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN
| | - Guillaume C. Onyeaghala
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN
| | - Heather H Nelson
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Faye L. Norby
- Department of Cardiology, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA
| | - Chinenye Ugoji
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Corinne E. Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Christian R. Gomez
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS
| | - David J. Couper
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Anna E. Prizment
- Division of Hematology, Oncology and Transplantation, Medical School, University of Minnesota, Minneapolis, MN
| |
Collapse
|
31
|
Nakano Y. Genome and atrial fibrillation. J Arrhythm 2023; 39:303-309. [PMID: 37324776 PMCID: PMC10264727 DOI: 10.1002/joa3.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 06/17/2023] Open
Abstract
Atrial fibrillation (AF), the most common type of arrhythmia, can cause several adverse effects, such as stroke, heart failure, and cognitive dysfunction, also in addition to reducing quality of life and increasing mortality. Evidence suggests that AF is caused by a combination of genetic and clinical predispositions. In line with this, genetic studies on AF have progressed significantly through linkage studies, genome-wide association studies, use of polygenic risk scores, and studies on rare coding variations, gradually elucidating the relationship between genes and the pathogenesis and prognosis of AF. This article will review current trends in genetic analysis concerning AF.
Collapse
Affiliation(s)
- Yukiko Nakano
- Department of Cardiovascular MedicineHiroshima University Graduate School of Biomedical and Health SciencesHiroshimaJapan
| |
Collapse
|
32
|
Tarifa C, Serra SA, Herraiz-Martínez A, Lozano-Velasco E, Benítez R, Aranega A, Franco D, Hove-Madsen L. Pitx2c deficiency confers cellular electrophysiological hallmarks of atrial fibrillation to isolated atrial myocytes. Biomed Pharmacother 2023; 162:114577. [PMID: 37001181 DOI: 10.1016/j.biopha.2023.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
AIMS Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. METHODS To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. RESULTS Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. CONCLUSION Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.
Collapse
Affiliation(s)
- Carmen Tarifa
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Selma A Serra
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Adela Herraiz-Martínez
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | | | - Raul Benítez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaén, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaén, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain; CIBERCV, Spain.
| |
Collapse
|
33
|
Huang Y, Tan Y, Yao Y, Gu L, Huang L, Song T. Genome-wide detection of m6A-associated SNPs in atrial fibrillation pathogenesis. Front Cardiovasc Med 2023; 10:1152851. [PMID: 37304952 PMCID: PMC10250744 DOI: 10.3389/fcvm.2023.1152851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Objective N6-Methyladenosine (m6A) modification is of great importance in both the pathological conditions and physiological process. The m6A single nucleotide polymorphisms (SNPs) are associated with cardiovascular diseases including coronary artery disease, heart failure. However, it is unclear whether m6A-SNPs are involved in atrial fibrillation (AF). Here, we aimed to explore the relationship between m6A-SNPs and AF. Method The relationship between m6A-SNPs and AF was evaluated by analyzing the AF genome-wide association study (GWAS) and m6A-SNPs annotated by the m6AVar database. Further, eQTL and gene differential expression analysis were performed to confirm the association between these identified m6A-SNPs and their target genes in the development of AF. Moreover, we did the GO enrichment analysis to figure out the potential functions of these m6A-SNPs affected genes. Result Totally, 105 m6A-SNPs were identified to be significantly associated with AF (FDR < 0.05), among which 7 showed significant eQTL signals on local genes in the atrial appendage. By using four public AF gene expression datasets, we identified genes SYNE2, USP36, and THAP9 containing SNPs rs35648226, rs900349, and rs1047564 were differentially expressed in AF population. Further, SNPs rs35648226 and rs1047564 are potentially associated with AF by affecting m6A modification and both of them might have an interaction with RNA-binding protein, PABPC1. Conclusion In summary, we identified m6A-SNPs associated with AF. Our study provided new insights into AF development as well as AF therapeutic target.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuqian Tan
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Linglong Gu
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liusong Huang
- College of Software Engineering, Maanshan Teacher's College, Maanshan, China
| | - Tao Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
34
|
The Role of RYR2 in Atrial Fibrillation. Case Rep Cardiol 2023; 2023:6555998. [PMID: 36969731 PMCID: PMC10033205 DOI: 10.1155/2023/6555998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Background. Atrial fibrillation (AF) is a common arrhythmia in elderly patients and is associated with increased risk of mortality. The pathogenesis of AF is complex and based on multiple genetic and environmental factors. Genome-wide association studies identified several loci in AF patients, indicating the complex genetic architecture of this disease. In rare cases, familial forms of AF have been described. Today, pathogenic variants in at least 11 different genes are associated with monogenic AF. Case presentation. The 37-year-old male patient presented to our emergency department with AF. At the age of 35, he had already been diagnosed with paroxysmal AF. Additionally, his 34-year-old brother had also been diagnosed with AF as well as nonobstructive hypertrophic cardiomyopathy. Moreover, the patient’s father was diagnosed with AF in his twenties. Transthoracic echocardiography and cardiac MRI revealed a reduced systolic left ventricular ejection without any signs of hypertrophic cardiomyopathy. Genetic testing identified the heterozygous missense variants c.3371C > T, p.(Pro1124Leu) in RYR2 (NM_001035.3) and c.2524C > A, p.(Pro842Thr) in HCN4 (NM_005477.3) in the patient’s and his brother’s DNA. Discussion. This case of familial AF helps to strengthen the role of RYR2 as a disease gene in the context of AF. Although the variant in RYR2 needs to be classified formally as variant of unknown significance, we regard it as probably disease-causing due to the previously published data. As RYR2 has already been identified as a possible target for prevention and therapy of AF, the knowledge of variants in RYR2 might become even more crucial for individual molecular therapies in the future.
Collapse
|
35
|
Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV. Mitochondrial Dysfunction in Cardiac Arrhythmias. Cells 2023; 12:679. [PMID: 36899814 PMCID: PMC10001005 DOI: 10.3390/cells12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Electrophysiological and structural disruptions in cardiac arrhythmias are closely related to mitochondrial dysfunction. Mitochondria are an organelle generating ATP, thereby satisfying the energy demand of the incessant electrical activity in the heart. In arrhythmias, the homeostatic supply-demand relationship is impaired, which is often accompanied by progressive mitochondrial dysfunction leading to reduced ATP production and elevated reactive oxidative species generation. Furthermore, ion homeostasis, membrane excitability, and cardiac structure can be disrupted through pathological changes in gap junctions and inflammatory signaling, which results in impaired cardiac electrical homeostasis. Herein, we review the electrical and molecular mechanisms of cardiac arrhythmias, with a particular focus on mitochondrial dysfunction in ionic regulation and gap junction action. We provide an update on inherited and acquired mitochondrial dysfunction to explore the pathophysiology of different types of arrhythmias. In addition, we highlight the role of mitochondria in bradyarrhythmia, including sinus node dysfunction and atrioventricular node dysfunction. Finally, we discuss how confounding factors, such as aging, gut microbiome, cardiac reperfusion injury, and electrical stimulation, modulate mitochondrial function and cause tachyarrhythmia.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunqiu Jiang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Department of Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
36
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
37
|
Hoffmann TJ, Lu M, Oni-Orisan A, Lee C, Risch N, Iribarren C. A large genome-wide association study of QT interval length utilizing electronic health records. Genetics 2022; 222:iyac157. [PMID: 36271874 PMCID: PMC9713425 DOI: 10.1093/genetics/iyac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022] Open
Abstract
QT interval length is an important risk factor for adverse cardiovascular outcomes; however, the genetic architecture of QT interval remains incompletely understood. We conducted a genome-wide association study of 76,995 ancestrally diverse Kaiser Permanente Northern California members enrolled in the Genetic Epidemiology Research on Adult Health and Aging cohort using 448,517 longitudinal QT interval measurements, uncovering 9 novel variants, most replicating in 40,537 individuals in the UK Biobank and Population Architecture using Genomics and Epidemiology studies. A meta-analysis of all 3 cohorts (n = 117,532) uncovered an additional 19 novel variants. Conditional analysis identified 15 additional variants, 3 of which were novel. Little, if any, difference was seen when adjusting for putative QT interval lengthening medications genome-wide. Using multiple measurements in Genetic Epidemiology Research on Adult Health and Aging increased variance explained by 163%, and we show that the ≈6 measurements in Genetic Epidemiology Research on Adult Health and Aging was equivalent to a 2.4× increase in sample size of a design with a single measurement. The array heritability was estimated at ≈17%, approximately half of our estimate of 36% from family correlations. Heritability enrichment was estimated highest and most significant in cardiovascular tissue (enrichment 7.2, 95% CI = 5.7-8.7, P = 2.1e-10), and many of the novel variants included expression quantitative trait loci in heart and other relevant tissues. Comparing our results to other cardiac function traits, it appears that QT interval has a multifactorial genetic etiology.
Collapse
Affiliation(s)
- Thomas J Hoffmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Meng Lu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Akinyemi Oni-Orisan
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Neil Risch
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| |
Collapse
|
38
|
Raad M, Lewis C, Almajed MR, Makki T, Refaat M, Khan A, Lahiri M. Atrial fibrillation prevalence and management patterns in a Middle Eastern community in the United States: A retrospective study. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 23:100221. [PMID: 38560655 PMCID: PMC10978395 DOI: 10.1016/j.ahjo.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 04/04/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac dysrhythmia in the United States, and its prevalence is expected to increase along with associated morbidity and economic burden. Prior research has demonstrated differing prevalence patterns of AF between racial and ethnic groups, with lower rates identified in Black patients. However, to date there have been no studies on AF prevalence in people of Middle Eastern descent within the United States. This retrospective cross-sectional study aimed to characterize prevalence patterns of AF in Middle Eastern patients in Southeast Michigan relative to White and Black patients. The final cohort included 919,454 patients with a median (IQR) age of 53 (33) years (515,902 [56 %] female). The overall prevalence of AF was approximately 5 %. We observed a lower prevalence of AF in Middle Eastern (2.8 %) and Black patients (3.4 %) than in White patients (6.5 %). Middle Eastern patients with AF were younger with a lower prevalence of cardiovascular risk factors than White patients. Multivariable analysis showed that Middle Eastern (OR 0.75; 95 % CI 0.71-0.80; P < 0.001) and Black racial identity (OR 0.48; 95 % CI 9.47-0.49; P < 0.001) were associated with a lower odds of AF, even after adjustment for traditional risk factors.
Collapse
Affiliation(s)
- Mohamad Raad
- Section of Electrophysiology, Division of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| | - Christopher Lewis
- Section of Electrophysiology, Division of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Tarek Makki
- Section of Electrophysiology, Division of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| | - Marwan Refaat
- Division of Electrophysiology, Department of Cardiology, American University of Beirut, Beirut, Lebanon
| | - Arfaat Khan
- Section of Electrophysiology, Division of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| | - Marc Lahiri
- Section of Electrophysiology, Division of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
39
|
Personalized Medicine for the Critically Ill Patient: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr10061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Personalized Medicine (PM) is rapidly advancing in everyday medical practice. Technological advances allow researchers to reach patients more than ever with their discoveries. The critically ill patient is probably the most complex of all, and personalized medicine must make serious efforts to fulfill the desire to “treat the individual, not the disease”. The complexity of critically ill pathologies arises from the severe state these patients and from the deranged pathways of their diseases. PM constitutes the integration of basic research into clinical practice; however, to make this possible complex and voluminous data require processing through even more complex mathematical models. The result of processing biodata is a digitized individual, from which fragments of information can be extracted for specific purposes. With this review, we aim to describe the current state of PM technologies and methods and explore its application in critically ill patients, as well as some of the challenges associated with PM in intensive care from the perspective of economic, approval, and ethical issues. This review can help in understanding the complexity of, P.M.; the complex processes needed for its application in critically ill patients, the benefits that make the effort of implementation worthwhile, and the current challenges of PM.
Collapse
|
40
|
Carter AR, Harrison S, Gill D, Davey Smith G, Taylor AE, Howe LD, Davies NM. Educational attainment as a modifier for the effect of polygenic scores for cardiovascular risk factors: cross-sectional and prospective analysis of UK Biobank. Int J Epidemiol 2022; 51:885-897. [PMID: 35134953 PMCID: PMC9189971 DOI: 10.1093/ije/dyac002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/06/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Understanding the interplay between educational attainment and genetic predictors of cardiovascular risk may improve our understanding of the aetiology of educational inequalities in cardiovascular disease. METHODS In up to 320 120 UK Biobank participants of White British ancestry (mean age = 57 years, female 54%), we created polygenic scores for nine cardiovascular risk factors or diseases: alcohol consumption, body mass index, low-density lipoprotein cholesterol, lifetime smoking behaviour, systolic blood pressure, atrial fibrillation, coronary heart disease, type 2 diabetes and stroke. We estimated whether educational attainment modified genetic susceptibility to these risk factors and diseases. RESULTS On the additive scale, higher educational attainment reduced genetic susceptibility to higher body mass index, smoking, atrial fibrillation and type 2 diabetes, but increased genetic susceptibility to higher LDL-C and higher systolic blood pressure. On the multiplicative scale, there was evidence that higher educational attainment increased genetic susceptibility to atrial fibrillation and coronary heart disease, but little evidence of effect modification was found for all other traits considered. CONCLUSIONS Educational attainment modifies the genetic susceptibility to some cardiovascular risk factors and diseases. The direction of this effect was mixed across traits considered and differences in associations between the effect of the polygenic score across strata of educational attainment was uniformly small. Therefore, any effect modification by education of genetic susceptibility to cardiovascular risk factors or diseases is unlikely to substantially explain the development of inequalities in cardiovascular risk.
Collapse
Affiliation(s)
- Alice R Carter
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sean Harrison
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dipender Gill
- Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical Education and Institute for Infection and Immunity, St George’s, University of London, London, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George’s University Hospitals NHS Foundation Trust, London, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Amy E Taylor
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Neil M Davies
- MRC Integrative Epidemiology Unit, University of Bristol Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
41
|
Manoharan A, Sambandam R, Ballambattu VB. Genetics of atrial fibrillation-an update of recent findings. Mol Biol Rep 2022; 49:8121-8129. [PMID: 35587846 DOI: 10.1007/s11033-022-07420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. AF has a strong genetic predisposition. This review highlights the recent findings on the genetics of AF from genome-wide association studies (GWAS) and high-throughput sequencing studies. The consensus from GWAS implies that AF is both polygenic and pleiotropic in nature. With the advent of whole-genome sequencing and whole-exome sequencing, rare variants associated with AF pathogenesis have been identified. The recent studies have contributed towards better understanding of AF pathogenesis.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| | - Ravikumar Sambandam
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India.
| | - Vishnu Bhat Ballambattu
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital, Puducherry, 607402, India
| |
Collapse
|
42
|
Cabaro S, Conte M, Moschetta D, Petraglia L, Valerio V, Romano S, Di Tolla MF, Campana P, Comentale G, Pilato E, D’Esposito V, Di Mauro A, Cantile M, Poggio P, Parisi V, Leosco D, Formisano P. Epicardial Adipose Tissue-Derived IL-1β Triggers Postoperative Atrial Fibrillation. Front Cell Dev Biol 2022; 10:893729. [PMID: 35721500 PMCID: PMC9198900 DOI: 10.3389/fcell.2022.893729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims: Post-operative atrial fibrillation (POAF), defined as new-onset AF in the immediate period after surgery, is associated with poor adverse cardiovascular events and a higher risk of permanent AF. Mechanisms leading to POAF are not completely understood and epicardial adipose tissue (EAT) inflammation could be a potent trigger. Here, we aim at exploring the link between EAT-secreted interleukin (IL)-1β, atrial remodeling, and POAF in a population of coronary artery disease (CAD) patients. Methods: We collected EAT and atrial biopsies from 40 CAD patients undergoing cardiac surgery. Serum samples and EAT-conditioned media were screened for IL-1β and IL-1ra. Atrial fibrosis was evaluated at histology. The potential role of NLRP3 inflammasome activation in promoting fibrosis was explored in vitro by exposing human atrial fibroblasts to IL-1β and IL-18. Results: 40% of patients developed POAF. Patients with and without POAF were homogeneous for clinical and echocardiographic parameters, including left atrial volume and EAT thickness. POAF was not associated with atrial fibrosis at histology. No significant difference was observed in serum IL-1β and IL-1ra levels between POAF and no-POAF patients. EAT-mediated IL-1β secretion and expression were significantly higher in the POAF group compared to the no-POAF group. The in vitro study showed that both IL-1β and IL-18 increase fibroblasts’ proliferation and collagen production. Moreover, the stimulated cells perpetuated inflammation and fibrosis by producing IL-1β and transforming growth factor (TGF)-β. Conclusion: EAT could exert a relevant role both in POAF occurrence and in atrial fibrotic remodeling.
Collapse
Affiliation(s)
- Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Casa di Cura San Michele, Maddaloni, Italy
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Serena Romano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Francesco Di Tolla
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Comentale
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Emanuele Pilato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Vittoria D’Esposito
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Annabella Di Mauro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Pathology Unit, INT-IRCCS Fondazione Pascale, Naples, Italy
| | - Monica Cantile
- Pathology Unit, INT-IRCCS Fondazione Pascale, Naples, Italy
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- *Correspondence: Paolo Poggio, ; Valentina Parisi, ,
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Paolo Poggio, ; Valentina Parisi, ,
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
43
|
Zhang X, Huang J, Li J, Lu Q, Huang Y, Lu D, Tang Y, Zhu J, Zhuang J. Association Between TCF21 Gene Polymorphism with the Incidence of Paroxysmal Atrial Fibrillation and the Efficacy of Radiofrequency Ablation for Patients with Paroxysmal Atrial Fibrillation. Int J Gen Med 2022; 15:4975-4983. [PMID: 35601004 PMCID: PMC9122043 DOI: 10.2147/ijgm.s366956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Atrial fibrillation (AF) is the most common sustained arrhythmia with a high rate of recurrence after catheter ablation. The gene encoding transcription factor 21 (TCF21) has been linked to coronary artery disease risk by human genome-wide association studies in multiple racial ethnic groups. However, the association of TCF21 with AF remains unclear. Patients and Methods Circulating leukocytes in patients with paroxysmal AF (PAF) and 92 age-matched controls without a history of cardiovascular disease, AF and other arrhythmias were collected. A total of 224 PAF patients receiving radiofrequency ablation had an 18-month scheduled follow-up study for recurrence of AF. Three single-nucleotide polymorphisms (SNPs) of TCF21 (rs2327429, rs2327433 and rs12190287) were genotyped by PCR, and serum levels of TCF21 were measured by ELISA. Results More males and smokers were observed in the PAF group compared with controls. C allele of rs2327429, G allele and GG genotype of rs12190287 were markedly associated with the increased onset of PAF. The levels of serum TCF21 were significantly higher in PAF group than those in control group (1.96 ± 0.85 vs 0.86 ± 0.49 ng/mL, P<0.001). Based on logistic regression analysis, we confirmed that risk allele at rs12190287 and serum TCF21 concentration were independently correlated with the incidence of PAF. Furthermore, GG genotype of rs12190287 enhanced the susceptibility of AF recurrence after ablation. Conclusion G allele and GG genotype of rs12190287 in TCF21 and elevated TCF21 concentration are significantly associated with the onset of PAF and recurrence after ablation.
Collapse
Affiliation(s)
- Xianlin Zhang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Juan Huang
- Health Management Centre, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Jinlong Li
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Qiao Lu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Yuli Huang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Dongyu Lu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Yang Tang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Jian Zhu
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
- Correspondence: Jianhui Zhuang, Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China, Tel +86-13621742833, Email
| |
Collapse
|
44
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
Collapse
Affiliation(s)
- Bianca J J M Brundel
- Department of Physiology, Amsterdam University Medical Centers, VU Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Myrthe F Kuipers
- AFIPonline.org, Atrial Fibrillation Innovation Platform, Amsterdam, Netherlands
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
45
|
Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models. PLoS One 2022; 17:e0263390. [PMID: 35180244 PMCID: PMC8856572 DOI: 10.1371/journal.pone.0263390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background Numerous approaches have been proposed for the detection of epistatic interactions within GWAS datasets in order to better understand the drivers of disease and genetics. Methods A selection of state-of-the-art approaches were assessed. These included the statistical tests, fast-epistasis, BOOST, logistic regression and wtest; swarm intelligence methods, namely AntEpiSeeker, epiACO and CINOEDV; and data mining approaches, including MDR, GSS, SNPRuler and MPI3SNP. Data were simulated to provide randomly generated models with no individual main effects at different heritabilities (pure epistasis) as well as models based on penetrance tables with some main effects (impure epistasis). Detection of both two and three locus interactions were assessed across a total of 1,560 simulated datasets. The different methods were also applied to a section of the UK biobank cohort for Atrial Fibrillation. Results For pure, two locus interactions, PLINK’s implementation of BOOST recovered the highest number of correct interactions, with 53.9% and significantly better performing than the other methods (p = 4.52e − 36). For impure two locus interactions, MDR exhibited the best performance, recovering 62.2% of the most significant impure epistatic interactions (p = 6.31e − 90 for all but one test). The assessment of three locus interaction prediction revealed that wtest recovered the highest number (17.2%) of pure epistatic interactions(p = 8.49e − 14). wtest also recovered the highest number of three locus impure epistatic interactions (p = 6.76e − 48) while AntEpiSeeker ranked as the most significant the highest number of such interactions (40.5%). Finally, when applied to a real dataset for Atrial Fibrillation, most notably finding an interaction between SYNE2 and DTNB.
Collapse
|
46
|
Guo Q, Lai Y, Chu J, Chen X, Gao M, Sang C, Dong J, Pu J, Ma C. LRP6 Polymorphisms Is Associated With Sudden Cardiac Death in Patients With Chronic Heart Failure in the Chinese Han Population. Front Cardiovasc Med 2022; 8:815595. [PMID: 35187114 PMCID: PMC8854291 DOI: 10.3389/fcvm.2021.815595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) plays a critical role in cardiovascular homeostasis. The deficiency of LRP6 is associated with a high risk of arrhythmias. However, the association between genetic variations of LRP6 and sudden cardiac death (SCD) remains unknown. This study aims to explore the association between common variants of LRP6 and the prognosis of chronic heart failure (CHF) patients. From July 2005 to December 2009, patients with CHF were enrolled from 10 hospitals in China. The single-nucleotide polymorphism (SNP) rs2302684 was selected for the evaluation of the effect of LRP6 polymorphisms on the survival in patients with CHF. A total of 1,437 patients with CHF were finally included for the analysis. During a median follow-up of 61 months (range 0.4–129 months), a total of 546 (38.0%) patients died, including 201 (36.8%) cases with SCD and 345 (63.2%) cases with non-SCD. Patients carrying A allele of rs2302684 had an increased risk of all-cause death (adjusted HR 1.452, 95% CI 1.189–1.706; P < 0.001) and SCD (adjusted HR 1.783, 95% CI 1.337–2.378; P < 0.001). Therefore, the SNP rs2302684 T>A in LRP6 indicated higher risks of all-cause death and SCD in patients with CHF. LRP6 could be added as a novel predictor of SCD and might be a potential therapeutic target in the prevention of SCD in the CHF population.
Collapse
Affiliation(s)
- Qi Guo
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yiwei Lai
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianmin Chu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuhua Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyang Gao
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Caihua Sang
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
- *Correspondence: Jielin Pu
| | - Changsheng Ma
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Changsheng Ma
| |
Collapse
|
47
|
Abstract
Insights into the genetic basis of human disease are helping to address some of the key challenges in new drug development including the very high rates of failure. Here we review the recent history of an emerging, genomics-assisted approach to pharmaceutical research and development, and its relationship to Mendelian randomization (MR), a well-established analytical approach to causal inference. We demonstrate how human genomic data linked to pharmaceutically relevant phenotypes can be used for (1) drug target identification (mapping relevant drug targets to diseases), (2) drug target validation (inferring the likely effects of drug target perturbation), (3) evaluation of the effectiveness and specificity of compound-target engagement (inferring the extent to which the effects of a compound are exclusive to the target and distinguishing between on-target and off-target compound effects), and (4) the selection of end points in clinical trials (the diseases or conditions to be evaluated as trial outcomes). We show how genomics can help identify indication expansion opportunities for licensed drugs and repurposing of compounds developed to clinical phase that proved safe but ineffective for the original intended indication. We outline statistical and biological considerations in using MR for drug target validation (drug target MR) and discuss the obstacles and challenges for scaled applications of these genomics-based approaches.
Collapse
Affiliation(s)
- Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Health Data Research UK, London NW1 2BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom
- UCL British Heart Foundation Research Accelerator, London WC1E 6BT, United Kingdom
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
- Health Data Research UK, London NW1 2BE, United Kingdom
| |
Collapse
|
48
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
49
|
Zigova M, Petrejèíková E, Blašèáková M, Kmec J, Bernasovská J, Boroòová I, Kmec M. Genetic targets in the management of atrial fibrillation in patients with cardiomyopathy. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.4103/jpcs.jpcs_65_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Association between ZFHX3 and PRRX1 Polymorphisms and Atrial Fibrillation Susceptibility from Meta-Analysis. Int J Hypertens 2021; 2021:9423576. [PMID: 34950514 PMCID: PMC8692054 DOI: 10.1155/2021/9423576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background Atrial fibrillation (AF) is a common, sustained cardiac arrhythmia. Recent studies have reported an association between ZFHX3/PRRX1 polymorphisms and AF. In this study, a meta-analysis was conducted to confirm these associations. Objective and Methods. The PubMed, Embase, and Wanfang databases were searched, covering all publications before July 20, 2020. Results Overall, seven articles including 3,674 cases and 8,990 healthy controls for ZFHX3 rs2106261 and 1045 cases and 1407 controls for PRRX1 rs3903239 were included. The odds ratio (OR) (95% confidence interval (CI)) was used to assess the associations. Publication bias was calculated using Egger's and Begg's tests. We found that the ZFHX3 rs2106261 polymorphism increased AF risk in Asians (for example, allelic contrast: OR [95% CI]: 1.39 [1.31–1.47], P < 0.001). Similarly, strong associations were detected through stratified analysis using source of control and genotype methods (for example, allelic contrast: OR [95% CI]: 1.51 [1.38–1.64], P < 0.001 for HB; OR [95% CI]: 1.31 [1.21–1.41], P < 0.001 for PB; OR [95% CI]: 1.55 [1.33–1.80], P < 0.001 for TaqMan; and OR [95% CI]: 1.31 [1.21–1.41], P < 0.001 for high-resolution melt). In contrast, an inverse relationship was observed between the PRRX1 rs3903239 polymorphism and AF risk (C-allele vs. T-allele: OR [95% CI]: 0.83 [0.77–0.99], P=0.036; CT vs. TT: OR [95% CI]: 0.79 [0.67–0.94], P=0.006). No obvious evidence of publication bias was observed. Conclusions In summary, our study suggests that the ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms are associated with AF risk, and larger case-controls must be carried out to confirm the abovementioned conclusions.
Collapse
|