1
|
Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, Chellappan DK, Singh SK, Dua K. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol Res Pract 2024; 258:155303. [PMID: 38728793 DOI: 10.1016/j.prp.2024.155303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh 452020, India
| | - Dinesh Kumar
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Tian Y, Lin Y, Qu C, Arndt V, Baurley JW, Berndt SI, Bien SA, Bishop DT, Brenner H, Buchanan DD, Budiarto A, Campbell PT, Carreras-Torres R, Casey G, Chan AT, Chen R, Chen X, Conti DV, Díez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gunter MJ, Harlid S, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Joshi AD, Keku TO, Kawaguchi E, Kim AE, Kundaje A, Larsson SC, Marchand LL, Lewinger JP, Li L, Moreno V, Morrison J, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Prentice RL, Rennert G, Ruiz-Narvaez EA, Sakoda LC, Schoen RE, Shcherbina A, Stern MC, Su YR, Thibodeau SN, Thomas DC, Tsilidis KK, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, White E, Wolk A, Woods MO, Wu AH, Peters U, Gauderman WJ, Hsu L, Chang-Claude J. Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk. Br J Cancer 2024; 130:1687-1696. [PMID: 38561434 PMCID: PMC11091089 DOI: 10.1038/s41416-024-02638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
Collapse
Affiliation(s)
- Yu Tian
- School of Public Health, Capital Medical University, Beijing, China
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute Dr Josep Trueta (IDIBGI), Salt, 17190, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristina M Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indianapolis, IN, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Hochschule Hannover, University of Applied Sciences and Arts, Department III: Media, Information and Design, Hannover, Germany
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anna Shcherbina
- Biomedical Informatics Program, Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Hamburg (UCCH), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Liu W, Xiu L, Zhou M, Li T, Jiang N, Wan Y, Qiu C, Li J, Hu W, Zhang W, Wu J. The Critical Role of the Shroom Family Proteins in Morphogenesis, Organogenesis and Disease. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:187-202. [PMID: 38884059 PMCID: PMC11169129 DOI: 10.1007/s43657-023-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024]
Abstract
The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Lei Xiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Mingzhe Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Tao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wei Hu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030 China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| |
Collapse
|
4
|
Dunne PD, Arends MJ. Molecular pathological classification of colorectal cancer-an update. Virchows Arch 2024; 484:273-285. [PMID: 38319359 PMCID: PMC10948573 DOI: 10.1007/s00428-024-03746-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Colorectal cancer (CRC) has a broad range of molecular alterations with two major mechanisms of genomic instability (chromosomal instability and microsatellite instability) and has been subclassified into 4 consensus molecular subtypes (CMS) based on bulk RNA sequence data. Here, we update the molecular pathological classification of CRC with an overview of more recent bulk and single-cell RNA data analysis for development of transcriptional classifiers and risk stratification methods, taking into account the marked inter-tumoural and intra-tumoural heterogeneity of CRC. The importance of the stromal and immune components or tumour microenvironment (TME) to prognosis has emerged from these analyses. Attempts to remove the contribution of the tumour microenvironment and reveal neoplastic-specific transcriptional traits involved identification of the CRC intrinsic subtypes (CRIS). The use of immunohistochemistry and digital pathology to implement classification systems are evolving fields. Conventional adenoma versus serrated polyp pathway transcriptomic analysis and characterisation of canonical LGR5+ crypt base columnar stem cell versus ANXA1+ regenerative stem cell phenotypes emerged as key properties for improved understanding of transcriptional signals involved in molecular subclassification of colorectal cancers. Recently, classification by three pathway-derived subtypes (PDS1-3) has been developed, revealing a continuum of intrinsic biology associated with biological, stem cell, histopathological, and clinical attributes.
Collapse
Affiliation(s)
- Philip D Dunne
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, Belfast, Northern Ireland, BT8 7AE, UK
- Cancer Research UK Scotland Institute, Garscube Estate, Glasgow, G61 1QH, UK
| | - Mark J Arends
- Edinburgh Pathology & Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
5
|
Chen W, Cheng J, Cai Y, Wang P, Jin J. The pyroptosis-related signature predicts prognosis and influences the tumor immune microenvironment in dedifferentiated liposarcoma. Open Med (Wars) 2024; 19:20230886. [PMID: 38221934 PMCID: PMC10787309 DOI: 10.1515/med-2023-0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background Dedifferentiated liposarcoma (DDL), a member of malignant mesenchymal tumors, has a high local recurrence rate and poor prognosis. Pyroptosis, a newly discovered programmed cell death, is tightly connected with the progression and outcome of tumor. Objective The aim of this study was to explore the role of pyroptosis in DDL. Methods We obtained the RNA sequencing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases to identify different pyroptosis-related genes (PRGs) expression pattern. An unsupervised method for clustering based on PRGs was performed. Based on the result of cluster analysis, we researched clinical outcomes and immune microenvironment between clusters. The differentially expressed genes (DEGs) between the two clusters were used to develop a prognosis model by the LASSO Cox regression method, followed by the performance of functional enrichment analysis and single-sample gene set enrichment analysis. All of the above results were validated in the Gene Expression Omnibus (GEO) dataset. Results Forty-one differentially expressed PRGs were found between tumor and normal tissues. A consensus clustering analysis based on PRGs was conducted and classified DDL patients into two clusters. Cluster 2 showed a better outcome, higher immune scores, higher immune cells abundances, and higher expression levels in numerous immune checkpoints. DEGs between clusters were identified. A total of 5 gene signatures was built based on the DEGs and divided all DDL patients of the TCGA cohort into low-risk and high-risk groups. The low-risk group indicates greater inflammatory cell infiltration and better outcome. For external validation, the survival difference and immune landscape between the two risk groups of the GEO cohort were also significant. Receiver operating characteristic curves implied that the risk model could exert its function as an outstanding predictor in predicting DDL patients' prognoses. Conclusion Our findings revealed the clinical implication and key role in tumor immunity of PRGs in DDL. The risk model is a promising predictive tool that could provide a fundamental basis for future studies and individualized immunotherapy.
Collapse
Affiliation(s)
- Wenjing Chen
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jun Cheng
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Yiqi Cai
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Pengfei Wang
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| | - Jinji Jin
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325003, Zhejiang Province, China
| |
Collapse
|
6
|
Zhang M, Wang X, Yang N, Zhu X, Lu Z, Cai Y, Li B, Zhu Y, Li X, Wei Y, Zhang S, Tian J, Miao X. Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks. SCIENCE CHINA. LIFE SCIENCES 2024; 67:132-148. [PMID: 37747674 DOI: 10.1007/s11427-023-2439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023]
Abstract
Genome-wide association studies (GWASs) have identified over 140 colorectal cancer (CRC)-associated loci; however, target genes at the majority of loci and underlying molecular mechanisms are poorly understood. Here, we utilized a Bayesian approach, integrative risk gene selector (iRIGS), to prioritize risk genes at CRC GWAS loci by integrating multi-omics data. As a result, a total of 105 high-confidence risk genes (HRGs) were identified, which exhibited strong gene dependencies for CRC and enrichment in the biological processes implicated in CRC. Among the 105 HRGs, CEBPB, located at the 20q13.13 locus, acted as a transcription factor playing critical roles in cancer. Our subsequent assays indicated the tumor promoter function of CEBPB that facilitated CRC cell proliferation by regulating multiple oncogenic pathways such as MAPK, PI3K-Akt, and Ras signaling. Next, by integrating a fine-mapping analysis and three independent case-control studies in Chinese populations consisting of 8,039 cases and 12,775 controls, we elucidated that rs1810503, a putative functional variant regulating CEBPB, was associated with CRC risk (OR=0.90, 95%CI=0.86-0.93, P=1.07×10-7). The association between rs1810503 and CRC risk was further validated in three additional multi-ancestry populations consisting of 24,254 cases and 58,741 controls. Mechanistically, the rs1810503 A to T allele change weakened the enhancer activity in an allele-specific manner to decrease CEBPB expression via long-range promoter-enhancer interactions, mediated by the transcription factor, REST, and thus decreased CRC risk. In summary, our study provides a genetic resource and a generalizable strategy for CRC etiology investigation, and highlights the biological implications of CEBPB in CRC tumorigenesis, shedding new light on the etiology of CRC.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China
| | - Shaokai Zhang
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China.
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Shen X, Su Z, Dou Y, Song X. A novel investigation into an E2F transcription factor-related prognostic model with seven signatures for colon cancer patients. IET Syst Biol 2023; 17:187-197. [PMID: 37431829 PMCID: PMC10439494 DOI: 10.1049/syb2.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
The pathogenesis of colon cancer, a common gastrointestinal tumour, involves complicated factors, especially a series of cell cycle-related genes. E2F transcription factors during the cell cycle play an essential role in the occurrence of colon cancer. It is meaningful to establish an efficient prognostic model of colon cancer targeting cellular E2F-associated genes. This has not been reported previously. The authors first aimed to explore the links of E2F genes with the clinical outcomes of colon cancer patients by integrating data from the TCGA-COAD (n = 521), GSE17536 (n = 177) and GSE39582 (n = 585) cohorts. The Cox regression and Lasso modelling approach to identify a novel colon cancer prognostic model involving several hub genes (CDKN2A, GSPT1, PNN, POLD3, PPP1R8, PTTG1 and RFC1) were utilised. Moreover, an E2F-related nomogram that efficiently predicted the survival rates of colon cancer patients was created. Additionally, the authors first identified two E2F tumour clusters, which showed distinct prognostic features. Interestingly, the potential links of E2F-based classification and 'protein secretion' issues of multiorgans and tumour infiltration of 'T-cell regulatory (Tregs)' and 'CD56dim natural killer cell' were detected. The authors' findings are of potential clinical significance for the prognosis assessment and mechanistic exploration of colon cancer.
Collapse
Affiliation(s)
- Xiaoyong Shen
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Zheng Su
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yan Dou
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xin Song
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
8
|
Tosato V, Rossi B, Sims J, Bruschi CV. Timing of Chromosome DNA Integration throughout the Yeast Cell Cycle. Biomolecules 2023; 13:biom13040614. [PMID: 37189362 DOI: 10.3390/biom13040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The dynamic mechanism of cell uptake and genomic integration of exogenous linear DNA still has to be completely clarified, especially within each phase of the cell cycle. We present a study of integration events of double-stranded linear DNA molecules harboring at their ends sequence homologies to the host’s genome, all throughout the cell cycle of the model organism Saccharomyces cerevisiae, comparing the efficiency of chromosomal integration of two types of DNA cassettes tailored for site-specific integration and bridge-induced translocation. Transformability increases in S phase regardless of the sequence homologies, while the efficiency of chromosomal integration during a specific cycle phase depends upon the genomic targets. Moreover, the frequency of a specific translocation between chromosomes XV and VIII strongly increased during DNA synthesis under the control of Pol32 polymerase. Finally, in the null POL32 double mutant, different pathways drove the integration in the various phases of the cell cycle and bridge-induced translocation was possible outside the S phase even without Pol32. The discovery of this cell-cycle dependent regulation of specific pathways of DNA integration, associated with an increase of ROS levels following translocation events, is a further demonstration of a sensing ability of the yeast cell in determining a cell-cycle-related choice of DNA repair pathways under stress.
Collapse
|
9
|
Hayden LP, Hobbs BD, Busch R, Cho MH, Liu M, Lopes-Ramos CM, Lomas DA, Bakke P, Gulsvik A, Silverman EK, Crapo JD, Beaty TH, Laird NM, Lange C, DeMeo DL. X chromosome associations with chronic obstructive pulmonary disease and related phenotypes: an X chromosome-wide association study. Respir Res 2023; 24:38. [PMID: 36726148 PMCID: PMC9891756 DOI: 10.1186/s12931-023-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The association between genetic variants on the X chromosome to risk of COPD has not been fully explored. We hypothesize that the X chromosome harbors variants important in determining risk of COPD related phenotypes and may drive sex differences in COPD manifestations. METHODS Using X chromosome data from three COPD-enriched cohorts of adult smokers, we performed X chromosome specific quality control, imputation, and testing for association with COPD case-control status, lung function, and quantitative emphysema. Analyses were performed among all subjects, then stratified by sex, and subsequently combined in meta-analyses. RESULTS Among 10,193 subjects of non-Hispanic white or European ancestry, a variant near TMSB4X, rs5979771, reached genome-wide significance for association with lung function measured by FEV1/FVC ([Formula: see text] 0.020, SE 0.004, p 4.97 × 10-08), with suggestive evidence of association with FEV1 ([Formula: see text] 0.092, SE 0.018, p 3.40 × 10-07). Sex-stratified analyses revealed X chromosome variants that were differentially trending in one sex, with significantly different effect sizes or directions. CONCLUSIONS This investigation identified loci influencing lung function, COPD, and emphysema in a comprehensive genetic association meta-analysis of X chromosome genetic markers from multiple COPD-related datasets. Sex differences play an important role in the pathobiology of complex lung disease, including X chromosome variants that demonstrate differential effects by sex and variants that may be relevant through escape from X chromosome inactivation. Comprehensive interrogation of the X chromosome to better understand genetic control of COPD and lung function is important to further understanding of disease pathology. Trial registration Genetic Epidemiology of COPD Study (COPDGene) is registered at ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008). Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Study (ECLIPSE), GlaxoSmithKline study code SCO104960, is registered at ClinicalTrials.gov, NCT00292552 (Active since February 16, 2006). Genetics of COPD in Norway Study (GenKOLS) holds GlaxoSmithKline study code RES11080, Genetics of Chronic Obstructive Lung Disease.
Collapse
Affiliation(s)
- Lystra P. Hayden
- grid.38142.3c000000041936754XDivision of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA
| | - Brian D. Hobbs
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Robert Busch
- grid.417587.80000 0001 2243 3366Division of Pulmonology, Allergy, and Critical Care, U.S. Food and Drug Administration, Silver Spring, MD USA
| | - Michael H. Cho
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ming Liu
- grid.268323.e0000 0001 1957 0327Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
| | - Camila M. Lopes-Ramos
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - David A. Lomas
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - Per Bakke
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Edwin K. Silverman
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - James D. Crapo
- grid.240341.00000 0004 0396 0728Division of Pulmonary Sciences and Critical Care Medicine, National Jewish Health, Denver, CO USA
| | - Terri H. Beaty
- grid.21107.350000 0001 2171 9311Johns Hopkins School of Public Health, Baltimore, MD USA
| | - Nan M. Laird
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Christoph Lange
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Dawn L. DeMeo
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
10
|
Ping J, Yang Y, Wen W, Kweon SS, Matsuda K, Jia WH, Shin A, Gao YT, Matsuo K, Kim J, Kim DH, Jee SH, Cai Q, Chen Z, Tao R, Shin MH, Tanikawa C, Pan ZZ, Oh JH, Oze I, Ahn YO, Jung KJ, Ren Z, Shu XO, Long J, Zheng W. Developing and validating polygenic risk scores for colorectal cancer risk prediction in East Asians. Int J Cancer 2022; 151:1726-1736. [PMID: 35765848 PMCID: PMC9509464 DOI: 10.1002/ijc.34194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
Several polygenic risk scores (PRSs) have been developed to predict the risk of colorectal cancer (CRC) in European descendants. We used genome-wide association study (GWAS) data from 22 702 cases and 212 486 controls of Asian ancestry to develop PRSs and validated them in two case-control studies (1454 Korean and 1736 Chinese). Eleven PRSs were derived using three approaches: GWAS-identified CRC risk SNPs, CRC risk variants identified through fine-mapping of known risk loci and genome-wide risk prediction algorithms. Logistic regression was used to estimate odds ratios (ORs) and area under the curve (AUC). PRS115-EAS , a PRS with 115 GWAS-reported risk variants derived from East-Asian data, validated significantly better than PRS115-EUR derived from European descendants. In the Korea validation set, OR per SD increase of PRS115-EAS was 1.63 (95% CI = 1.46-1.82; AUC = 0.63), compared with OR of 1.44 (95% CI = 1.29-1.60, AUC = 0.60) for PRS115-EUR . PRS115-EAS/EUR derived using meta-analysis results of both populations slightly improved the AUC to 0.64. Similar but weaker associations were found in the China validation set. Individuals among the highest 5% of PRS115-EAS/EUR have a 2.52-fold elevated CRC risk compared with the medium (41-60th) risk group and have a 12% to 20% risk of developing CRC by age 85. PRSs constructed using results from fine-mapping and genome-wide algorithms did not perform as well as PRS115-EAS and PRS115-EAS/EUR in risk prediction, possibly due to a small sample size. Our results indicate that CRC PRSs are promising in predicting CRC risk in East Asians and highlights the importance of using population-specific data to build CRC risk prediction models.
Collapse
Affiliation(s)
- Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yu-Tang Gao
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University, 37212 Nashville, TN, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
11
|
Gu X, Dai Q, Du P, Li N, Li J, Zeng S, Peng S, Tang S, Wang L, Zhou Z. Pold4 is dispensable for mouse development, DNA replication and DNA repair. Gene X 2022; 851:147029. [DOI: 10.1016/j.gene.2022.147029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
12
|
Zhang Z. POLD2 is activated by E2F1 to promote triple-negative breast cancer proliferation. Front Oncol 2022; 12:981329. [PMID: 36119494 PMCID: PMC9479206 DOI: 10.3389/fonc.2022.981329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant breast cancer subtype with a poor prognosis. Improved insight into the molecular biology basis of TNBC progression is urgently needed. Herein, we reported that POLD2 was highly expressed in TNBC and patients with high POLD2 expression in their tumors had poor clinical outcomes. In functional studies, knockdown of POLD2 inhibited the proliferation of TNBC. Mechanistically, we revealed that transcription factor E2F1 directly bound to the promoter of POLD2 and regulated its expression in TNBC cells, which in turn contributed to the proliferation of TNBC. Additionally, rescue experiments validated that E2F1-mediated cell proliferation in TNBC was dependent on POLD2. Taken together, our results elucidated a novel mechanism of the E2F1-POLD2 axis in TNBC proliferation, and POLD2 may be a potential therapeutic target for TNBC treatment.
Collapse
|
13
|
Bueschbell B, Manga P, Schiedel AC. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front Mol Biosci 2022; 9:873777. [PMID: 35495622 PMCID: PMC9039016 DOI: 10.3389/fmolb.2022.873777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York City, NY, United States
| | - Anke C. Schiedel
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- *Correspondence: Anke C. Schiedel,
| |
Collapse
|
14
|
Archambault AN, Jeon J, Lin Y, Thomas M, Harrison TA, Bishop DT, Brenner H, Casey G, Chan AT, Chang-Claude J, Figueiredo JC, Gallinger S, Gruber SB, Gunter MJ, Guo F, Hoffmeister M, Jenkins MA, Keku TO, Le Marchand L, Li L, Moreno V, Newcomb PA, Pai R, Parfrey PS, Rennert G, Sakoda LC, Lee JK, Slattery ML, Song M, Win AK, Woods MO, Murphy N, Campbell PT, Su YR, Lansdorp-Vogelaar I, Peterse EFP, Cao Y, Zeleniuch-Jacquotte A, Liang PS, Du M, Corley DA, Hsu L, Peters U, Hayes RB. Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study. J Natl Cancer Inst 2022; 114:528-539. [PMID: 35026030 PMCID: PMC9002285 DOI: 10.1093/jnci/djac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/04/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The incidence of colorectal cancer (CRC) among individuals aged younger than 50 years has been increasing. As screening guidelines lower the recommended age of screening initiation, concerns including the burden on screening capacity and costs have been recognized, suggesting that an individualized approach may be warranted. We developed risk prediction models for early-onset CRC that incorporate an environmental risk score (ERS), including 16 lifestyle and environmental factors, and a polygenic risk score (PRS) of 141 variants. METHODS Relying on risk score weights for ERS and PRS derived from studies of CRC at all ages, we evaluated risks for early-onset CRC in 3486 cases and 3890 controls aged younger than 50 years. Relative and absolute risks for early-onset CRC were assessed according to values of the ERS and PRS. The discriminatory performance of these scores was estimated using the covariate-adjusted area under the receiver operating characteristic curve. RESULTS Increasing values of ERS and PRS were associated with increasing relative risks for early-onset CRC (odds ratio per SD of ERS = 1.14, 95% confidence interval [CI] = 1.08 to 1.20; odds ratio per SD of PRS = 1.59, 95% CI = 1.51 to 1.68), both contributing to case-control discrimination (area under the curve = 0.631, 95% CI = 0.615 to 0.647). Based on absolute risks, we can expect 26 excess cases per 10 000 men and 21 per 10 000 women among those scoring at the 90th percentile for both risk scores. CONCLUSIONS Personal risk scores have the potential to identify individuals at differential relative and absolute risk for early-onset CRC. Improved discrimination may aid in targeted CRC screening of younger, high-risk individuals, potentially improving outcomes.
Collapse
Affiliation(s)
- Alexi N Archambault
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Medical Research, St. James’s University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Rish Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jeffrey K Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St John’s, NL, Canada
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Yu-Ru Su
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Iris Lansdorp-Vogelaar
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabeth F P Peterse
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Anne Zeleniuch-Jacquotte
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Peter S Liang
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Zhao S, Wei C, Tang H, Ding H, Han B, Chen S, Song X, Gu Q, Zhang Y, Liu W, Wang J. Elevated DNA Polymerase Delta 1 Expression Correlates With Tumor Progression and Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma. Front Oncol 2021; 11:736363. [PMID: 34868924 PMCID: PMC8632622 DOI: 10.3389/fonc.2021.736363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Objective Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the DNA polymerase delta (POLD) family is significantly related to cancer prognosis. This study aimed to explore the significance of the POLD family in HCC via the DNA damage repair (DDR) pathway. Methods Data mining was conducted using bioinformatics methods. RNA sequencing and clinicopathological data were collected from The Cancer Genome Atlas, GTEx database and the Gumz Renal cohort. Statistical analyses were also performed in cancer samples (n>12,000) and the Affiliated Hospital of Youjiang Medical University for Nationalities (AHYMUN, n=107) cohort. Results The POLD family (POLD1-4) was identified as the most important functional component of the DDR pathway. Based on the analysis of independent cohorts, we found significantly elevated POLD expression in HCC compared with normal tissues. Second, we investigated the prognostic implication of elevated POLD1 expression in HCC and pan-cancers, revealing that increased POLD1 levels were correlated to worse prognoses for HCC patients. Additionally, we identified 11 hub proteins interacting closely with POLD proteins in base excision repair, protein-DNA complex and mismatch repair signaling pathways. Moreover, POLD1 mutation functioned as an independent biomarker to predict the benefit of targeted treatment. Importantly, POLD1 expression was associated with immune checkpoint molecules, including CD274, CD80, CD86, CTLA4, PDCD1 and TCGIT, and facilitated an immune-excluded tumor microenvironment. Additionally, we confirmed that elevated POLD1 expression was closely correlated with the aggressive progression and poor prognosis of HCC in the real-world AHYMUN cohort. Conclusion We identified a significant association between elevated POLD1 expression and poor patient survival and immune-excluded tumor microenvironment of HCC. Together, these findings indicate that POLD1 provides a valuable biomarker to guide the molecular diagnosis and development of novel targeted therapeutic strategies for HCC patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuicui Wei
- Department of Outpatient, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haijia Tang
- Department of Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Ding
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian Chen
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Gu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Yichi Zhang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangrui Liu
- Department of Outpatient, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Liu W, Mahdessian H, Helgadottir H, Zhou X, Thutkawkorapin J, Jiao X, Wolk A, Lindblom A. Colorectal cancer risk susceptibility loci in a Swedish population. Mol Carcinog 2021; 61:288-300. [PMID: 34758156 DOI: 10.1002/mc.23366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
To search for colorectal cancer (CRC) risk loci, Swedish samples were used for a genome-wide haplotype analysis. A logistic regression model was employed in 2663 CRC cases and 1642 controls in the discovery analysis. Three analyses were done, on all, familial-, and nonfamilial CRC samples and only results with odds ratio (OR) > 1 were analyzed. single nucleotide polymorphism (SNP) analysis did not generate any statistically significant results. Haplotype analysis suggested novel loci, on chromosome 2q36.1 (OR = 1.71, p value = 5.6924 × 10-8 ) in all CRC samples, chromosome 1q43 (OR = 4.04 p value = 3.24 × 10-8 ) in familial CRC samples, and two hits in nonfamilial CRC samples, chromosomes 2q36.1 (OR = 1.71 p value = 5.69 × 10-8 ) and 3p24.3 (OR = 1.62 p value = 6.21 × 10-9 ). Moreover, one locus on chromosome 20q13.33 was suggested in analyses of all samples, and five more novel loci were suggested on chromosomes 10q25.3, 15q,22.31, 17p11.2, 1p34.2, and 3q24. The haplotypes from the analysis of all samples were replicated in a second study of CRC cases and controls from the same part of Sweden. In summary, using haplotype analysis in Swedish CRC samples, the best hits were novel loci and the locus on chromosomes 2q36.1 and 20q13.33 suggested in the analysis of all samples were confirmed in a second cohort. The ORs were often higher than ORs from published genome-wide association study (GWAS). The study suggested it was possible that a risk locus could involve more than one gene, and that haplotypes could give information on the gene or genes possibly involved in the risk at specific locus.
Collapse
Affiliation(s)
- Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Hovsep Mahdessian
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hafdis Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Xingwu Zhou
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Xiang Jiao
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Forgacova N, Gazdarica J, Budis J, Radvanszky J, Szemes T. Repurposing non-invasive prenatal testing data: Population study of single nucleotide variants associated with colorectal cancer and Lynch syndrome. Oncol Lett 2021; 22:779. [PMID: 34594420 PMCID: PMC8456492 DOI: 10.3892/ol.2021.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
In our previous work, genomic data generated through non-invasive prenatal testing (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA of pregnant women in Slovakia was described as a valuable source of population specific data. In the present study, these data were used to determine the population allele frequency of common risk variants located in genes associated with colorectal cancer (CRC) and Lynch syndrome (LS). Allele frequencies of identified variants were compared with six world populations to detect significant differences between populations. Finally, variants were interpreted, functional consequences were searched for and clinical significance of variants was investigated using publicly available databases. Although the present study did not identify any pathogenic variants associated with CRC or LS in the Slovak population using NIPT data, significant differences were observed in the allelic frequency of risk CRC variants previously reported in genome-wide association studies and common variants located in genes associated with LS. As Slovakia is one of the leading countries with the highest incidence of CRC among male patients in the world, there is a need for studies dedicated to investigating the cause of such a high incidence of CRC in Slovakia. The present study also assumed that extensive cross-country data aggregation of NIPT results would represent an unprecedented source of information concerning human genome variation in cancer research.
Collapse
Affiliation(s)
- Natalia Forgacova
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Juraj Gazdarica
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Science Support Section, Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Science Support Section, Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Jan Radvanszky
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| |
Collapse
|
18
|
Vaughan-Shaw PG, Timofeeva M, Ooi LY, Svinti V, Grimes G, Smillie C, Blackmur JP, Donnelly K, Theodoratou E, Campbell H, Zgaga L, Din FVN, Farrington SM, Dunlop MG. Differential genetic influences over colorectal cancer risk and gene expression in large bowel mucosa. Int J Cancer 2021; 149:1100-1108. [PMID: 33937989 DOI: 10.1002/ijc.33616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
Site-specific variation in colorectal cancer (CRC) incidence, biology and prognosis are poorly understood. We sought to determine whether common genetic variants influencing CRC risk might exhibit topographical differences on CRC risk through regional differences in effects on gene expression in the large bowel mucosa. We conducted a site-specific genetic association study (10 630 cases, 31 331 controls) to identify whether established risk variants exert differential effects on risk of proximal, compared to distal CRC. We collected normal colorectal mucosa and blood from 481 subjects and assessed mucosal gene expression using Illumina HumanHT-12v4 arrays in relation to germline genotype. Expression quantitative trait loci (eQTLs) were explored by anatomical location of sampling. The rs3087967 genotype (chr11q23.1 risk variant) exhibited significant site-specific effects-risk of distal CRC (odds ratio [OR] = 1.20, P = 8.20 × 10-20 ) with negligible effects on proximal CRC risk (OR = 1.05, P = .10). Expression of 1261 genes differed between proximal and distal colonic mucosa (top hit PRAC gene, fold-difference = 10, P = 3.48 × 10-57 ). In eQTL studies, rs3087967 genotype was associated with expression of 8 cis- and 21 trans-genes. Four of these (AKAP14, ADH5P4, ASGR2, RP11-342M1.7) showed differential effects by site, with strongest trans-eQTL signals in proximal colonic mucosa (eg, AKAP14, beta = 0.61, P = 5.02 × 10-5 ) and opposite signals in distal mucosa (AKAP14, beta = -0.17, P = .04). In summary, genetic variation at the chr11q23.1 risk locus imparts greater risk of distal rather than proximal CRC and exhibits site-specific differences in eQTL effects in normal mucosa. Topographical differences in genomic control over gene expression relevant to CRC risk may underlie site-specific variation in CRC. Results may inform individualised CRC screening programmes.
Collapse
Affiliation(s)
- Peter G Vaughan-Shaw
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Public Health, D-IAS, Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Li-Yin Ooi
- Department of Pathology, National University Hospital, Singapore
| | - Victoria Svinti
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Claire Smillie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James P Blackmur
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kevin Donnelly
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Evi Theodoratou
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Lina Zgaga
- Department of Public Health and Primary Care, Trinity College Dublin, Dublin, Ireland
| | - Farhat V N Din
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Mur P, Bonifaci N, Díez-Villanueva A, Munté E, Alonso MH, Obón-Santacana M, Aiza G, Navarro M, Piñol V, Brunet J, Tomlinson I, Capellá G, Moreno V, Valle L. Non-Lynch Familial and Early-Onset Colorectal Cancer Explained by Accumulation of Low-Risk Genetic Variants. Cancers (Basel) 2021; 13:3857. [PMID: 34359758 PMCID: PMC8345397 DOI: 10.3390/cancers13153857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
A large proportion of familial and/or early-onset cancer patients do not carry pathogenic variants in known cancer predisposing genes. We aimed to assess the contribution of previously validated low-risk colorectal cancer (CRC) alleles to familial/early-onset CRC (fCRC) and to serrated polyposis. We estimated the association of CRC with a 92-variant-based weighted polygenic risk score (wPRS) using 417 fCRC patients, 80 serrated polyposis patients, 1077 hospital-based incident CRC patients, and 1642 controls. The mean wPRS was significantly higher in fCRC than in controls or sporadic CRC patients. fCRC patients in the highest (20th) wPRS quantile were at four-fold greater CRC risk than those in the middle quantile (10th). Compared to low-wPRS fCRC, a higher number of high-wPRS fCRC patients had developed multiple primary CRCs, had CRC family history, and were diagnosed at age ≥50. No association with wPRS was observed for serrated polyposis. In conclusion, a relevant proportion of mismatch repair (MMR)-proficient fCRC cases might be explained by the accumulation of low-risk CRC alleles. Validation in independent cohorts and development of predictive models that include polygenic risk score (PRS) data and other CRC predisposing factors will determine the implementation of PRS into genetic testing and counselling in familial and early-onset CRC.
Collapse
Affiliation(s)
- Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Nuria Bonifaci
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
| | - Anna Díez-Villanueva
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Elisabet Munté
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
| | - Maria Henar Alonso
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Mireia Obón-Santacana
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Virginia Piñol
- Gastroenterology Unit, Hospital Universitario de Girona Dr Josep Trueta, 17007 Girona, Spain;
- School of Medicine, University of Girona, 17071 Girona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- School of Medicine, University of Girona, 17071 Girona, Spain
- Catalan Institute of Oncology, IDIBGi, 17007 Girona, Spain
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK;
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Victor Moreno
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
20
|
Marney CB, Anderson ES, Adnan M, Peng KL, Hu Y, Weinhold N, Schmitt AM. p53-intact cancers escape tumor suppression through loss of long noncoding RNA Dino. Cell Rep 2021; 35:109329. [PMID: 34192538 PMCID: PMC8287872 DOI: 10.1016/j.celrep.2021.109329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/15/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many long noncoding RNA (lncRNA) genes exist near cancer-associated loci, yet evidence connecting lncRNA functions to recurrent genetic alterations in cancer are lacking. Here, we report that DINO, the lncRNA transcribed from the cancer-associated DINO/CDKN1A locus, suppresses tumor formation independent of p21, the protein encoded at the locus. Loss of one or two alleles of Dino impairs p53 signaling and apoptosis, resulting in a haplo-insufficient tumor suppressor phenotype in genetically defined mouse models of tumorigenesis. A discrete region of the DINO/CDKN1A locus is recurrently hypermethylated in human cancers, silencing DINO but not CDKN1A, the gene encoding p21. Hypermethylation silences DINO, impairs p53 signaling pathway in trans, and is mutually exclusive with TP53 alterations, indicating that DINO and TP53 comprise a common tumor suppressor module. Therefore, DINO encodes a lncRNA essential for tumor suppression that is recurrently silenced in human cancers as a mechanism to escape p53-dependent tumor suppression.
Collapse
Affiliation(s)
- Christina B Marney
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Erik S Anderson
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Mutayyaba Adnan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Kai-Lin Peng
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Ya Hu
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Nils Weinhold
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Adam M Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA.
| |
Collapse
|
21
|
Genetic risk factors for colorectal cancer in multiethnic Indonesians. Sci Rep 2021; 11:9988. [PMID: 33976257 PMCID: PMC8113452 DOI: 10.1038/s41598-021-88805-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is a common cancer in Indonesia, yet it has been understudied in this resource-constrained setting. We conducted a genome-wide association study focused on evaluation and preliminary discovery of colorectal cancer risk factors in Indonesians. We administered detailed questionnaires and collecting blood samples from 162 colorectal cancer cases throughout Makassar, Indonesia. We also established a control set of 193 healthy individuals frequency matched by age, sex, and ethnicity. A genome-wide association analysis was performed on 84 cases and 89 controls passing quality control. We evaluated known colorectal cancer genetic variants using logistic regression and established a genome-wide polygenic risk model using a Bayesian variable selection technique. We replicate associations for rs9497673, rs6936461 and rs7758229 on chromosome 6; rs11255841 on chromosome 10; and rs4779584, rs11632715, and rs73376930 on chromosome 15. Polygenic modeling identified 10 SNP associated with colorectal cancer risk. This work helps characterize the relationship between variants in the SCL22A3, SCG5, GREM1, and STXBP5-AS1 genes and colorectal cancer in a diverse Indonesian population. With further biobanking and international research collaborations, variants specific to colorectal cancer risk in Indonesians will be identified.
Collapse
|
22
|
Guo X, Lin W, Wen W, Huyghe J, Bien S, Cai Q, Harrison T, Chen Z, Qu C, Bao J, Long J, Yuan Y, Wang F, Bai M, Abecasis GR, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buch S, Burnett-Hartman A, Campbell PT, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Cho SH, Conti DV, Chapelle ADL, Feskens EJM, Gallinger SJ, Giles GG, Goodman PJ, Gsur A, Guinter M, Gunter MJ, Hampe J, Hampel H, Hayes RB, Hoffmeister M, Kampman E, Kang HM, Keku TO, Kim HR, Le Marchand L, Lee SC, Li CI, Li L, Lindblom A, Lindor N, Milne RL, Moreno V, Murphy N, Newcomb PA, Nickerson DA, Offit K, Pearlman R, Pharoah PDP, Platz EA, Potter JD, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Schoen RE, Schumacher FR, Slattery ML, Su YR, Tangen CM, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Wang X, White E, Wolk A, Woods MO, Casey G, Hsu L, Jenkins MA, Gruber SB, Peters U, Zheng W. Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology 2021; 160:1164-1178.e6. [PMID: 33058866 PMCID: PMC7956223 DOI: 10.1053/j.gastro.2020.08.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Weiqiang Lin
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeroen Huyghe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tabitha Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jiandong Bao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yuan Yuan
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangqin Wang
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqiu Bai
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sang Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hospital, Hwasun, South Korea
| | - David V Conti
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Mark Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | | | - Soo Chin Lee
- National University Cancer Institute, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Neil Murphy
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Polly A Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Public Health, University of Washington, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lori C Sakoda
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Yu-Ru Su
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Xiaoliang Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Newfoundland and Labrador, Canada
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
23
|
Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends Genet 2021; 37:476-487. [PMID: 33608117 DOI: 10.1016/j.tig.2020.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
Collapse
Affiliation(s)
- Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
| |
Collapse
|
24
|
Northcutt MJ, Shi Z, Zijlstra M, Shah A, Zheng S, Yen EF, Khan O, Beig MI, Imas P, Vanderloo A, Ansari O, Xu J, Goldstein JL. Polygenic risk score is a predictor of adenomatous polyps at screening colonoscopy. BMC Gastroenterol 2021; 21:65. [PMID: 33579203 PMCID: PMC7881602 DOI: 10.1186/s12876-021-01645-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphism (SNP)-based polygenic risk scoring is predictive of colorectal cancer (CRC) risk. However, few studies have investigated the association of genetic risk score (GRS) with detection of adenomatous polyps at screening colonoscopy. METHODS We randomly selected 1769 Caucasian subjects who underwent screening colonoscopy from the Genomic Health Initiative (GHI), a biobank of NorthShore University HealthSystem. Outcomes from initial screening colonoscopy were recorded. Twenty-two CRC risk-associated SNPs were obtained from the Affymetrix™ SNP array and used to calculate an odds ratio (OR)-weighted and population-standardized GRS. Subjects with GRS of < 0.5, 0.5-1.5, and > 1.5 were categorized as low, average and elevated risk. RESULTS Among 1,769 subjects, 520 (29%) had 1 or more adenomatous polyps. GRS was significantly higher in subjects with adenomatous polyps than those without; mean (95% confidence interval) was 1.02 (1.00-1.05) and 0.97 (0.95-0.99), respectively, p < 0.001. The association remained significant after adjusting for age, gender, body mass index, and family history, p < 0.001. The detection rate of adenomatous polyps was 10.8%, 29.0% and 39.7% in subjects with low, average and elevated GRS, respectively, p-trend < 0.001. Higher GRS was also associated with early age diagnosis of adenomatous polyps, p < 0.001. In contrast, positive family history was not associated with risk and age of adenomatous polyps. CONCLUSIONS GRS was significantly associated with adenomatous polyps in subjects undergoing screening colonoscopy. This result may help in stratifying average risk patients and facilitating personalized colonoscopy screening strategies.
Collapse
Affiliation(s)
- Michael J. Northcutt
- Division of Gastroenterology, University of Chicago Medicine, NorthShore University HealthSystem, 2650 Ridge Ave, Evanston, IL 60201 USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, 1001 University Place, 1001 University Place, Evanston, IL 60201 USA
| | - Michael Zijlstra
- Department of Internal Medicine, University of Chicago Medicine, NorthShore University HealthSystem, 2650 Ridge Ave, Evanston, IL 60201 USA
| | - Ayush Shah
- Department of Internal Medicine, University of Chicago Medicine, NorthShore University HealthSystem, 2650 Ridge Ave, Evanston, IL 60201 USA
| | - Siqun Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, 1001 University Place, 1001 University Place, Evanston, IL 60201 USA
| | - Eugene F. Yen
- Division of Gastroenterology, University of Chicago Medicine, NorthShore University HealthSystem, 2650 Ridge Ave, Evanston, IL 60201 USA
| | - Omar Khan
- Division of Gastroenterology, University of Chicago Medicine, NorthShore University HealthSystem, 2650 Ridge Ave, Evanston, IL 60201 USA
| | - Mohammad Imran Beig
- Department of Clinical Analytics and Health Information Technology, NorthShore University HealthSystem, 4901 Searle Parkway, Skokie, IL 60076 USA
| | - Polina Imas
- Department of Clinical Analytics and Health Information Technology, NorthShore University HealthSystem, 4901 Searle Parkway, Skokie, IL 60076 USA
| | - Adam Vanderloo
- Department of Clinical Analytics and Health Information Technology, NorthShore University HealthSystem, 4901 Searle Parkway, Skokie, IL 60076 USA
| | - Obaid Ansari
- Department of Clinical Analytics and Health Information Technology, NorthShore University HealthSystem, 4901 Searle Parkway, Skokie, IL 60076 USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, 1001 University Place, 1001 University Place, Evanston, IL 60201 USA
| | - Jay L. Goldstein
- Division of Gastroenterology, University of Chicago Medicine, NorthShore University HealthSystem, 2650 Ridge Ave, Evanston, IL 60201 USA
- Chicago, IL 60647 USA
| |
Collapse
|
25
|
Hildebrand JD, Leventry AD, Aideyman OP, Majewski JC, Haddad JA, Bisi DC, Kaufmann N. A modifier screen identifies regulators of cytoskeletal architecture as mediators of Shroom-dependent changes in tissue morphology. Biol Open 2021; 10:bio.055640. [PMID: 33504488 PMCID: PMC7875558 DOI: 10.1242/bio.055640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of cell architecture is critical in the formation of tissues during animal development. The mechanisms that control cell shape must be both dynamic and stable in order to establish and maintain the correct cellular organization. Previous work has identified Shroom family proteins as essential regulators of cell morphology during vertebrate development. Shroom proteins regulate cell architecture by directing the subcellular distribution and activation of Rho-kinase, which results in the localized activation of non-muscle myosin II. Because the Shroom-Rock-myosin II module is conserved in most animal model systems, we have utilized Drosophila melanogaster to further investigate the pathways and components that are required for Shroom to define cell shape and tissue architecture. Using a phenotype-based heterozygous F1 genetic screen for modifiers of Shroom activity, we identified several cytoskeletal and signaling protein that may cooperate with Shroom. We show that two of these proteins, Enabled and Short stop, are required for ShroomA-induced changes in tissue morphology and are apically enriched in response to Shroom expression. While the recruitment of Ena is necessary, it is not sufficient to redefine cell morphology. Additionally, this requirement for Ena appears to be context dependent, as a variant of Shroom that is apically localized, binds to Rock, but lacks the Ena binding site, is still capable of inducing changes in tissue architecture. These data point to important cellular pathways that may regulate contractility or facilitate Shroom-mediated changes in cell and tissue morphology. Summary: Using Drosophila as a model system, we identify F-actin and microtubules as important determinants of how cells and tissues respond to Shroom induced contractility.
Collapse
Affiliation(s)
- Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adam D Leventry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Omoregie P Aideyman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John C Majewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James A Haddad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dawn C Bisi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nancy Kaufmann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Alvarado-Cruz I, Meas R, Paluri SLA, Carufe KEW, Khan M, Sweasy JB. The double-edged sword of cancer mutations: exploiting neoepitopes for the fight against cancer. Mutagenesis 2021; 35:69-78. [PMID: 31880305 DOI: 10.1093/mutage/gez049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Defects in DNA repair have been linked to the accumulation of somatic mutations in tumours. These mutations can promote oncogenesis; however, recent developments have indicated that they may also lead to a targeted immune response against the tumour. This response is initiated by the development of new antigenic epitopes (neoepitopes) arising from mutations in protein-coding genes that are processed and then presented on the surface of tumour cells. These neoepitopes are unique to the tumour, thus enabling lymphocytes to launch an immune response against the cancer cells. Immunotherapies, such as checkpoint inhibitors (CPIs) and tumour-derived vaccines, have been shown to enhance the immunogenic response to cancers and have led to complete remission in some cancer patients. There are tumours that are not responsive to immunotherapy or conventional tumour therapeutics; therefore, there is a push for new treatments to combat these unresponsive cancers. Recently, combinatorial treatments have been developed to further utilise the immune system in the fight against cancer. These treatments have the potential to exploit the defects in DNA repair by inducing more DNA damage and mutations. This can potentially lead to the expression of high levels of neoepitopes on the surface of tumour cells that will stimulate an immunological response. Overall, exploiting DNA repair defects in tumours may provide an edge in this long fight against cancer.
Collapse
Affiliation(s)
| | - Rithy Meas
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | | | | | - Mohammed Khan
- Department of Cellular and Molecular Medicine, UA College of Medicine, Tucson, AZ, USA
| | | |
Collapse
|
27
|
Yuan Y, Bao J, Chen Z, Villanueva AD, Wen W, Wang F, Zhao D, Fu X, Cai Q, Long J, Shu XO, Zheng D, Moreno V, Zheng W, Lin W, Guo X. Multi-omics analysis to identify susceptibility genes for colorectal cancer. Hum Mol Genet 2021; 30:321-330. [PMID: 33481017 DOI: 10.1093/hmg/ddab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
Most genetic variants for colorectal cancer (CRC) identified in genome-wide association studies (GWAS) are located in intergenic regions, implying pathogenic dysregulations of gene expression. However, comprehensive assessments of target genes in CRC remain to be explored. We conducted a multi-omics analysis using transcriptome and/or DNA methylation data from the Genotype-Tissue Expression, The Cancer Genome Atlas and the Colonomics projects. We identified 116 putative target genes for 45 GWAS-identified variants. Using summary-data-based Mendelian randomization approach (SMR), we demonstrated that the CRC susceptibility for 29 out of the 45 CRC variants may be mediated by cis-effects on gene regulation. At a cutoff of the Bonferroni-corrected PSMR < 0.05, we determined 66 putative susceptibility genes, including 39 genes that have not been previously reported. We further performed in vitro assays for two selected genes, DIP2B and SFMBT1, and provide functional evidence that they play a vital role in colorectal carcinogenesis via disrupting cell behavior, including migration, invasion and epithelial-mesenchymal transition. Our study reveals a large number of putative novel susceptibility genes and provides additional insight into the underlying mechanisms for CRC genetic risk loci.
Collapse
Affiliation(s)
- Yuan Yuan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 322000, China
| | - Jiandong Bao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Anna Díez Villanueva
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO); Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL); Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP); Faculty of Medicine, Department of Clinical Sciences, University of Barcelona, Barcelona 08908, Spain
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Fangqin Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 322000, China
| | - Dejian Zhao
- Departments of Genetics, Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Chengdu, Sichuan 610041, China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO); Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL); Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP); Faculty of Medicine, Department of Clinical Sciences, University of Barcelona, Barcelona 08908, Spain
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Weiqiang Lin
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 322000, China
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| |
Collapse
|
28
|
Devall M, Plummer SJ, Bryant J, Jennelle LT, Eaton S, Dampier CH, Huyghe JR, Peters U, Powell SM, Casey G. Ethanol exposure drives colon location specific cell composition changes in a normal colon crypt 3D organoid model. Sci Rep 2021; 11:432. [PMID: 33432071 PMCID: PMC7801615 DOI: 10.1038/s41598-020-80240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Alcohol is a consistently identified risk factor for colon cancer. However, the molecular mechanism underlying its effect on normal colon crypt cells remains poorly understood. We employed RNA-sequencing to asses transcriptomic response to ethanol exposure (0.2% vol:vol) in 3D organoid lines derived from healthy colon (n = 34). Paired regression analysis identified 2,162 differentially expressed genes in response to ethanol. When stratified by colon location, a far greater number of differentially expressed genes were identified in organoids derived from the left versus right colon, many of which corresponded to cell-type specific markers. To test the hypothesis that the effects of ethanol treatment on colon organoid populations were in part due to differential cell composition, we incorporated external single cell RNA-sequencing data from normal colon biopsies to estimate cellular proportions following single cell deconvolution. We inferred cell-type-specific changes, and observed an increase in transit amplifying cells following ethanol exposure that was greater in organoids from the left than right colon, with a concomitant decrease in more differentiated cells. If this occurs in the colon following alcohol consumption, this would lead to an increased zone of cells in the lower crypt where conditions are optimal for cell division and the potential to develop mutations.
Collapse
Affiliation(s)
- Matthew Devall
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Sarah J Plummer
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jennifer Bryant
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lucas T Jennelle
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen Eaton
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Christopher H Dampier
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.,Department of Surgery, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center Research Institute, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center Research Institute, Seattle, WA, USA
| | - Steven M Powell
- Digestive Health Center, University of Virginia, Charlottesville, VA, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
29
|
Tian J, Lou J, Cai Y, Rao M, Lu Z, Zhu Y, Zou D, Peng X, Wang H, Zhang M, Niu S, Li Y, Zhong R, Chang J, Miao X. Risk SNP-Mediated Enhancer-Promoter Interaction Drives Colorectal Cancer through Both FADS2 and AP002754.2. Cancer Res 2020; 80:1804-1818. [PMID: 32127356 DOI: 10.1158/0008-5472.can-19-2389] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 02/27/2020] [Indexed: 01/17/2023]
Abstract
Although genome-wide association studies (GWAS) have identified more than 100 colorectal cancer risk loci, most of the biological mechanisms associated with these loci remain unclear. Here we first performed a comprehensive expression quantitative trait loci analysis in colorectal cancer tissues adjusted for multiple confounders to test the determinants of germline variants in established GWAS susceptibility loci on mRNA and long noncoding RNA (lncRNA) expression. Combining integrative functional genomic/epigenomic analyses and a large-scale population study consisting of 6,024 cases and 10,022 controls, we then prioritized rs174575 with a C>G change as a potential causal candidate for colorectal cancer at 11q12.2, as its G allele was associated with an increased risk of colorectal cancer (OR = 1.26; 95% confidence interval = 1.17-1.36; P = 2.57 × 10-9). rs174575 acted as an allele-specific enhancer to distally facilitate expression of both FADS2 and lncRNA AP002754.2 via long-range enhancer-promoter interaction loops, which were mediated by E2F1. AP002754.2 further activated a transcriptional activator that upregulated FADS2 expression. FADS2, in turn, was overexpressed in colorectal cancer tumor tissues and functioned as a potential oncogene that facilitated colorectal cancer cell proliferation and xenograft growth in vitro and in vivo by increasing the metabolism of PGE2, an oncogenic molecule involved in colorectal cancer tumorigenesis. Our findings represent a novel mechanism by which a noncoding variant can facilitate long-range genome interactions to modulate the expression of multiple genes including not only mRNA, but also lncRNA, which provides new insights into the understanding of colorectal cancer etiology. SIGNIFICANCE: This study provides an oncogenic regulatory circuit among several oncogenes including E2F1, FADS2, and AP002754.2 underlying the association of rs174575 with colorectal cancer risk, which is driven by long-range enhancer-promoter interaction loops. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/9/1804/F1.large.jpg.
Collapse
Affiliation(s)
- Jianbo Tian
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Quality Management, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Meilin Rao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.
| |
Collapse
|
30
|
Lu Y, Kweon SS, Cai Q, Tanikawa C, Shu XO, Jia WH, Xiang YB, Huyghe JR, Harrison TA, Kim J, Shin A, Kim DH, Matsuo K, Jee SH, Guo X, Wen W, Shi J, Li B, Wang N, Shin MH, Li HL, Ren Z, Oh JH, Oze I, Ahn YO, Jung KJ, Gao J, Gao YT, Pan ZZ, Kamatani Y, Chan AT, Gsur A, Hampe J, Le Marchand L, Li L, Lindblom A, Moreno V, Newcomb PA, Offit K, Pharoah PDP, van Duijnhoven FJB, Van Guelpen B, Vodicka P, Weinstein SJ, Wolk A, Wu AH, Hsu L, Zeng YX, Long J, Peters U, Matsuda K, Zheng W. Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians. Cancer Epidemiol Biomarkers Prev 2020; 29:477-486. [PMID: 31826910 PMCID: PMC7571256 DOI: 10.1158/1055-9965.epi-19-0755] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Risk variants identified so far for colorectal cancer explain only a small proportion of familial risk of this cancer, particularly in Asians. METHODS We performed a genome-wide association study (GWAS) of colorectal cancer in East Asians, including 23,572 colorectal cancer cases and 48,700 controls. To identify novel risk loci, we selected 60 promising risk variants for replication using data from 58,131 colorectal cancer cases and 67,347 controls of European descent. To identify additional risk variants in known colorectal cancer loci, we performed conditional analyses in East Asians. RESULTS An indel variant, rs67052019 at 1p13.3, was found to be associated with colorectal cancer risk at P = 3.9 × 10-8 in Asians (OR per allele deletion = 1.13, 95% confidence interval = 1.08-1.18). This association was replicated in European descendants using a variant (rs2938616) in complete linkage disequilibrium with rs67052019 (P = 7.7 × 10-3). Of the remaining 59 variants, 12 showed an association at P < 0.05 in the European-ancestry study, including rs11108175 and rs9634162 at P < 5 × 10-8 and two variants with an association near the genome-wide significance level (rs60911071, P = 5.8 × 10-8; rs62558833, P = 7.5 × 10-8) in the combined analyses of Asian- and European-ancestry data. In addition, using data from East Asians, we identified 13 new risk variants at 11 loci reported from previous GWAS. CONCLUSIONS In this large GWAS, we identified three novel risk loci and two highly suggestive loci for colorectal cancer risk and provided evidence for potential roles of multiple genes and pathways in the etiology of colorectal cancer. In addition, we showed that additional risk variants exist in many colorectal cancer risk loci identified previously. IMPACT Our study provides novel data to improve the understanding of the genetic basis for colorectal cancer risk.
Collapse
Affiliation(s)
- Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nan Wang
- General Surgery Department, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hong-Lan Li
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Isao Oze
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keum Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jing Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andrew T Chan
- Division of Gastroenterology, and Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, and Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | | | - Li Li
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, California
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
31
|
Balavarca Y, Weigl K, Thomsen H, Brenner H. Performance of individual and joint risk stratification by an environmental risk score and a genetic risk score in a colorectal cancer screening setting. Int J Cancer 2020; 146:627-634. [PMID: 30868574 DOI: 10.1002/ijc.32272] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 02/05/2023]
Abstract
Early detection of colorectal neoplasms can reduce the disease burden of colorectal cancer by timely intervention of individuals at high risk. Our aim was to evaluate a joint environmental-genetic risk score as a risk stratification tool for early detection of advanced colorectal neoplasm (ACRN). Known environmental risk factors and high-risk genetic loci were summarized into risk scores for ACRN in 1014 eligible participants of a screening study. The performances of single and joint environmental-genetic scores were evaluated with estimates and 95% confidence intervals (CI) of the absolute risk, relative risk and predictive ability using the area under the curve (AUC). Individuals with higher environmental risk scores showed increasing ACRN risk, with 3.1-fold for intermediate risk and 4.8-fold for very high risk, compared to the very low environmental risk group. Similarly, individuals with higher genetic risk scores showed increasing ACRN risk, with 2.2-fold for intermediate risk and 3.5-fold for very high risk, compared to the lowest genetic risk group. Moreover, the joint environmental-genetic score improved the ACRN risk stratification and showed higher predictive values (AUC = 0.64; 95%CI = 0.60-0.67) with substantial difference (p = 0.0002) compared to the single environmental score (0.58; 0.55-0.62). The integration of environmental and genetic factors looks promising for improving targeting individuals at high-risk of colorectal neoplasm. Applications in practical screening programs require optimization with additional genetic and other biomarkers involved in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Hang D, Joshi AD, He X, Chan AT, Jovani M, Gala MK, Ogino S, Kraft P, Turman C, Peters U, Bien SA, Lin Y, Hu Z, Shen H, Wu K, Giovannucci EL, Song M. Colorectal cancer susceptibility variants and risk of conventional adenomas and serrated polyps: results from three cohort studies. Int J Epidemiol 2020; 49:259-269. [PMID: 31038671 PMCID: PMC7426026 DOI: 10.1093/ije/dyz096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that conventional adenomas (CAs) and serrated polyps (SPs) represent two distinct groups of precursor lesions for colorectal cancer (CRC). The influence of common genetic variants on risk of CAs and SPs remain largely unknown. METHODS Among 27 426 participants within three prospective cohort studies, we created a weighted genetic risk score (GRS) based on 40 CRC-related single nucleotide polymorphisms (SNPs) identified in previous genome-wide association studies; and we examined the association of GRS (per one standard deviation increment) with risk of CAs, SPs and synchronous CAs and SPs, by multivariable logistic regression. We also analysed individual variants in the secondary analysis. RESULTS During 18-20 years of follow-up, we documented 2952 CAs, 1585 SPs and 794 synchronous CAs and SPs. Higher GRS was associated with increased risk of CAs [odds ratio (OR) = 1.17, 95% confidence interval (CI): 1.12-1.21] and SPs (OR = 1.09, 95% CI: 1.03-1.14), with a stronger association for CAs than SPs (Pheterogeneity=0.01). An even stronger association was found for patients with synchronous CAs and SPs (OR = 1.32), advanced CAs (OR = 1.22) and multiple CAs (OR = 1.25). Different sets of variants were associated with CAs and SPs, with a Spearman correlation coefficient of 0.02 between the ORs associating the 40 SNPs with the two lesions. After correcting for multiple testing, three variants were associated with CAs (rs3802842, rs6983267 and rs7136702) and two with SPs (rs16892766 and rs4779584). CONCLUSIONS Common genetic variants play a potential role in the conventional and serrated pathways of CRC. Different sets of variants are identified for the two pathways, further supporting the aetiological heterogeneity of CRC.
Collapse
Affiliation(s)
- Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaosheng He
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Manol Jovani
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Manish K Gala
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, China
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
33
|
Klarić L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, Pakhomov E, Salo P, Deelen J, McGurnaghan SJ, Keser T, Vučković F, Ugrina I, Krištić J, Gudelj I, Štambuk J, Plomp R, Pučić-Baković M, Pavić T, Vilaj M, Trbojević-Akmačić I, Drake C, Dobrinić P, Mlinarec J, Jelušić B, Richmond A, Timofeeva M, Grishchenko AK, Dmitrieva J, Bermingham ML, Sharapov SZ, Farrington SM, Theodoratou E, Uh HW, Beekman M, Slagboom EP, Louis E, Georges M, Wuhrer M, Colhoun HM, Dunlop MG, Perola M, Fischer K, Polasek O, Campbell H, Rudan I, Wilson JF, Zoldoš V, Vitart V, Spector T, Aulchenko YS, Lauc G, Hayward C. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. SCIENCE ADVANCES 2020; 6:eaax0301. [PMID: 32128391 PMCID: PMC7030929 DOI: 10.1126/sciadv.aax0301] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/19/2019] [Indexed: 05/03/2023]
Abstract
Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases.
Collapse
Affiliation(s)
- Lucija Klarić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yakov A. Tsepilov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Chloe M. Stanton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Timo Tõnis Sikka
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Cambridge, MA, USA
| | - Eugene Pakhomov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Perttu Salo
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Joris Deelen
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stuart J. McGurnaghan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Ivo Ugrina
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Split, Faculty of Science, Split, Croatia
| | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Rosina Plomp
- Leiden University Medical Centre, Leiden, Netherlands
| | | | - Tamara Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Camilla Drake
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Paula Dobrinić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jelena Mlinarec
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Barbara Jelušić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anne Richmond
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexander K. Grishchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Dmitrieva
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mairead L. Bermingham
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sodbo Zh. Sharapov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Hae-Won Uh
- Leiden University Medical Centre, Leiden, Netherlands
- Department of Biostatistics and Research Support, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Eline P. Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Edouard Louis
- CHU-Liège and Unit of Gastroenterology, GIGA-R and Faculty of Medicine, University of Liège, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Helen M. Colhoun
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health, NHS Fife, Kirkcaldy, UK
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
- Gen-info, Zagreb, Croatia
- Psychiatric Hospital Sveti Ivan, Zagreb, Croatia
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Vlatka Zoldoš
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Yurii S. Aulchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- PolyOmica, Het Vlaggeschip 61, 5237 PA 's-Hertogenbosch, Netherlands
- Kurchatov Genomics Center, Institute of Cytology & Genetics, Novosibirsk, Russia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Weigl K, Chang-Claude J, Hsu L, Hoffmeister M, Brenner H. Establishing a valid approach for estimating familial risk of cancer explained by common genetic variants. Int J Cancer 2020; 146:68-75. [PMID: 31483856 PMCID: PMC7121903 DOI: 10.1002/ijc.32664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
We critically examined existing approaches for the estimation of the excess familial risk of cancer that can be attributed to identified common genetic risk variants and propose an alternative, more straightforward approach for calculating this proportion using well-established epidemiological methodology. We applied the underlying equations of the traditional approaches and the new epidemiological approach for colorectal cancer (CRC) in a large population-based case-control study in Germany with 4,447 cases and 3,480 controls, who were recruited from 2003 to 2016 and for whom interview, medical and genomic data were available. Having a family history of CRC (FH) was associated with a 1.77-fold risk increase in our study population (95% CI 1.52-2.07). Traditional approaches yielded estimates of the FH-associated risk explained by 97 common genetics variants from 9.6% to 23.1%, depending on various assumptions. Our alternative approach resulted in smaller and more consistent estimates of this proportion, ranging from 5.4% to 14.3%. Commonly employed methods may lead to strongly divergent and possibly exaggerated estimates of excess familial risk of cancer explained by associated known common genetic variants. Our results suggest that familial risk and risk associated with known common genetic variants might reflect two complementary major sources of risk.
Collapse
Affiliation(s)
- Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Unit of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
35
|
Al-Shaheri FN, Al-Shami KM, Gamal EH, Mahasneh AA, Ayoub NM. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp Mol Pathol 2019; 113:104364. [PMID: 31881200 DOI: 10.1016/j.yexmp.2019.104364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide. Despite the progress in screening and treatment, CRC remains a leading cause of cancer-related mortality. Alterations to normal nucleic acid processing may drive neoplastic transformation of colorectal epithelium. DNA repair machinery performs an essential function in the protection of genome by reducing the number of genetic polymorphisms/variations that may drive carcinogenicity. Four essential DNA repair systems are known which include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). Polymorphisms of DNA repair genes have been shown to influence the risk of cancer development as well as outcomes of treatment. Several studies demonstrated the association between genetic polymorphism of DNA repair genes and increased risk of CRC in different populations. In this review, we have summarized the impact of DNA repair gene polymorphisms on risk of CRC development and treatment outcomes. Advancements of the current understanding for the impact of DNA repair gene polymorphisms on the risk and treatment of CRC may support diagnostic and predictive roles in patients with CRC.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), ImNeuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, ImNeuenheimer Feld 672, 69120 Heidelberg, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 South Donahue Drive, Auburn, Alabama 36849, United States of America; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Eshrak H Gamal
- Department of Oncology, Collage of Medicine, Bonn University, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amjad A Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
36
|
Single nucleotide polymorphisms associated with susceptibility for development of colorectal cancer: Case-control study in a Basque population. PLoS One 2019; 14:e0225779. [PMID: 31821333 PMCID: PMC6903717 DOI: 10.1371/journal.pone.0225779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Given the significant population diversity in genetic variation, we aimed to investigate whether single nucleotide polymorphisms (SNPs) previously identified in studies of colorectal cancer (CRC) susceptibility were also relevant to the population of the Basque Country (North of Spain). We genotyped 230 CRC cases and 230 healthy controls for 48 previously reported CRC-susceptibility SNPs. Only the rs6687758 in DUPS10 exhibited a statistically significant association with CRC risk based on the crude analysis. The rs6687758 AG genotype conferred about 2.13-fold increased risk for CRC compared to the AA genotype. Moreover, we found significant associations in cases between smoking status, physical activity, and the rs6687758 SNP. The results of a Genetic Risk Score (GRS) showed that the risk alleles were more frequent in cases than controls and the score was associated with CRC in crude analysis. In conclusion, we have confirmed a CRC susceptibility locus and the existence of associations between modifiable factors and the rs6687758 SNP; moreover, the GRS was associated with CRC. However, further experimental validations are needed to establish the role of this SNP, the function of the gene identified, as well as the contribution of the interaction between environmental factors and this locusto the risk of CRC.
Collapse
|
37
|
He Y, Theodoratou E, Li X, Din FV, Vaughan‐Shaw P, Svinti V, Farrington SM, Campbell H, Dunlop MG, Timofeeva M. Effects of common genetic variants associated with colorectal cancer risk on survival outcomes after diagnosis: A large population-based cohort study. Int J Cancer 2019; 145:2427-2432. [PMID: 31271446 PMCID: PMC6771941 DOI: 10.1002/ijc.32550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
Genome-wide association studies have thus far identified 130 genetic variants linked to colorectal cancer (CRC) risk (r2 < 0.2). Given their implication in disease causation, and thus plausible biologically effects on cancer-relevant biological pathways, we investigated whether these variants are associated with CRC prognosis and also whether they might provide predictive value for survival outcome. We conducted the analysis in a well-characterized population-based study of 5,675 patients after CRC diagnosis in Scotland. None of the genetic risk variants were associated with either overall survival (OS) or CRC-specific survival. Next, we combined the variants in a polygenic risk score, but again we observed no association between survival outcome and overall genetic susceptibility to CRC risk-as defined by common genetic variants (OS: hazard ratio = 1.00, 95% confidence interval = 0.96-1.05). Furthermore, we found no incremental increase in the discriminative performance when adding these genetic variants to the baseline CRC-survival predictive model of age, sex and stage at diagnosis. Given that our study is well-powered (>0.88) to detect effects on survival for 74% of the variants, we conclude that effects of common variants associated with CRC risk which have been identified to date are unlikely to have clinically relevant effect on survival outcomes for patients diagnosed with CRC.
Collapse
Affiliation(s)
- Yazhou He
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Colon Cancer Genetics Group, Medical Research Council Human Genetics UnitMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Centre for Global Health ResearchUsher Institute of Population Health Sciences and Informatics, The University of EdinburghEdinburghUnited Kingdom
| | - Evropi Theodoratou
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Centre for Global Health ResearchUsher Institute of Population Health Sciences and Informatics, The University of EdinburghEdinburghUnited Kingdom
| | - Xue Li
- Centre for Global Health ResearchUsher Institute of Population Health Sciences and Informatics, The University of EdinburghEdinburghUnited Kingdom
| | - Farhat V.N. Din
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Colon Cancer Genetics Group, Medical Research Council Human Genetics UnitMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Peter Vaughan‐Shaw
- Colon Cancer Genetics Group, Medical Research Council Human Genetics UnitMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Victoria Svinti
- Colon Cancer Genetics Group, Medical Research Council Human Genetics UnitMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Susan M. Farrington
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Colon Cancer Genetics Group, Medical Research Council Human Genetics UnitMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Harry Campbell
- Centre for Global Health ResearchUsher Institute of Population Health Sciences and Informatics, The University of EdinburghEdinburghUnited Kingdom
| | - Malcolm G. Dunlop
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Colon Cancer Genetics Group, Medical Research Council Human Genetics UnitMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
| | - Maria Timofeeva
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
- Colon Cancer Genetics Group, Medical Research Council Human Genetics UnitMedical Research Council Institute of Genetics & Molecular Medicine, Western General Hospital, The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
38
|
Rahmani F, Ziaeemehr A, Shahidsales S, Gharib M, Khazaei M, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma. J Cell Physiol 2019; 235:4146-4152. [PMID: 31663122 DOI: 10.1002/jcp.29333] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant human tumors with high morbidity worldwide. Aberrant activation of the oncogenic phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling is related to clinicopathological features of HCC. Emerging data revealed that microRNAs (miRNAs) have prominent implications for regulating cellular proliferation, differentiation, apoptosis, and metabolism through targeting the PI3K/AKT/mTOR signaling axis. The recognition of the crucial role of miRNAs in hepatocarcinogenesis represents a promising area to identify novel anticancer therapeutics for HCC. The present study summarizes the major findings about the regulatory role of miRNAs in the PI3K/AKT/mTOR pathway in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aghigh Ziaeemehr
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Washington University, Saint Louis, Missouri
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Jenkins MA, Win AK, Dowty JG, MacInnis RJ, Makalic E, Schmidt DF, Dite GS, Kapuscinski M, Clendenning M, Rosty C, Winship IM, Emery JD, Saya S, Macrae FA, Ahnen DJ, Duggan D, Figueiredo JC, Lindor NM, Haile RW, Potter JD, Cotterchio M, Gallinger S, Newcomb PA, Buchanan DD, Casey G, Hopper JL. Ability of known susceptibility SNPs to predict colorectal cancer risk for persons with and without a family history. Fam Cancer 2019; 18:389-397. [PMID: 31209717 PMCID: PMC6785388 DOI: 10.1007/s10689-019-00136-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Before SNP-based risk can be incorporated in colorectal cancer (CRC) screening, the ability of these SNPs to estimate CRC risk for persons with and without a family history of CRC, and the screening implications need to be determined. We estimated the association with CRC of a 45 SNP-based risk using 1181 cases and 999 controls, and its correlation with CRC risk predicted from detailed family history. We estimated the predicted change in the distribution across predefined risk categories, and implications for recommended screening commencement age, from adding SNP-based risk to family history. The inter-quintile risk ratio for colorectal cancer risk of the SNP-based risk was 3.28 (95% CI 2.54-4.22). SNP-based and family history-based risks were not correlated (r = 0.02). For persons with no first-degree relatives with CRC, screening could commence 4 years earlier for women (5 years for men) in the highest quintile of SNP-based risk. For persons with two first-degree relatives with CRC, screening could commence 16 years earlier for men and women in the highest quintile, and 7 years earlier for the lowest quintile. This 45 SNP panel in conjunction with family history, can identify people who could benefit from earlier screening. Risk reclassification by 45 SNPs could inform targeted screening for CRC prevention, particularly in clinical genetics settings when mutations in high-risk genes cannot be identified. Yet to be determined is cost-effectiveness, resources requirements, community, patient and clinician acceptance, and feasibility with potentially ethical, legal and insurance implications.
Collapse
Affiliation(s)
- Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia.
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel F Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gillian S Dite
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mirosl Kapuscinski
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
- Envoi Specialist Pathologists, Herston, QLD, Australia
- School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Ingrid M Winship
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jon D Emery
- Department of General Practice, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
- The Primary Care Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Sibel Saya
- Department of General Practice, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
- The Primary Care Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Finlay A Macrae
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Dennis J Ahnen
- University of Colorado School of Medicine, Denver, CO, USA
| | - David Duggan
- Office of the Chief Operating Officer, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Robert W Haile
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | | | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
40
|
Cornish AJ, Tomlinson IPM, Houlston RS. Mendelian randomisation: A powerful and inexpensive method for identifying and excluding non-genetic risk factors for colorectal cancer. Mol Aspects Med 2019; 69:41-47. [PMID: 30710596 PMCID: PMC6856712 DOI: 10.1016/j.mam.2019.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in economically developed countries and a major cause of cancer-related mortality. The importance of lifestyle and diet as major determinants of CRC risk is suggested by differences in CRC incidence between countries and in migration studies. Previous observational epidemiological studies have identified associations between modifiable environmental risk factors and CRC, but these studies can be susceptible to reverse causation and confounding, and their results can therefore conflict. Mendelian randomisation (MR) analysis represents an approach complementary to conventional observational studies examining associations between exposures and disease. The MR strategy employs allelic variants as instrumental variables (IVs), which act as proxies for non-genetic exposures. These allelic variants are randomly assigned during meiosis and can therefore inform on life-long exposure, whilst not being subject to reverse causation. In previous studies MR frameworks have associated several modifiable factors with CRC risk, including adiposity, hyperlipidaemia, fatty acid profile and alcohol consumption. In this review we detail the use of MR to investigate and discover CRC risk factors, and its future applications.
Collapse
Affiliation(s)
- Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Ian P M Tomlinson
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Histopathology, University Hospitals Birmingham, Birmingham, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
41
|
Hung CS, Huang CY, Hsu YW, Makondi PT, Chang WC, Chang YJ, Wang JY, Wei PL. HSPB1 rs2070804 polymorphism is associated with the depth of primary tumor. J Cell Biochem 2019; 121:63-69. [PMID: 31364192 DOI: 10.1002/jcb.28266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer in the world. Genome-wide association studies are a powerful method to analyze the status of single-nucleotide polymorphisms (SNPs) in specific genes. Heat shock proteins (HSPs) were found to be involved in the cancer progression and chemoresistance. However, there is still no further study about polymorphisms of HSP beta-1 (HSPB1) in colorectal cancer. We proposed the SNP of HSPB1 may be correlated with the progression and metastasis in colon cancer. METHODS We recruited 379 colorectal cancer patients and categorized as four stages following the UICC TNM system. Then, we selected tagging SNPs of HSPB1 by 10% minimum allelic frequency in Han Chinese population from the HapMap database and analyze with the Chi-square test. RESULTS We demonstrated the association of HSPB1 genetic polymorphisms rs2070804 with tumor depth with colorectal cancer. But, there is a lack of association between HSPB1 genetic polymorphisms and colorectal cancer invasion, recurrence or metastasis. CONCLUSIONS The polymorphisms of HSPB1 seemed to change the tumor behavior of colorectal cancer. HSPB1 rs2070804 polymorphism is associated with the depth of the primary tumor. But, there is no further correlation with other to the clinical parameters such as cancer invasiveness, local recurrence, or distant metastasis.
Collapse
Affiliation(s)
- Chin-Sheng Hung
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Hsu
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Chiao Chang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Yuan Wang
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
42
|
Zyla J, Kabacik S, O'Brien G, Wakil S, Al-Harbi N, Kaprio J, Badie C, Polanska J, Alsbeih G. Combining CDKN1A gene expression and genome-wide SNPs in a twin cohort to gain insight into the heritability of individual radiosensitivity. Funct Integr Genomics 2019; 19:575-585. [PMID: 30706161 PMCID: PMC6570669 DOI: 10.1007/s10142-019-00658-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Individual variability in response to radiation exposure is recognised and has often been reported as important in treatment planning. Despite many efforts to identify biomarkers allowing the identification of radiation sensitive patients, it is not yet possible to distinguish them with certainty before the beginning of the radiotherapy treatment. A comprehensive analysis of genome-wide single-nucleotide polymorphisms (SNPs) and a transcriptional response to ionising radiation exposure in twins have the potential to identify such an individual. In the present work, we investigated SNP profile and CDKN1A gene expression in blood T lymphocytes from 130 healthy Caucasians with a complex level of individual kinship (unrelated, mono- or dizygotic twins). It was found that genetic variation accounts for 66% (95% CI 37-82%) of CDKN1A transcriptional response to radiation exposure. We developed a novel integrative multi-kinship strategy allowing investigating the role of genome-wide polymorphisms in transcriptomic radiation response, and it revealed that rs205543 (ETV6 gene), rs2287505 and rs1263612 (KLF7 gene) are significantly associated with CDKN1A expression level. The functional analysis revealed that rs6974232 (RPA3 gene), involved in mismatch repair (p value = 9.68e-04) as well as in RNA repair (p value = 1.4e-03) might have an important role in that process. Two missense polymorphisms with possible deleterious effect in humans were identified: rs1133833 (AKIP1 gene) and rs17362588 (CCDC141 gene). In summary, the data presented here support the validity of this novel integrative data analysis strategy to provide insights into the identification of SNPs potentially influencing radiation sensitivity. Further investigations in radiation response research at the genomic level should be therefore continued to confirm these findings.
Collapse
Affiliation(s)
- Joanna Zyla
- Data Mining Division, Faculty of Automatic Control, Electronic and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Sylwia Kabacik
- Cellular Biology Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, OX11 0RQ, UK
| | - Grainne O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, OX11 0RQ, UK
| | - Salma Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Najla Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Jaakko Kaprio
- Department of Public Health and Institute for Molecular Medicine FIMM, University of Helsinki, 00140, Helsinki, Finland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, OX11 0RQ, UK
| | - Joanna Polanska
- Data Mining Division, Faculty of Automatic Control, Electronic and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Ghazi Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Wan Z, Chai R, Yuan H, Chen B, Dong Q, Zheng B, Mou X, Pan W, Tu Y, Yang Q, Tu S, Hu X. MEIS2 promotes cell migration and invasion in colorectal cancer. Oncol Rep 2019; 42:213-223. [PMID: 31115559 PMCID: PMC6549210 DOI: 10.3892/or.2019.7161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignancy worldwide. Distant metastasis is a key cause of CRC-associated mortality. MEIS2 has been identified to be dysregulated in several types of human cancer. However, the mechanisms underlying the regulatory role of MEIS2 in CRC metastasis remain largely unknown. For the first time, the present study demonstrated that MEIS2 serves a role as a promoter of metastasis in CRC. In vivo and in vitro experiments revealed that knockdown of MEIS2 significantly suppressed CRC migration, invasion and the epithelial-mesenchymal transition. Furthermore, microarray and bioinformatics analyses were performed to investigate the underlying mechanisms of MEIS2 in the regulation of CRC metastasis. Additionally, it was identified that a high expression of MEIS2 was significantly associated with a shorter overall survival time for patients with CRC. The present study demonstrated that MEIS2 may serve as a novel biomarker for CRC.
Collapse
Affiliation(s)
- Ziang Wan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Rui Chai
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hang Yuan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Bingchen Chen
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Quanjin Dong
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Boan Zheng
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wensheng Pan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yifeng Tu
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Qing Yang
- Department of Academy of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shiliang Tu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xinye Hu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
44
|
Shi Z, Yu H, Wu Y, Lin X, Bao Q, Jia H, Perschon C, Duggan D, Helfand BT, Zheng SL, Xu J. Systematic evaluation of cancer-specific genetic risk score for 11 types of cancer in The Cancer Genome Atlas and Electronic Medical Records and Genomics cohorts. Cancer Med 2019; 8:3196-3205. [PMID: 30968590 PMCID: PMC6558466 DOI: 10.1002/cam4.2143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic risk score (GRS) is an odds ratio (OR)-weighted and population-standardized method for measuring cumulative effect of multiple risk-associated single nucleotide polymorphisms (SNPs). We hypothesize that GRS is a valid tool for risk assessment of most common cancers. METHODS Utilizing genotype and phenotype data from The Cancer Genome Atlas (TCGA) and Electronic Medical Records and Genomics (eMERGE), we tested 11 cancer-specific GRSs (bladder, breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, prostate, renal, and thyroid cancer) for association with the respective cancer type. Cancer-specific GRSs were calculated, for the first time in these cohorts, based on previously published risk-associated SNPs using the Caucasian subjects in these two cohorts. RESULTS Mean cancer-specific GRS in the population controls of eMERGE approximated the expected value of 1.00 (between 0.98 and 1.02) for all 11 types of cancer. Mean cancer-specific GRS was consistently higher in respective cancer patients than controls for all 11 types of cancer (P < 0.05). When subjects were categorized into low-, average-, and high-risk groups based on cancer-specific GRS (<0.5, 0.5-1.5, and >1.5, respectively), significant dose-response associations of higher cancer-specific GRS with higher OR of respective type of cancer were found for nine types of cancer (P-trend < 0.05). More than 64% subjects in the population controls of eMERGE can be classified as high risk for at least one type of these cancers. CONCLUSION Validity of GRS for predicting cancer risk is demonstrated for most types of cancer. If confirmed in larger studies, cancer-specific GRS may have the potential for developing personalized cancer screening strategy.
Collapse
Affiliation(s)
- Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Hongjie Yu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Yishuo Wu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Lin
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanwa Bao
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Haifei Jia
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chelsea Perschon
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - David Duggan
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Siqun L Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Bien SA, Su YR, Conti DV, Harrison TA, Qu C, Guo X, Lu Y, Albanes D, Auer PL, Banbury BL, Berndt SI, Bézieau S, Brenner H, Buchanan DD, Caan BJ, Campbell PT, Carlson CS, Chan AT, Chang-Claude J, Chen S, Connolly CM, Easton DF, Feskens EJM, Gallinger S, Giles GG, Gunter MJ, Hampe J, Huyghe JR, Hoffmeister M, Hudson TJ, Jacobs EJ, Jenkins MA, Kampman E, Kang HM, Kühn T, Küry S, Lejbkowicz F, Le Marchand L, Milne RL, Li L, Li CI, Lindblom A, Lindor NM, Martín V, McNeil CE, Melas M, Moreno V, Newcomb PA, Offit K, Pharaoh PDP, Potter JD, Qu C, Riboli E, Rennert G, Sala N, Schafmayer C, Scacheri PC, Schmit SL, Severi G, Slattery ML, Smith JD, Trichopoulou A, Tumino R, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Weinstein SJ, White E, Wolk A, Woods MO, Wu AH, Abecasis GR, Casey G, Nickerson DA, Gruber SB, Hsu L, Zheng W, Peters U. Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer. Hum Genet 2019; 138:307-326. [PMID: 30820706 PMCID: PMC6483948 DOI: 10.1007/s00439-019-01989-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/20/2019] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n = 169) and whole blood (n = 922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P = 2.2 × 10- 4, replication P = 0.01), and PYGL (discovery P = 2.3 × 10- 4, replication P = 6.7 × 10- 4). Interestingly, both genes encode proteins that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified genes associated with CRC (P < 0.05) in 34/44 CRC-risk regions. Importantly, CRC association was found for two genes in the previously reported 2q25 locus, CXCR1 and CXCR2, which are potential cancer therapeutic targets. These findings provide strong candidate genes to prioritize for subsequent laboratory follow-up of GWAS loci. This study is the first to implement PrediXcan in a large colorectal cancer study and findings highlight the utility of integrating transcriptome data in GWAS for discovery of, and biological insight into, risk loci.
Collapse
Affiliation(s)
- Stephanie A Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Yu-Ru Su
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David V Conti
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tabitha A Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xingyi Guo
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Yingchang Lu
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Paul L Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, 53205, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Barbara L Banbury
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stéphane Bézieau
- Centre Hospitalier Universitaire Hotel-Dieu, 44093, Nantes, France
- Service de Génétique Médiczle, Centre Hospitalier Universitaire (CHU), 44093, Nantes, France
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Colorectal Oncogenomics Group, Department of Pathology, University of Melbourne, Melbourne, VIC, 3010, Australia
- Genetic Medicine and Familial Cancer Centre, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bette J Caan
- Division of Research, Kaiser Permanente Medical Care Program of Northern California, Oakland, CA, 94612, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30329-4251, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Christopher S Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jenny Chang-Claude
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Genetic Tumour Epidemiology Group, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, 20246, Hamburg, Germany
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Sai Chen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Charles M Connolly
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care School of Clinical Medicine, University of Cambridge, Cambridge, England, 01223, UK
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Edith J M Feskens
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, 1X5, Canada
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, 3004, Australia
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Marc J Gunter
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, TU Dresden, 01307, Dresden, Germany
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jeroen R Huyghe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- AbbVie Inc, 1500 Seaport Blvd, Redwood City, CA, 94063, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30329-4251, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Sébastien Küry
- Centre Hospitalier Universitaire Hotel-Dieu, 44093, Nantes, France
- Service de Génétique Médiczle, Centre Hospitalier Universitaire (CHU), 44093, Nantes, France
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Flavio Lejbkowicz
- Clalit Health Services National Israeli Cancer Control Center, 34361, Haifa, Israel
- Department of Community Medicine and Epidemiology, Carmel Medical Center, 34361, Haifa, Israel
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Loic Le Marchand
- University of Hawai'i Cancer Center, Honolulu, Hawaii, 96813, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, 3004, Australia
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Li Li
- Department of Family Medicine and Community Health, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital Solna, 171 77, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet Solna, 171 77, Stockholm, Sweden
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Vicente Martín
- Biomedicine Institute (IBIOMED), University of León, León, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Caroline E McNeil
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Marilena Melas
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Victor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08028, Barcelona, Spain
- University of Barcelona, 08007, Barcelona, Spain
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Polly A Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Kenneth Offit
- Department of Medicine, Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Paul D P Pharaoh
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, CB2 1TN, UK
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - John D Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Chenxu Qu
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gad Rennert
- Clalit Health Services National Israeli Cancer Control Center, 34361, Haifa, Israel
- Department of Community Medicine and Epidemiology, Carmel Medical Center, 34361, Haifa, Israel
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Molecular Epidemiology Group, Translational Research Laboratory, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24118, Kiel, Germany
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Inc, Tampa, FL, 33612, USA
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Inc, Tampa, FL, 33612, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gianluca Severi
- Centre for Research in Epidemiology and Population Health, Institut de Cancérologie Gustave Roussy, Villejuif, France
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Joshua D Smith
- Department Genome Sciences, University of Washington, 98195, Seattle, WA, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 13 Kaisareias & Alexandroupoleos, 115 27, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 115 27, Athens, Greece
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Rosario Tumino
- Affiliation Cancer Registry, Department of Prevention, Azienda Sanitaria Provinciale di Ragusa, Ragusa, Italy
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Cornelia M Ulrich
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Fränzel J B van Duijnhoven
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bethany Van Guelpen
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet Solna, 17177, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, 75121, Uppsala, Sweden
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Michael O Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, A1B 3V6, Canada
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Anna H Wu
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Goncalo R Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Graham Casey
- Centre for Research in Epidemiology and Population Health, Institut de Cancérologie Gustave Roussy, Villejuif, France
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Deborah A Nickerson
- Department Genome Sciences, University of Washington, 98195, Seattle, WA, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephen B Gruber
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
46
|
Abstract
Lynch syndrome (LS) patients are at high risk of developing colorectal cancer (CRC). Phenotypic variability might in part be explained by common susceptibility loci identified in Genome Wide Association Studies (GWAS). Previous studies focused mostly on MLH1, MSH2 and MSH6 carriers, with conflicting results. We aimed to determine the role of GWAS SNPs in PMS2 mutation carriers. A cohort study was performed in 507 PMS2 carriers (124 CRC cases), genotyped for 24 GWAS SNPs, including SNPs at 11q23.1 and 8q23.3. Hazard ratios (HRs) were calculated using a weighted Cox regression analysis to correct for ascertainment bias. Discrimination was assessed with a concordance statistic in a bootstrap cross-validation procedure. Individual SNPs only had non-significant associations with CRC occurrence with HRs lower than 2, although male carriers of allele A at rs1321311 (6p21.31) may have increased risk of CRC (HR = 2.1, 95% CI 1.2–3.0). A polygenic risk score (PRS) based on 24 HRs had an HR of 2.6 (95% CI 1.5–4.6) for the highest compared to the lowest quartile, but had no discriminative ability (c statistic 0.52). Previously suggested SNPs do not modify CRC risk in PMS2 carriers. Future large studies are needed for improved risk stratification among Lynch syndrome patients.
Collapse
|
47
|
Tanikawa C, Kamatani Y, Takahashi A, Momozawa Y, Leveque K, Nagayama S, Mimori K, Mori M, Ishii H, Inazawa J, Yasuda J, Tsuboi A, Shimizu A, Sasaki M, Yamaji T, Sawada N, Iwasaki M, Tsugane S, Naito M, Wakai K, Koyama T, Takezaki T, Yuji K, Murakami Y, Nakamura Y, Kubo M, Matsuda K. GWAS identifies two novel colorectal cancer loci at 16q24.1 and 20q13.12. Carcinogenesis 2019; 39:652-660. [PMID: 29471430 DOI: 10.1093/carcin/bgy026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/13/2018] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer mortality worldwide. Genome-wide association studies (GWAS) identified more than 50 CRC loci. However, most of the previous studies were conducted in European population, and host genetic factors among Japanese population are largely remained to be identified. To identify novel loci in the Japanese population, here, we performed a large-scale GWAS using 6692 cases and 27 178 controls followed by a replication analysis using more than 11 000 case-control samples. We found the significant association of 10 loci (P < 5 × 10-8), including 2 novel loci on 16q24.1 (IRF8-FOXF1, rs847208, P = 3.15 × 10-9 and odds ratio = 1.107 with 95% confidence interval (CI) of 1.071-1.145) and 20q13.12 (TOX2, rs6065668, P = 4.47 × 10-11 and odds ratio = 0.897 with 95% CI of 0.868-0.926). Moreover, 35 previously reported single nucleotide polymorphisms (SNPs) in 24 regions were validated in the Japanese population (P < 0.05) with the same risk allele as in the previous studies. SNP rs6065668 was significantly associated with TOX2 expression in the sigmoid colon. In addition, nucleotide substitutions in the regulatory region of TOX2 were predicted to alter the binding of several transcription factors, including KLF5. Our findings elucidate the important role of genetic variations in the development of CRC in the Japanese population.
Collapse
Affiliation(s)
- Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Karine Leveque
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan.,Oncology Master Progam, University Claude Bernard, Lyon I, Lyon, France
| | - Satoshi Nagayama
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, Oita, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Akito Tsuboi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koichiro Yuji
- Project Division of International Advanced Medical Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, IL, USA.,Department of Surgery, The University of Chicago, IL, USA.,Center for Personalized Therapeutics, The University of Chicago, IL, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
SHROOM2 inhibits tumor metastasis through RhoA-ROCK pathway-dependent and -independent mechanisms in nasopharyngeal carcinoma. Cell Death Dis 2019; 10:58. [PMID: 30683844 PMCID: PMC6347642 DOI: 10.1038/s41419-019-1325-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Abstract
SHROOM2 is a key mediator of RhoA–ROCK pathway that regulates cell motility and actin cytoskeleton organization. However, the functions of SHROOM2 beyond RhoA/ROCK signaling remain poorly understood. Here, we report that SHROOM2 not only participates in RhoA–ROCK-induced stress fiber formation and focal adhesion, but also had an unanticipated role in suppressing epithelial-to-mesenchymal transition (EMT) and tumor metastasis. Depletion of SHROOM2 in nasopharyngeal carcinoma (NPC) cells enhances mesenchymal characteristics and reduces epithelial markers, concomitant with increased motility, enabling the development of invasion and tumor metastasis, which are largely ROCK-independent, as ROCK inhibitor Y-27632 did not cause EMT phenotype; furthermore, combination of ROCK inhibition and SHROOM2 depletion resulted in the most robust increases in cell migration and invasion, indicating that SHROOM2 and ROCK work synergistically rather than epistatic. Analysis of clinical samples suggested that SHROOM2 is downregulated in NPC and the expression of SHROOM2 in metastatic NPC was even lower than in the primary tumors. Our findings uncover a non-canonical role of SHROOM2 as a potent antagonist for EMT and NPC metastasis.
Collapse
|
49
|
Ostrom QT, Coleman W, Huang W, Rubin JB, Lathia JD, Berens ME, Speyer G, Liao P, Wrensch MR, Eckel-Passow JE, Armstrong G, Rice T, Wiencke JK, McCoy LS, Hansen HM, Amos CI, Bernstein JL, Claus EB, Houlston RS, Il’yasova D, Jenkins RB, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Andersson U, Rajaraman P, Chanock SJ, Linet MS, Wang Z, Yeager M, Melin B, Bondy ML, Barnholtz-Sloan JS. Sex-specific gene and pathway modeling of inherited glioma risk. Neuro Oncol 2019; 21:71-82. [PMID: 30124908 PMCID: PMC6303471 DOI: 10.1093/neuonc/noy135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background To date, genome-wide association studies (GWAS) have identified 25 risk variants for glioma, explaining 30% of heritable risk. Most histologies occur with significantly higher incidence in males, and this difference is not explained by currently known risk factors. A previous GWAS identified sex-specific glioma risk variants, and this analysis aims to further elucidate risk variation by sex using gene- and pathway-based approaches. Methods Results from the Glioma International Case-Control Study were used as a testing set, and results from 3 GWAS were combined via meta-analysis and used as a validation set. Using summary statistics for nominally significant autosomal SNPs (P < 0.01 in a previous meta-analysis) and nominally significant X-chromosome SNPs (P < 0.01), 3 algorithms (Pascal, BimBam, and GATES) were used to generate gene scores, and Pascal was used to generate pathway scores. Results were considered statistically significant in the discovery set when P < 3.3 × 10-6 and in the validation set when P < 0.001 in 2 of 3 algorithms. Results Twenty-five genes within 5 regions and 19 genes within 6 regions reached statistical significance in at least 2 of 3 algorithms in males and females, respectively. EGFR was significantly associated with all glioma and glioblastoma in males only and a female-specific association in TERT, all of which remained nominally significant after conditioning on known risk loci. There were nominal associations with the BioCarta telomeres pathway in both males and females. Conclusions These results provide additional evidence that there may be differences by sex in genetic risk for glioma. Additional analyses may further elucidate the biological processes through which this risk is conferred.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - William Huang
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Justin D Lathia
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Gil Speyer
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Peter Liao
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Margaret R Wrensch
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Terri Rice
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - John K Wiencke
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lucie S McCoy
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Helen M Hansen
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth B Claus
- School of Public Health, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Dora Il’yasova
- Department of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, Georgia, USA
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Christoffer Johansen
- Oncology Clinic, Finsen Center, Rigshospitalet and Survivorship Research Unit, The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel H Lachance
- Department of Neurology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Rose K Lai
- Departments of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ryan T Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Ulrika Andersson
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, USA
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, Conti DV, Qu C, Jeon J, Edlund CK, Greenside P, Wainberg M, Schumacher FR, Smith JD, Levine DM, Nelson SC, Sinnott-Armstrong NA, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Bamia C, Banbury BL, Baron JA, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Chirlaque MD, Cho SH, Connolly CM, Cross AJ, Cuk K, Curtis KR, de la Chapelle A, Doheny KF, Duggan D, Easton DF, Elias SG, Elliott F, English DR, Feskens EJM, Figueiredo JC, Fischer R, FitzGerald LM, Forman D, Gala M, Gallinger S, Gauderman WJ, Giles GG, Gillanders E, Gong J, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hampel H, Harlid S, Hayes RB, Hofer P, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Hunter DJ, Ibañez-Sanz G, Idos GE, Ingersoll R, Jackson RD, Jacobs EJ, Jenkins MA, Joshi AD, Joshu CE, Keku TO, Key TJ, Kim HR, Kobayashi E, Kolonel LN, Kooperberg C, Kühn T, Küry S, Kweon SS, Larsson SC, Laurie CA, Le Marchand L, Leal SM, Lee SC, Lejbkowicz F, Lemire M, Li CI, Li L, Lieb W, Lin Y, Lindblom A, Lindor NM, Ling H, Louie TL, Männistö S, Markowitz SD, Martín V, Masala G, McNeil CE, Melas M, Milne RL, Moreno L, Murphy N, Myte R, Naccarati A, Newcomb PA, Offit K, Ogino S, Onland-Moret NC, Pardini B, Parfrey PS, Pearlman R, Perduca V, Pharoah PDP, Pinchev M, Platz EA, Prentice RL, Pugh E, Raskin L, Rennert G, Rennert HS, Riboli E, Rodríguez-Barranco M, Romm J, Sakoda LC, Schafmayer C, Schoen RE, Seminara D, Shah M, Shelford T, Shin MH, Shulman K, Sieri S, Slattery ML, Southey MC, Stadler ZK, Stegmaier C, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Thomas SS, Toland AE, Trichopoulou A, Ulrich CM, Van Den Berg DJ, van Duijnhoven FJB, Van Guelpen B, van Kranen H, Vijai J, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Weigl K, Weinstein SJ, White E, Win AK, Wolf CR, Wolk A, Woods MO, Wu AH, Zaidi SH, Zanke BW, Zhang Q, Zheng W, Scacheri PC, Potter JD, Bassik MC, Kundaje A, Casey G, Moreno V, Abecasis GR, Nickerson DA, Gruber SB, Hsu L, Peters U. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet 2019; 51:76-87. [PMID: 30510241 PMCID: PMC6358437 DOI: 10.1038/s41588-018-0286-6] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022]
Abstract
To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
Collapse
Affiliation(s)
- Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sai Chen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David V Conti
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher K Edlund
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peyton Greenside
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Michael Wainberg
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David M Levine
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Henar Alonso
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Kristin Anderson
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Bamia
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Juergen Boehm
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Katja Butterbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bette J Caan
- Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA, USA
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Christopher S Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria-Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Sang Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hospital, Hwasun, South Korea
| | - Charles M Connolly
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Keith R Curtis
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Duggan
- Translational Genomics Research Institute - An Affiliate of City of Hope, Phoenix, AZ, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Faye Elliott
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rocky Fischer
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Liesel M FitzGerald
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - David Forman
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - W James Gauderman
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Elizabeth Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Jian Gong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John S Grove
- University of Hawaii Cancer Research Center, Honolulu, HI, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Philipp Hofer
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Wan-Ling Hsu
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Gemma Ibañez-Sanz
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gregory E Idos
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roxann Ingersoll
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca D Jackson
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Emiko Kobayashi
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laurence N Kolonel
- Office of Public Health Studies, University of Hawaii Manoa, Honolulu, HI, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Flavio Lejbkowicz
- The Clalit Health Services, Personalized Genomic Service, Carmel, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Mathieu Lemire
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Li
- Center for Community Health Integration and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Wolfgang Lieb
- Institute of Epidemiology, PopGen Biobank, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Hua Ling
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tin L Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanford D Markowitz
- Departments of Medicine and Genetics, Case Comprehensive Cancer Center, Case Western Reserve University, and University Hospitals of Cleveland, Cleveland, OH, USA
| | - Vicente Martín
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute of Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Caroline E McNeil
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Marilena Melas
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Lorena Moreno
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robin Myte
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Patrick S Parfrey
- The Clinical Epidemiology Unit, Memorial University Medical School, Newfoundland, Canada
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vittorio Perduca
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
- CESP (Inserm U1018), Facultés de Medicine Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mila Pinchev
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elizabeth Pugh
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Leon Raskin
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hedy S Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Miguel Rodríguez-Barranco
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Jane Romm
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniela Seminara
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Tameka Shelford
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
| | | | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sushma S Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - David J Van Den Berg
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Henk van Kranen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aung Ko Win
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - C Roland Wolf
- School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Newfoundland, Canada
| | - Anna H Wu
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Brent W Zanke
- Division of Hematology, University of Toronto, Toronto, Ontario, Canada
| | - Qing Zhang
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|