1
|
Jiao B, Yan L, Zhang R, Huang W, Wang X, Liu C, Wang P, Xu P, Wang J, Fang Z, Li D, Xia Z, Li J, Ji S, Zhang Q, Wu M, Wang S, Liu P, Ren R. Loss of Golga7 Suppresses Oncogenic Nras-Driven Leukemogenesis without Detectable Toxicity in Adult Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412208. [PMID: 40091521 PMCID: PMC12079550 DOI: 10.1002/advs.202412208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Indexed: 03/19/2025]
Abstract
NRAS mutations are prevalent in human hematological malignancies and are also common in certain solid tumors, including melanoma and colon cancer. Despite their crucial role in oncogenesis, no effective therapies targeting NRAS have been developed. Inhibiting NRAS localization to the plasma membrane (PM) represents a promising strategy for cancer therapy, as its oncogenic signaling relies on PM localization. Knocking out Golgin subfamily A member 7 (Golga7), an accessory protein of RAS palmitoyltransferases, through a conditional gene editing approach drastically suppresses the development of myeloid leukemia induced by the activation of NrasG12D/G12D knock-in alleles in mice. The loss of Golga7 disrupts NRASG12D PM localization in bone marrow cells without altering the level of NRASG12D palmitoylation. Notably, Golga7 is dispensable for normal hematopoiesis in adult mice. While constitutive Golga7 knockout leads to embryonic lethality, the ubiquitous knockout of Golga7 induced in adult mice does not manifest any measurable toxic effects. These findings indicate that GOLGA7 is an effective and safe therapeutic target for NRAS-driven leukemias.
Collapse
Affiliation(s)
- Bo Jiao
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lei Yan
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Rui Zhang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wei Huang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xinru Wang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenxuan Liu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Peihong Wang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Pengfei Xu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinzeng Wang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhou Fang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Donghe Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhizhou Xia
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jiaoyang Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Shiyu Ji
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Qianqian Zhang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Min Wu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Shengyue Wang
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ping Liu
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ruibao Ren
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- International Center for Aging and CancerDepartment of Hematology of The First Affiliated HospitalHainan Medical UniversityHaikou571199China
| |
Collapse
|
2
|
Turingan MA, Wei C, Chang H. Acquisition of SETBP1 Mutation During Transformation of Mature Plasmacytoid Dendritic Cell Proliferation to Blastic Plasmacytoid Dendritic Cell Neoplasm in Chronic Myelomonocytic Leukemia. Int J Lab Hematol 2025. [PMID: 40166840 DOI: 10.1111/ijlh.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Mark Anthony Turingan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Cuihong Wei
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Koleci N, Wu Y, Wehner NA, Rajak J, Mittapalli VR, Mergner J, Xiao H, Wang J, Wahl M, Bohler S, Aumann K, Häcker G, Ramamoorthy S, Boerries M, Kirschnek S, Erlacher M. Oncogenic and microenvironmental signals drive cell type specific apoptosis resistance in juvenile myelomonocytic leukemia. Cell Death Dis 2025; 16:165. [PMID: 40057493 PMCID: PMC11890777 DOI: 10.1038/s41419-025-07479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Juvenile myelomonocytic leukemia (JMML) is caused by constitutively activated RAS signaling and characterized by increased proliferation and predominant myelomonocytic differentiation of hematopoietic cells. Using MxCre;Ptpn11D61Y/+ mice, which model human JMML, we show that RAS pathway activation affects apoptosis signaling through cell type-dependent regulation of BCL-2 family members. Apoptosis resistance observed in monocytes and granulocytes was mediated by overexpression of the anti-apoptotic and down-regulation of the pro-apoptotic members of the BCL-2 family. Two anti-apoptotic proteins, BCL-XL and MCL-1, were directly regulated by the oncogenic RAS signaling but, in addition, were influenced by microenvironmental signals. While BCL-XL and BCL-2 were required for the survival of monocytes, MCL-1 was essential for neutrophils. Interestingly, stem and progenitor cells expressing the oncogenic PTPN11 mutant showed no increased apoptosis resistance. BCL-XL inhibition was the most effective in killing myeloid cells in vitro but was insufficient to completely resolve myeloproliferation in vivo.
Collapse
Affiliation(s)
- Naile Koleci
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Medicine III, Hematology and Oncology, TUM University Hospital, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Ying Wu
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niels Anton Wehner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jovana Rajak
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Venugopal Rao Mittapalli
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Hui Xiao
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jun Wang
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Madeleine Wahl
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Konrad Aumann
- Department of Pathology, Institute for Clinical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Georg Häcker
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site, Freiburg, Germany.
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
4
|
Chaudhary P, Chaudhary S, Patel F, Patel S, Patel D, Patel L, Trivedi N, Vaishnani T, Jajodia E, Ahmad F, Arora N. Significance of Somatic Mutation Profiling in CML Beyond BCR-ABL: A Retrospective Study of the Indian Population. Indian J Hematol Blood Transfus 2025; 41:10-22. [PMID: 39917513 PMCID: PMC11794774 DOI: 10.1007/s12288-024-01808-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/13/2024] [Indexed: 02/09/2025] Open
Abstract
Somatic mutation and fusion detection in acute myeloid leukemia to determine disease subtype and treatment regime is a common practice, but it's not yet employed in chronic myeloid leukemia (CML). CML is still monitored by routine quantitative determination of the BCR-ABL fusion transcript and treated with tyrosine kinase inhibitors (TKIs). Despite the availability of the three generations of TKIs, resistance and progression in CML pathogenesis suggest a strong role for somatic mutations. The present study aimed to identify the role of somatic mutation profiling in CML patients in disease management. 196 CML patient samples were used in this investigation, comprising 26 CML-BP, 8 CML-AP, and 162 CML-CP samples. Following cytogenetic analysis for confirmation, each sample was sequenced utilizing the Ion Torrent platform by a targeted panel. Of the 196 CML samples, 81 (41.33%) had 125 variations affecting 27 genes, while 115 (58.67%) harboured no mutations. The study revealed that ASXL1 (31.2%), ABL1 (14.4%), and TET2 (8.8%) were the most frequently altered genes. These genes are recognized indicators of CML disease. Few samples found with mutated GATA2, IDH1, NRAS, SETBP1, WT1, PHF6, KIT, etc. and fusions like RUNX1(5)-MECOM (2) and CBFB- MYH11 are indicative of disease progression. The outcome of this study suggests that mutational profiling of CML patients can help in the prognostication of disease. Based on the results of the study, the authors have also provided possible future risk stratification and diagnosis workflow for CML disease. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-024-01808-9.
Collapse
Affiliation(s)
- Pooja Chaudhary
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | | | - Falguni Patel
- Department of Biotechnology and Microbiology, Shri M.M.Patel Institute of Science and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015 India
| | - Shiv Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Dhiren Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Lokesh Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Nikha Trivedi
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Toral Vaishnani
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Ekta Jajodia
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Firoz Ahmad
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Neeraj Arora
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| |
Collapse
|
5
|
Wang H, Li X, Qi J, Liu H, Chu T, Xu X, Qiu H, Fu C, Tang X, Ruan C, Wu D, Han Y. Prognostic mutations identified by whole-exome sequencing and validation of the Molecular International Prognostic Scoring System in myelodysplastic syndromes after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2024; 205:1899-1909. [PMID: 39138006 DOI: 10.1111/bjh.19707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
In this study, we used the whole-exome sequencing (WES) approach to obtain genomic profiles from 92 marrow samples of myelodysplastic syndrome (MDS) patients before haematopoietic stem cell transplantation. We identified 129 mutations in 45 driver genes. Fifty-five patients (59.8%) carried at least 1 driver mutation. The splicing factor U2AF1 was the most frequently mutated in the cohort (21 cases, 23%), followed by BCOR (9 cases, 10%), ASXL1 (8 cases, 9%), TET2 (6 cases, 7%), NPM1 (5 cases, 5%), RUNX1 (5 cases, 5%), and SETBP1 (5 cases, 5%). WES also identified 49 possible oncogenic variants in six genes (PIEZO1, LOXHD1, MYH13, DNAH5, DPH1, and USH2A) that were associated with overall survival (OS) or relapse-free survival (RFS) in MDS after transplantation. Multivariate analysis showed mutations in DNAH5 and USH2A to be independent risk factors for OS. Mutations in DNAH5 and LOXHD1 were risk factors for worse RFS. The Molecular International Prognostic Scoring System retained its independent prognostic significance for RFS after multivariate analysis.
Collapse
Affiliation(s)
- Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Tiantian Chu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Szuber N, Orazi A, Tefferi A. Chronic neutrophilic leukemia and atypical chronic myeloid leukemia: 2024 update on diagnosis, genetics, risk stratification, and management. Am J Hematol 2024; 99:1360-1387. [PMID: 38644693 DOI: 10.1002/ajh.27321] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare BCR::ABL1-negative myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis and bone marrow granulocyte hyperplasia. Atypical chronic myeloid leukemia (aCML) (myelodysplastic "[MDS]/MPN with neutrophilia" per World Health Organization [WHO]) is a MDS/MPN overlap disorder featuring dysplastic neutrophilia and circulating myeloid precursors. Both manifest with frequent hepatosplenomegaly and less commonly, bleeding, with high rates of leukemic transformation and death. The 2022 revised WHO classification conserved CNL diagnostic criteria of leukocytosis ≥25 × 109/L, neutrophils ≥80% with <10% circulating precursors, absence of dysplasia, and presence of an activating CSF3R mutation. ICC criteria are harmonized with those of other myeloid entities, with a key distinction being lower leukocytosis threshold (≥13 × 109/L) for cases CSF3R-mutated. Criteria for aCML include leukocytosis ≥13 × 109/L, dysgranulopoiesis, circulating myeloid precursors ≥10%, and at least one cytopenia for MDS-thresholds (ICC). In both classifications ASXL1 and SETBP1 (ICC), or SETBP1 ± ETNK1 (WHO) mutations can be used to support the diagnosis. Both diseases show hypercellular bone marrow due to a granulocytic proliferation, aCML distinguished by dysplasia in granulocytes ± other lineages. Absence of monocytosis, rare/no basophilia, or eosinophilia, <20% blasts, and exclusion of other MPN, MDS/MPN, and tyrosine kinase fusions, are mandated. Cytogenetic abnormalities are identified in ~1/3 of CNL and ~15-40% of aCML patients. The molecular signature of CNL is a driver mutation in colony-stimulating factor 3 receptor-classically T618I, documented in >80% of cases. Atypical CML harbors a complex genomic backdrop with high rates of recurrent somatic mutations in ASXL1, SETBP1, TET2, SRSF2, EZH2, and less frequently in ETNK1. Leukemic transformation rates are ~10-25% and 30-40% for CNL and aCML, respectively. Overall survival is poor: 15-31 months in CNL and 12-20 months in aCML. The Mayo Clinic CNL risk model for survival stratifies patients according to platelets <160 × 109/L (2 points), leukocytes >60 × 109/L (1 point), and ASXL1 mutation (1 point); distinguishing low- (0-1 points) versus high-risk (2-4 points) categories. The Mayo Clinic aCML risk model attributes 1 point each for: age >67 years, hemoglobin <10 g/dL, and TET2 mutation, delineating low- (0-1 risk factor) and high-risk (≥2 risk factors) subgroups. Management is risk-driven and symptom-directed, with no current standard of care. Most commonly used agents include hydroxyurea, interferon, Janus kinase inhibitors, and hypomethylating agents, though none are disease-modifying. Hematopoietic stem cell transplant is the only potentially curative modality and should be considered in eligible patients. Recent genetic profiling has disclosed CBL, CEBPA, EZH2, NRAS, TET2, and U2AF1 to represent high-risk mutations in both entities. Actionable mutations (NRAS/KRAS, ETNK1) have also been identified, supporting novel agents targeting involved pathways. Preclinical and clinical studies evaluating new drugs (e.g., fedratinib, phase 2) and combinations are detailed.
Collapse
MESH Headings
- Humans
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Mutation
- Risk Assessment
- Receptors, Colony-Stimulating Factor/genetics
- Carrier Proteins
- Nuclear Proteins
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Crespiatico I, Zaghi M, Mastini C, D'Aliberti D, Mauri M, Mercado CM, Fontana D, Spinelli S, Crippa V, Inzoli E, Manghisi B, Civettini I, Ramazzotti D, Sangiorgio V, Gengotti M, Brambilla V, Aroldi A, Banfi F, Barone C, Orsenigo R, Riera L, Riminucci M, Corsi A, Breccia M, Morotti A, Cilloni D, Roccaro A, Sacco A, Stagno F, Serafini M, Mottadelli F, Cazzaniga G, Pagni F, Chiarle R, Azzoni E, Sessa A, Gambacorti-Passerini C, Elli EM, Mologni L, Piazza R. First-hit SETBP1 mutations cause a myeloproliferative disorder with bone marrow fibrosis. Blood 2024; 143:1399-1413. [PMID: 38194688 DOI: 10.1182/blood.2023021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.
Collapse
Affiliation(s)
- Ilaria Crespiatico
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Mattia Zaghi
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Carl Mirko Mercado
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Silvia Spinelli
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Valentina Crippa
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Elena Inzoli
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Beatrice Manghisi
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Ivan Civettini
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Valentina Sangiorgio
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Michele Gengotti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | | | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Federica Banfi
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Cristiana Barone
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Roberto Orsenigo
- Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute, Vall d'Hebron Hospital Barcelona UAB, Barcelona, Spain
| | - Ludovica Riera
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Massimo Breccia
- Department of Translational and Precision Medicine, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Aldo Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Stagno
- Division of Hematology, Azienda Ospedaliero Universitaria Policlinico G. Rodolico-S. Marco, Catania, Italy
| | - Marta Serafini
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Federica Mottadelli
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giovanni Cazzaniga
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Centro Tettamanti, Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Fabio Pagni
- Department of Pathology, University of Milan-Bicocca, Monza, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA
- European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico, Division of Haematopathology, Milan, Italy
| | - Emanuele Azzoni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Alessandro Sessa
- Neuroepigenetics Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Elena Maria Elli
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
8
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
9
|
Ramamoorthy S, Lebrecht D, Schanze D, Schanze I, Wieland I, Andrieux G, Metzger P, Hess M, Albert MH, Borkhardt A, Bresters D, Buechner J, Catala A, De Haas V, Dworzak M, Erlacher M, Hasle H, Jahnukainen K, Locatelli F, Masetti R, Stary J, Turkiewicz D, Vinci L, Wlodarski MW, Yoshimi A, Boerries M, Niemeyer CM, Zenker M, Flotho C. Biallelic inactivation of the NF1 tumour suppressor gene in juvenile myelomonocytic leukaemia: Genetic evidence of driver function and implications for diagnostic workup. Br J Haematol 2024; 204:595-605. [PMID: 37945316 DOI: 10.1111/bjh.19190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.
Collapse
Affiliation(s)
- Senthilkumar Ramamoorthy
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Lebrecht
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Denny Schanze
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Ina Schanze
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Ilse Wieland
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael H Albert
- Department of Pediatric Hematology and Oncology, Dr. v. Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Immunology, University of Dusseldorf, Dusseldorf, Germany
| | - Dorine Bresters
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Albert Catala
- Department of Hematology and Oncology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Valerie De Haas
- Diagnostic Laboratory/DCOG Laboratory, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Michael Dworzak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Kirsi Jahnukainen
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jan Stary
- Department of Pediatric Hematology/ Oncology, Charles University and Univ Hospital Motol, Prague, Czech Republic
| | - Dominik Turkiewicz
- Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - Luca Vinci
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcin W Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| | - Martin Zenker
- Human Genetics, University of Magdeburg, Magdeburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Kohyanagi N, Ohama T. The impact of SETBP1 mutations in neurological diseases and cancer. Genes Cells 2023; 28:629-641. [PMID: 37489294 PMCID: PMC11447826 DOI: 10.1111/gtc.13057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| |
Collapse
|
11
|
Wang W, Li X, Qin X, Miao Y, Zhang Y, Li S, Yao R, Yang Y, Yu L, Zhu H, Song L, Mao S, Wang X, Chen J, Feng H, Li Y. Germline Neurofibromin 1 mutation enhances the anti-tumour immune response and decreases juvenile myelomonocytic leukaemia tumourigenicity. Br J Haematol 2023; 202:328-343. [PMID: 37144690 DOI: 10.1111/bjh.18851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is an aggressive paediatric leukaemia characterized by mutations in five canonical RAS pathway genes, including the NF1 gene. JMML is driven by germline NF1 gene mutations, with additional somatic aberrations resulting in the NF1 biallelic inactivation, leading to disease progression. Germline mutations in the NF1 gene alone primarily cause benign neurofibromatosis type 1 (NF1) tumours rather than malignant JMML, yet the underlying mechanism remains unclear. Here, we demonstrate that with reduced NF1 gene dose, immune cells are promoted in anti-tumour immune response. Comparing the biological properties of JMML and NF1 patients, we found that not only JMML but also NF1 patients driven by NF1 mutations could increase monocytes generation. But monocytes cannot further malignant development in NF1 patients. Utilizing haematopoietic and macrophage differentiation from iPSCs, we revealed that NF1 mutations or knockout (KO) recapitulated the classical haematopoietic pathological features of JMML with reduced NF1 gene dose. NF1 mutations or KO promoted the proliferation and immune function of NK cells and iMacs derived from iPSCs. Moreover, NF1-mutated iNKs had a high capacity to kill NF1-KO iMacs. NF1-mutated or KO iNKs administration delayed leukaemia progression in a xenograft animal model. Our findings demonstrate that germline NF1 mutations alone cannot directly drive JMML development and suggest a potential cell immunotherapy for JMML patients.
Collapse
Affiliation(s)
- Wanqiao Wang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai, China
| | - Xia Qin
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Yan Miao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Yingwen Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai, China
| | - Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Lisha Yu
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Hua Zhu
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Lili Song
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Shengqiao Mao
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai, China
| | - Jing Chen
- Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| |
Collapse
|
12
|
Li N, Chen M, Yin CC. Advances in molecular evaluation of myeloproliferative neoplasms. Semin Diagn Pathol 2023; 40:187-194. [PMID: 37087305 DOI: 10.1053/j.semdp.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
Myeloproliferative neoplasms (MPN) are a group of clonal hematopoietic stem cell disorders with uncontrolled proliferation of one or more hematopoietic cell types, including myeloid, erythroid and megakaryocytic lineages, and minimal defect in maturation. Most MPN are associated with well-defined molecular abnormalities involving genes that encode protein tyrosine kinases that lead to constitutive activation of the downstream signal transduction pathways and confer cells proliferative and survival advantage. Genome-wide sequencing analyses have discovered secondary cooperating mutations that are shared by most of the MPN subtypes as well as other myeloid neoplasms and play a major role in disease progression. Without appropriate management, the natural history of most MPN consists of an initial chronic phase and a terminal blast phase. Molecular aberrations involving protein tyrosine kinases have been used for the diagnosis, classification, detection of minimal/measurable residual disease, and target therapy. We review recent advances in molecular genetic aberrations in MPN with a focus on MPN associated with gene rearrangements or mutations involving tyrosine kinase pathways.
Collapse
Affiliation(s)
- Nianyi Li
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - C Cameron Yin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
13
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
14
|
Liu L, Feng X, Liu S, Zhou Y, Dong X, Yao H, Tan B. Whole-genome sequencing combined RNA-sequencing analysis of patients with mutations in SET binding protein 1. Front Neurosci 2022; 16:980000. [PMID: 36161179 PMCID: PMC9490002 DOI: 10.3389/fnins.2022.980000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
SET binding protein 1 (SETBP1) is essential for human development, and pathogenic germline variants in SETBP1 lead to a recognizable developmental syndrome and variable clinical features. In this study, we assessed a patient with facial dysmorphism, intellectual disability and delayed motor development. Whole genome sequencing identified a novel de novo variation of the SETBP1 (c.2631C > A; p. S877R) gene, which is located in the SKI domain, as a likely pathogenic variant for the proband’s phenotype. RNA sequencing was performed to investigate the potential molecular mechanism of the novel variation in SETBP1. In total, 77 and 38 genes were identified with aberrant expression and splicing, respectively. Moreover, the biological functions of these genes were involved in DNA/protein binding, expression regulation, and the cell cycle, which may advance our understanding of the pathogenesis of SETBP1 in vivo.
Collapse
Affiliation(s)
- Li Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshu Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Sihan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yanqiu Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hong Yao,
| | - Bo Tan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Bo Tan,
| |
Collapse
|
15
|
Imaizumi T, Meyer J, Wakamatsu M, Kitazawa H, Murakami N, Okuno Y, Yoshida T, Sajiki D, Hama A, Kojima S, Takahashi Y, Loh M, Stieglitz E, Muramatsu H. Clinical parameter-based prediction of DNA methylation classification generates a prediction model of prognosis in patients with juvenile myelomonocytic leukemia. Sci Rep 2022; 12:14753. [PMID: 36042365 PMCID: PMC9427938 DOI: 10.1038/s41598-022-18733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare heterogeneous hematological malignancy of early childhood characterized by causative RAS pathway mutations. Classifying patients with JMML using global DNA methylation profiles is useful for risk stratification. We implemented machine learning algorithms (decision tree, support vector machine, and naïve Bayes) to produce a DNA methylation-based classification according to recent international consensus definitions using a well-characterized pooled cohort of patients with JMML (n = 128). DNA methylation was originally categorized into three subgroups: high methylation (HM), intermediate methylation (IM), and low methylation (LM), which is a trichotomized classification. We also dichotomized the subgroups as HM/IM and LM. The decision tree model showed high concordances with 450k-based methylation [82.3% (106/128) for the dichotomized and 83.6% (107/128) for the trichotomized subgroups, respectively]. With an independent cohort (n = 72), we confirmed that these models using both the dichotomized and trichotomized classifications were highly predictive of survival. Our study demonstrates that machine learning algorithms can generate clinical parameter-based models that predict the survival outcomes of patients with JMML and high accuracy. These models enabled us to rapidly and effectively identify candidates for augmented treatment following diagnosis.
Collapse
Affiliation(s)
- Takahiro Imaizumi
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Julia Meyer
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, USA
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Hironobu Kitazawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taro Yoshida
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Daichi Sajiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Mignon Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, USA
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
16
|
Narita K, Muramatsu H, Narumi S, Nakamura Y, Okuno Y, Suzuki K, Hamada M, Yamaguchi N, Suzuki A, Nishio Y, Shiraki A, Yamamori A, Tsumura Y, Sawamura F, Kawaguchi M, Wakamatsu M, Kataoka S, Kato K, Asada H, Kubota T, Muramatsu Y, Kidokoro H, Natsume J, Mizuno S, Nakata T, Inagaki H, Ishihara N, Yonekawa T, Okumura A, Ogi T, Kojima S, Kaname T, Hasegawa T, Saitoh S, Takahashi Y. Whole-exome analysis of 177 pediatric patients with undiagnosed diseases. Sci Rep 2022; 12:14589. [PMID: 36028527 PMCID: PMC9418234 DOI: 10.1038/s41598-022-14161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Recently, whole-exome sequencing (WES) has been used for genetic diagnoses of patients who remain otherwise undiagnosed. WES was performed in 177 Japanese patients with undiagnosed conditions who were referred to the Tokai regional branch of the Initiative on Rare and Undiagnosed Diseases (IRUD) (TOKAI-IRUD). This study included only patients who had not previously received genome-wide testing. Review meetings with specialists in various medical fields were held to evaluate the genetic diagnosis in each case, which was based on the guidelines of the American College of Medical Genetics and Genomics. WES identified diagnostic single-nucleotide variants in 66 patients and copy number variants (CNVs) in 11 patients. Additionally, a patient was diagnosed with Angelman syndrome with a complex clinical phenotype upon detection of a paternally derived uniparental disomy (UPD) [upd(15)pat] wherein the patient carried a homozygous DUOX2 p.E520D variant in the UPD region. Functional analysis confirmed that this DUOX2 variant was a loss-of-function missense substitution and the primary cause of congenital hypothyroidism. A significantly higher proportion of genetic diagnoses was achieved compared to previous reports (44%, 78/177 vs. 24-35%, respectively), probably due to detailed discussions and the higher rate of CNV detection.
Collapse
Affiliation(s)
- Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health, Tokyo, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoya Yamaguchi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Atsushi Suzuki
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yosuke Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ayako Yamamori
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yusuke Tsumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumi Sawamura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kohji Kato
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Asada
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Tetsuo Kubota
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiji Mizuno
- Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Kasugai, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takahiro Yonekawa
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
17
|
EAHP 2020 workshop proceedings, pediatric myeloid neoplasms. Virchows Arch 2022; 481:621-646. [PMID: 35819517 PMCID: PMC9534825 DOI: 10.1007/s00428-022-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
The first section of the bone marrow workshop of the European Association of Haematopathology (EAHP) 2020 Virtual Meeting was dedicated to pediatric myeloid neoplasms. The section covered the whole spectrum of myeloid neoplasms, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), and acute myeloid leukemia (AML). The workshop cases are hereby presented, preceded by an introduction on these overall rare diseases in this age group. Very rare entities such as primary myelofibrosis, pediatric MDS with fibrosis, and MDS/MPN with JMML-like features and t(4;17)(q12;q21); FIP1L1::RARA fusion, are described in more detail.
Collapse
|
18
|
Samad MA, Mahboob E, Mansoor H. Chronic myeloid leukemia: a type of MPN. Blood Res 2022; 57:95-100. [PMID: 35620905 PMCID: PMC9242828 DOI: 10.5045/br.2022.2021173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
This review article classifies chronic myeloid leukemia (CML) based on cytogenetic analyses and different mutations detected in CML patients. The use of advanced technologies, such as karyotyping, fluorescent in situ hybridization, and comparative genomic hybridization, has allowed us to study CML in detail and observe the different biochemical changes that occur in different CML types. This review also highlights the different types of receptor and signaling pathway mutations that occur in CML.
Collapse
Affiliation(s)
- Muhammad Ammar Samad
- Department of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Eman Mahboob
- Department of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Hussain Mansoor
- Department of Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
19
|
Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Cancers (Basel) 2022; 14:cancers14051335. [PMID: 35267643 PMCID: PMC8909150 DOI: 10.3390/cancers14051335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Juvenile myelomonocytic leukemia (JMML) is a rare pediatric myelodysplastic/myeloproliferative neoplasm characterized by the constitutive activation of the RAS pathway. In spite of the recent progresses in the molecular characterization of JMML, this disease is still a clinical challenge due to its heterogeneity, difficult diagnosis, poor prognosis, and the lack of curative treatment options other than hematopoietic stem cell transplantation (HSCT). In this review, we will provide a detailed overview of the genetic and epigenetic alterations occurring in JMML, and discuss their clinical relevance in terms of disease prognosis and risk of relapse after HSCT. We will also present the most recent advances on novel preclinical and clinical therapeutic approaches directed against JMML molecular targets. Finally, we will outline future research perspectives to further explore the oncogenic mechanism driving JMML leukemogenesis and progression, with special attention to the application of single-cell next-generation sequencing technologies. Abstract Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm of early childhood. Most of JMML patients experience an aggressive clinical course of the disease and require hematopoietic stem cell transplantation, which is currently the only curative treatment. JMML is characterized by RAS signaling hyperactivation, which is mainly driven by mutations in one of five genes of the RAS pathway, including PTPN11, KRAS, NRAS, NF1, and CBL. These driving mutations define different disease subtypes with specific clinico-biological features. Secondary mutations affecting other genes inside and outside the RAS pathway contribute to JMML pathogenesis and are associated with a poorer prognosis. In addition to these genetic alterations, JMML commonly presents aberrant epigenetic profiles that strongly correlate with the clinical outcome of the patients. This observation led to the recent publication of an international JMML stratification consensus, which defines three JMML clinical groups based on DNA methylation status. Although the characterization of the genomic and epigenomic landscapes in JMML has significantly contributed to better understand the molecular mechanisms driving the disease, our knowledge on JMML origin, cell identity, and intratumor and interpatient heterogeneity is still scarce. The application of new single-cell sequencing technologies will be critical to address these questions in the future.
Collapse
|
20
|
Si H, Wang J, He R, Yu X, Li S, Huang J, Li J, Tang X, Song X, Tu Z, Zhang Z, Ding K. Identification of U937 JAK3-M511I Acute Myeloid Leukemia Cells as a Sensitive Model to JAK3 Inhibitor. Front Oncol 2022; 11:807200. [PMID: 35111683 PMCID: PMC8802890 DOI: 10.3389/fonc.2021.807200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mutated JAK3 has been considered a promising target for cancer therapy. Activating mutations of JAK3 are observed in 3.9%-10% of acute myeloid leukemia (AML) patients, but it is unclear whether AML cells are sensitive to JAK3 inhibitors, and no disease-related human AML cell model has been reported. We have identified U937 as the first human AML cell line expressing the JAK3M511I activated mutation and confirmed that JAK3 inhibitors sensitively suppress the proliferation of U937 AML cells.
Collapse
Affiliation(s)
- Hongfei Si
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuwen Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Shan Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xia Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojuan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Nguyen N, Gudmundsson KO, Soltis AR, Oakley K, Roy KR, Han Y, Gurnari C, Maciejewski JP, Crouch G, Ernst P, Dalgard CL, Du Y. Recruitment of MLL1 complex is essential for SETBP1 to induce myeloid transformation. iScience 2022; 25:103679. [PMID: 35036869 PMCID: PMC8749219 DOI: 10.1016/j.isci.2021.103679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal activation of SETBP1 due to overexpression or missense mutations occurs frequently in various myeloid neoplasms and associates with poor prognosis. Direct activation of Hoxa9/Hoxa10/Myb transcription by SETBP1 and its missense mutants is essential for their transforming capability; however, the underlying epigenetic mechanisms remain elusive. We found that both SETBP1 and its missense mutant SETBP1(D/N) directly interact with histone methyltransferase MLL1. Using a combination of ChIP-seq and RNA-seq analysis in primary hematopoietic stem and progenitor cells, we uncovered extensive overlap in their genomic occupancy and their cooperation in activating many oncogenic transcription factor genes including Hoxa9/Hoxa10/Myb and a large group of ribosomal protein genes. Genetic ablation of Mll1 as well as treatment with an inhibitor of the MLL1 complex OICR-9429 abrogated Setbp1/Setbp1(D/N)-induced transcriptional activation and transformation. Thus, the MLL1 complex plays a critical role in Setbp1-induced transcriptional activation and transformation and represents a promising target for treating myeloid neoplasms with SETBP1 activation.
Collapse
Affiliation(s)
- Nhu Nguyen
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kristbjorn O. Gudmundsson
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anthony R. Soltis
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kevin Oakley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kartik R. Roy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yufen Han
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary Crouch
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Clifton L. Dalgard
- The American Genome Center (TAGC), Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
22
|
Behnert A, Meyer J, Parsa JY, Hechmer A, Loh ML, Olshen A, de Smith AJ, Stieglitz E. Exploring the genetic and epigenetic origins of juvenile myelomonocytic leukemia using newborn screening samples. Leukemia 2022; 36:279-282. [PMID: 34183765 PMCID: PMC8720242 DOI: 10.1038/s41375-021-01331-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Astrid Behnert
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Meyer
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aaron Hechmer
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Simple and robust methylation test for risk stratification of patients with juvenile myelomonocytic leukemia. Blood Adv 2021; 5:5507-5518. [PMID: 34580726 PMCID: PMC8714717 DOI: 10.1182/bloodadvances.2021005080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative neoplasm that develops during infancy and early childhood. The array-based international consensus definition of DNA methylation has recently classified patients with JMML into the following 3 groups: high (HM), intermediate (IM), and low methylation (LM). To develop a simple and robust methylation clinical test, 137 patients with JMML were analyzed using the Digital Restriction Enzyme Analysis of Methylation (DREAM), which is a next-generation sequencing-based methylation analysis. Unsupervised consensus clustering of the discovery cohort (n = 99) using DREAM data identified HM (HM_DREAM; n = 35) and LM subgroups (LM_DREAM; n = 64). Of the 98 cases that could be compared with the international consensus classification, 90 HM (n = 30) and LM (n = 60) cases had 100% concordance with DREAM clustering results. Of the remaining 8 cases comprising the IM group, 4 were classified as belonging to the HM_DREAM group and 4 to the LM_DREAM group. A machine-learning classifier was successfully constructed using a support vector machine (SVM), which divided the validation cohort (n = 38) into HM (HM_SVM, n = 18) and LM (LM_SVM; n = 20) groups. Patients with the HM_SVM profile had a significantly poorer 5-year overall survival rate than those with the LM_SVM profile. In conclusion, we developed a robust methylation test using DREAM for patients with JMML. This simple and straightforward test can be easily incorporated into diagnosis to generate a methylation classification for patients so they can receive risk-adapted treatment in the context of future clinical trials.
Collapse
|
24
|
Avramović V, Frederiksen SD, Brkić M, Tarailo-Graovac M. Driving mosaicism: somatic variants in reference population databases and effect on variant interpretation in rare genetic disease. Hum Genomics 2021; 15:71. [PMID: 34906245 PMCID: PMC8670043 DOI: 10.1186/s40246-021-00371-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genetic variation databases provide invaluable information on the presence and frequency of genetic variants in the 'untargeted' human population, aggregated with the primary goal to facilitate the interpretation of clinically important variants. The presence of somatic variants in such databases can affect variant assessment in undiagnosed rare disease (RD) patients. Previously, the impact of somatic mosaicism was only considered in relation to two Mendelian disease-associated genes. Here, we expand the analyses to identify additional mosaicism-prone genes in blood-derived reference population databases. RESULTS To identify additional mosaicism-prone genes relevant to RDs, we focused on known/previously established ClinVar pathogenic and likely pathogenic single-nucleotide variants, residing in genes associated with early onset, severe autosomal dominant diseases. We asked whether any of these variants are present in a higher-than-expected frequency in the reference population databases and whether there is evidence of somatic origin (i.e., allelic imbalance) rather than germline heterozygosity (~ half of the reads supporting alternative allele). The mosaicism-prone genes identified were further categorized according to the processes they are involved in. Beyond the previously reported ASXL1 and DNMT3A, we identified 7 additional autosomal dominant RD-associated genes with known pathogenic single-nucleotide variants present in the reference population databases and good evidence of allelic imbalance: BRAF, CBL, FGFR3, IDH2, KRAS, PTPN11 and SETBP1. From this group of 9 genes, the majority (n = 7) was important for hematopoiesis. In addition, 4 of these genes were involved in cell proliferation. Further assessment of the known 156 hematopoietic genes led to identification of 48 genes (21 not yet associated with RDs) with at least some evidence of mosaicism detectable in reference population databases. CONCLUSIONS These results stress the importance of considering genes involved in hematopoiesis and cell proliferation when interpreting the presence and frequency of genetic variants in blood-derived reference population databases, both public and private. This is especially important when considering new variants of uncertain significance in known hematopoietic/cell proliferation RD genes and future novel gene-disease associations involving this class of genes.
Collapse
Affiliation(s)
- Vladimir Avramović
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Simona Denise Frederiksen
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Marjana Brkić
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, 11060, Belgrade, Republic of Serbia.,VIB Center for Inflammation Research, Ghent University, 9052, Ghent, Belgium
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
25
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
26
|
Carratt SA, Braun TP, Coblentz C, Schonrock Z, Callahan R, Curtiss BM, Maloney L, Foley AC, Maxson JE. Mutant SETBP1 enhances NRAS-driven MAPK pathway activation to promote aggressive leukemia. Leukemia 2021; 35:3594-3599. [PMID: 34002029 PMCID: PMC8595361 DOI: 10.1038/s41375-021-01278-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023]
Abstract
Mutations in SET-binding protein 1 (SETBP1) are associated with poor outcomes in myeloid leukemias. In the Ras-driven leukemia, juvenile myelomonocytic leukemia, SETBP1 mutations are enriched in relapsed disease. While some mechanisms for SETBP1-driven oncogenesis have been established, it remains unclear how SETBP1 specifically modulates the biology of Ras-driven leukemias. In this study, we found that when co-expressed with Ras pathway mutations, SETBP1 promoted oncogenic transformation of murine bone marrow in vitro and aggressive myeloid leukemia in vivo. We demonstrate that SETBP1 enhances the NRAS gene expression signature, driving upregulation of mitogen-activated protein kinase (MAPK) signaling and downregulation of differentiation pathways. SETBP1 also enhances NRAS-driven phosphorylation of MAPK proteins. Cells expressing NRAS and SETBP1 are sensitive to inhibitors of the MAPK pathway, and treatment with the MEK inhibitor trametinib conferred a survival benefit in a mouse model of NRAS/SETBP1-mutant disease. Our data demonstrate that despite driving enhanced MAPK signaling, SETBP1-mutant cells remain susceptible to trametinib in vitro and in vivo, providing encouraging preclinical data for the use of trametinib in SETBP1-mutant disease.
Collapse
MESH Headings
- Animals
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Disease Models, Animal
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Humans
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/metabolism
- Leukemia, Myelomonocytic, Juvenile/pathology
- MAP Kinase Signaling System
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pyridones/pharmacology
- Pyrimidinones/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
| | | | - Cody Coblentz
- Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | - Amy C Foley
- Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
27
|
Wintering A, Dvorak CC, Stieglitz E, Loh ML. Juvenile myelomonocytic leukemia in the molecular era: a clinician's guide to diagnosis, risk stratification, and treatment. Blood Adv 2021; 5:4783-4793. [PMID: 34525182 PMCID: PMC8759142 DOI: 10.1182/bloodadvances.2021005117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/03/2021] [Indexed: 12/03/2022] Open
Abstract
Juvenile myelomonocytic leukemia is an overlapping myeloproliferative and myelodysplastic disorder of early childhood . It is associated with a spectrum of diverse outcomes ranging from spontaneous resolution in rare patients to transformation to acute myeloid leukemia in others that is generally fatal. This unpredictable clinical course, along with initially descriptive diagnostic criteria, led to decades of productive international research. Next-generation sequencing now permits more accurate molecular diagnoses in nearly all patients. However, curative treatment is still reliant on allogeneic hematopoietic cell transplantation for most patients, and additional advances will be required to improve risk stratification algorithms that distinguish those that can be observed expectantly from others who require swift hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Astrid Wintering
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
| | - Christopher C. Dvorak
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
28
|
Kim HS, Lee JW, Kang D, Yu H, Kim Y, Kang H, Lee JM, Ahn A, Cho B, Kim S, Chung NG, Kim Y, Kim M. Characteristics of RAS pathway mutations in juvenile myelomonocytic leukaemia: a single-institution study from Korea. Br J Haematol 2021; 195:748-756. [PMID: 34590720 DOI: 10.1111/bjh.17861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML), a rare clonal haematopoietic disorder of childhood, is characterised as a myelodysplastic/myeloproliferative neoplasm. Despite ground-breaking genetic discoveries, JMML remains difficult to diagnose given its diverse clinical features and disease course. A total of 24 patients with JMML were diagnosed and treated at a single institution, and their genetic profiles and association with clinical and laboratory characteristics were analysed. In all, 22 of the patients received allogeneic haematopoietic stem cell transplantation after myeloablative conditioning, mostly from a haploidentical family donor. RAS pathway mutations were identified in 88% of patients: PTPN11 [nine (38%)], NRAS [nine (38%)], KRAS [two (8%)], NF1 [five (21%)] and CBL [one (4%)]. Secondary mutations were found in 25% of patients: SETBP1, JAK3, ASXL1, GATA2, KIT, KDM6A, and BCOR. Six patients showed cytogenetic abnormalities, including three with monosomy 7. The estimated 5-year event-free survival (EFS) and overall survival (± standard error) of the entire cohort were 58·9 (10·9)% and 73·5 (10·8)% respectively. NRAS (+) patients had a higher 5-year EFS than NRAS (-) patients [72·9 (16·5)% vs. 52·5 (13·1)%, P = 0·127]. NRAS (+) patients had a better 5-year EFS than PTPN11 (+) patients [41·7 (17·3)%, P = 0·071]. Our study revealed the genetic characteristics of Korean JMML patients with RAS pathway and secondary mutations.
Collapse
Affiliation(s)
- Hoon Seok Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Wook Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haein Yu
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeojae Kim
- Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunhye Kang
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ari Ahn
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bin Cho
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongkoo Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Nf1 and Sh2b3 mutations cooperate in vivo in a mouse model of juvenile myelomonocytic leukemia. Blood Adv 2021; 5:3587-3591. [PMID: 34464969 DOI: 10.1182/bloodadvances.2020003754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/09/2021] [Indexed: 11/20/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is initiated in early childhood by somatic mutations that activate Ras signaling. Although some patients have only a single identifiable oncogenic mutation, others have 1 or more additional alterations. Such secondary mutations, as a group, are associated with an increased risk of relapse after hematopoietic stem cell transplantation or transformation to acute myeloid leukemia. These clinical observations suggest a cooperative effect between initiating and secondary mutations. However, the roles of specific genes in the prognosis or clinical presentation of JMML have not been described. In this study, we investigate the impact of secondary SH2B3 mutations in JMML. We find that patients with SH2B3 mutations have adverse outcomes, as well as higher white blood cell counts and hemoglobin F levels in the peripheral blood. We further demonstrate this interaction in genetically engineered mice. Deletion of Sh2b3 cooperates with conditional Nf1 deletion in a dose-dependent fashion. These studies illustrate that haploinsufficiency for Sh2b3 contributes to the severity of myeloproliferative disease and provide an experimental system for testing treatments for a high-risk cohort of JMML patients.
Collapse
|
30
|
Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells 2021; 10:cells10092335. [PMID: 34571984 PMCID: PMC8465353 DOI: 10.3390/cells10092335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.
Collapse
|
31
|
Donor Killer Immunoglobulin Receptor Gene Content and Ligand Matching and Outcomes of Pediatric Patients with Juvenile Myelomonocytic Leukemia Following Unrelated Donor Transplantation. Transplant Cell Ther 2021; 27:926.e1-926.e10. [PMID: 34407489 DOI: 10.1016/j.jtct.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Natural killer (NK) cell determinants predict relapse-free survival after allogeneic hematopoietic cell transplantation (HCT) for acute myelogenous leukemia, and previous studies have shown a beneficial graft-versus-leukemia effect in patients with juvenile myelomonocytic leukemia (JMML). However, whether NK cell determinants predict protection against relapse for JMML patients undergoing HCT is unknown. Therefore, we investigated NK cell-related donor and recipient immunogenetics as determinants of HCT outcomes in patients with JMML. Patients with JMML (age 0 to <19 years) who underwent a first allogeneic HCT from an unrelated donor between 2000 and 2017 and had available donor samples from the Center for International Blood and Marrow Transplant Research Repository were included. Donor killer immunoglobulin receptor (KIR) typing was performed on pre-HCT samples. The primary endpoint was disease-free survival (DFS); secondary endpoints included relapse, grade II-IV acute graft versus-host-disease (aGVHD), chronic GVHD (cGVHD), GVHD-free relapse-free survival, transplantation-related mortality, and overall survival (OS). Donor KIR models tested included KIR genotype (AA versus Bx), B content (0-1 versus ≥2), centromeric and telomeric region score (AA versus AB versus BB), B content score (best, better, or neutral), composite score (2 versus 3 versus 4), activating KIR content, and the presence of KIR2DS4. Ligand-ligand and KIR-ligand mismatch effects on outcomes were analyzed in HLA-mismatched donors (≤7/8; n = 74) only. Univariate analyses were performed for primary and secondary outcomes of interest, with a P value <.05 considered significant. One hundred sixty-five patients (113 males), with a median follow-up of 85 months (range, 6 to 216 months) met the study criteria. Of these, 111 underwent an unrelated donor HCT and 54 underwent a UCB HCT. Almost all (n = 161; 98%) received a myeloablative conditioning regimen. After exclusion of recipients of reduced-intensity/nonmyeloablative conditioning regimens and ex vivo T cell-depleted grafts (n = 8), there were 42 AA donors and 115 Bx donors, respectively. Three-year DFS, OS, relapse, and GRFS for the entire cohort were 58% (95% confidence interval [CI], 50% to 66%), 67% (95% CI, 59% to 74%), 26% (95% CI, 19% to 33%), and 27% (95% CI, 19% to 35%), respectively. The cumulative incidence of grade II-IV aGVHD at 100 days was 36% (95% CI, 27% to 44%), and that of cGVHD at 1 year was 23% (95% CI, 17% to 30%). There were no differences between AA donors and Bx donors for any recipient survival outcomes. The risk of grade II-IV aGVHD was lower in patients with donors with a B content score of ≥2 (hazard ratio [HR], 0.46; 95% CI, 0.26 to 0.83; P = .01), an activating KIR content score of >3 (HR, 0.52; 95% CI, 0.29 to 0.95; P = .032), centromeric A/B score (HR, 0.57; 95% CI, 033 to 0.98; P = .041), and telomeric A/B score (HR, 0.58; 95% CI, 0.34 to 1.00; P = .048). To our knowledge, this is the first study analyzing the association of NK cell determinants and outcomes in JMML HCT recipients. This study identifies potential benefits of donor KIR-B genotypes in reducing aGVHD. Our findings warrant further study of the role of NK cells in enhancing the graft-versus-leukemia effect via recognition of JMML blasts.
Collapse
|
32
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
33
|
Mayerhofer C, Niemeyer CM, Flotho C. Current Treatment of Juvenile Myelomonocytic Leukemia. J Clin Med 2021; 10:3084. [PMID: 34300250 PMCID: PMC8305558 DOI: 10.3390/jcm10143084] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare pediatric leukemia characterized by mutations in five canonical RAS pathway genes. The diagnosis is made by typical clinical and hematological findings associated with a compatible mutation. Although this is sufficient for clinical decision-making in most JMML cases, more in-depth analysis can include DNA methylation class and panel sequencing analysis for secondary mutations. NRAS-initiated JMML is heterogeneous and adequate management ranges from watchful waiting to allogeneic hematopoietic stem cell transplantation (HSCT). Upfront azacitidine in KRAS patients can achieve long-term remissions without HSCT; if HSCT is required, a less toxic preparative regimen is recommended. Germline CBL patients often experience spontaneous resolution of the leukemia or exhibit stable mixed chimerism after HSCT. JMML driven by PTPN11 or NF1 is often rapidly progressive, requires swift HSCT and may benefit from pretransplant therapy with azacitidine. Because graft-versus-leukemia alloimmunity is central to cure high risk patients, the immunosuppressive regimen should be discontinued early after HSCT.
Collapse
Affiliation(s)
- Christina Mayerhofer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
| | - Charlotte M. Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
| |
Collapse
|
34
|
Montero-Bullón JF, González-Velasco Ó, Isidoro-García M, Lacal J. Integrated in silico MS-based phosphoproteomics and network enrichment analysis of RASopathy proteins. Orphanet J Rare Dis 2021; 16:303. [PMID: 34229750 PMCID: PMC8258961 DOI: 10.1186/s13023-021-01934-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background RASopathies are a group of syndromes showing clinical overlap caused by mutations in genes affecting the RAS-MAPK pathway. Consequent disruption on cellular signaling leads and is driven by phosphoproteome remodeling. However, we still lack a comprehensive picture of the different key players and altered downstream effectors. Methods An in silico interactome of RASopathy proteins was generated using pathway enrichment analysis/STRING tool, including identification of main hub proteins. We also integrated phosphoproteomic and immunoblotting studies using previous published information on RASopathy proteins and their neighbors in the context of RASopathy syndromes. Data from Phosphosite database (www.phosphosite.org) was collected in order to obtain the potential phosphosites subjected to regulation in the 27 causative RASopathy proteins. We compiled a dataset of dysregulated phosphosites in RASopathies, searched for commonalities between syndromes in harmonized data, and analyzed the role of phosphorylation in the syndromes by the identification of key players between the causative RASopathy proteins and the associated interactome. Results In this study, we provide a curated data set of 27 causative RASopathy genes, identify up to 511 protein–protein associations using pathway enrichment analysis/STRING tool, and identify 12 nodes as main hub proteins. We found that a large group of proteins contain tyrosine residues and their biological processes include but are not limited to the nervous system. Harmonizing published RASopathy phosphoproteomic and immunoblotting studies we identified a total of 147 phosphosites with increased phosphorylation, whereas 47 have reduced phosphorylation. The PKB signaling pathway is the most represented among the dysregulated phosphoproteins within the RASopathy proteins and their neighbors, followed by phosphoproteins implicated in the regulation of cell proliferation and the MAPK pathway. Conclusions This work illustrates the complex network underlying the RASopathies and the potential of phosphoproteomics for dissecting the molecular mechanisms in these syndromes. A combined study of associated genes, their interactome and phosphorylation events in RASopathies, elucidates key players and mechanisms to direct future research, diagnosis and therapeutic windows. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01934-x.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullón
- Metabolic Engineering Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain
| | - Óscar González-Velasco
- Bioinformatics and Functional Genomics Group, IBMCC Cancer Research Center, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.,Network for Cooperative Research in Health-RETICS ARADyAL, 37007, Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, 37007, Salamanca, Spain.,Department of Medicine, University of Salamanca, 37007, Salamanca, Spain
| | - Jesus Lacal
- Institute for Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain. .,Molecular Genetics of Human Diseases Group, Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
35
|
Juvenile myelomonocytic leukemia presenting in an infant with a subdural hematoma. Childs Nerv Syst 2021; 37:2075-2079. [PMID: 33404720 DOI: 10.1007/s00381-020-05013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Juvenile myelomonocytic leukemia (JMML) is a rare childhood hematopoietic disorder typically presenting with hepatosplenomegaly, lymphadenopathy, pallor, fever, and cutaneous findings. The authors report the first case, to our knowledge, of JMML presenting in a pediatric patient with a subdural hematoma. CASE DESCRIPTION A 7-month old male with recurrent respiratory infections and a low-grade fever presented with a full fontanelle and an increasing head circumference and was found to have chronic bilateral subdural collections. Abusive head trauma, infectious, and coagulopathy workups were unremarkable, and the patient underwent bilateral burr holes for evacuation of the subdural collections. The postoperative course was complicated by the development of thrombocytopenia, anemia, and an acute subdural hemorrhage which required evacuation. Cytologic analysis of the subdural fluid demonstrated atypical cells, which prompted flow cytometric analysis, a bone marrow biopsy, and ultimately a diagnosis of JMML. Following chemotherapy, the patient's counts improved, and he subsequently underwent a hematopoietic stem cell transplant. CONCLUSION Subdural collections may rarely represent the first presenting sign of hematologic malignancies. In patients with a history of recurrent infections and a negative workup for abusive head trauma, clinicians should include neoplastic etiologies in the differential for chronic subdural collections and have a low threshold for fluid analysis.
Collapse
|
36
|
Sustained fetal hematopoiesis causes juvenile death from leukemia: evidence from a dual-age-specific mouse model. Blood Adv 2021; 4:3728-3740. [PMID: 32777070 DOI: 10.1182/bloodadvances.2020002326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
It is not clear whether disrupted age-specific hematopoiesis contributes to the complex manifestations in leukemia patients who carry identical mutations, particularly in pediatric and adult patients with similar clinical characteristics. By studying a dual-age-specific mouse model, we demonstrate that (1) loss of Pten during the fetal-to-adult hematopoiesis switch (hematopoiesis switch) causes sustained fetal hematopoiesis, resulting in death in juvenile leukemia; (2) myeloid-biased hematopoiesis in juvenile mice is associated with the sustained fetal properties of hematopoietic stem cells (HSCs); (3) the age specificity of juvenile myelomonocytic leukemia depends on the copy number of Pten and Nf1; (4) single-allelic Pten deletion during the hematopoiesis switch causes constitutive activation of MAPK in juvenile mice with Nf1 loss of heterozygosity (LOH); and (5) Nf1 LOH causes monocytosis in juvenile mice with Pten haploinsufficiency but does not cause lethality until adulthood. Our data suggest that 1 copy of Pten is sufficient to maintain an intact negative-feedback loop of the Akt pathway and HSC function in reconstitution, despite MAPK being constitutively activated in juvenile Pten+/ΔNf1LOH mice. However, 2 copies of Pten are required to maintain the integrity of the MAPK pathway in juvenile mice with Nf1 haploinsufficiency. Our data indicate that previous investigations of Pten function in wild-type mice may not reflect the impact of Pten loss in mice with Nf1 mutations or other genetic defects. We provide a proof of concept that disassociated age-specific hematopoiesis contributes to leukemogenesis and pediatric demise.
Collapse
|
37
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
38
|
Palomo L, Acha P, Solé F. Genetic Aspects of Myelodysplastic/Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13092120. [PMID: 33925681 PMCID: PMC8124412 DOI: 10.3390/cancers13092120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid neoplasms characterized, at the time of their presentation, by the simultaneous presence of both myelodysplastic and myeloproliferative features. In MDS/MPN, the karyotype is often normal but mutations in genes that are common across myeloid neoplasms can be detected in a high proportion of cases by targeted sequencing. In this review, we intend to summarize the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of patients. Abstract Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are myeloid neoplasms characterized by the presentation of overlapping features from both myelodysplastic syndromes and myeloproliferative neoplasms. Although the classification of MDS/MPN relies largely on clinical features and peripheral blood and bone marrow morphology, studies have demonstrated that a large proportion of patients (~90%) with this disease harbor somatic mutations in a group of genes that are common across myeloid neoplasms. These mutations play a role in the clinical heterogeneity of these diseases and their clinical evolution. Nevertheless, none of them is specific to MDS/MPN and current diagnostic criteria do not include molecular data. Even when such alterations can be helpful for differential diagnosis, they should not be used alone as proof of neoplasia because some of these mutations may also occur in healthy older people. Here, we intend to review the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of the patients.
Collapse
Affiliation(s)
- Laura Palomo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Correspondence: ; Tel.: +34-93-557-2806
| |
Collapse
|
39
|
Greenmyer JR, Kohorst M. Pediatric Neoplasms Presenting with Monocytosis. Curr Hematol Malig Rep 2021; 16:235-246. [PMID: 33630234 DOI: 10.1007/s11899-021-00611-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Juvenile myelomonocytic leukemia (JMML) is a rare but severe pediatric neoplasm with hematopoietic stem cell transplant as its only established curative option. The development of targeted therapeutics for JMML is being guided by an understanding of the pathobiology of this condition. Here, we review JMML with an emphasis on genetics in order to (i) demonstrate the relationship between JMML genotype and clinical phenotype and (ii) explore potential genetic targets of novel JMML therapies. RECENT FINDINGS DNA hypermethylation studies have demonstrated consistently that methylation is related to disease severity. Increasing understanding of methylation in JMML may open the door to novel therapies, such as DNA methyltransferase inhibitors. The PI3K/AKT/MTOR, JAK/STAT, and RAF/MEK/ERK pathways are being investigated as therapeutic targets for JMML. Future therapy for JMML will be driven by an increased understanding of pathobiology. Targeted therapeutic approaches hold potential for improving outcomes in patients with JMML.
Collapse
Affiliation(s)
| | - Mira Kohorst
- Pediatric Hematology and Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
40
|
Mashoko V, Mackinnon D, Vaughan J. Acute myeloid leukaemia with myelodysplasia-related change in a child living with human immunodeficiency virus infection, a transformation from underlying juvenile myelomonocytic leukaemia. SOUTH AFRICAN JOURNAL OF ONCOLOGY 2020. [DOI: 10.4102/sajo.v4i0.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
41
|
Fontana D, Ramazzotti D, Aroldi A, Redaelli S, Magistroni V, Pirola A, Niro A, Massimino L, Mastini C, Brambilla V, Bombelli S, Bungaro S, Morotti A, Rea D, Stagno F, Martino B, Campiotti L, Caocci G, Usala E, Merli M, Onida F, Bregni M, Elli EM, Fumagalli M, Ciceri F, Perego RA, Pagni F, Mologni L, Piazza R, Gambacorti-Passerini C. Integrated Genomic, Functional, and Prognostic Characterization of Atypical Chronic Myeloid Leukemia. Hemasphere 2020; 4:e497. [PMID: 33196013 PMCID: PMC7655091 DOI: 10.1097/hs9.0000000000000497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Supplemental Digital Content is available for this article. Atypical chronic myeloid leukemia (aCML) is a BCR-ABL1-negative clonal disorder, which belongs to the myelodysplastic/myeloproliferative group. This disease is characterized by recurrent somatic mutations in SETBP1, ASXL1 and ETNK1 genes, as well as high genetic heterogeneity, thus posing a great therapeutic challenge. To provide a comprehensive genomic characterization of aCML we applied a high-throughput sequencing strategy to 43 aCML samples, including both whole-exome and RNA-sequencing data. Our dataset identifies ASXL1, SETBP1, and ETNK1 as the most frequently mutated genes with a total of 43.2%, 29.7 and 16.2%, respectively. We characterized the clonal architecture of 7 aCML patients by means of colony assays and targeted resequencing. The results indicate that ETNK1 variants occur early in the clonal evolution history of aCML, while SETBP1 mutations often represent a late event. The presence of actionable mutations conferred both ex vivo and in vivo sensitivity to specific inhibitors with evidence of strong in vitro synergism in case of multiple targeting. In one patient, a clinical response was obtained. Stratification based on RNA-sequencing identified two different populations in terms of overall survival, and differential gene expression analysis identified 38 significantly overexpressed genes in the worse outcome group. Three genes correctly classified patients for overall survival.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Vera Magistroni
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | | | - Antonio Niro
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Luca Massimino
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Virginia Brambilla
- Department of Medicine and Surgery, Pathology, University of Milano - Bicocca, San Gerardo Hospital, Monza, Italy
| | - Silvia Bombelli
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Silvia Bungaro
- Centro Ricerca Tettamanti, Pediatria, University of Milano - Bicocca, Monza, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Turin, Italy
| | - Delphine Rea
- Service d'Hématologie adulte, Hôpital Saint-Louis, Paris, France
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico - Vittorio Emanuele, Catania, Italy
| | - Bruno Martino
- Division of Hematology, Azienda Ospedaliera 'Bianchi Melacrino Morelli', Reggio Calabria, Italy
| | - Leonardo Campiotti
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, Varese, Italy
| | - Giovanni Caocci
- Hematology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilio Usala
- Hematology Unit, Ospedale Oncologico A. Businco, Cagliari, Italy
| | - Michele Merli
- Hematology, University Hospital Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Francesco Onida
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Bregni
- Oncology-Hematology Unit, ASST Valle Olona, Busto Arsizio, Italy
| | - Elena Maria Elli
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Monica Fumagalli
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto A Perego
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University of Milano - Bicocca, San Gerardo Hospital, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
42
|
Schönung M, Meyer J, Nöllke P, Olshen AB, Hartmann M, Murakami N, Wakamatsu M, Okuno Y, Plass C, Loh ML, Niemeyer CM, Muramatsu H, Flotho C, Stieglitz E, Lipka DB. International Consensus Definition of DNA Methylation Subgroups in Juvenile Myelomonocytic Leukemia. Clin Cancer Res 2020; 27:158-168. [PMID: 33139265 DOI: 10.1158/1078-0432.ccr-20-3184] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Known clinical and genetic markers have limitations in predicting disease course and outcome in juvenile myelomonocytic leukemia (JMML). DNA methylation patterns in JMML have correlated with outcome across multiple studies, suggesting it as a biomarker to improve patient stratification. However, standardized approaches to classify JMML on the basis of DNA methylation patterns are lacking. We, therefore, sought to define an international consensus for DNA methylation subgroups in JMML and develop classification methods for clinical implementation. EXPERIMENTAL DESIGN Published DNA methylation data from 255 patients with JMML were used to develop and internally validate a classifier model. Accuracy across platforms (EPIC-arrays and MethylSeq) was tested using a technical validation cohort (32 patients). The suitability of both methods for single-patient classification was demonstrated using an independent cohort (47 patients). RESULTS Analysis of pooled, published data established three DNA methylation subgroups as a de facto standard. Unfavorable prognostic parameters (PTPN11 mutation, elevated fetal hemoglobin, and older age) were significantly enriched in the high methylation (HM) subgroup. A classifier was then developed that predicted subgroups with 98% accuracy across different technological platforms. Applying the classifier to an independent validation cohort confirmed an association of HM with secondary mutations, high relapse incidence, and inferior overall survival (OS), while the low methylation subgroup was associated with a favorable disease course. Multivariable analysis established DNA methylation subgroups as the only significant factor predicting OS. CONCLUSIONS This study provides an international consensus definition for DNA methylation subgroups in JMML. We developed and validated methods which will facilitate the design of risk-stratified clinical trials in JMML.
Collapse
Affiliation(s)
- Maximilian Schönung
- Section Translational Cancer Epigenomics, Division Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Meyer
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, California
| | - Peter Nöllke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adam B Olshen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Mark Hartmann
- Section Translational Cancer Epigenomics, Division Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Christoph Plass
- Division Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Germany
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Germany
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
43
|
Neven Q, Boulanger C, Bruwier A, de Ville de Goyet M, Meyts I, Moens L, Van Damme A, Brichard B. Clinical Spectrum of Ras-Associated Autoimmune Leukoproliferative Disorder (RALD). J Clin Immunol 2020; 41:51-58. [PMID: 33011939 DOI: 10.1007/s10875-020-00883-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022]
Abstract
Ras-associated autoimmune leukoproliferative disorder (RALD) is a clinical entity initially identified in patients evaluated for an autoimmune lymphoproliferative syndrome (ALPS)-like phenotype. It remains a matter of debate whether RALD is a chronic and benign lymphoproliferative disorder or a pre-malignant condition. We report the case of a 7-year-old girl diagnosed with RALD due to somatic KRAS mutation who progressed to a juvenile myelomonocytic leukemia phenotype and finally evolved into acute myeloid leukemia. The case report prompted a literature review by a search for all RALD cases published in PubMed and Embase. We identified 27 patients with RALD. The male-to-female ratio was 1:1 and median age at disease onset was 2 years (range 3 months-36 years). Sixteen patients (59%) harbored somatic mutations in KRAS and 11 patients (41%) somatic mutations in NRAS. The most common features were splenomegaly (26/27 patients), autoimmune cytopenia (15/16 patients), monocytosis (18/24 patients), pericarditis (6 patients), and skin involvement (4 patients). Two patients went on to develop a hematopoietic malignancy. In summary, the current case documents an additional warning about the long-term risk of malignancy in RALD.
Collapse
Affiliation(s)
- Quentin Neven
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - Cécile Boulanger
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Annelyse Bruwier
- Department of Pediatrics, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Maëlle de Ville de Goyet
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, University Hospitals Leuven, Leuven, Belgium
- Department of Pediatrics, ERN-RITA Core Center, University Hospitals Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - An Van Damme
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Bénédicte Brichard
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
44
|
Hunter AM, Padron E. Molecular genetics of MDS/MPN overlap syndromes. Best Pract Res Clin Haematol 2020; 33:101195. [DOI: 10.1016/j.beha.2020.101195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/27/2020] [Indexed: 01/05/2023]
|
45
|
Beck RC, Kim AS, Goswami RS, Weinberg OK, Yeung CCS, Ewalt MD. Molecular/Cytogenetic Education for Hematopathology Fellows. Am J Clin Pathol 2020; 154:149-177. [PMID: 32444878 DOI: 10.1093/ajcp/aqaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES At a discussion on molecular/cytogenetic education for hematopathology fellows at the 2018 Society for Hematopathology Program Directors Meeting, consensus was that fellows should understand basic principles and indications for and limitations of molecular/cytogenetic testing used in routine practice. Fellows should also be adept at integrating results of such testing for rendering a final diagnosis. To aid these consensus goals, representatives from the Society for Hematopathology and the Association for Molecular Pathology formed a working group to devise a molecular/cytogenetic curriculum for hematopathology fellow education. CURRICULUM SUMMARY The curriculum includes a primer on cytogenetics and molecular techniques. The bulk of the curriculum reviews the molecular pathology of individual malignant hematologic disorders, with applicable molecular/cytogenetic testing for each and following the 2017 World Health Organization classification of hematologic neoplasms. Benign hematologic disorders and bone marrow failure syndromes are also discussed briefly. Extensive tables are used to summarize genetics of individual disorders and appropriate methodologies. CONCLUSIONS This curriculum provides an overview of the current understanding of the molecular biology of hematologic disorders and appropriate ancillary testing for their evaluation. The curriculum may be used by program directors for training hematopathology fellows or by practicing hematopathologists.
Collapse
Affiliation(s)
- Rose C Beck
- Department of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH (Society for Hematopathology Representative)
| | - Annette S Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (Association for Molecular Pathology Representative)
| | - Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Olga K Weinberg
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Cecilia C S Yeung
- Department of Pathology, University of Washington, and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mark D Ewalt
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
46
|
Lasho T, Patnaik MM. Juvenile myelomonocytic leukemia – A bona fide RASopathy syndrome. Best Pract Res Clin Haematol 2020; 33:101171. [DOI: 10.1016/j.beha.2020.101171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
|
47
|
Caye A, Rouault-Pierre K, Strullu M, Lainey E, Abarrategi A, Fenneteau O, Arfeuille C, Osman J, Cassinat B, Pereira S, Anjos-Afonso F, Currie E, Ariza-McNaughton L, Barlogis V, Dalle JH, Baruchel A, Chomienne C, Cavé H, Bonnet D. Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. Leukemia 2020; 34:1658-1668. [PMID: 31776464 PMCID: PMC7266742 DOI: 10.1038/s41375-019-0662-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/28/2019] [Accepted: 11/17/2019] [Indexed: 11/25/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare aggressive myelodysplastic/myeloproliferative neoplasm of early childhood, initiated by RAS-activating mutations. Genomic analyses have recently described JMML mutational landscape; however, the nature of JMML-propagating cells (JMML-PCs) and the clonal architecture of the disease remained until now elusive. Combining genomic (exome, RNA-seq), Colony forming assay and xenograft studies, we detect the presence of JMML-PCs that faithfully reproduce JMML features including the complex/nonlinear organization of dominant/minor clones, both at diagnosis and relapse. Further integrated analysis also reveals that although the mutations are acquired in hematopoietic stem cells, JMML-PCs are not always restricted to this compartment, highlighting the heterogeneity of the disease during the initiation steps. We show that the hematopoietic stem/progenitor cell phenotype is globally maintained in JMML despite overexpression of CD90/THY-1 in a subset of patients. This study shed new lights into the ontogeny of JMML, and the identity of JMML-PCs, and provides robust models to monitor the disease and test novel therapeutic approaches.
Collapse
Affiliation(s)
- Aurélie Caye
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Kevin Rouault-Pierre
- Francis Crick Institute, London, UK
- Barts Cancer Institute, Centre for Haemato-Oncology, Queen Mary University of London, London, UK
| | - Marion Strullu
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Elodie Lainey
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
- Service d'Hématologie Biologique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Odile Fenneteau
- Service d'Hématologie Biologique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Chloé Arfeuille
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Jennifer Osman
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Bruno Cassinat
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint Louis, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Sabrina Pereira
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | - Vincent Barlogis
- Service d'Hématologie Pédiatrique, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jean-Hugues Dalle
- Service d'Hématologie pédiatrique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - André Baruchel
- Service d'Hématologie pédiatrique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Christine Chomienne
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint Louis, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Hélène Cavé
- INSERM UMR_S1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France.
- Département de Génétique, Hôpital Robert Debré, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
| | | |
Collapse
|
48
|
Leone MP, Palumbo P, Palumbo O, Di Muro E, Chetta M, Laforgia N, Resta N, Stella A, Castellana S, Mazza T, Castori M, Carella M, Bukvic N. The recurrent SETBP1 c.2608G > A, p.(Gly870Ser) variant in a patient with Schinzel-Giedion syndrome: an illustrative case of the utility of whole exome sequencing in a critically ill neonate. Ital J Pediatr 2020; 46:74. [PMID: 32460883 PMCID: PMC7254667 DOI: 10.1186/s13052-020-00839-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Schinzel-Giedion syndrome (SGS) is a multiple malformation syndrome mainly characterized by severe intellectual disability, distinctive facial features, and multiple congenital anomalies, including skeletal abnormalities, genitourinary and renal malformations, cardiac defects, as well as an increased pediatric cancer risk. Recently, SGS has been associated with de novo heterozygous deleterious variants in the SETBP1 gene; to date, nine different variants, clustering in exon 4 of SETBP1, have been identified in 25 patients. Case presentation In this study, by using Whole Exome Sequencing (WES), we identified a patient with a recurrent missense mutation in SETBP1, the c.2608G > A, p.(Gly870Ser) variant, previously reported as likely pathogenic. This finding allowed us to confirm the suspected clinical diagnosis of SGS. Clinical features of patients carrying the same variant, including our patient, were evaluated by a review of medical records. Conclusions Our study confirms SGS as a severe disorder potentially presenting at birth as a critically ill neonate and demonstrates the causal role of the c.2608G > A, p.(Gly870Ser) variant in the etiology of the syndrome. Moreover, although the cohort of SETBP1-patients reported in the literature is still small, our study reports for the first time the prevalence of the variant (about 27%, 7/26). Finally, given the heterogeneity of clinical presentations of affected patients hospitalized in Neonatal Intensive Care Units (NICU) and/or Pediatric Intensive Care Units (PICU), in agreement with emerging data from the literature, we suggest that WES should be used in the diagnosis of unexplained syndromic conditions, and even as part of a standard first-line diagnostic approach, as it would allow a better diagnosis, counseling and management of affected patients and their families.
Collapse
Affiliation(s)
- Maria Pia Leone
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Ester Di Muro
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Massimiliano Chetta
- Division of Medical and Laboratory Genetics, Azienda Ospedaliera di Rilievo Nazionale "Antonio Cardarelli", Naples, Italy
| | - Nicola Laforgia
- Division of Neonatology and Neonatal Intensive Care, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Nicoletta Resta
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Stella
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | - Stefano Castellana
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy.
| | - Nenad Bukvic
- Division of Medical Genetics, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
49
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
50
|
Wakamatsu M, Okuno Y, Murakami N, Miwata S, Kitazawa H, Narita K, Kataoka S, Ichikawa D, Hamada M, Taniguchi R, Suzuki K, Kawashima N, Nishikawa E, Narita A, Nishio N, Kojima S, Muramatsu H, Takahashi Y. Detection of subclonal SETBP1 and JAK3 mutations in juvenile myelomonocytic leukemia using droplet digital PCR. Leukemia 2020; 35:259-263. [PMID: 32307441 DOI: 10.1038/s41375-020-0817-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Norihiro Murakami
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Miwata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hironobu Kitazawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Ichikawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Taniguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Nishikawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|