1
|
Schwarz T, Almanzar G, Völkl S, Feuchtenberger M, Leierer J, Schmidt C, Deininger F, Tony HP, Schmalzing M, Prelog M. Diverging effects of tumor necrosis factor inhibitors and conventional synthetic disease-modifying antirheumatic drugs on immunosenescence and inflammageing in rheumatoid arthritis: a cross-sectional analysis. Immun Ageing 2025; 22:21. [PMID: 40405219 PMCID: PMC12096643 DOI: 10.1186/s12979-025-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/15/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Immunosenescence is characterized by a decline in naive T cells, a reduced T cell receptor repertoire, and the accumulation of terminally-differentiated and unspecifically-activated proinflammatory cells, a process called inflammageing. Premature immunosenescence is thought to be pathogenetically relevant in rheumatoid arthritis (RA), either by posing a risk factor for its development, or by advancing the rheumatic disease as a result of excess antigenic and inflammatory stimulation. We investigated parameters of immunosenescence in RA patients treated with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) only compared to patients treated additionally or exclusively with a tumor necrosis factor inhibitor (TNFi) and age-matched healthy controls to investigate the effect of RA treatment on age-associated T cell phenotypes and functions. RESULTS The csDMARD-only treated patients, compared to the TNFi-treated patients and healthy controls, displayed an enhanced age-dependent decline in CD31+ recent thymic emigrants (RTE) and Interleukin-7 (IL-7)-receptor α-chain (CD127)-expressing CD4+ T cells participating in IL-7-associated homeostatic proliferation, a diminished proliferation of RTE and CD127+ T cells, as well as reduced T cell receptor excision circle (TREC) counts. However, whereas the RA patients exhibited reduced proportions of unspecifically activated IFNγ- and IL-17-producing T cells, TNFi initiation induced an increase in these proinflammatory cells. CONCLUSIONS Whereas a TNFi treatment seems to counteract the non-inflammatory aspects of immunosenescence, it induces increasing proportions of terminally-differentiated, cytokine-producing effector memory T cells, requiring awareness as possibly contributing to secondary autoimmune phenomena in RA.
Collapse
Affiliation(s)
- Tobias Schwarz
- Department of Pediatrics, Pediatric Rheumatology and Special Immunology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Giovanni Almanzar
- Department of Pediatrics, Pediatric Rheumatology and Special Immunology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Sebastian Völkl
- Department of Pediatrics, Pediatric Rheumatology and Special Immunology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Martin Feuchtenberger
- Department of Internal Medicine II, Rheumatology/Clinical Immunology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
- MVZ MED|BAYERN OST, Burghausen, Germany
| | - Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Christian Schmidt
- Department of Haematology and Oncology, University of Greifswald, Greifswald, Germany
| | - Frank Deininger
- Practice for Rheumatology, Haugerpfarrgasse 7, Würzburg, Germany
| | - Hans-Peter Tony
- Department of Internal Medicine II, Rheumatology/Clinical Immunology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
- Practice for Rheumatology, Haugerpfarrgasse 7, Würzburg, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, Rheumatology/Clinical Immunology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, Pediatric Rheumatology and Special Immunology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Catalán D, Soto L, Neira Ó, Cuéllar-Gutiérrez MC, Díaz-Peña R, Aravena O, Palou E, Carrascal M, Aguillón JC, Maggi J. HLA-DRB1 allele distribution in Chilean population: insights into rheumatoid arthritis susceptibility and protection. Front Immunol 2025; 16:1594723. [PMID: 40433380 PMCID: PMC12106328 DOI: 10.3389/fimmu.2025.1594723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Rheumatoid arthritis (RA) is an autoimmune disease influenced by genetic factors, particularly HLA-DRB1 alleles. The objective of this study was to characterize the distribution of HLA-DRB1 alleles in Chilean RA patients and healthy controls (HC) and evaluate associations with susceptibility or protection, autoantibody seropositivity, and disease activity. Methods We genotyped 367 RA patients and 623 HC for HLA-DRB1 using PCR-SSO. Then, we examined allele frequencies and distribution, including known RA risk alleles of the "Shared Epitope" (SE) of HLA-DRB1 and protective (PR) alleles, using the Chi-square or Fisher's exact tests. Odds ratios with 95% confidence intervals were calculated to measure the degree of association, and unpaired T-tests were used to compare continuous variables. Results The most frequent SE alleles among RA patients were *04:01 (16.1%), *04:04 (13.9%), and *14:02 (11.7%). SE alleles *04:01, *04:04, *04:05, *04:08, and *10:01, along with non-SE alleles *09:01 and *15:02, were associated with RA susceptibility. In addition, allele *14:02 showed an association with the presence of anti-cyclic citrullinated peptides (anti-CCP) antibodies. Meanwhile, PR alleles *11:01 (14.8%) and *16:02 (9.8%) were observed most frequently in HC and RA patients, respectively. PR alleles *11:01, *11:04, and *13:01, as well as the non-PR alleles *15:01, *04:07, *03:01, *07:01, and *08:02, were associated with protection from RA, and showed no significant associations with autoantibody seropositivity. Discussion This study provides a comprehensive overview of HLA-DRB1 allele distribution in the Chilean population, identifying both well-known and novel allele associations with RA susceptibility, protection, and disease activity.
Collapse
Affiliation(s)
- Diego Catalán
- Immune Regulation and Tolerance Research Group (IRT Group), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lilian Soto
- Immune Regulation and Tolerance Research Group (IRT Group), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Sección Reumatología, Departamento de Medicina Interna, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Óscar Neira
- Hospital del Salvador, Universidad de Chile, Santiago, Chile
| | | | - Roberto Díaz-Peña
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
- Immunogenetics Lab, Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Grupo de MedicinaXenómica-Universidade de Santiago de Compostela (USC), Instituto de investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Octavio Aravena
- Immune Regulation and Tolerance Research Group (IRT Group), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eduard Palou
- Servicio de Inmunología, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Montserrat Carrascal
- Biological and Environmental Proteomics Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - Juan C. Aguillón
- Immune Regulation and Tolerance Research Group (IRT Group), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaxaira Maggi
- Biological and Environmental Proteomics Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| |
Collapse
|
3
|
Jajodia A, Mishra A, Doni Jayavelu N, Lambert K, Moss N, Yang Z, Cerosaletti K, Buckner JH, Hawkins RD. Functional dissection of noncoding variants associated with rheumatoid arthritis. Ann Rheum Dis 2025:S0003-4967(25)00890-8. [PMID: 40318978 DOI: 10.1016/j.ard.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES Noncoding variants are critical to our understanding of the genetic basis of diseases and disorders such as rheumatoid arthritis (RA). While genome-wide association studies have identified regions of the genome associated with disease, functional studies are still lagging that can identify potentially causative variants. METHODS In order to functionally fine-map RA-associated variants, we identified variants at enhancers marked in primary activated T helper cells and conducted massively parallel reporter assay in these cells. RESULTS We found that combinations of functional variant genotypes are often exclusive to patients with RA. We leveraged 3-dimensional genome architecture and expression quantitative trait loci data to identify target genes of enhancers exhibiting allelic differences in activity. We confirmed enhancer activity and target gene interactions by Clustered Regularly Interpaced Short Palindromic Repeats Cas9 (CRISPR-Cas9) deletion in primary T cells. CONCLUSIONS The identification of functional enhancer variants suggests possible causal variants, and their target genes reveal known and novel genes as likely drivers of RA, as well as a means for therapeutic intervention.
Collapse
Affiliation(s)
- Ajay Jajodia
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arpit Mishra
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Nicholas Moss
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Zongchen Yang
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Jane H Buckner
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Benaroya Research Institute at Virginia Mason, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Wang WH, Xia MH, Liu XR, Lei SF, He P. A Bibliometric Analysis of GWAS on Rheumatoid Arthritis from 2002 to 2024. Hum Hered 2025; 90:18-32. [PMID: 40179854 DOI: 10.1159/000543947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/24/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) has become a serious threat to human health and quality of life worldwide. Previous studies have demonstrated that genetic factors play a crucial role in the onset and progression of RA. Due to the rapid development of genome-wide association study (GWAS) and large-scale genetic analysis, GWAS research on RA has received widespread attention in recent years. Therefore, we conducted a comprehensive visualization and bibliometric analysis of publications to identify hotspots and future trends in GWAS research on RA. METHODS Literature on RA and GWAS published between 2002 and 2024 was extracted from the Web of Science Core Collection database by strategic screening. Collected data were further analyzed by using VOSviewer, CiteSpace, and Excel. The collaborations networks of countries, authors, institutions, and the co-citation networks of publications were visualized. Finally, research hotspots and fronts were examined. RESULTS A total of 713 publications with 45,773 citations were identified. The number of publications and citations has had a significant surge since 2007. The United States contributed the most publications globally. Okada, Yukinori, was the most influential author. The most productive institution in this field was the University of Manchester. The analysis of keywords revealed that "mendelian randomization analysis", "association", "innate", "instruments", "bias", "pathogenesis", and "genome-wide association study" are likely to be the frontiers of research in this field. CONCLUSION This study can be used to predict future research advances in the fields of GWAS on RA and helps to promote academic collaboration among scholars.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China,
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China,
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China,
| | - Ming-Hui Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xin-Ru Liu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center for Bone and Immunology between Sihong Hospital and Soochow University, Sihong, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Cui Q, Tan W, Song B, Peng RJ, Wang L, Dorajoo R, Ng KP, Lin GW, Au WY, Liang RHS, Khor CC, Zhang QL, Foo JN, Li SP, Zhang FR, Zhang XJ, Yu XQ, Lan Q, Chanock S, Jia WH, Lim ST, Li WY, Rothman N, Bei JX, Liu J, Lin D, Liu JJ. Genetic susceptibility of diffuse large B-cell lymphoma: a meta genome-wide association study in Asian population. Leukemia 2025; 39:694-702. [PMID: 39707004 DOI: 10.1038/s41375-024-02503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy and the most common form of non-Hodgkin lymphoma (NHL) that occurs worldwide. To discover risk factors and pathogenesis of DLBCL, we performed the largest GWAS of DLBCL to date in samples of East Asian ancestry, consisting of 2,888 patients with DLBCL and 12,458 controls. The meta-analysis identified three novel loci, rs2233434 on 6p21.1 (OR = 1.26, P = 1.17 × 10-8), rs11066015 on 12q24.12 (OR = 1.24, P = 6.57 × 10-9) and rs6032662 on 20q13.12 (OR = 1.24, P = 5.22 × 10-12). Fine mapping analysis revealed that the extensive association within the MHC region was driven by two novel HLA alleles, HLA-A*02 and HLA-DQB1*03. Functional annotation, eQTL and colocalization analyses of the susceptibility loci implicated NFKBIE/TCTE1, ALDH2/BRAP and CD40 as candidate disease genes. The pleiotropic effect analysis of the DLBCL loci revealed shared genetic susceptibility between DLBCL and several autoimmune diseases. Our study also suggested genetic heterogeneity between Asian and European populations by identifying ancestry-specific genetic associations. Overall, this study has implicated novel disease genes and molecular mechanism for DLBCL.
Collapse
Affiliation(s)
- Qian Cui
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Rou-Jun Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Kok Pin Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Guo-Wang Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Wing-Yan Au
- Blood-Med Clinic, Central, Hong Kong SAR, China
| | | | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Qing-Ling Zhang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jia Nee Foo
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University. Singapore, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Sheng-Ping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fu-Ren Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, 27397 Jingshi Road, Jinan, 250022, Shandong, China
| | - Xue-Jun Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, 230032, Anhui, China
| | - Xue-Qing Yu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, NCI, Rockville, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, NCI, Rockville, MD, USA
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Wen-Yu Li
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, NCI, Rockville, MD, USA
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Sun Yat-sen University Institute of Advanced Studies Hong Kong, Science Park, Hong Kong SAR, China
| | - Jie Liu
- Shandong Public Health Clinical Center, Shandong University, Shandong, 250013, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Jun Liu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, 60 Biopolis Street, Singapore, 138672, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
6
|
Zorc R, Redmond C, Sylvester M, Maclean M, Yamamoto de Almeida L, Quinn KA, Tomelleri A, Campochiaro C, Dagna L, Gutierrez-Rodrigues F, Wells KV, Rankin C, Hait SH, Palmer C, Corty R, Bick A, Lambert K, Buckner JH, O'Shea JJ, Park JK, Gadina M, Grayson PC. A coding single nucleotide polymorphism in the interleukin-6 receptor enhances IL-6 signalling in CD4 T cells and predicts treatment response to tocilizumab in giant cell arteritis. Ann Rheum Dis 2025:S0003-4967(25)00203-1. [PMID: 40000263 DOI: 10.1016/j.ard.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES The study objective was to determine if a common single nucleotide polymorphism in the interleukin 6 (IL-6) receptor (rs2228145, p.Asp358Ala) predicted treatment response to tocilizumab in giant cell arteritis (GCA). METHODS Genetic sequencing of the rs2228145 locus was performed in 2 independent cohorts of patients with GCA. Peripheral blood mononuclear cells (PBMCs) from patients and controls were evaluated for expression of the interleukin 6 receptor (IL-6R) and its coreceptor, gp130, using flow cytometry. The same PBMCs were stimulated with IL-6 and evaluated for downstream targets of IL-6: STAT3 phosphorylation (pSTAT3) and IL-17A expression. RESULTS In total, 100 patients with GCA were included (derivation cohort n = 58; validation cohort n = 42). The rs2228145 variant predicted tocilizumab response in each cohort. In the derivation cohort, a gene dose-dependent response was observed with a 36% response rate in the homozygous patients and 95% response rate in patients without the variant (P = .003). In the validation cohort, tocilizumab response rates were 50% for homozygotes and 85% for patients without the variant (P = .04). pSTAT3 levels were significantly increased in response to IL-6 stimulation in a gene dose-dependent manner in CD4 T cells from patients with GCA but not controls. CD4 T cells from patients with GCA had significantly higher membrane expression of gp130 than healthy controls, and response to IL-6 correlated with gp130 expression. IL-17 producing CD4 T cells were increased in a gene dose-dependent response to IL-6 (P < .01). CONCLUSIONS The rs2228145 variant is associated with decreased treatment response to tocilizumab and worse outcomes in GCA by enhancing CD4 T cell response to IL-6.
Collapse
Affiliation(s)
- Robert Zorc
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Redmond
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - McKella Sylvester
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Maclean
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luciana Yamamoto de Almeida
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlin A Quinn
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Kristina V Wells
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cameron Rankin
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Helmold Hait
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chloe Palmer
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert Corty
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Alexander Bick
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kathi Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - John J O'Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jin Kyun Park
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA; Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Massimo Gadina
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Zhao H, Wang Y, Ren J. Helicobacter pylori and rheumatoid arthritis: Investigation of relation from traditional Chinese medicine. Microb Pathog 2025; 199:107239. [PMID: 39708982 DOI: 10.1016/j.micpath.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that predominantly affects synovial joints, manifesting with joint swelling, pain, and stiffness. In advanced stages, unchecked inflammation can inflict damage on bone and cartilage, resulting in disabilities and deformities of the joints. Additionally, systemic and extra-articular complications may arise due to the consequences of uncontrolled inflammation. Helicobacter pylori (H. pylori) is one of the most prevalent chronic bacterial infections in humans. This microorganism is a spiral-shaped, flagellated, microaerophilic gram-negative bacterium. Prolonged exposure leads to the activation of the immune system, with infected gastric mucosa epithelial cells continuously producing cytokines. This production, in turn, triggers the generation of antibodies as well as T Helper 1 and T Helper 2 effector T cells. The persistent antigenic stimulation resulting from H. pylori infection could lead to the progression of autoimmune diseases. Numerous clinical and pharmacological trials have illustrated the efficacy of traditional Chinese medicine against H. pylori. This review aims to delve into the connection between H. pylori and rheumatoid arthritis so as understand the pathogenesis. The concluding section of this review explores the interplay of Chinese medicine and Helicobacter pylori concerning rheumatoid arthritis.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| | - Yige Wang
- Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Lixia District, Jinan, 250013, China
| | - Jiahui Ren
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| |
Collapse
|
8
|
Neofotistou-Themeli E, Goutakoli P, Chanis T, Semitekolou M, Sevdali E, Sidiropoulos P. Fibroblasts in rheumatoid arthritis: novel roles in joint inflammation and beyond. Front Med (Lausanne) 2025; 11:1376925. [PMID: 39906351 PMCID: PMC11790453 DOI: 10.3389/fmed.2024.1376925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
High-throughput technologies in human and animal studies have revealed novel molecular and cellular pathways involved in tissue inflammation of rheumatoid arthritis (RA). Fibroblasts have been in the forefront of research for several decades. Subpopulations with specific phenotypic and functional properties have been characterized both in mouse models and human disease. Data supporting the active involvement of fibroblasts in immune responses and tissue remodeling processes, as well as their central role in promoting clinical relapses and contributing to treatment resistance, have clearly reshaped their role in disease evolution. The lung is an important non-synovial component of RA both from a clinical and an immunopathogenic aspect. Interstitial lung disease (ILD) is a significant contributor to disease burden affecting morbidity and mortality. Although our knowledge of ILD has progressed, significant gaps in both basic and clinical science remain, posing hurdles to efficient diagnosis, prediction of disease course and its effective treatment. The specific role and contribution of fibroblasts to this process has not been clearly defined. The focus of this review is on fibroblasts and their contribution to RA and RA-ILD, presenting data on genetics and immune responses associated with RA-ILD in humans and animal models.
Collapse
Affiliation(s)
- Elpida Neofotistou-Themeli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Panagiota Goutakoli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Theodoros Chanis
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institute, Solna, Sweden
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maria Semitekolou
- Dendritic Cells and Adaptive Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- Developmental Biology and Stem Cells, UMR3738 – National Center for Scientific Research (CNRS), Pasteur Institute, Paris, France
| | - Eirini Sevdali
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
9
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
De Jager P, Zeng L, Khan A, Lama T, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. RESEARCH SQUARE 2025:rs.3.rs-5644532. [PMID: 39866869 PMCID: PMC11760239 DOI: 10.21203/rs.3.rs-5644532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type. The expression of IL7 and STAT3 are affected only in inhibitory neurons, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
| | - Lu Zeng
- Columbia University Irving Medical Center
| | | | | | | | | | | | | | - Frauke Zipp
- University Medical Center of the Johannes Gutenberg University Mainz
| | - Mariko Taga
- Center for Translational & Computational Neuroimmunology
| | | |
Collapse
|
11
|
Zeng L, Atlas K, Lama T, International Multiple Sclerosis Genetics Consortium, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K, De Jager PL. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318500. [PMID: 39677438 PMCID: PMC11643295 DOI: 10.1101/2024.12.04.24318500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
- Lu Zeng
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Khan Atlas
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Tsering Lama
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tanuja Chitnis
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Howard Weiner
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Gao Wang
- The Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Frauke Zipp
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Liu B, Qian Y, Lin H, Zhao S, Ying J, Chen W, Luo P, Li J, Sun X, He Z, Ye D, Mao Y. Sleep pattern, genetic risk, and the risk of incident rheumatoid arthritis: A cohort study. Sleep Health 2024; 10:635-642. [PMID: 39306487 DOI: 10.1016/j.sleh.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 12/08/2024]
Abstract
OBJECTIVE To investigate the associations of sleep behaviors with the risk of rheumatoid arthritis, and whether the associations differ among individuals with low, intermediate, or high genetic risk. METHODS We included participants who were free of rheumatoid arthritis at baseline based the UK Biobank. We evaluated the associations of five sleep behaviors with the risk of rheumatoid arthritis using Cox proportional hazard regression models. We then generated a sleep risk score which combined five sleep behaviors and assessed its association with the risk of rheumatoid arthritis. We finally generated a genetic risk score and examined the joint effects of sleep patterns and genetic susceptibility on the risk of rheumatoid arthritis. RESULTS Of the 375,133 participants at baseline, 4913 incident rheumatoid arthritis cases were identified over a median follow-up of 11.73years. We found that insomnia and daytime sleepiness were associated with a 33% and a 38% increased risk of rheumatoid arthritis. A U-shaped association was observed between sleep duration and the risk of rheumatoid arthritis, with a 29% higher risk for those with short sleep and a 30% higher risk for those with long sleep. Participants with unfavorable sleep patterns had a 63% increased risk of rheumatoid arthritis compared with those with favorable sleep patterns. Participants with unfavorable sleep patterns and high genetic risk showed the highest risk of rheumatoid arthritis although no statistically significant multiplicative or additive interaction was found. CONCLUSIONS Our study suggested that insomnia, daytime sleepiness, and short or long sleep duration, as well as sleep risk score were associated with an increased risk of rheumatoid arthritis.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Yu Qian
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China; Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Hao Lin
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Shuyue Zhao
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Jiacheng Ying
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiwei Chen
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Peiyang Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayu Li
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ding Ye
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China.
| | - Yingying Mao
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China.
| |
Collapse
|
13
|
Lessard S, Chao M, Reis K, Beauvais M, Rajpal DK, Sloane J, Palta P, Klinger K, de Rinaldis E, Shameer K, Chatelain C. Leveraging large-scale multi-omics evidences to identify therapeutic targets from genome-wide association studies. BMC Genomics 2024; 25:1111. [PMID: 39563277 DOI: 10.1186/s12864-024-10971-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Therapeutic targets supported by genetic evidence from genome-wide association studies (GWAS) show higher probability of success in clinical trials. GWAS is a powerful approach to identify links between genetic variants and phenotypic variation; however, identifying the genes driving associations identified in GWAS remains challenging. Integration of molecular quantitative trait loci (molQTL) such as expression QTL (eQTL) using mendelian randomization (MR) and colocalization analyses can help with the identification of causal genes. Careful interpretation remains warranted because eQTL can affect the expression of multiple genes within the same locus. METHODS We used a combination of genomic features that include variant annotation, activity-by-contact maps, MR, and colocalization with molQTL to prioritize causal genes across 4,611 disease GWAS and meta-analyses from biobank studies, namely FinnGen, Estonian Biobank and UK Biobank. RESULTS Genes identified using this approach are enriched for gold standard causal genes and capture known biological links between disease genetics and biology. In addition, we find that eQTL colocalizing with GWAS are statistically enriched for corresponding disease-relevant tissues. We show that predicted directionality from MR is generally consistent with matched drug mechanism of actions (> 85% for approved drugs). Compared to the nearest gene mapping method, genes supported by multi-omics evidences displayed higher enrichment in approved therapeutic targets (risk ratio 1.75 vs. 2.58 for genes with the highest level of support). Finally, using this approach, we detected anassociation between the IL6 receptor signal transduction gene IL6ST and polymyalgia rheumatica, an indication for which sarilumab, a monoclonal antibody against IL-6, has been recently approved. CONCLUSIONS Combining variant annotation, activity-by-contact maps, and molQTL increases performance to identify causal genes, while informing on directionality which can be translated to successful target identification and drug development.
Collapse
Affiliation(s)
- Samuel Lessard
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Michael Chao
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Kadri Reis
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mathieu Beauvais
- Digital R&D Data & Computational Sciences, Sanofi, Gentilly, France
| | - Deepak K Rajpal
- Translational Sciences, Sanofi, Framingham, MA, USA
- Pre-Clinical and Translational Sciences, Takeda, MA, USA
| | - Jennifer Sloane
- Immunology & Inflammation Development, Sanofi, Cambridge, MA, USA
| | - Priit Palta
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | | | - Khader Shameer
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA
| | - Clément Chatelain
- Precision Medicine & Computational Biology, Sanofi, Cambridge, MA, USA.
| |
Collapse
|
14
|
Stewart AP, Loudon KW, Routledge M, Lee CYC, Trotter P, Richoz N, Gillman E, Antrobus R, Mccaffrey J, Posner D, Conway Morris A, Karet Frankl FE, Clatworthy MR. Neutrophil extracellular traps protect the kidney from ascending infection and are required for a positive leukocyte dipstick test. Sci Transl Med 2024; 16:eadh5090. [PMID: 39321268 DOI: 10.1126/scitranslmed.adh5090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/10/2023] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Lower urinary tract infection (UTI) is common but only rarely complicated by pyelonephritis. However, the mechanisms preventing extension to the kidney are unclear. Here, we identified neutrophil extracellular traps (NETs) in healthy human urine that provide an antibacterial defense strategy within the urinary tract. In both in vivo murine models of UTI where uropathogenic E. coli are inoculated into the bladder and ex vivo human urine models, NETs interacted with uromodulin to form large webs that entrapped the bacteria. Peptidyl arginine deiminase 4 (PADI4) inhibition in mice blocked NETosis and resulted in progression of cystitis into pyelonephritis, suggesting that NETosis of urinary neutrophils acts to prevent bacterial ascent into the kidney. Analysis of UK Biobank data revealed that genetic variants in PADI4 that associated with increased risk of rheumatoid arthritis in multiple genome-wide association studies were consistently associated with reduced susceptibility to UTI. Last, we showed that urine dipstick testing for leukocyte esterase was negative in the presence of intact blood neutrophils but became positive when neutrophils were stimulated to NET, and this could be prevented by selective PADI4 inhibition, demonstrating that this test does not detect absolute neutrophil count, as has long been assumed, but specifically detects neutrophils that have undergone NETosis. These findings highlight the role of NETosis in preventing ascending infections in the urinary tract and improve our understanding of one of the most common clinical tests in medicine.
Collapse
Affiliation(s)
- Andrew P Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Kevin W Loudon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Matthew Routledge
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Patrick Trotter
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Eleanor Gillman
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Robin Antrobus
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - James Mccaffrey
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - David Posner
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Level 4, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- JVF Intensive Care Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona E Karet Frankl
- Department of Medical Genetics and Division of Renal Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
15
|
Delgado-Wicke P, Fernández de Córdoba-Oñate S, Roy-Vallejo E, Alegría-Carrasco E, Rodríguez-Serrano DA, Lamana A, Montes N, Nicolao-Gómez A, Carracedo-Rodríguez R, Marcos-Jiménez A, Díaz-Fernández P, Galván-Román JM, Rabes-Rodríguez L, Sanz-Alba M, Álvarez-Rodríguez J, Villa-Martí A, Rodríguez-Franco C, Villapalos-García G, Zubiaur P, Abad-Santos F, de Los Santos I, Gomariz RP, García-Vicuña R, Muñoz-Calleja C, González-Álvaro I, Fernández-Ruiz E. Genetic variants regulating the immune response improve the prediction of COVID-19 severity provided by clinical variables. Sci Rep 2024; 14:20728. [PMID: 39237611 PMCID: PMC11377536 DOI: 10.1038/s41598-024-71476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The characteristics of the host are crucial in the final outcome of COVID-19. Herein, the influence of genetic and clinical variants in COVID-19 severity was investigated in a total of 1350 patients. Twenty-one single nucleotide polymorphisms of genes involved in SARS-CoV-2 sensing as Toll-like-Receptor 7, antiviral immunity as the type I interferon signalling pathway (TYK2, STAT1, STAT4, OAS1, SOCS) and the vasoactive intestinal peptide and its receptors (VIP/VIPR1,2) were studied. To analyse the association between polymorphisms and severity, a model adjusted by age, sex and different comorbidities was generated by ordinal logistic regression. The genotypes rs8108236-AA (OR 0.12 [95% CI 0.02-0.53]; p = 0.007) and rs280519-AG (OR 0.74 [95% CI 0.56-0.99]; p = 0.03) in TYK2, and rs688136-CC (OR 0.7 [95% CI 0.5-0.99]; p = 0.046) in VIP, were associated with lower severity; in contrast, rs3853839-GG in TLR7 (OR 1.44 [95% CI 1.07-1.94]; p = 0.016), rs280500-AG (OR 1.33 [95% CI 0.97-1.82]; p = 0.078) in TYK2 and rs1131454-AA in OAS1 (OR 1.29 [95% CI 0.95-1.75]; p = 0.110) were associated with higher severity. Therefore, these variants could influence the risk of severe COVID-19.
Collapse
Affiliation(s)
- Pablo Delgado-Wicke
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Sara Fernández de Córdoba-Oñate
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Emilia Roy-Vallejo
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | | | - Amalia Lamana
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Montes
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, Boadilla del Monte, Spain
- Methodology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Ana Nicolao-Gómez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Rosa Carracedo-Rodríguez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Paula Díaz-Fernández
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - José M Galván-Román
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Laura Rabes-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Sanz-Alba
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Jesús Álvarez-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Almudena Villa-Martí
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Rodríguez-Franco
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio de Los Santos
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa P Gomariz
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Elena Fernández-Ruiz
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain.
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
16
|
Tagawa Y, Saito T, Iwai H, Sato M, Noda S, Yamamoto A, Ota M, Endo K, Koga H, Takahara Y, Sugimoto K, Sekiya I, Fujio K, Kawakami E, Mizoguchi F, Yasuda S. ARID5B is a negative modulator of IL-6 production in rheumatoid arthritis synovial fibroblasts. Immunol Med 2024; 47:176-185. [PMID: 38747454 DOI: 10.1080/25785826.2024.2346956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 08/23/2024] Open
Abstract
Recent single-cell RNA-sequencing analysis of rheumatoid arthritis (RA) synovial tissues revealed the heterogeneity of RA synovial fibroblasts (SFs) with distinct functions such as high IL-6 production. The molecular mechanisms responsible for high IL-6 production will become a promising drug target of RASFs to treat RA. In this study, we performed siRNA screening of 65 transcription factors (TFs) differentially expressed among RASF subsets to identify TFs involved in IL-6 production. The siRNA screening identified 7 TFs including ARID5B, a RA risk gene, that affected IL-6 production. Both long and short isoforms of ARID5B were expressed and negatively regulated by TNF-α in RASFs. The siRNA knockdown and lentiviral overexpression of long and short isoforms of ARID5B revealed that the long isoform suppressed IL-6 production stimulated with TNF-α. eQTL analysis using 58 SFs demonstrated that RA risk allele, rs10821944, in intron 4 of the ARID5B gene had a trend of eQTL effects to the expression of long isoform of ARID5B in SFs treated with TNF-α. ARID5B was found to be a negative modulator of IL-6 production in RASFs. The RA risk allele of ARID5B intron may cause high IL-6 production, suggesting that ARID5B will become a promising drug target to treat RA.
Collapse
Affiliation(s)
- Yasuhiro Tagawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideyuki Iwai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motohiko Sato
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Seiji Noda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akio Yamamoto
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | | | - Kazutaka Sugimoto
- Department of Orthopedics, Sonodakai Joint Replacement Center Hospital
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiryo Kawakami
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science Project (ADSP), RIKEN Information R&D and Strategy Headquarters, Yokohama, Kanagawa, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Fumitaka Mizoguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
17
|
Wang D, Chen W, Wang Y, Yu J, Bai Y, Luo S, Song C, Wang M, Yu Y, Li Z, Han Y, Zhen Q, Sun L. Genome-Wide Meta-Analysis Identifies 11 Susceptibility Variants of Vitiligo in the Chinese Han Population. J Invest Dermatol 2024; 144:1843-1849.e1. [PMID: 38286188 DOI: 10.1016/j.jid.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Vitiligo is an autoimmune disease involving loss of melanocytes. Although several genetic studies have confirmed that genetic factors play an important role, its pathogenesis remains incompletely characterized. In this study, a genome-wide meta-analysis was conducted to search for more susceptibility variants of vitiligo. Tang et al performed a GWAS for cohort I (1117 vitiligo cases and 1701 healthy controls) previously, and we conducted a GWAS for cohort II (3323 vitiligo cases and 7186 healthy controls) in this study, with the results subjected to a genome-wide meta-analysis and linkage disequilibrium analysis. We identify, to our knowledge, 11 previously unreported susceptibility variants, of which 6 variants are located in the intronic regions, and the remaining 5 variants are located within intergenic regions between genes. In addition, the results of polygenic risk score show that the best evaluated effect for target data is among significant SNVs of the base data. The susceptibility genes of vitiligo are mainly enriched in the immune-related functions and pathways. The susceptibility variants expand the role of genetic factors associated with vitiligo. The bioinformatics analysis for risk genes provides further insight into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Daiyue Wang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Weiwei Chen
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yirui Wang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jing Yu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yuanming Bai
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Sihan Luo
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Can Song
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Minhao Wang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yanxia Yu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhuo Li
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yang Han
- Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China; School of Public Health, North China University of Science and Technology, Tangshan, China; Health Science Center, North China University of Science and Technology, Tangshan, China
| | - Qi Zhen
- Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China; School of Public Health, North China University of Science and Technology, Tangshan, China; Health Science Center, North China University of Science and Technology, Tangshan, China.
| | - Liangdan Sun
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Department of Dermatology, North China University of Science and Technology Affiliated Hospital, Tangshan, China; School of Public Health, North China University of Science and Technology, Tangshan, China; Health Science Center, North China University of Science and Technology, Tangshan, China; Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China; Inflammation and Immune Diseases Laboratory, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
18
|
Chasov V, Ganeeva I, Zmievskaya E, Davletshin D, Gilyazova E, Valiullina A, Bulatov E. Cell-Based Therapy and Genome Editing as Emerging Therapeutic Approaches to Treat Rheumatoid Arthritis. Cells 2024; 13:1282. [PMID: 39120313 PMCID: PMC11312096 DOI: 10.3390/cells13151282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints. Although much remains unknown about the pathogenesis of RA, there is evidence that impaired immune tolerance and the development of RA are related. And it is precisely the restoration of immune tolerance at the site of the inflammation that is the ultimate goal of the treatment of RA. Over the past few decades, significant progress has been made in the treatment of RA, with higher rates of disease remission and improved long-term outcomes. Unfortunately, despite these successes, the proportion of patients with persistent, difficult-to-treat disease remains high, and the task of improving our understanding of the basic mechanisms of disease development and developing new ways to treat RA remains relevant. This review focuses on describing new treatments for RA, including cell therapies and gene editing technologies that have shown potential in preclinical and early clinical trials. In addition, we discuss the opportunities and limitations associated with the use of these new approaches in the treatment of RA.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119048, Russia
| |
Collapse
|
19
|
Terashima A, Ono K, Omata Y, Tanaka S, Saito T. Inflammatory diseases causing joint and bone destruction: rheumatoid arthritis and hemophilic arthropathy. J Bone Miner Metab 2024; 42:455-462. [PMID: 38856919 DOI: 10.1007/s00774-024-01520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Various diseases and conditions cause joint disorders. Osteoarthritis (OA) is characterized by the degeneration of articular cartilage, synovitis, and anabolic changes in surrounding bone tissues. In contrast, rheumatoid arthritis (RA) and hemophilic arthropathy (HA) display marked destruction of bone tissues caused by synovitis. RA is a representative autoimmune disease. The primary tissue of RA pathogenesis is the synovial membrane and involves various immune cells that produce catabolic cytokines and enzymes. Hemophilia is a genetic disorder caused by a deficiency in blood clotting factors. Recurrent intra-articular bleeding leads to chronic synovitis through excessive iron deposition and results in the destruction of affected joints. Although the triggers for these two joint diseases are completely different, many cytokines and enzymes are common in the pathogenesis of both RA and HA. This review focuses on the similarities between joint and bone destruction in RA and HA. The insights may be useful in developing better treatments for hemophilia patients with arthropathy and osteoporosis by leveraging advanced therapeutics for RA.
Collapse
Affiliation(s)
- Asuka Terashima
- Bone and Cartilage Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Kumiko Ono
- Department of Joint Surgery, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yasunori Omata
- Bone and Cartilage Regenerative Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Sakae Tanaka
- Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
20
|
Stabach PR, Sims D, Gomez-Bañuelos E, Zehentmeier S, Dammen-Brower K, Bernhisel A, Kujawski S, Lopez SG, Petri M, Goldman DW, Lester ER, Le Q, Ishaq T, Kim H, Srivastava S, Kumar D, Pereira JP, Yarema KJ, Koumpouras F, Andrade F, Braddock DT. A dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models. JCI Insight 2024; 9:e177003. [PMID: 38888971 PMCID: PMC11383374 DOI: 10.1172/jci.insight.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
A defining feature of systemic lupus erythematosus (SLE) is loss of tolerance to self-DNA, and deficiency of DNASE1L3, the main enzyme responsible for chromatin degradation in blood, is also associated with SLE. This association can be found in an ultrarare population of pediatric patients with DNASE1L3 deficiency who develop SLE, adult patients with loss-of-function variants of DNASE1L3 who are at a higher risk for SLE, and patients with sporadic SLE who have neutralizing autoantibodies against DNASE1L3. To mitigate the pathogenic effects of inherited and acquired DNASE1L3 deficiencies, we engineered a long-acting enzyme biologic with dual DNASE1/DNASE1L3 activity that is resistant to DNASE1 and DNASE1L3 inhibitors. Notably, we found that the biologic prevented the development of lupus in Dnase1-/-Dnase1L3-/- double-knockout mice and rescued animals from death in pristane-induced lupus. Finally, we confirmed that the human isoform of the enzyme biologic was not recognized by autoantibodies in SLE and efficiently degraded genomic and mitochondrial cell-free DNA, as well as microparticle DNA, in SLE plasma. Our findings suggest that autoimmune diseases characterized by aberrant DNA accumulation, such as SLE, can be effectively treated with a replacement DNASE tailored to bypass pathogenic mechanisms, both genetic and acquired, that restrict DNASE1L3 activity.
Collapse
Affiliation(s)
- Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dominique Sims
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eduardo Gomez-Bañuelos
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kris Dammen-Brower
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Bernhisel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophia Kujawski
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sam G. Lopez
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W. Goldman
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Quan Le
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tayyaba Ishaq
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hana Kim
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shivani Srivastava
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deepika Kumar
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joao P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin J. Yarema
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fotios Koumpouras
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Dong Q, Wu X, Mok T, Cai G, Zha Z, She G, Chen J. Identification of therapeutic targets and medicines for comorbid Crohn's disease and rheumatoid arthritis: A comprehensive analysis. Heliyon 2024; 10:e32406. [PMID: 38933947 PMCID: PMC11200351 DOI: 10.1016/j.heliyon.2024.e32406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Objective The incidence of Crohn's disease (CD) and rheumatoid arthritis (RA) co-morbidity, as well as the number of individuals affected, is on the rise due to their shared molecular and cellular factors. This study aimed to identify potential therapeutic targets and medicines for comorbid CD and RA. Methods We integrated single-cell RNA sequencing, Mendelian randomization, and colocalization analysis results from public databases to analyse immune cell subgroups in CD and RA patients and identify candidate therapeutic targets. We further screened potential medicines for the identified candidate targets using the Comparative Toxicogenomics Database (CTD) and molecular docking and molecular dynamics simulations. Results The proportion of CD8 effector memory T cells (Tem) was consistently elevated in the peripheral blood mononuclear cells (PBMCs) of both CD and RA patients. MYBL1 had a causal effect on the onset of both CD (OR = 1.23; 95 % CI, 1.05-1.45; P = 0.046) and RA (OR = 1.45; 95 % CI, 1.14-1.85; P = 0.04). Four potential therapeutic molecules were retrieved from the CTD database, among which tretinoin (docking score: -6.3 kcal/mol) showed the best potential. Conclusion Our comprehensive analysis suggests that CD8 Tem cells are a key cell group in comorbid RA and CD and that MYBL1 has a causal effect. Tretinoin was identified as a potential targeted therapeutic drug, which is of great clinical research value.
Collapse
Affiliation(s)
- Qiu Dong
- Center for Bone, Joint and Sports Medicine, The First Affiliated Hospital of Jinan University, Guang Zhou, 510665, China
| | - Xiaoting Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guang Zhou, 510665, China
| | - Tsz Mok
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Gaohan Cai
- Center for Bone, Joint and Sports Medicine, The First Affiliated Hospital of Jinan University, Guang Zhou, 510665, China
| | - Zhengang Zha
- Center for Bone, Joint and Sports Medicine, The First Affiliated Hospital of Jinan University, Guang Zhou, 510665, China
| | - Guorong She
- Center for Bone, Joint and Sports Medicine, The First Affiliated Hospital of Jinan University, Guang Zhou, 510665, China
| | - Junyuan Chen
- Center for Bone, Joint and Sports Medicine, The First Affiliated Hospital of Jinan University, Guang Zhou, 510665, China
| |
Collapse
|
22
|
Zhan ZQ, Huang ZM, Lan QW, Luo YH, Li JX, Zheng YF, Chen YZ, Chen PZ, Luo TY, Sun B, Cheng ZJ. Integrated multi-omics analyses revealed the association between rheumatoid arthritis and colorectal cancer: MYO9A as a shared gene signature and an immune-related therapeutic target. BMC Cancer 2024; 24:714. [PMID: 38858644 PMCID: PMC11165834 DOI: 10.1186/s12885-024-12466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Our study aims to explore the relationship, shared gene signature, and the underlying mechanisms that connect rheumatoid arthritis (RA) to colorectal cancer (CRC). METHODS Mendelian randomization (MR) analysis was conducted to assess the causality between RA and CRC. Summary statistic data-based Mendelian randomization (SMR) leveraging eQTL data was employed to identify the CRC-related causal genes. Integrated analyses of single-cell RNA sequencing and bulk RNA sequencing were employed to comprehensively investigate the shared gene signature and potential mechanisms underlying the pathogenesis of both RA and CRC. Predictive analysis of the shared hub gene in CRC immunotherapy response was performed. Pan-cancer analyses were conducted to explore the potential role of MYO9A in 33 types of human tumors. RESULTS MR analysis suggested that RA might be associated with a slight increased risk of CRC (Odds Ratio = 1.04, 95% Confidence Interval = 1.01-1.07, P = 0.005). SMR analysis combining transcriptome analyses identified MYO9A as a causal gene in CRC and a shared gene signature in both RA and CRC. MYO9A may contribute to tumor suppression, while downregulation of MYO9A may impact CRC tumorigenesis by disrupting epithelial polarity and architecture, resulting in a worse prognosis in CRC. Additionally, MYO9A shows promise as a powerful predictive biomarker for cancer prognosis and immunotherapy response in CRC. Pan-cancer analyses demonstrated MYO9A may have a protective role in the occurrence and progression of various human cancers. CONCLUSION RA might be associated with a slight increased risk of CRC. MYO9A is a shared gene signature and a potential immune-related therapeutic target for both CRC and RA. Targeting the MYO9A-mediated loss of polarity and epithelial architecture could be a novel therapeutic approach for CRC.
Collapse
Affiliation(s)
- Zhi-Qing Zhan
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Min Huang
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yu-Hua Luo
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia-Xin Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Fang Zheng
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ying-Zhou Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei-Zhen Chen
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tian-Ye Luo
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Zhang J, Zhou C, Guan S. Association Between Rheumatoid Arthritis and Clonal Hematopoiesis: A Mendelian Randomization Study. Twin Res Hum Genet 2024:1-5. [PMID: 38828552 DOI: 10.1017/thg.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Immunity activation and inflammation are the main characteristics of rheumatoid arthritis and clonal hematopoiesis. However, it remains unclear whether rheumatoid arthritis increase the risk of clonal hematopoiesis. Here, a Mendelian randomization (MR) analysis was conduct to explore the causal effects of rheumatoid arthritis on clonal hematopoiesis. Summary statistics data of rheumatoid arthritis (13,838 cases and 33,742 controls) and clonal hematopoiesis (10,203 cases and 173,918 controls) derived from a genomewide association study were selected to analyze. We selected inverse-variance weighted, MR-Egger, weighted median, simple mode, and weighted mode to evaluate the causal effect of rheumatoid arthritis on clonal hematopoiesis. The two-sample MR analysis suggested a strong causal relationship between rheumatoid arthritis and clonal hematopoiesis by inverse-variance weighted (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039706) and weighted median (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039518447) methods. No significant pleiotropy or heterogeneity was found in the sensitivity analysis. These results supported a potentially causal relationship between rheumatoid arthritis and clonal hematopoiesis, and the exposure of rheumatoid arthritis increased the risks of clonal hematopoiesis. Our findings highlight the importance of how chronic inflammation and immune activation induced rheumatoid arthritis enhances the risks of clonal hematopoiesis, and that early intervention with rheumatoid arthritis patients might reduce the clonal hematopoiesis risks in rheumatoid arthritis patients. Moreover, our study provides clues for prediction of risk factors and potential mechanisms of clonal hematopoiesis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmacy, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun Zhou
- School of Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
| | - Shaoxing Guan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Kasher M, Freidin MB, Williams FMK, Livshits G, CHARGE Inflammation Working Group. GlycA and CRP Are Genetically Correlated: Insight into the Genetic Architecture of Inflammageing. Biomolecules 2024; 14:563. [PMID: 38785970 PMCID: PMC11117775 DOI: 10.3390/biom14050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammageing is a condition of perpetual low-grade inflammation induced by ageing. Inflammageing may be predicted by the C-reactive protein (CRP) or by a recently described biomarker which measures N-glycosylated side chains of the carbohydrate component of several acute-phase proteins known as GlycA. The objective of this study was to examine in depth the genetic relationships between CRP and GlycA as well as between each of them and other selected cytokines, which may shed light on the mechanisms of inflammageing. Using the Olink 96 Inflammation panel, data on inflammatory mediators for 1518 twins from the TwinsUK dataset were acquired. Summary statistics for genome-wide association studies for several cytokines as well as CRP and GlycA were collected from public sources. Extensive genetic correlation analyses, colocalization and genetic enrichment analyses were carried out to detect the shared genetic architecture between GlycA and CRP. Mendelian randomization was carried out to assess potential causal relationships. GlycA predicted examined cytokines with a magnitude twice as great as that of CRP. GlycA and CRP were significantly genetically correlated (Rg = 0.4397 ± 0.0854, p-value = 2.60 × 10-7). No evidence of a causal relationship between GlycA and CRP, or between these two biomarkers and the cytokines assessed was obtained. However, the aforementioned relationships were explained well by horizontal pleiotropy. Five exonic genetic variants annotated to five genes explain the shared genetic architecture observed between GlycA and CRP: IL6R, GCKR, MLXIPL, SERPINA1, and MAP1A. GlycA and CRP possess a shared genetic architecture, but the relationship between them appears to be modest, which may imply the promotion of differing inflammatory pathways. GlycA appears to be a more robust predictor of cytokines compared to CRP.
Collapse
Affiliation(s)
- Melody Kasher
- Department of Morphological Sciences, Adelson Medical School, Ariel University, Ariel 40700, Israel;
| | - Maxim B. Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK;
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson Medical School, Ariel University, Ariel 40700, Israel;
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK;
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
25
|
Lincoln MR, Connally N, Axisa PP, Gasperi C, Mitrovic M, van Heel D, Wijmenga C, Withoff S, Jonkers IH, Padyukov L, Rich SS, Graham RR, Gaffney PM, Langefeld CD, Vyse TJ, Hafler DA, Chun S, Sunyaev SR, Cotsapas C. Genetic mapping across autoimmune diseases reveals shared associations and mechanisms. Nat Genet 2024; 56:838-845. [PMID: 38741015 DOI: 10.1038/s41588-024-01732-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Autoimmune and inflammatory diseases are polygenic disorders of the immune system. Many genomic loci harbor risk alleles for several diseases, but the limited resolution of genetic mapping prevents determining whether the same allele is responsible, indicating a shared underlying mechanism. Here, using a collection of 129,058 cases and controls across 6 diseases, we show that ~40% of overlapping associations are due to the same allele. We improve fine-mapping resolution for shared alleles twofold by combining cases and controls across diseases, allowing us to identify more expression quantitative trait loci driven by the shared alleles. The patterns indicate widespread sharing of pathogenic mechanisms but not a single global autoimmune mechanism. Our approach can be applied to any set of traits and is particularly valuable as sample collections become depleted.
Collapse
Affiliation(s)
- Matthew R Lincoln
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Division of Neurology at the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Noah Connally
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mitja Mitrovic
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - David van Heel
- Blizard Institute, Queen Mary University of London, London, UK
| | - Cisca Wijmenga
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Iris H Jonkers
- Department of Genetics at the University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonid Padyukov
- Division of Rheumatology at the Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Robert R Graham
- Maze Therapeutics, South San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, Kings College London, London, UK
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Sung Chun
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chris Cotsapas
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Vesalius Therapeutics, Cambridge, MA, USA.
| |
Collapse
|
26
|
Kronzer VL, Sparks JA, Raychaudhuri S, Cerhan JR. Low-frequency and rare genetic variants associated with rheumatoid arthritis risk. Nat Rev Rheumatol 2024; 20:290-300. [PMID: 38538758 DOI: 10.1038/s41584-024-01096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Rheumatoid arthritis (RA) has an estimated heritability of nearly 50%, which is particularly high in seropositive RA. HLA alleles account for a large proportion of this heritability, in addition to many common single-nucleotide polymorphisms with smaller individual effects. Low-frequency and rare variants, such as those captured by next-generation sequencing, can also have a large role in heritability in some individuals. Rare variant discovery has informed the development of drugs such as inhibitors of PCSK9 and Janus kinases. Some 34 low-frequency and rare variants are currently associated with RA risk. One variant (19:10352442G>C in TYK2) was identified in five separate studies, and might therefore represent a promising therapeutic target. Following a set of best practices in future studies, including studying diverse populations, using large sample sizes, validating RA and serostatus, replicating findings, adjusting for other variants and performing functional assessment, could help to ensure the relevance of identified variants. Exciting opportunities are now on the horizon for genetics in RA, including larger datasets and consortia, whole-genome sequencing and direct applications of findings in the management, and especially treatment, of RA.
Collapse
Affiliation(s)
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
27
|
Perera J, Delrosso CA, Nerviani A, Pitzalis C. Clinical Phenotypes, Serological Biomarkers, and Synovial Features Defining Seropositive and Seronegative Rheumatoid Arthritis: A Literature Review. Cells 2024; 13:743. [PMID: 38727279 PMCID: PMC11083059 DOI: 10.3390/cells13090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder which can lead to long-term joint damage and significantly reduced quality of life if not promptly diagnosed and adequately treated. Despite significant advances in treatment, about 40% of patients with RA do not respond to individual pharmacological agents and up to 20% do not respond to any of the available medications. To address this large unmet clinical need, several recent studies have focussed on an in-depth histological and molecular characterisation of the synovial tissue to drive the application of precision medicine to RA. Currently, RA patients are clinically divided into "seropositive" or "seronegative" RA, depending on the presence of routinely checked antibodies. Recent work has suggested that over the last two decades, long-term outcomes have improved significantly in seropositive RA but not in seronegative RA. Here, we present up-to-date differences in epidemiology, clinical features, and serological biomarkers in seronegative versus seropositive RA and discuss how histological and molecular synovial signatures, revealed by recent large synovial biopsy-based clinical trials, may be exploited to refine the classification of RA patients, especially in the seronegative group.
Collapse
Affiliation(s)
- James Perera
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Chiara Aurora Delrosso
- Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Biomedical Sciences, Humanitas University & IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
28
|
Paquette SE, Oduor CI, Gaulke A, Stefan S, Bronk P, Dafonseca V, Barulin N, Lee C, Carley R, Morrison AR, Choi BR, Bailey JA, Plavicki JS. Loss of developmentally derived Irf8+ macrophages promotes hyperinnervation and arrhythmia in the adult zebrafish heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589909. [PMID: 38659956 PMCID: PMC11042273 DOI: 10.1101/2024.04.17.589909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Recent developments in cardiac macrophage biology have broadened our understanding of the critical functions of macrophages in the heart. As a result, there is further interest in understanding the independent contributions of distinct subsets of macrophage to cardiac development and function. Here, we demonstrate that genetic loss of interferon regulatory factor 8 (Irf8)-positive embryonic-derived macrophages significantly disrupts cardiac conduction, chamber function, and innervation in adult zebrafish. At 4 months post-fertilization (mpf), homozygous irf8st96/st96 mutants have significantly shortened atrial action potential duration and significant differential expression of genes involved in cardiac contraction. Functional in vivo assessments via electro- and echocardiograms at 12 mpf reveal that irf8 mutants are arrhythmogenic and exhibit diastolic dysfunction and ventricular stiffening. To identify the molecular drivers of the functional disturbances in irf8 null zebrafish, we perform single cell RNA sequencing and immunohistochemistry, which reveal increased leukocyte infiltration, epicardial activation, mesenchymal gene expression, and fibrosis. Irf8 null hearts are also hyperinnervated and have aberrant axonal patterning, a phenotype not previously assessed in the context of cardiac macrophage loss. Gene ontology analysis supports a novel role for activated epicardial-derived cells (EPDCs) in promoting neurogenesis and neuronal remodeling in vivo. Together, these data uncover significant cardiac abnormalities following embryonic macrophage loss and expand our knowledge of critical macrophage functions in heart physiology and governing homeostatic heart health.
Collapse
Affiliation(s)
- Shannon E. Paquette
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Cliff I. Oduor
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Amy Gaulke
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Sabina Stefan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Peter Bronk
- Cardiovascular Research Center, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Vanny Dafonseca
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Nikolai Barulin
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Cadence Lee
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
| | - Rachel Carley
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Jeffrey A. Bailey
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Jessica S. Plavicki
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
29
|
Naito S, Tanaka H, Jiang JJ, Tarumi M, Hashimoto A, Tanaka Y, Murakami K, Kubota SI, Hojyo S, Hashimoto S, Murakami M. DDX6 is involved in the pathogenesis of inflammatory diseases via NF-κB activation. Biochem Biophys Res Commun 2024; 703:149666. [PMID: 38377944 DOI: 10.1016/j.bbrc.2024.149666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
The IL-6 amplifier was originally discovered as a mechanism for the enhanced activation of NF-κB in non-immune cells. In the IL-6 amplifier, IL-6-STAT3 and NF-κB stimulation is followed by an excessive production of IL-6, chemokines, and growth factors to develop chronic inflammation preceding the development of inflammatory diseases. Previously, using a shRNA-mediated genome-wide screening, we found that DEAD-Box Helicase 6 (DDX6) is a candidate positive regulator of the amplifier. Here, we investigate whether DDX6 is involved in the pathogenesis of inflammatory diseases via the IL-6 amplifier. We found that DDX6-silencing in non-immune cells suppressed the NF-κB pathway and inhibited activation of the IL-6 amplifier, while the forced expression of DDX6 enhanced NF-κB promoter activity independent of the RNA helicase activity of DDX6. The imiquimod-mediated dermatitis model was suppressed by the siRNA-mediated gene downregulation of DDX6. Furthermore, silencing DDX6 significantly reduced the TNF-α-induced phosphorylation of p65/RelA and IκBα, nuclear localization of p65, and the protein levels of IκBα. Mechanistically, DDX6 is strongly associated with p65 and IκBα, but not TRADD, RIP, or TRAF2, suggesting a novel function of DDX6 as an adaptor protein in the NF-κB pathway. Thus, our findings demonstrate a possible role of DDX6 beyond RNA metabolism and suggest DDX6 is a therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Seiichiro Naito
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Tarumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
30
|
Yuan W, Li X, Wang G, Qu B, Zhao F. Association of autoimmune and allergic diseases with senile cataract: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1325868. [PMID: 38585265 PMCID: PMC10995295 DOI: 10.3389/fimmu.2024.1325868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Background Many observational studies have been reported that patients with autoimmune or allergic diseases seem to have a higher risk of developing senile cataract, but the views are not consistent. In order to minimize the influence of reverse causality and potential confounding factors, we performed Mendelian Randomization (MR) analysis to investigate the genetic causal associations between autoimmune, allergic diseases and senile cataract. Methods Single nucleotide polymorphisms associated with ten common autoimmune and allergic diseases were obtained from the IEU Open genome-wide association studies (GWAS) database. Summary-level GWAS statistics for clinically diagnosed senile cataract were obtained from the FinnGen research project GWAS, which consisted of 59,522 individuals with senile cataracts and 312,864 control individuals. MR analysis was conducted using mainly inverse variance weighted (IVW) method and further sensitivity analysis was performed to test robustness. Results As for ten diseases, IVW results confirmed that type 1 diabetes (OR = 1.06; 95% CI = 1.05-1.08; p = 2.24×10-12), rheumatoid arthritis (OR = 1.05; 95% CI = 1.02-1.08; p = 1.83×10-4), hypothyroidism (OR = 2.4; 95% CI = 1.42-4.06; p = 1.12×10-3), systemic lupus erythematosus (OR = 1.02; 95% CI = 1.01-1.03; p = 2.27×10-3), asthma (OR = 1.02; 95% CI = 1.01-1.03; p = 1.2×10-3) and allergic rhinitis (OR = 1.07; 95% CI = 1.02-1.11; p = 2.15×10-3) were correlated with the risk of senile cataract. Celiac disease (OR = 1.04; 95% CI = 1.01-1.08; P = 0.0437) and atopic dermatitis (OR = 1.05; 95% CI = 1.01-1.10; P = 0.0426) exhibited a suggestive connection with senile cataract after Bonferroni correction. These associations are consistent across weighted median and MR Egger methods, with similar causal estimates in direction and magnitude. Sensitivity analysis further proved that these associations were reliable. Conclusions The results of the MR analysis showed that there were causal relationships between type 1 diabetes, rheumatoid arthritis, hypothyroidism, systemic lupus erythematosus, asthma, allergic rhinitis and senile cataract. To clarify the possible role of autoimmune and allergy in the pathophysiology of senile cataract, further studies are needed.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Xiangrui Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Guan Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Bo Qu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| |
Collapse
|
31
|
Tangtanatakul P, Lei Y, Jaiwan K, Yang W, Boonbangyang M, Kunhapan P, Sodsai P, Mahasirimongkol S, Pisitkun P, Yang Y, Eu-Ahsunthornwattana J, Aekplakorn W, Jinawath N, Neelapaichit N, Hirankarn N, Wang YF. Association of genetic variation on X chromosome with systemic lupus erythematosus in both Thai and Chinese populations. Lupus Sci Med 2024; 11:e001061. [PMID: 38458775 DOI: 10.1136/lupus-2023-001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVES X chromosome has been considered as a risk factor for SLE, which is a prototype of autoimmune diseases with a significant sex difference (female:male ratio is around 9:1). Our study aimed at exploring the association of genetic variants in X chromosome and investigating the influence of trisomy X in the development of SLE. METHODS X chromosome-wide association studies were conducted using data from both Thai (835 patients with SLE and 2995 controls) and Chinese populations (1604 patients with SLE and 3324 controls). Association analyses were performed separately in females and males, followed by a meta-analysis of the sex-specific results. In addition, the dosage of X chromosome in females with SLE were also examined. RESULTS Our analyses replicated the association of TMEM187-IRAK1-MECP2, TLR7, PRPS2 and GPR173 loci with SLE. We also identified two loci suggestively associated with SLE. In addition, making use of the difference in linkage disequilibrium between Thai and Chinese populations, a synonymous variant in TMEM187 was prioritised as a likely causal variant. This variant located in an active enhancer of immune-related cells, with the risk allele associated with decreased expression level of TMEM187. More importantly, we identified trisomy X (47,XXX) in 5 of 2231 (0.22%) females with SLE. The frequency is significantly higher than that found in the female controls (0.08%; two-sided exact binomial test P=0.002). CONCLUSION Our study confirmed previous SLE associations in X chromosome, and identified two loci suggestively associated with SLE. More importantly, our study indicated a higher risk of SLE for females with trisomy X.
Collapse
Affiliation(s)
- Pattarin Tangtanatakul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yao Lei
- Department of Paediatrics and Adolescent Medicine, Hong Kong University, Hong Kong, People's Republic of China
| | - Krisana Jaiwan
- Master of Sciences Program in Molecular Science of Medical Microbiology and Immunology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Hong Kong University, Hong Kong, People's Republic of China
| | - Manon Boonbangyang
- National Biobank of Thailand (NBT), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Punna Kunhapan
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Pimpayao Sodsai
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Mahidol University Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Yi Yang
- Department of Nephrology, Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jakris Eu-Ahsunthornwattana
- Department of Community Medicine, Mahidol University Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Wichai Aekplakorn
- Department of Community Medicine, Mahidol University Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Mahidol University Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakornpathom, Thailand
| | - Nareemarn Neelapaichit
- Ramathibodi School of Nursing, Mahidol University Faculty of Medicine Ramathibodi Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Centre of Excellent in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong-Fei Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
32
|
Cho J, Kim J, Song JS, Uh Y, Lee JH, Lee HS. Whole-Exome Sequencing and Analysis of the T Cell Receptor β and γ Repertoires in Rheumatoid Arthritis. Diagnostics (Basel) 2024; 14:529. [PMID: 38473001 DOI: 10.3390/diagnostics14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigated the potential genetic variants of rheumatoid arthritis (RA) using whole-exome sequencing (WES) and evaluated the disease course using T cell receptor (TCR) repertoire analysis. Fourteen patients with RA and five healthy controls (HCs) were enrolled. For the RA patient group, only treatment-naïve patients were recruited, and data were collected at baseline as well as at 6 and 12 months following the initiation of the disease-modifying antirheumatic drug (DMARD) treatment. Laboratory data and disease parameters were also collected. Genetic variants were detected using WES, and the diversity of the TCR repertoire was assessed using the Shannon-Wiener diversity index. While some variants were detected by WES, their clinical significance should be confirmed by further studies. The diversity of the TCR repertoire in the RA group was lower than that in the HCs; however, after DMARD treatment, it increased significantly. The diversity was negatively correlated with the laboratory findings and disease measures with statistical significance. Variants with a potential for RA pathogenesis were identified, and the clinical significance of the TCR repertoire was evaluated in Korean patients with RA. Further studies are required to confirm the findings of the present study.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Juwon Kim
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Ju Sun Song
- GC Genome, GC Labs, Yongin 16924, Republic of Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hyang Sun Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
33
|
Yamada S, Nagafuchi Y, Fujio K. Pathophysiology and stratification of treatment-resistant rheumatoid arthritis. Immunol Med 2024; 47:12-23. [PMID: 37462450 DOI: 10.1080/25785826.2023.2235734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/09/2023] [Indexed: 02/23/2024] Open
Abstract
Early diagnosis and timely therapeutic intervention are clinical challenges of rheumatoid arthritis (RA), especially for treatment-resistant or difficult-to-treat patients. Little is known about the immunological mechanisms involved in refractory RA. In this review, we summarize previous research findings on the immunological mechanisms of treatment-resistant RA. Genetic prediction of treatment-resistant RA is challenging. Patients with and without anti-cyclic citrullinated peptide autoantibodies are considered part of distinct subgroups, especially regarding long-term clinical prognosis and treatment responses. B cells, T cells and other immune cells and fibroblasts are of pathophysiological importance and are associated with treatment responses. Finally, we propose a new hypothesis that stratifies patients with RA into two subgroups with distinct immunological pathologies based on our recent immunomics analysis of RA. One RA subgroup with a favorable prognosis is characterized by increased interferon signaling. Another subgroup with a worse prognosis is characterized by enhanced acquired immune responses. Increases in dendritic cell precursors and diversified autoreactive anti-modified protein antibodies may have pathophysiological roles, especially in the latter subgroup. These findings that improve treatment response predictions might contribute to future precision medicine for RA.
Collapse
Affiliation(s)
- Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Cao X, Liang X, Zhang S, Sha Q. Gene selection by incorporating genetic networks into case-control association studies. Eur J Hum Genet 2024; 32:270-277. [PMID: 36529820 PMCID: PMC10923938 DOI: 10.1038/s41431-022-01264-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Large-scale genome-wide association studies (GWAS) have been successfully applied to a wide range of genetic variants underlying complex diseases. The network-based regression approach has been developed to incorporate a biological genetic network and to overcome the challenges caused by the computational efficiency for analyzing high-dimensional genomic data. In this paper, we propose a gene selection approach by incorporating genetic networks into case-control association studies for DNA sequence data or DNA methylation data. Instead of using traditional dimension reduction techniques such as principal component analyses and supervised principal component analyses, we use a linear combination of genotypes at SNPs or methylation values at CpG sites in a gene to capture gene-level signals. We employ three linear combination approaches: optimally weighted sum (OWS), beta-based weighted sum (BWS), and LD-adjusted polygenic risk score (LD-PRS). OWS and LD-PRS are supervised approaches that depend on the effect of each SNP or CpG site on the case-control status, while BWS can be extracted without using the case-control status. After using one of the linear combinations of genotypes or methylation values in each gene to capture gene-level signals, we regularize them to perform gene selection based on the biological network. Simulation studies show that the proposed approaches have higher true positive rates than using traditional dimension reduction techniques. We also apply our approaches to DNA methylation data and UK Biobank DNA sequence data for analyzing rheumatoid arthritis. The results show that the proposed methods can select potentially rheumatoid arthritis related genes that are missed by existing methods.
Collapse
Affiliation(s)
- Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA
| | - Xiaoyu Liang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
35
|
Gao Y, Zhang Y, Liu X. Rheumatoid arthritis: pathogenesis and therapeutic advances. MedComm (Beijing) 2024; 5:e509. [PMID: 38469546 PMCID: PMC10925489 DOI: 10.1002/mco2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the unresolved synovial inflammation for tissues-destructive consequence, which remains one of significant causes of disability and labor loss, affecting about 0.2-1% global population. Although treatments with disease-modifying antirheumatic drugs (DMARDs) are effective to control inflammation and decrease bone destruction, the overall remission rates of RA still stay at a low level. Therefore, uncovering the pathogenesis of RA and expediting clinical transformation are imminently in need. Here, we summarize the immunological basis, inflammatory pathways, genetic and epigenetic alterations, and metabolic disorders in RA, with highlights on the abnormality of immune cells atlas, epigenetics, and immunometabolism. Besides an overview of first-line medications including conventional DMARDs, biologics, and small molecule agents, we discuss in depth promising targeted therapies under clinical or preclinical trials, especially epigenetic and metabolic regulators. Additionally, prospects on precision medicine based on synovial biopsy or RNA-sequencing and cell therapies of mesenchymal stem cells or chimeric antigen receptor T-cell are also looked forward. The advancements of pathogenesis and innovations of therapies in RA accelerates the progress of RA treatments.
Collapse
Affiliation(s)
- Ying Gao
- Department of RheumatologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yunkai Zhang
- Naval Medical CenterNaval Medical UniversityShanghaiChina
| | - Xingguang Liu
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
36
|
Zervou MI, Tarlatzis BC, Grimbizis GF, Spandidos DA, Niewold TB, Goulielmos GN. Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). Int J Mol Med 2024; 53:20. [PMID: 38186322 PMCID: PMC10781419 DOI: 10.3892/ijmm.2024.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.
Collapse
Affiliation(s)
- Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Basil C. Tarlatzis
- First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Grigoris F. Grimbizis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, 56403 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Timothy B. Niewold
- Barbara Volcker Center for Women and Rheumatic Disease, New York, NY 10021, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
37
|
Hou Y, Si K, Yang J, Liu T, Abdelazeem B, Theerasuwipakorn N, Zhao J, Shen Z. Association between regulatory T cells and ischemic heart disease: a Mendelian randomization study. J Thorac Dis 2024; 16:564-572. [PMID: 38410592 PMCID: PMC10894418 DOI: 10.21037/jtd-23-1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND An imbalance of innate and acquired immune responses is significantly involved in the pathophysiology of coronary atherosclerosis and the occurrence of ischemic heart disease (IHD). Regulatory T cells (Tregs) play an essential regulatory role in atherosclerotic plaque formation and maintenance; therefore, dysfunction of Tregs triggers the formation of atherosclerotic plaques and accelerates their progression. However, due to the inherent limitations of observational research, clinical evidence is limited concerning the relationship between the variation in peripheral Tregs and the risk of IHD, and the cause-and-effect relationship between these factors is unclear. Mendelian randomization (MR) uses genetic variation as a proxy for exposure and can be used to inferentially determine the causal effect of exposure on outcomes. We thus used MR analysis to investigate whether there is a causal relationship between the biomarkers of Tregs and IHD. METHODS Selected genetic variants (P<5.00E-08) from the summary data of a genome-wide association study (GWAS) were used to conduct a two-sample bidirectional MR analysis. The analysis included 51 extensive Treg subtypes involving 3,757 individuals from the general population. Summary statistics of IHD were obtained from the IEU open GWAS project, which contains 30,952 cases and 187,845 controls. The populations in both GWAS studies were of European ancestry. RESULTS We identified a set of 197 single-nucleotide polymorphisms (SNPs) that served as instrumental variables (IVs) for evaluating 51 Treg subtypes. Thirteen significant variables were found to be potentially associated with IHD. After false-discovery rate (FDR) adjustment, we identified four Treg subtypes to be causally protective for IHD risk: CD28 on activated & secreting CD4 Tregs [odds ratio (OR) =0.89; 95% confidence interval (CI): 0.82-0.96; P=3.10E-03; adjusted P=0.04], CD28 on activated CD4 Tregs (OR =0.87; 95% CI: 0.80-0.95; P=3.10E-03; adjusted P=0.04), CD28 on CD4 Tregs (OR =0.87; 95% CI: 0.80-0.96; P=3.41E-03; adjusted P=0.04), and CD28 on resting CD4 Treg cell (OR =0.91; 95% CI: 0.85-0.97; P=3.48E-03; adjusted P=0.04). Reverse MR analysis found eight potential causal variables, but these associations were nonsignificant after FDR correction (all adjusted P values >0.05). CONCLUSIONS This study identified the significance of elevated CD28 expression on CD4 Tregs as a novel molecular modifier that may influence IHD occurrence, suggesting that targeting CD28 expression on CD4 Tregs could offer a promising therapeutic approach for IHD.
Collapse
Affiliation(s)
- Yucheng Hou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingyue Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tan Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Nonthikorn Theerasuwipakorn
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jingwei Zhao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine & Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Duan L, Li S, Li H, Shi Y, Xie X, Feng Y. Causality between rheumatoid arthritis and the risk of cognitive impairment: a Mendelian randomization study. Arthritis Res Ther 2024; 26:5. [PMID: 38167504 PMCID: PMC10759661 DOI: 10.1186/s13075-023-03245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND There is mounting proof that rheumatoid arthritis (RA) and cognitive decline are related. These studies, however, have not all been uniform, and others have not discovered such a correlation. It is essential to investigate the link between RA and cognitive decline. METHOD We conducted a Mendelian randomization analysis utilizing three different publicly accessible RA GWAS summary datasets and a variety of meticulously verified instrumental variables. We mostly used inverse variance weighting (IVW), as well as MR-Egger, weighted median, MR-PRESSO, and several sensitivity analyses, to figure out the link between RA and cognitive impairment (CI). RESULTS Our MR study identified the causality between RA and declining cognitive performance (β = - 0.010, 95% CI of - 0.017 to - 0.003, P = 4.33E-03) and cognitive function (β = - 0.029, 95% CI of - 0.053 to - 0.005, P = 1.93E-02). The consistent direction of the connection is revealed by sensitivity analysis utilizing the weighted median and the MR-Egger method. Furthermore, we reproduced our findings across two additional RA datasets and found identical outcomes, strengthening the validity of our findings. CONCLUSION This study offers proof of causality between RA and an increased risk of CI. Our findings highlight the importance of examining RA patients for cognitive ability, which may open up fresh ideas for the prevention of CI.
Collapse
Affiliation(s)
- Lincheng Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoming Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolong Xie
- Meishan Hospital of Traditional Chinese Medicine, Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China.
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
39
|
Gupta A, Weinand K, Nathan A, Sakaue S, Zhang MJ, Donlin L, Wei K, Price AL, Amariuta T, Raychaudhuri S. Dynamic regulatory elements in single-cell multimodal data implicate key immune cell states enriched for autoimmune disease heritability. Nat Genet 2023; 55:2200-2210. [PMID: 38036783 PMCID: PMC10787644 DOI: 10.1038/s41588-023-01577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
In autoimmune diseases such as rheumatoid arthritis, the immune system attacks the body's own cells. Developing a precise understanding of the cell states where noncoding autoimmune risk variants impart causal mechanisms is critical to developing curative therapies. Here, to identify noncoding regions with accessible chromatin that associate with cell-state-defining gene expression patterns, we leveraged multimodal single-nucleus RNA and assay for transposase-accessible chromatin (ATAC) sequencing data across 28,674 cells from the inflamed synovial tissue of 12 donors. Specifically, we used a multivariate Poisson model to predict peak accessibility from single-nucleus RNA sequencing principal components. For 14 autoimmune diseases, we discovered that cell-state-dependent ('dynamic') chromatin accessibility peaks in immune cell types were enriched for heritability, compared with cell-state-invariant ('cs-invariant') peaks. These dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory T, dendritic and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory elements can help identify precise cell states enriched for disease-critical genetic variation.
Collapse
Affiliation(s)
- Anika Gupta
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kathryn Weinand
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Jinye Zhang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Laura Donlin
- Weill Cornell Medicine, New York, NY, USA
- Hospital for Special Surgery, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tiffany Amariuta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Buckner JH. Translational immunology: Applying fundamental discoveries to human health and autoimmune diseases. Eur J Immunol 2023; 53:e2250197. [PMID: 37101346 PMCID: PMC10600327 DOI: 10.1002/eji.202250197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023]
Abstract
Studying the human immune system is challenging. These challenges stem from the complexity of the immune system itself, the heterogeneity of the immune system between individuals, and the many factors that lead to this heterogeneity including the influence of genetics, environment, and immune experience. Studies of the human immune system in the context of disease are increased in complexity as multiple combinations and variations in immune pathways can lead to a single disease. Thus, although individuals with a disease may share clinical features, the underlying disease mechanisms and resulting pathophysiology can be diverse among individuals with the same disease diagnosis. This has consequences for the treatment of diseases, as no single therapy will work for everyone, therapeutic efficacy varies among patients, and targeting a single immune pathway is rarely 100% effective. This review discusses how to address these challenges by identifying and managing the sources of variation, improving access to high-quality, well-curated biological samples by building cohorts, applying new technologies such as single-cell omics and imaging technologies to interrogate samples, and bringing to bear computational expertise in conjunction with immunologists and clinicians to interpret those results. The review has a focus on autoimmune diseases, including rheumatoid arthritis, MS, systemic lupus erythematosus, and type 1 diabetes, but its recommendations are also applicable to studies of other immune-mediated diseases.
Collapse
Affiliation(s)
- Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Hospital, Seattle, WA, USA
| |
Collapse
|
41
|
Wang Q, Martínez-Bonet M, Kim T, Sparks JA, Ishigaki K, Chen X, Sudman M, Aguiar V, Sim S, Hernandez MC, Chiu DJ, Wactor A, Wauford B, Marion MC, Gutierrez-Arcelus M, Bowes J, Eyre S, Nordal E, Prahalad S, Rygg M, Videm V, Raychaudhuri S, Weirauch MT, Langefeld CD, Thompson SD, Nigrovic PA. Identification of a regulatory pathway governing TRAF1 via an arthritis-associated non-coding variant. CELL GENOMICS 2023; 3:100420. [PMID: 38020975 PMCID: PMC10667332 DOI: 10.1016/j.xgen.2023.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/16/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
TRAF1/C5 was among the first loci shown to confer risk for inflammatory arthritis in the absence of an associated coding variant, but its genetic mechanism remains undefined. Using Immunochip data from 3,939 patients with juvenile idiopathic arthritis (JIA) and 14,412 control individuals, we identified 132 plausible common non-coding variants, reduced serially by single-nucleotide polymorphism sequencing (SNP-seq), electrophoretic mobility shift, and luciferase studies to the single variant rs7034653 in the third intron of TRAF1. Genetically manipulated experimental cells and primary monocytes from genotyped donors establish that the risk G allele reduces binding of Fos-related antigen 2 (FRA2), encoded by FOSL2, resulting in reduced TRAF1 expression and enhanced tumor necrosis factor (TNF) production. Conditioning on this JIA variant eliminated attributable risk for rheumatoid arthritis, implicating a mechanism shared across the arthritis spectrum. These findings reveal that rs7034653, FRA2, and TRAF1 mediate a pathway through which a non-coding functional variant drives risk of inflammatory arthritis in children and adults.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Taehyeung Kim
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A. Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuyoshi Ishigaki
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marc Sudman
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vitor Aguiar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sangwan Sim
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Darren J. Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Wactor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Wauford
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Miranda C. Marion
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ellen Nordal
- University Hospital of North Norway and UIT The Arctic University of Norway, Tromsø, Norway
| | - Sampath Prahalad
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Marite Rygg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pediatrics, St. Olav’s University Hospital, Trondheim, Norway
| | - Vibeke Videm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Data Science, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Matthew T. Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susan D. Thompson
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Paroli M, Sirinian MI. When Autoantibodies Are Missing: The Challenge of Seronegative Rheumatoid Arthritis. Antibodies (Basel) 2023; 12:69. [PMID: 37987247 PMCID: PMC10660552 DOI: 10.3390/antib12040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Seronegative rheumatoid arthritis (SNRA) is characterized by the absence of both rheumatoid factor (RF) and antibodies against the cyclic citrullinated protein (ACPA) in serum. However, the differences between the two forms of RA are more complex and have not yet been definitively characterized. Several lines of evidences support the idea that there are specific elements of the two forms, including genetic background, epidemiology, pathogenesis, severity of progression over time, and response to therapy. Clinical features that may differentiate SNRA from SPRA are also suggested by data obtained from classical radiology and newer imaging techniques. Although new evidence seems to provide additional help in differentiating the two forms of RA, their distinguishing features remain largely elusive. It should also be emphasized that the distinctive features of RA forms, if not properly recognized, can lead to the underdiagnosis of SNRA, potentially missing the period called the "window of opportunity" that is critical for early diagnosis, timely treatment, and better prognosis. This review aims to summarize the data provided in the scientific literature with the goal of helping clinicians diagnose SNRA as accurately as possible, with emphasis on the most recent findings available.
Collapse
Affiliation(s)
- Marino Paroli
- Center for Allergy and Immunology, Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome c/o Polo Pontino, 04100 Latina, Italy
| | | |
Collapse
|
43
|
Ye W, Yu Y, Zhu X, Wan W, Liu Y, Zou H, Zhu Z. A Common Functional Variant at the Enhancer of the Rheumatoid Arthritis Risk Gene ORMDL3 Regulates its Expression Through Allele-Specific JunD Binding. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:485-495. [PMID: 37881318 PMCID: PMC10593690 DOI: 10.1007/s43657-023-00107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/27/2023]
Abstract
Genome-wide association studies (GWASs) have identified over 100 loci associated with rheumatoid arthritis (RA); however, the functionally affected genes and the underlying molecular mechanisms contributing to these associations are often unknown. In this study, we conducted an integrative genomic analysis incorporating multiple "omics" data and identified a functional regulatory DNA variant, rs56199421, and a plausible mechanism by which it regulates the expression of a putative RA risk gene, ORMDL Sphingolipid Biosynthesis Regulator 3 (ORMDL3). The T allele of rs56199421, located in the enhancer region of ORMDL3, exhibited stronger direct binding ability than the other C allele of rs56199421 did in vitro with the transcription factor JunD and demonstrated higher transcriptional activity. Moreover, the T allele of rs56199421 is associated with elevated RA risk, and ORMDL3 expression is increased in RA patients. Thus, these findings suggest that the T allele of rs56199421 enhances JunD transcription factor binding, increases enhancer activity, and elevates the expression of the RA risk gene ORMDL3. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00107-z.
Collapse
Affiliation(s)
- Wenjing Ye
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040 China
| | - Yiyun Yu
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040 China
| | - Xiaoxia Zhu
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040 China
| | - Weiguo Wan
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040 China
| | - Yun Liu
- The Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Hejian Zou
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040 China
| | - Zaihua Zhu
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040 China
| |
Collapse
|
44
|
Chen YC, Huang CM, Liu TY, Wu N, Chan CJ, Shih PY, Chen HH, Chen SY, Tsai FJ. Effects of Human Leukocyte Antigen DRB1 Genetic Polymorphism on Anti-Cyclic Citrullinated Peptide (ANTI-CCP) and Rheumatoid Factor (RF) Expression in Rheumatoid Arthritis (RA) Patients. Int J Mol Sci 2023; 24:12036. [PMID: 37569411 PMCID: PMC10418683 DOI: 10.3390/ijms241512036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic disease characterized by non-infectious inflammation of the joints and surrounding tissues, which can cause severe health problems, affect the patient's daily life, and even cause death. RA can be clinically diagnosed by the occurrence of blood serological markers, rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (anti-CCP). However, about 20% of RA patients exhibit negative results for both markers, which makes RA diagnosis difficult and, therefore, may delay the effective treatment. Previous studies found some evidence that human leukocyte antigen (HLA)-related genes might be the susceptibility genes for RA and their polymorphisms might contribute to varieties of susceptibility and disease severity. This study aimed for the genetic polymorphisms of the RA patient genome and their effects on the RA patient's serological makers, RF and anti-CCP. A total of 4580 patients' electronic medical records from 1992 to 2020 were retrieved from the China Medical University Hospital database. The most representative single-nucleotide polymorphisms (SNPs) were identified through a genome-wide association study (GWAS) followed by enzyme-linked immunosorbent assay (ELISA) validation using the blood from 30 additional RA patients. The results showed significant changes at the position of chromosome 6 with rs9270481 being the most significant locus, which indicated the location of the HLA-DRB1 gene. Further, patients with the CC genotype at this locus were more likely to exhibit negative results for RF and anti-CCP than those with the TT genotype. The C allele was also more likely to be associated with negative results for RF and anti-CCP. The results demonstrated that a genetic polymorphism at rs9270481 affected the expression of RF and anti-CCP in RA patients, which might indicate the necessity to develop a personalized treatment plan for each individual patient based on the genetic profile.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; (Y.-C.C.); (T.-Y.L.)
| | - Chung-Ming Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; (Y.-C.C.); (T.-Y.L.)
| | - Ning Wu
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, OK 74701, USA;
| | - Chia-Jung Chan
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; (C.-J.C.); (P.-Y.S.)
| | - Peng-Yu Shih
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; (C.-J.C.); (P.-Y.S.)
| | - Hsin-Han Chen
- Division of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung 404, Taiwan;
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; (C.-J.C.); (P.-Y.S.)
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; (C.-J.C.); (P.-Y.S.)
- Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
45
|
Daghestani M, Othman N, Omair MA, Alenzi F, Omair MA, Alqurtas E, Amin S, Warsy A. Single Nucleotide Polymorphisms Associated with Rheumatoid Arthritis in Saudi Patients. J Clin Med 2023; 12:4944. [PMID: 37568346 PMCID: PMC10419658 DOI: 10.3390/jcm12154944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex, multifactorial disorder with an autoimmune etiology. RA is highly heritable and is associated with both human leucocyte antigen (HLA) and non-HLA genes. We investigated the associations of 33 single nucleotide polymorphisms (SNPs) with RA in the Saudi population. METHODS This study included 105 patients with RA and an equal number of age- and sex-matched controls. The patients with RA attended outpatient clinics at King Khalid University Hospital in Riyadh, Saudi Arabia. Blood samples were collected, and DNA was extracted using Qiagen kits. Primers were designed for the 33 selected SNPs using the MassEXTEND primers program, and samples were genotyped on the Sequenom MassARRAY iPLEX platform. The allele frequencies and genotypes were determined for each SNP, and the results obtained for the patients were compared to those for the controls. RESULTS The allele and genotype frequencies of six SNPs were significantly associated with RA: rs1188934, rs10919563, rs3087243, rs1980422, rs10499194, and rs629326. The minor alleles of rs1188934, rs10919563, rs10499194, and rs629326 were protective, with odds ratios of 0.542, 0.597, 0.589, and 0.625, and p-values of 0.002, 0.023, 0.013 and 0.036, respectively. In addition, the heterozygote frequencies of two SNPs (rs6859219 and rs11586238) were significantly higher in the controls than in the patients. CONCLUSIONS There is considerable heterogeneity in the genetics of RA in different populations, and the SNPs that are associated with RA in some populations are not in others. We studied 33 SNPs and only eight were associated with RA. The remaining SNPs showed no allelic or genotypic associations with RA.
Collapse
Affiliation(s)
- Maha Daghestani
- Department of Zoology, College of Science, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nashwa Othman
- Central Laboratory, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11451, Saudi Arabia; (N.O.); (S.A.); (A.W.)
| | - Mohammed A. Omair
- Rheumatology Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.O.); (E.A.)
| | - Fahidah Alenzi
- Department of Clinical Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha A. Omair
- Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Eman Alqurtas
- Rheumatology Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.O.); (E.A.)
| | - Shireen Amin
- Central Laboratory, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11451, Saudi Arabia; (N.O.); (S.A.); (A.W.)
| | - Arjumand Warsy
- Central Laboratory, Center for Science and Medical Studies for Girls, King Saud University, Riyadh 11451, Saudi Arabia; (N.O.); (S.A.); (A.W.)
| |
Collapse
|
46
|
Xiong Y, Kullberg S, Garman L, Pezant N, Ellinghaus D, Vasila V, Eklund A, Rybicki BA, Iannuzzi MC, Schreiber S, Müller-Quernheim J, Montgomery CG, Grunewald J, Padyukov L, Rivera NV. Sex differences in the genetics of sarcoidosis across European and African ancestry populations. Front Med (Lausanne) 2023; 10:1132799. [PMID: 37250650 PMCID: PMC10213734 DOI: 10.3389/fmed.2023.1132799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background Sex differences in the susceptibility of sarcoidosis are unknown. The study aims to identify sex-dependent genetic variations in two clinical sarcoidosis phenotypes: Löfgren's syndrome (LS) and non-Löfgren's syndrome (non-LS). Methods A meta-analysis of genome-wide association studies was conducted on Europeans and African Americans, totaling 10,103 individuals from three population-based cohorts, Sweden (n = 3,843), Germany (n = 3,342), and the United States (n = 2,918), followed by an SNP lookup in the UK Biobank (UKB, n = 387,945). A genome-wide association study based on Immunochip data consisting of 141,000 single nucleotide polymorphisms (SNPs) was conducted in the sex groups. The association test was based on logistic regression using the additive model in LS and non-LS sex groups independently. Additionally, gene-based analysis, gene expression, expression quantitative trait loci (eQTL) mapping, and pathway analysis were performed to discover functionally relevant mechanisms related to sarcoidosis and biological sex. Results We identified sex-dependent genetic variations in LS and non-LS sex groups. Genetic findings in LS sex groups were explicitly located in the extended Major Histocompatibility Complex (xMHC). In non-LS, genetic differences in the sex groups were primarily located in the MHC class II subregion and ANXA11. Gene-based analysis and eQTL enrichment revealed distinct sex-specific gene expression patterns in various tissues and immune cell types. In LS sex groups, a pathway map related to antigen presentation machinery by IFN-gamma. In non-LS, pathway maps related to immune response lectin-induced complement pathway in males and related to maturation and migration of dendritic cells in skin sensitization in females were identified. Conclusion Our findings provide new evidence for a sex bias underlying sarcoidosis genetic architecture, particularly in clinical phenotypes LS and non-LS. Biological sex likely plays a role in disease mechanisms in sarcoidosis.
Collapse
Affiliation(s)
- Ying Xiong
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kullberg
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Lori Garman
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Nathan Pezant
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vasiliki Vasila
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- Department of Respiratory Medicine and Allergy, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin A. Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Michael C. Iannuzzi
- Zucker School of Medicine, Staten Island University Hospital, Northwell/Hofstra University, Staten Island, NY, United States
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Clinic for Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Joachim Müller-Quernheim
- Department of Pneumology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Courtney G. Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Johan Grunewald
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Padyukov
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia V. Rivera
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Alzoubi H, Alzubi R, Ramzan N. Deep Learning Framework for Complex Disease Risk Prediction Using Genomic Variations. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094439. [PMID: 37177642 PMCID: PMC10181706 DOI: 10.3390/s23094439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Genome-wide association studies have proven their ability to improve human health outcomes by identifying genotypes associated with phenotypes. Various works have attempted to predict the risk of diseases for individuals based on genotype data. This prediction can either be considered as an analysis model that can lead to a better understanding of gene functions that underlie human disease or as a black box in order to be used in decision support systems and in early disease detection. Deep learning techniques have gained more popularity recently. In this work, we propose a deep-learning framework for disease risk prediction. The proposed framework employs a multilayer perceptron (MLP) in order to predict individuals' disease status. The proposed framework was applied to the Wellcome Trust Case-Control Consortium (WTCCC), the UK National Blood Service (NBS) Control Group, and the 1958 British Birth Cohort (58C) datasets. The performance comparison of the proposed framework showed that the proposed approach outperformed the other methods in predicting disease risk, achieving an area under the curve (AUC) up to 0.94.
Collapse
Affiliation(s)
- Hadeel Alzoubi
- Department of Computer Science, College of Computer Science and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Raid Alzubi
- Department of Computer Science, College of Computer Science and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Naeem Ramzan
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, UK
| |
Collapse
|
48
|
Harun-Or-Roshid M, Mollah MNH. A comprehensive meta-analysis comprising 149 case-control studies to investigate the association between IL-6 gene rs1800795 polymorphism and multiple disease risk. Gene 2023; 861:147234. [PMID: 36736866 DOI: 10.1016/j.gene.2023.147234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Individual genome-wide association studies (GWAS) or single case-specific meta-analyses may not be sufficient evidence to take action against a specific gene function. Thus, we tried to determine a consensus association between the IL-6 gene rs1800795 polymorphism and multiple disease risks through an updated statistical meta-analysis. METHOD After systematically searching online databases, we found 149 case-control relevant datasets with a sample size of 96,153 (cases: 38,291 and controls: 57862) and conducted the meta-analysis using updated statistical models. RESULTS The analyses of this comprehensive meta-analysis revealed a significant association between IL-6 -174G/C polymorphism and overall disorder risk under all genetic models (C vs G: OR = 1.11, 95% CI = 1.08-1.13; p-value = 4.8E-17; CC vs GG: OR = 1.19, 95% CI = 1.13-1.26; p-value = 9.4E-12; CG vs GG: OR = 1.10, 95% CI = 1.06-1.14; p-value = 1.1E-07; CC + CG vs GG: OR = 1.13, 95% CI = 1.10-1.17; p-value = 1.1E-13; CC vs CG + GG: OR = 1.18, 95% CI = 1.06-1.31; p-value = 0.0019) and (OR > 1) with Asian ethnicity. The subgroup analyses based on the diseases revealed that the polymorphism was highly significantly increasing the risk of coronary artery disease (CAD) under all genetic models. Likewise, a significant association was observed with increased risk under three genetic models of inflammatory diseases (C vs G; CC vs GG; and CC vs CG + GG), and rheumatoid arthritis (C vs G; CG vs GG; and CC + CG vs GG). Conversely, the -174G/C SNP significantly decreased the risk of ischemic stroke under the two genetic models (C vs G; and CG vs GG). However, the other diseases included in this study showed no significant association with IL-6 (-174G/C) polymorphism. CONCLUSION This meta-analysis provided strong evidence for the association between IL-6 gene rs1800795 polymorphism and multiple disease risks. The IL-6 gene could be a useful prognostic biomarker for CAD, inflammatory disease, ischemic stroke, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Md Harun-Or-Roshid
- Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | | |
Collapse
|
49
|
Chen HV, Lorenzini MH, Lavalle SN, Sajeev K, Fonseca A, Fiaux PC, Sen A, Luthra I, Ho AJ, Chen AR, Guruvayurappan K, O'Connor C, McVicker G. Deletion mapping of regulatory elements for GATA3 in T cells reveals a distal enhancer involved in allergic diseases. Am J Hum Genet 2023; 110:703-714. [PMID: 36990085 PMCID: PMC10119147 DOI: 10.1016/j.ajhg.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
GATA3 is essential for T cell differentiation and is surrounded by genome-wide association study (GWAS) hits for immune traits. Interpretation of these GWAS hits is challenging because gene expression quantitative trait locus (eQTL) studies lack power to detect variants with small effects on gene expression in specific cell types and the genome region containing GATA3 contains dozens of potential regulatory sequences. To map regulatory sequences for GATA3, we performed a high-throughput tiling deletion screen of a 2 Mb genome region in Jurkat T cells. This revealed 23 candidate regulatory sequences, all but one of which is within the same topological-associating domain (TAD) as GATA3. We then performed a lower-throughput deletion screen to precisely map regulatory sequences in primary T helper 2 (Th2) cells. We tested 25 sequences with ∼100 bp deletions and validated five of the strongest hits with independent deletion experiments. Additionally, we fine-mapped GWAS hits for allergic diseases in a distal regulatory element, 1 Mb downstream of GATA3, and identified 14 candidate causal variants. Small deletions spanning the candidate variant rs725861 decreased GATA3 levels in Th2 cells, and luciferase reporter assays showed regulatory differences between its two alleles, suggesting a causal mechanism for this variant in allergic diseases. Our study demonstrates the power of integrating GWAS signals with deletion mapping and identifies critical regulatory sequences for GATA3.
Collapse
Affiliation(s)
- Hsiuyi V Chen
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Michael H Lorenzini
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Shanna N Lavalle
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karthyayani Sajeev
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ariana Fonseca
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick C Fiaux
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Arko Sen
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ishika Luthra
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron J Ho
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aaron R Chen
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karthik Guruvayurappan
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Graham McVicker
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
50
|
Wang NN, Zhang Y, Jiang F, Zhu DL, Di CX, Hu SY, Chen XF, Zhi LQ, Rong Y, Ke X, Duan YY, Dong SS, Yang TL, Yang Z, Guo Y. Enhancer variants on chromosome 2p14 regulating SPRED2 and ACTR2 act as a signal amplifier to protect against rheumatoid arthritis. Am J Hum Genet 2023; 110:625-637. [PMID: 36924774 PMCID: PMC10119143 DOI: 10.1016/j.ajhg.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.
Collapse
Affiliation(s)
- Nai-Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chen-Xi Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shou-Ye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Li-Qiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|