1
|
Liu T, Xu K, Pardeshi A, Myint SS, Kang AY, Morimoto LM, Lieber MR, Wiemels JL, Kogan SC, Metayer C, de Smith AJ. Early-life tobacco exposure is causally implicated in aberrant RAG-mediated recombination in childhood acute lymphoblastic leukemia. Leukemia 2024; 38:2492-2496. [PMID: 39251742 PMCID: PMC11518992 DOI: 10.1038/s41375-024-02407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Affiliation(s)
- Tanxin Liu
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Keren Xu
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Anmol Pardeshi
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Alice Y Kang
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Libby M Morimoto
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Michael R Lieber
- Departments of Pathology, Biochemistry, Molecular Microbiology & Immunology, and Section of Molecular & Computational Biology (Department of Biological Sciences), University of Southern California, Los Angeles, CA, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Scott C Kogan
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Ochodnicka-Mackovicova K, van Keimpema M, Spaargaren M, van Noesel CJM, Guikema JEJ. DNA damage-induced p53 downregulates expression of RAG1 through a negative feedback loop involving miR-34a and FOXP1. J Biol Chem 2024:107922. [PMID: 39454960 DOI: 10.1016/j.jbc.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B-cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels. This feedback loop involves ataxia telangiectasia mutated (ATM) activation, subsequent stabilization of p53, and modulation of microRNA-34a (miR-34a) levels, which is one of the p53 targets. Notably, this loop incorporates transcription factor forkhead box P1 (FOXP1) as a downstream effector. The absence of p53 resulted in an increased proportion of IgM+ cells prompted to upregulate RAG1/2 and to undergo Ig light chain (Igl) recombination. Similar results were obtained in primary pre-B cells with depleted levels of miR-34a. We propose that in pre-B cells undergoing Ig gene recombination, the DNA breaks activate a p53/miR-34a/FOXP1-mediated negative-feedback loop that contributes to the rapid downregulation of RAG. This regulation limits the RAG-dependent DNA damage, thereby protecting the stability of the genome during V(D)J rearrangement in developing B cells.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Martine van Keimpema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target & Therapy Discovery, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands.
| |
Collapse
|
3
|
Schapfl MA, LoMastro GM, Braun VZ, Hirai M, Levine MS, Kiermaier E, Labi V, Holland AJ, Villunger A. Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity. Nat Commun 2024; 15:8890. [PMID: 39406735 PMCID: PMC11480410 DOI: 10.1038/s41467-024-53222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Centrioles define centrosome structure and function. Deregulation of centriole numbers can cause developmental defects and cancer. The p53 tumor suppressor limits the growth of cells lacking or harboring additional centrosomes and can be engaged by the "mitotic surveillance" or the "PIDDosome pathway", respectively. Here, we show that early B cell progenitors frequently present extra centrioles, ensuing their high proliferative activity and related DNA damage. Extra centrioles are efficiently cleared during B cell maturation. In contrast, centriole loss upon Polo-like kinase 4 (Plk4) deletion causes apoptosis and arrests B cell development. This defect can be rescued by co-deletion of Usp28, a critical component of the mitotic surveillance pathway, that restores cell survival and maturation. Centriole-deficient mature B cells are proliferation competent and mount a humoral immune response. Our findings imply that progenitor B cells are intolerant to centriole loss but permissive to centriole amplification, a feature potentially facilitating their malignant transformation.
Collapse
Affiliation(s)
- Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent Z Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maretoshi Hirai
- Department of Pharmacology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Verena Labi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
4
|
Ochodnicka-Mackovicova K, Mokry M, Haagmans M, Bradley TE, van Noesel CJM, Guikema JEJ. RAG1/2 induces double-stranded DNA breaks at non-Ig loci in the proximity of single sequence repeats in developing B cells. Eur J Immunol 2024; 54:e2350958. [PMID: 39046890 DOI: 10.1002/eji.202350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Martin Haagmans
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Ted E Bradley
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
5
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Kentsis A. Toward a Unified Theory of Why Young People Develop Cancer. Cold Spring Harb Perspect Med 2024; 14:a041658. [PMID: 38692742 PMCID: PMC11444251 DOI: 10.1101/cshperspect.a041658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Epidemiologic and genetic studies have now defined specific patterns of incidence and distinct molecular features of cancers in young versus aging people. Here, I review a general framework for the causes of cancer in children and young adults by relating somatic genetic mosaicism and developmental tissue mutagenesis. This framework suggests how aging-associated cancers such as carcinomas, glioblastomas, and myelodysplastic leukemias are causally distinct from cancers that predominantly affect children and young adults, including lymphoblastic and myeloid leukemias, sarcomas, neuroblastomas, medulloblastomas, and other developmental cancers. I discuss the oncogenic activities of known developmental mutators RAG1/2, AID, and PGBD5, and describe strategies needed to define missing developmental causes of young-onset cancers. Thus, a precise understanding of the mechanisms of tissue-specific somatic mosaicism, developmental mutators, and their control by human genetic variation and environmental exposures is needed for improved strategies for cancer screening, prevention, and treatment.
Collapse
Affiliation(s)
- Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute and Department of Pediatrics, Weill Medical College of Cornell University and Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
7
|
Cobaleda C, Vicente-Dueñas C, Nichols KE, Sanchez-Garcia I. Childhood B cell leukemia: Intercepting the paths to progression. Bioessays 2024; 46:e2400033. [PMID: 39058907 DOI: 10.1002/bies.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
B-cell Acute Lymphoblastic Leukemia (B-ALL) is the most common pediatric cancer, arising most often in children aged 2-5 years. This distinctive age distribution hints at an association between B-ALL development and disrupted immune system function during a susceptible period during childhood, possibly triggered by early exposure to infection. While cure rates for childhood B-ALL surpass 90% in high-income nations, survivors suffer from diminished quality of life due to the side effects of treatment. Consequently, understanding the origins and evolution of B-ALL, and how to prevent this prevalent childhood cancer, is paramount to alleviate this substantial health burden. This article provides an overview of our current understanding of the etiology of childhood B-ALL and explores how this knowledge can inform preventive strategies.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Carolina Vicente-Dueñas
- Institute for Biomedical Research of Salamanca (IBSAL), Department of Pediatrics, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Kim E Nichols
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Isidro Sanchez-Garcia
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Cirrincione AM, Poos AM, Ziccheddu B, Kaddoura M, Bärtsch MA, Maclachlan K, Chojnacka M, Diamond B, John L, Reichert P, Huhn S, Blaney P, Gagler D, Rippe K, Zhang Y, Dogan A, Lesokhin AM, Davies F, Goldschmidt H, Fenk R, Weisel KC, Mai EK, Korde N, Morgan GJ, Usmani S, Landgren O, Raab MS, Weinhold N, Maura F. The biological and clinical impact of deletions before and after large chromosomal gains in multiple myeloma. Blood 2024; 144:771-783. [PMID: 38728430 PMCID: PMC11375460 DOI: 10.1182/blood.2024024299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Acquisition of a hyperdiploid (HY) karyotype or immunoglobulin heavy chain (IgH) translocations are considered key initiating events in multiple myeloma (MM). To explore if other genomic events can precede these events, we analyzed whole-genome sequencing data from 1173 MM samples. By integrating molecular time and structural variants within early chromosomal duplications, we indeed identified pregain deletions in 9.4% of patients with an HY karyotype without IgH translocations, challenging acquisition of an HY karyotype as the earliest somatic event. Remarkably, these deletions affected tumor suppressor genes (TSGs) and/or oncogenes in 2.4% of patients with an HY karyotype without IgH translocations, supporting their role in MM pathogenesis. Furthermore, our study points to postgain deletions as novel driver mechanisms in MM. Using multiomics approaches to investigate their biologic impact, we found associations with poor clinical outcome in newly diagnosed patients and profound effects on both the oncogene and TSG activity despite the diploid gene status. Overall, this study provides novel insights into the temporal dynamics of genomic alterations in MM.
Collapse
Affiliation(s)
- Anthony M Cirrincione
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Alexandra M Poos
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Bachisio Ziccheddu
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Marcella Kaddoura
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Marc-Andrea Bärtsch
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Kylee Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Monika Chojnacka
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Benjamin Diamond
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Lukas John
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Reichert
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Stefanie Huhn
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Patrick Blaney
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Dylan Gagler
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and BioQuant, Heidelberg, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Faith Davies
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University-Hospital Duesseldorf, Duesseldorf, Germany
| | - Katja C Weisel
- Department of Oncology, Hematology, and Blood and Marrow Transplant, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias K Mai
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Neha Korde
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gareth J Morgan
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Saad Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ola Landgren
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Marc S Raab
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Niels Weinhold
- Heidelberg Myeloma Center, Department of Medicine V, University Hospital and Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Francesco Maura
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| |
Collapse
|
9
|
Lysenkova Wiklander M, Arvidsson G, Bunikis I, Lundmark A, Raine A, Marincevic-Zuniga Y, Gezelius H, Bremer A, Feuk L, Ameur A, Nordlund J. A multiomic characterization of the leukemia cell line REH using short- and long-read sequencing. Life Sci Alliance 2024; 7:e202302481. [PMID: 38777370 PMCID: PMC11111970 DOI: 10.26508/lsa.202302481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The B-cell acute lymphoblastic leukemia (ALL) cell line REH, with the t(12;21) ETV6::RUNX1 translocation, is known to have a complex karyotype defined by a series of large-scale chromosomal rearrangements. Taken from a 15-yr-old at relapse, the cell line offers a practical model for the study of pediatric B-ALL. In recent years, short- and long-read DNA and RNA sequencing have emerged as a complement to karyotyping techniques in the resolution of structural variants in an oncological context. Here, we explore the integration of long-read PacBio and Oxford Nanopore whole-genome sequencing, IsoSeq RNA sequencing, and short-read Illumina sequencing to create a detailed genomic and transcriptomic characterization of the REH cell line. Whole-genome sequencing clarified the molecular traits of disrupted ALL-associated genes including CDKN2A, PAX5, BTG1, VPREB1, and TBL1XR1, as well as the glucocorticoid receptor NR3C1 Meanwhile, transcriptome sequencing identified seven fusion genes within the genomic breakpoints. Together, our extensive whole-genome investigation makes high-quality open-source data available to the leukemia genomics community.
Collapse
Affiliation(s)
- Mariya Lysenkova Wiklander
- https://ror.org/048a87296 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Gustav Arvidsson
- https://ror.org/048a87296 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Anders Lundmark
- https://ror.org/048a87296 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- https://ror.org/048a87296 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Yanara Marincevic-Zuniga
- https://ror.org/048a87296 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Henrik Gezelius
- https://ror.org/048a87296 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Anna Bremer
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- https://ror.org/01apvbh93 Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Lars Feuk
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- https://ror.org/048a87296 Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 SciLifeLab, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
de Smith A, Liu T, Xu K, Pardeshi A, Myint SS, Kang A, Morimoto L, Lieber M, Wiemels J, Kogan S, Metayer C. Early-life tobacco exposure is causally implicated in aberrant RAG-mediated recombination in childhood acute lymphoblastic leukemia. RESEARCH SQUARE 2024:rs.3.rs-4510345. [PMID: 38946984 PMCID: PMC11213169 DOI: 10.21203/rs.3.rs-4510345/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children, yet few environmental risk factors have been identified. We previously found an association between early-life tobacco smoke exposure and frequency of somatic deletions of 8 leukemia driver genes among childhood ALL patients in the California Childhood Leukemia Study. To expand analysis genome-wide and examine potential mechanisms, we conducted tumor whole-genome sequencing in 35 ALL patients, including 18 with high prenatal tobacco exposure and 17 with low exposure as determined by established epigenetic biomarkers. High tobacco exposure patients had significantly more structural variants (P < .001) and deletions (P = .001) genome-wide than low exposure patients. Investigation of off-target RAG recombination revealed that 41% of deletions in the high tobacco exposure patients were putatively RAG-mediated (full RAG motif identified at one or both breakpoints) compared with only 21% in the low exposure group (P = .001). In a multilevel model, deletions in high tobacco exposure patients were 2.44-fold (95% CI:1.13-5.38) more likely to be putatively RAG-mediated than deletions in low exposure patients. No point mutational signatures were associated with prenatal tobacco exposure. Our findings suggest that early-life tobacco smoke exposure may promote leukemogenesis by driving development of somatic deletions in pre-leukemic lymphocytes via off-target RAG recombination.
Collapse
Affiliation(s)
| | | | - Keren Xu
- University of Southern California
| | | | - Swe Swe Myint
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | | | | | - Michael Lieber
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine
| | | | | | | |
Collapse
|
11
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
12
|
Benítez L, Castro-Barquero S, Crispi F, Youssef L, Crovetto F, Fischer U, Kameri E, Bueno C, Camos M, Menéndez P, Heinäniemi M, Borkhardt A, Gratacós E. Maternal Lifestyle and Prenatal Risk Factors for Childhood Leukemia: A Review of the Existing Evidence. Fetal Diagn Ther 2024; 51:395-410. [PMID: 38710162 DOI: 10.1159/000539141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Acute leukemia is the most common pediatric cancer, with an incidence peak at 2-5 years of age. Despite the medical advances improving survival rates, children suffer from significant side effects of treatments as well as its high social and economic impact. The frequent prenatal origin of this developmental disease follows the two-hit carcinogenesis model established in the 70s: a first hit in prenatal life with the creation of genetic fusion lesions or aneuploidy in hematopoietic progenitor/stem cells, and usually a second hit in the pediatric age that converts the preleukemic clone into clinical leukemia. Previous research has mostly focused on postnatal environmental factors triggering the second hit. SUMMARY There is scarce evidence on prenatal risk factors associated with the first hit. Mainly retrospective case-control studies suggested several environmental and lifestyle determinants as risk factors. If these associations could be confirmed, interventions focused on modifying prenatal factors might influence the subsequent risk of leukemia during childhood and reveal unexplored research avenues for the future. In this review, we aim to comprehensively summarize the currently available evidence on prenatal risk factors for the development of childhood leukemia. According to the findings of this review, parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Other factors such as socioeconomic status, consumption of caffeinated beverages, and smoking consumption have been suggested with inconclusive evidence. Additionally, investigating the association between prenatal factors and genetic lesions associated with childhood leukemia at birth is crucial. Prospective studies evaluating the link between lifestyle factors and genetic alterations could provide indirect evidence supporting new research avenues for leukemia prevention. Maternal diet and lifestyle factors are modifiable determinants associated with adverse perinatal outcomes that could be also related to preleukemic lesions. KEY MESSAGES Parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Dedicating efforts to studying maternal lifestyle during pregnancy and its association with genetic lesions leading to childhood leukemia could lead to novel prevention strategies.
Collapse
Affiliation(s)
- Leticia Benítez
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain,
| | - Sara Castro-Barquero
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Fàtima Crispi
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Lina Youssef
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Clara Bueno
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV Network, ISCIII, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| | - Mireia Camos
- Department of Pediatric Oncology and Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV Network, ISCIII, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Finland, Kuopio, Finland
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Eduard Gratacós
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
de Smith AJ, Wahlster L, Jeon S, Kachuri L, Black S, Langie J, Cato LD, Nakatsuka N, Chan TF, Xia G, Mazumder S, Yang W, Gazal S, Eng C, Hu D, Burchard EG, Ziv E, Metayer C, Mancuso N, Yang JJ, Ma X, Wiemels JL, Yu F, Chiang CWK, Sankaran VG. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. CELL GENOMICS 2024; 4:100526. [PMID: 38537633 PMCID: PMC11019360 DOI: 10.1016/j.xgen.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jalen Langie
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tsz-Fung Chan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Guangze Xia
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Soumyaa Mazumder
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Celeste Eng
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Esteban González Burchard
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaomei Ma
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Cobaleda C, Godley LA, Nichols KE, Wlodarski MW, Sanchez-Garcia I. Insights into the Molecular Mechanisms of Genetic Predisposition to Hematopoietic Malignancies: The Importance of Gene-Environment Interactions. Cancer Discov 2024; 14:396-405. [PMID: 38426560 PMCID: PMC10913756 DOI: 10.1158/2159-8290.cd-23-1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 03/02/2024]
Abstract
SUMMARY The recognition of host genetic factors underlying susceptibility to hematopoietic malignancies has increased greatly over the last decade. Historically, germline predisposition was thought to primarily affect the young. However, emerging data indicate that hematopoietic malignancies that develop in people of all ages across the human lifespan can derive from germline predisposing conditions and are not exclusively observed in younger individuals. The age at which hematopoietic malignancies manifest appears to correlate with distinct underlying biological pathways. Progression from having a deleterious germline variant to being diagnosed with overt malignancy involves complex, multistep gene-environment interactions with key external triggers, such as infection and inflammatory stimuli, driving clonal progression. Understanding the mechanisms by which predisposed clones transform under specific pressures may reveal strategies to better treat and even prevent hematopoietic malignancies from occurring.Recent unbiased genome-wide sequencing studies of children and adults with hematopoietic malignancies have revealed novel genes in which disease-causing variants are of germline origin. This paradigm shift is spearheaded by findings in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) as well as acute lymphoblastic leukemia, but it also encompasses other cancer types. Although not without challenges, the field of genetic cancer predisposition is advancing quickly, and a better understanding of the genetic basis of hematopoietic malignancies risk affects therapeutic decisions as well as genetic counseling and testing of at-risk family members.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kim E. Nichols
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
16
|
Sigvardsson M. Early B-Cell Factor 1: An Archetype for a Lineage-Restricted Transcription Factor Linking Development to Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:143-156. [PMID: 39017843 DOI: 10.1007/978-3-031-62731-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Antić Ž, Lentes J, Bergmann AK. Cytogenetics and genomics in pediatric acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2023; 36:101511. [PMID: 38092485 DOI: 10.1016/j.beha.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 12/18/2023]
Abstract
The last five decades have witnessed significant improvement in diagnostics, treatment and management of children with acute lymphoblastic leukaemia (ALL). These advancements have become possible through progress in our understanding of the genetic and biological background of ALL, resulting in the introduction of risk-adapted treatment and novel therapeutic targets, e.g., tyrosine kinase inhibitors for BCR::ABL1-positive ALL. Further advances in the taxonomy of ALL and the discovery of new genetic biomarkers and therapeutic targets, as well as the introduction of targeted and immunotherapies into the frontline treatment protocols, may improve management and outcome of children with ALL. In this review we describe the current developments in the (cyto)genetic diagnostics and management of children with ALL, and provide an overview of the most important advances in the genetic classification of ALL. Furthermore, we discuss perspectives resulting from the development of new techniques, including artificial intelligence (AI).
Collapse
Affiliation(s)
- Željko Antić
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
19
|
Atre T, Farrokhi A, Jo S, Salitra S, Duque-Afonso J, Cleary ML, Rolf N, Reid GSD. Age and ligand specificity influence the outcome of pathogen engagement on preleukemic and leukemic B-cell precursor populations. Blood Adv 2023; 7:7087-7099. [PMID: 37824841 PMCID: PMC10694525 DOI: 10.1182/bloodadvances.2023010782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.
Collapse
Affiliation(s)
- Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jesus Duque-Afonso
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Michael L. Cleary
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Gregor S. D. Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Libura M, Karabin K, Tyrna P, Czyż A, Makuch-Łasica H, Jaźwiec B, Paluszewska M, Piątkowska-Jakubas B, Zawada M, Gniot M, Trubicka J, Szymańska M, Borg K, Więsik M, Czekalska S, Florek I, Król M, Paszkowska-Kowalewska M, Gil L, Kapelko-Słowik K, Patkowska E, Tomaszewska A, Mądry K, Machowicz R, Czerw T, Piekarska A, Dutka M, Kopińska A, Helbig G, Gromek T, Lewandowski K, Zacharczuk M, Pastwińska A, Wróbel T, Haus O, Basak G, Hołowiecki J, Juszczyński P, Lech-Marańda E, Giebel S, Jędrzejczak WW. Prognostic Impact of Copy Number Alterations' Profile and AID/RAG Signatures in Acute Lymphoblastic Leukemia (ALL) with BCR::ABL and without Recurrent Genetic Aberrations (NEG ALL) Treated with Intensive Chemotherapy. Cancers (Basel) 2023; 15:5431. [PMID: 38001691 PMCID: PMC10670434 DOI: 10.3390/cancers15225431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Adult acute lymphoblastic leukemia (ALL) is associated with poor outcomes. ALL is initiated by primary aberrations, but secondary genetic lesions are necessary for overt ALL. In this study, we reassessed the value of primary and secondary aberrations in intensively treated ALL patients in relation to mutator enzyme expression. RT-PCR, genomic PCR, and sequencing were applied to evaluate primary aberrations, while qPCR was used to measure the expression of RAG and AID mutator enzymes in 166 adult ALL patients. Secondary copy number alterations (CNA) were studied in 94 cases by MLPA assay. Primary aberrations alone stratified 30% of the patients (27% high-risk, 3% low-risk cases). The remaining 70% intermediate-risk patients included BCR::ABL1pos subgroup and ALL lacking identified genetic markers (NEG ALL). We identified three CNA profiles: high-risk bad-CNA (CNAhigh/IKZF1pos), low-risk good-CNA (all other CNAs), and intermediate-risk CNAneg. Furthermore, based on RAG/AID expression, we report possible mechanisms underlying the CNA profiles associated with poor outcome: AID stratified outcome in CNAneg, which accompanied most likely a particular profile of single nucleotide variations, while RAG in CNApos increased the odds for CNAhigh/IKZF1pos development. Finally, we integrated primary genetic aberrations with CNA to propose a revised risk stratification code, which allowed us to stratify 75% of BCR::ABL1pos and NEG patients.
Collapse
Affiliation(s)
- Marta Libura
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Karolina Karabin
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Paweł Tyrna
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Anna Czyż
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Hanna Makuch-Łasica
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Bożena Jaźwiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Monika Paluszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Beata Piątkowska-Jakubas
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Magdalena Zawada
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Michał Gniot
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (M.G.); (L.G.); (K.L.)
| | - Joanna Trubicka
- Children’s Memorial Health Institute, 04-736 Warsaw, Poland;
| | - Magdalena Szymańska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Katarzyna Borg
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Marta Więsik
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Sylwia Czekalska
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Izabela Florek
- Department of Hematology, Jagiellonian University Medical College, 31-008 Cracow, Poland; (B.P.-J.); (M.Z.); (S.C.); (I.F.)
| | - Maria Król
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Małgorzata Paszkowska-Kowalewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (M.G.); (L.G.); (K.L.)
| | - Katarzyna Kapelko-Słowik
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Elżbieta Patkowska
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Krzysztof Mądry
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Rafał Machowicz
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Tomasz Czerw
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (J.H.); (S.G.)
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (A.P.); (M.D.)
| | - Magdalena Dutka
- Department of Hematology and Transplantology, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (A.P.); (M.D.)
| | - Anna Kopińska
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-032 Katowice, Poland; (A.K.); (G.H.)
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-032 Katowice, Poland; (A.K.); (G.H.)
| | - Tomasz Gromek
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (M.G.); (L.G.); (K.L.)
| | - Marta Zacharczuk
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Anna Pastwińska
- Department of Tumor Biology and Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland;
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Medical University of Wrocław, 50-137 Wrocław, Poland; (A.C.); (B.J.); (K.K.-S.); (M.Z.); (T.W.)
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| | - Jerzy Hołowiecki
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (J.H.); (S.G.)
| | - Przemysław Juszczyński
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Ewa Lech-Marańda
- Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (H.M.-Ł.); (K.B.); (E.P.); (P.J.); (E.L.-M.)
| | - Sebastian Giebel
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (T.C.); (J.H.); (S.G.)
| | - Wiesław Wiktor Jędrzejczak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (P.T.); (M.P.); (M.S.); (M.W.); (M.K.); (M.P.-K.); (A.T.); (K.M.); (G.B.); (W.W.J.)
| |
Collapse
|
21
|
Mansur MB, deSouza NM, Natrajan R, Abegglen LM, Schiffman JD, Greaves M. Evolutionary determinants of curability in cancer. Nat Ecol Evol 2023; 7:1761-1770. [PMID: 37620552 DOI: 10.1038/s41559-023-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023]
Abstract
The emergence of drug-resistant cells, most of which have a mutated TP53 gene, prevents curative treatment in most advanced and common metastatic cancers of adults. Yet, a few, rarer malignancies, all of which are TP53 wild type, have high cure rates. In this Perspective, we discuss how common features of curable cancers offer insights into the evolutionary and developmental determinants of drug resistance. Acquired loss of TP53 protein function is the most common genetic change in cancer. This probably reflects positive selection in the context of strong ecosystem pressures including microenvironmental hypoxia. Loss of TP53's functions results in multiple fitness benefits and enhanced evolvability of cancer cells. TP53-null cells survive apoptosis, and tolerate potent oncogenic signalling, DNA damage and genetic instability. In addition, critically, they provide an expanded pool of self-renewing, or stem, cells, the primary units of evolutionary selection in cancer, making subsequent adaptation to therapeutic challenge by drug resistance highly probable. The exceptional malignancies that are curable, including the common genetic subtype of childhood acute lymphoblastic leukaemia and testicular seminoma, differ from the common adult cancers in originating prenatally from embryonic or fetal cells that are developmentally primed for TP53-dependent apoptosis. Plus, they have other genetic and phenotypic features that enable dissemination without exposure to selective pressures for TP53 loss, retaining their intrinsic drug hypersensitivity.
Collapse
Affiliation(s)
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
22
|
Kent D, Marchetti L, Mikulasova A, Russell LJ, Rico D. Broad H3K4me3 domains: Maintaining cellular identity and their implication in super-enhancer hijacking. Bioessays 2023; 45:e2200239. [PMID: 37350339 DOI: 10.1002/bies.202200239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.
Collapse
Affiliation(s)
- Daniel Kent
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Letizia Marchetti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Benada J, Alsowaida D, Megeney LA, Sørensen CS. Self-inflicted DNA breaks in cell differentiation and cancer. Trends Cell Biol 2023; 33:850-859. [PMID: 36997393 DOI: 10.1016/j.tcb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Self-inflicted DNA strand breaks are canonically linked with cell death pathways and the establishment of genetic diversity in immune and germline cells. Moreover, this form of DNA damage is an established source of genome instability in cancer development. However, recent studies indicate that nonlethal self-inflicted DNA strand breaks play an indispensable but underappreciated role in a variety of cell processes, including differentiation and cancer therapy responses. Mechanistically, these physiological DNA breaks originate from the activation of nucleases, which are best characterized for inducing DNA fragmentation in apoptotic cell death. In this review, we outline the emerging biology of one critical nuclease, caspase-activated DNase (CAD), and how directed activation or deployment of this enzyme can lead to divergent cell fate outcomes.
Collapse
Affiliation(s)
- Jan Benada
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark
| | - Dalal Alsowaida
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark.
| |
Collapse
|
24
|
Yin H, Wang J, Tan Y, Jiang M, Zhang H, Meng G. Transcription factor abnormalities in B-ALL leukemogenesis and treatment. Trends Cancer 2023; 9:855-870. [PMID: 37407363 DOI: 10.1016/j.trecan.2023.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
The biological regulation of transcription factors (TFs) and repressor proteins is an important mechanism for maintaining cell homeostasis. In B cell acute lymphoblastic leukemia (B-ALL) TF abnormalities occur at high frequency and are often recognized as the major driving factor in carcinogenesis. We provide an in-depth review of molecular mechanisms of six major TF rearrangements in B-ALL, including DUX4-rearranged (DUX4-R), MEF2D-R, ZNF384-R, ETV6-RUNX1 and TCF3-PBX1 fusions, and KMT2A-R. In addition, the therapeutic options and prognoses for patients who harbor these TF abnormalities are discussed. This review aims to provide an up-to-date panoramic view of how TF-based oncogenic fusions might drive carcinogenesis and impact on potential therapeutic exploration of B-ALL treatments.
Collapse
Affiliation(s)
- Hongxin Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Junfei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Hao Zhang
- Institute for Translational Brain Research, Ministry of Education (MOE) Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
25
|
Burmeister T, Gröger D, Gökbuget N, Spriewald B, Starck M, Elmaagacli A, Hoelzer D, Keller U, Schwartz S. Molecular characterization of TCF3::PBX1 chromosomal breakpoints in acute lymphoblastic leukemia and their use for measurable residual disease assessment. Sci Rep 2023; 13:15167. [PMID: 37704696 PMCID: PMC10499895 DOI: 10.1038/s41598-023-42294-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The translocation t(1;19)(q23;p13) with the resulting chimeric TCF3::PBX1 gene is the third most prevalent recurrent chromosomal translocation in acute lymphoblastic leukemia and accounts for 3-5% of cases. The molecular background of this translocation has been incompletely studied, especially in adult cases. We characterized the chromosomal breakpoints of 49 patients with TCF3::PBX1 and the corresponding reciprocal PBX1::TCF3 breakpoints in 15 cases at the molecular level, thus providing an extensive molecular overview of this translocation in a well-defined study patient population. Breakpoints were found to be remarkably clustered not only in TCF3 but also in PBX1. No association with DNA repeats or putative cryptic recombination signal sequence sites was observed. A simplified detection method for breakpoint identification was developed and the feasibility of patient-specific chromosomal break sites as molecular markers for detecting measurable residual disease (MRD) was explored. A highly sensitive generic real-time PCR for MRD assessment using these breakpoint sequences was established that could serve as a useful alternative to the classical method utilizing rearranged immune gene loci. This study provides the first extensive molecular data set on the chromosomal breakpoints of the t(1;19)/TCF3::PBX1 aberration in adult ALL. Based on the obtained data a generic MRD method was developed that has several theoretical advantages, including an on average higher sensitivity and a greater stability of the molecular marker in the course of disease.
Collapse
Affiliation(s)
- Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, CVK, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Daniela Gröger
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Gökbuget
- Medical Department 2, Goethe-Universität, Frankfurt, Germany
| | - Bernd Spriewald
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Starck
- I. Medical Department, München Klinik Schwabing, Munich, Germany
| | - Ahmet Elmaagacli
- Department of Hematology, Oncology, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Dieter Hoelzer
- Medical Department 2, Goethe-Universität, Frankfurt, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Sharma G, Tran TM, Bansal I, Beg MS, Bhardwaj R, Bassi J, Tan Y, Jaiswal AK, Tso C, Jain A, Singh J, Chattopadhyay P, Singh A, Chopra A, Bakhshi S, Casero D, Rao DS, Palanichamy JK. RNA binding protein IGF2BP1 synergizes with ETV6-RUNX1 to drive oncogenic signaling in B-cell Acute Lymphoblastic Leukemia. J Exp Clin Cancer Res 2023; 42:231. [PMID: 37670323 PMCID: PMC10478443 DOI: 10.1186/s13046-023-02810-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/27/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy, with ETV6::RUNX1 being the most prevalent translocation whose exact pathogenesis remains unclear. IGF2BP1 (Insulin-like Growth Factor 2 Binding Protein 1) is an oncofetal RNA binding protein seen to be specifically overexpressed in ETV6::RUNX1 positive B-ALL. In this study, we have studied the mechanistic role of IGF2BP1 in leukemogenesis and its synergism with the ETV6::RUNX1 fusion protein. METHODS Gene expression was analyzed from patient bone marrow RNA using Real Time RT-qPCR. Knockout cell lines were created using CRISPR-Cas9 based lentiviral vectors. RNA-Seq and RNA Immunoprecipitation sequencing (RIP-Seq) after IGF2BP1 pulldown were performed using the Illumina platform. Mouse experiments were done by retroviral overexpression of donor HSCs followed by lethal irradiation of recipients using a bone marrow transplant model. RESULTS We observed specific overexpression of IGF2BP1 in ETV6::RUNX1 positive patients in an Indian cohort of pediatric ALL (n=167) with a positive correlation with prednisolone resistance. IGF2BP1 expression was essential for tumor cell survival in multiple ETV6::RUNX1 positive B-ALL cell lines. Integrated analysis of transcriptome sequencing after IGF2BP1 knockout and RIP-Seq after IGF2BP1 pulldown in Reh cell line revealed that IGF2BP1 targets encompass multiple pro-oncogenic signalling pathways including TNFα/NFκB and PI3K-Akt pathways. These pathways were also dysregulated in primary ETV6::RUNX1 positive B-ALL patient samples from our center as well as in public B-ALL patient datasets. IGF2BP1 showed binding and stabilization of the ETV6::RUNX1 fusion transcript itself. This positive feedback loop led to constitutive dysregulation of several oncogenic pathways. Enforced co-expression of ETV6::RUNX1 and IGF2BP1 in mouse bone marrow resulted in marrow hypercellularity which was characterized by multi-lineage progenitor expansion and strong Ki67 positivity. This pre-leukemic phenotype confirmed their synergism in-vivo. Clonal expansion of cells overexpressing both ETV6::RUNX1 and IGF2BP1 was clearly observed. These mice also developed splenomegaly indicating extramedullary hematopoiesis. CONCLUSION Our data suggest a combined impact of the ETV6::RUNX1 fusion protein and RNA binding protein, IGF2BP1 in activating multiple oncogenic pathways in B-ALL which makes IGF2BP1 and these pathways as attractive therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ishu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Mohammad Sabique Beg
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Ruchi Bhardwaj
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jaspal Bassi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yuande Tan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Amit Kumar Jaiswal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Christine Tso
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Jay Singh
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Parthaprasad Chattopadhyay
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Room 4008, Convergence Block, New Delhi, 110029, India.
| |
Collapse
|
27
|
Leongamornlert D, Gutiérrez-Abril J, Lee S, Barretta E, Creasey T, Gundem G, Levine MF, Arango-Ossa JE, Liosis K, Medina-Martinez JS, Zuborne Alapi K, Kirkwood AA, Clifton-Hadley L, Patrick P, Jones D, O’Neill L, Butler AP, Harrison CJ, Campbell P, Patel B, Moorman AV, Fielding AK, Papaemmanuil E. Diagnostic utility of whole genome sequencing in adults with B-other acute lymphoblastic leukemia. Blood Adv 2023; 7:3862-3873. [PMID: 36867579 PMCID: PMC10405200 DOI: 10.1182/bloodadvances.2022008992] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/12/2023] [Indexed: 03/04/2023] Open
Abstract
Genomic profiling during the diagnosis of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults is used to guide disease classification, risk stratification, and treatment decisions. Patients for whom diagnostic screening fails to identify disease-defining or risk-stratifying lesions are classified as having B-other ALL. We screened a cohort of 652 BCP-ALL cases enrolled in UKALL14 to identify and perform whole genome sequencing (WGS) of paired tumor-normal samples. For 52 patients with B-other, we compared the WGS findings with data from clinical and research cytogenetics. WGS identified a cancer-associated event in 51 of 52 patients, including an established subtype defining genetic alterations that were previously missed with standard-of-care (SoC) genetics in 5 of them. Of the 47 true B-other ALL, we identified a recurrent driver in 87% (41). A complex karyotype via cytogenetics emerges as a heterogeneous group, including distinct genetic alterations associated with either favorable (DUX4-r) or poor outcomes (MEF2D-r and IGK::BCL2). For a subset of 31 cases, we integrated the findings from RNA sequencing (RNA-seq) analysis to include fusion gene detection and classification based on gene expression. Compared with RNA-seq, WGS was sufficient to detect and resolve recurrent genetic subtypes; however, RNA-seq can provide orthogonal validation of findings. In conclusion, we demonstrated that WGS can identify clinically relevant genetic abnormalities missed with SoC testing as well as identify leukemia driver events in virtually all cases of B-other ALL.
Collapse
Affiliation(s)
- Daniel Leongamornlert
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jesús Gutiérrez-Abril
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - SooWah Lee
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Creasey
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gunes Gundem
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Max F. Levine
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan E. Arango-Ossa
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konstantinos Liosis
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan S. Medina-Martinez
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Krisztina Zuborne Alapi
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Amy A. Kirkwood
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - Laura Clifton-Hadley
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - Pip Patrick
- Cancer Research UK & UCL Cancer Trials Centre, UCL Cancer Institute, UCL, London, United Kingdom
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Laura O’Neill
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Adam P. Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Bela Patel
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, United Kingdom
| | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adele K. Fielding
- Department of Haematology, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Elli Papaemmanuil
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
28
|
Brandes D, Yasin L, Nebral K, Ebler J, Schinnerl D, Picard D, Bergmann AK, Alam J, Köhrer S, Haas OA, Attarbaschi A, Marschall T, Stanulla M, Borkhardt A, Brozou T, Fischer U, Wagener R. Optical Genome Mapping Identifies Novel Recurrent Structural Alterations in Childhood ETV6::RUNX1+ and High Hyperdiploid Acute Lymphoblastic Leukemia. Hemasphere 2023; 7:e925. [PMID: 37469802 PMCID: PMC10353714 DOI: 10.1097/hs9.0000000000000925] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 07/21/2023] Open
Abstract
The mutational landscape of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common pediatric cancer, is not fully described partially because commonly applied short-read next generation sequencing has a limited ability to identify structural variations. By combining comprehensive analysis of structural variants (SVs), single-nucleotide variants (SNVs), and small insertions-deletions, new subtype-defining and therapeutic targets may be detected. We analyzed the landscape of somatic alterations in 60 pediatric patients diagnosed with the most common BCP-ALL subtypes, ETV6::RUNX1+ and classical hyperdiploid (HD), using conventional cytogenetics, single nucleotide polymorphism (SNP) array, whole exome sequencing (WES), and the novel optical genome mapping (OGM) technique. Ninety-five percent of SVs detected by cytogenetics and SNP-array were verified by OGM. OGM detected an additional 677 SVs not identified using the conventional methods, including (subclonal) IKZF1 deletions. Based on OGM, ETV6::RUNX1+ BCP-ALL harbored 2.7 times more SVs than HD BCP-ALL, mainly focal deletions. Besides SVs in known leukemia development genes (ETV6, PAX5, BTG1, CDKN2A), we identified 19 novel recurrently altered regions (in n ≥ 3) including 9p21.3 (FOCAD/HACD4), 8p11.21 (IKBKB), 1p34.3 (ZMYM1), 4q24 (MANBA), 8p23.1 (MSRA), and 10p14 (SFMBT2), as well as ETV6::RUNX1+ subtype-specific SVs (12p13.1 (GPRC5A), 12q24.21 (MED13L), 18q11.2 (MIB1), 20q11.22 (NCOA6)). We detected 3 novel fusion genes (SFMBT2::DGKD, PDS5B::STAG2, and TDRD5::LPCAT2), for which the sequence and expression were validated by long-read and whole transcriptome sequencing, respectively. OGM and WES identified double hits of SVs and SNVs (ETV6, BTG1, STAG2, MANBA, TBL1XR1, NSD2) in the same patient demonstrating the power of the combined approach to define the landscape of genomic alterations in BCP-ALL.
Collapse
Affiliation(s)
- Danielle Brandes
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- Dusseldorf School of Oncology (DSO), Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
| | - Layal Yasin
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Karin Nebral
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
- Center for Digital Medicine, Heinrich-Heine University, Dusseldorf, Germany
| | - Dagmar Schinnerl
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Daniel Picard
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Anke K. Bergmann
- Institute of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jubayer Alam
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
| | - Stefan Köhrer
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
| | - Oskar A. Haas
- St. Anna Children’s Hospital, Department of Pediatric Hematology/Oncology, Pediatric Clinic, Medical University, Vienna, Austria
| | - Andishe Attarbaschi
- St. Anna Children´s Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatric Hematology/Oncology, Pediatric Clinic, Medical University, Vienna, Austria
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich-Heine University, Dusseldorf, Germany
- Center for Digital Medicine, Heinrich-Heine University, Dusseldorf, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School (MHH), Hannover, Germany
| | - Arndt Borkhardt
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Triantafyllia Brozou
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Ute Fischer
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| | - Rabea Wagener
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University and University Hospital Dusseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Dusseldorf, Germany
| |
Collapse
|
29
|
Peppas I, Ford AM, Furness CL, Greaves MF. Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nat Rev Cancer 2023; 23:565-576. [PMID: 37280427 PMCID: PMC10243253 DOI: 10.1038/s41568-023-00584-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Here, we map emerging evidence suggesting that children with ALL at the time of diagnosis may have a delayed maturation of the gut microbiome compared with healthy children. This finding may be associated with early-life epidemiological factors previously identified as risk indicators for childhood ALL, including caesarean section birth, diminished breast feeding and paucity of social contacts. The consistently observed deficiency in short-chain fatty-acid-producing bacterial taxa in children with ALL has the potential to promote dysregulated immune responses and to, ultimately, increase the risk of transformation of preleukaemic clones in response to common infectious triggers. These data endorse the concept that a microbiome deficit in early life may contribute to the development of the major subtypes of childhood ALL and encourage the notion of risk-reducing microbiome-targeted intervention in the future.
Collapse
Affiliation(s)
- Ioannis Peppas
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
30
|
Coorens THH, Collord G, Treger TD, Adams S, Mitchell E, Newman B, Getz G, Godfrey AL, Bartram J, Behjati S. Clonal origin of KMT2A wild-type lineage-switch leukemia following CAR-T cell and blinatumomab therapy. NATURE CANCER 2023; 4:1095-1101. [PMID: 37474833 PMCID: PMC10447231 DOI: 10.1038/s43018-023-00604-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Children with acute lymphoblastic leukemia (ALL) undergoing anti-CD19 therapy occasionally develop acute myeloid leukemia (AML). The clonal origin of such lineage-switch leukemias1-4 remains unresolved. Here, we reconstructed the phylogeny of multiple leukemias in a girl who, following multiply relapsed ALL, received anti-CD19 cellular and antibody treatment and subsequently developed AML. Whole genome sequencing unambiguously revealed the AML derived from the initial ALL, with distinct driver mutations that were detectable before emergence. Extensive prior diversification and subsequent clonal selection underpins this fatal lineage switch. Genomic monitoring of primary leukemias and recurrences may predict therapy resistance, especially regarding anti-CD19 treatment.
Collapse
Affiliation(s)
| | - Grace Collord
- Great Ormond Street Hospital for Children, London, UK
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Stuart Adams
- Great Ormond Street Hospital for Children, London, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Barbara Newman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anna L Godfrey
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jack Bartram
- Great Ormond Street Hospital for Children, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
32
|
Bedics G, Egyed B, Kotmayer L, Benard-Slagter A, de Groot K, Bekő A, Hegyi LL, Bátai B, Krizsán S, Kriván G, Erdélyi DJ, Müller J, Haltrich I, Kajtár B, Pajor L, Vojcek Á, Ottóffy G, Ujfalusi A, Szegedi I, Tiszlavicz LG, Bartyik K, Csanádi K, Péter G, Simon R, Hauser P, Kelemen Á, Sebestyén E, Jakab Z, Matolcsy A, Kiss C, Kovács G, Savola S, Bödör C, Alpár D. PersonALL: a genetic scoring guide for personalized risk assessment in pediatric B-cell precursor acute lymphoblastic leukemia. Br J Cancer 2023; 129:455-465. [PMID: 37340093 PMCID: PMC10403542 DOI: 10.1038/s41416-023-02309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Recurrent genetic lesions provide basis for risk assessment in pediatric acute lymphoblastic leukemia (ALL). However, current prognostic classifiers rely on a limited number of predefined sets of alterations. METHODS Disease-relevant copy number aberrations (CNAs) were screened genome-wide in 260 children with B-cell precursor ALL. Results were integrated with cytogenetic data to improve risk assessment. RESULTS CNAs were detected in 93.8% (n = 244) of the patients. First, cytogenetic profiles were combined with IKZF1 status (IKZF1normal, IKZF1del and IKZF1plus) and three prognostic subgroups were distinguished with significantly different 5-year event-free survival (EFS) rates, IKAROS-low (n = 215): 86.3%, IKAROS-medium (n = 27): 57.4% and IKAROS-high (n = 18): 37.5%. Second, contribution of genetic aberrations to the clinical outcome was assessed and an aberration-specific score was assigned to each prognostically relevant alteration. By aggregating the scores of aberrations emerging in individual patients, personalized cumulative values were calculated and used for defining four prognostic subgroups with distinct clinical outcomes. Two favorable subgroups included 60% of patients (n = 157) with a 5-year EFS of 96.3% (excellent risk, n = 105) and 87.2% (good risk, n = 52), respectively; while 40% of patients (n = 103) showed high (n = 74) or ultra-poor (n = 29) risk profile (5-year EFS: 67.4% and 39.0%, respectively). CONCLUSIONS PersonALL, our conceptually novel prognostic classifier considers all combinations of co-segregating genetic alterations, providing a highly personalized patient stratification.
Collapse
Affiliation(s)
- Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Lili Kotmayer
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | - Anna Bekő
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Bátai
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergely Kriván
- Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - László Pajor
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Medical School, Pécs, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Medical School, Pécs, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Paediatrics and Paediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Bartyik
- Department of Paediatrics and Paediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Réka Simon
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Children's Health Center, Miskolc, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Hungarian Childhood Cancer Registry, Hungarian Pediatric Oncology Network, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
33
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
34
|
Kim JC, Chan-Seng-Yue M, Ge S, Zeng AGX, Ng K, Gan OI, Garcia-Prat L, Flores-Figueroa E, Woo T, Zhang AXW, Arruda A, Chithambaram S, Dobson SM, Khoo A, Khan S, Ibrahimova N, George A, Tierens A, Hitzler J, Kislinger T, Dick JE, McPherson JD, Minden MD, Notta F. Transcriptomic classes of BCR-ABL1 lymphoblastic leukemia. Nat Genet 2023:10.1038/s41588-023-01429-4. [PMID: 37337105 DOI: 10.1038/s41588-023-01429-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
In BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes. A later arrest was associated with lineage fidelity, durable leukemia remissions and improved patient outcomes. Each maturation arrest was marked by specific genomic events that control different transition points in B-cell development. Interestingly, these events were absent in BCR-ABL1+ preleukemic stem cells isolated from patients regardless of subtype, which supports that transcriptomic phenotypes are determined downstream of the leukemia-initialing event. Overall, our data indicate that treatment response and TKI efficacy are unexpected outcomes of the differentiation stage at which this leukemia transforms.
Collapse
Affiliation(s)
- Jaeseung C Kim
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sabrina Ge
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Karen Ng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Tristan Woo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrea Arruda
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shivapriya Chithambaram
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Amanda Khoo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Ann George
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anne Tierens
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John D McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Maura F, Ziccheddu B, Xiang JZ, Bhinder B, Rosiene J, Abascal F, Maclachlan KH, Eng KW, Uppal M, He F, Zhang W, Gao Q, Yellapantula VD, Trujillo-Alonso V, Park SI, Oberley MJ, Ruckdeschel E, Lim MS, Wertheim GB, Barth MJ, Horton TM, Derkach A, Kovach AE, Forlenza CJ, Zhang Y, Landgren O, Moskowitz CH, Cesarman E, Imielinski M, Elemento O, Roshal M, Giulino-Roth L. Molecular Evolution of Classic Hodgkin Lymphoma Revealed Through Whole-Genome Sequencing of Hodgkin and Reed Sternberg Cells. Blood Cancer Discov 2023; 4:208-227. [PMID: 36723991 PMCID: PMC10150291 DOI: 10.1158/2643-3230.bcd-22-0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/02/2023] Open
Abstract
The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.
Collapse
Affiliation(s)
- Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Bachisio Ziccheddu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jenny Z. Xiang
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Bhavneet Bhinder
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Joel Rosiene
- Weill Cornell Medical College, New York, New York
| | - Federico Abascal
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Kylee H. Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Wha Eng
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Manik Uppal
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Feng He
- Weill Cornell Medical College, New York, New York
| | - Wei Zhang
- Weill Cornell Medical College, New York, New York
| | - Qi Gao
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkata D. Yellapantula
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology and Laboratory Medicine at Children's Hospital Los Angeles, Los Angeles, California
| | | | - Sunita I. Park
- Department of Pathology, Children's Hospital of Atlanta, Atlanta, Georgia
| | | | | | - Megan S. Lim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Gerald B. Wertheim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Matthew J. Barth
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Terzah M. Horton
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Andriy Derkach
- Department of Epidemiology and Statistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Yanming Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Craig H. Moskowitz
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Marcin Imielinski
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olivier Elemento
- Weill Cornell Medical College, New York, New York
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Mikhail Roshal
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
36
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
37
|
Ogana HA, Hurwitz S, Hsieh CL, Geng H, Müschen M, Bhojwani D, Wolf MA, Larocque J, Lieber MR, Kim YM. Artemis inhibition as a therapeutic strategy for acute lymphoblastic leukemia. Front Cell Dev Biol 2023; 11:1134121. [PMID: 37082620 PMCID: PMC10111164 DOI: 10.3389/fcell.2023.1134121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
As effective therapies for relapse and refractory B-cell acute lymphoblastic leukemia (B-ALL) remain problematic, novel therapeutic strategies are needed. Artemis is a key endonuclease in V(D)J recombination and nonhomologous end joining (NHEJ) of DNA double-strand break (DSB) repair. Inhibition of Artemis would cause chromosome breaks during maturation of RAG-expressing T- and B-cells. Though this would block generation of new B- and T-cells temporarily, it could be oncologically beneficial for reducing the proliferation of B-ALL and T-ALL cells by causing chromosome breaks in these RAG-expressing tumor cells. Currently, pharmacological inhibition is not available for Artemis. According to gene expression analyses from 207 children with high-risk pre-B acute lymphoblastic leukemias high Artemis expression is correlated with poor outcome. Therefore, we evaluated four compounds (827171, 827032, 826941, and 825226), previously generated from a large Artemis targeted drug screen. A biochemical assay using a purified Artemis:DNA-PKcs complex shows that the Artemis inhibitors 827171, 827032, 826941, 825226 have nanomolar IC50 values for Artemis inhibition. We compared these 4 compounds to a DNA-PK inhibitor (AZD7648) in three patient-derived B-ALL cell lines (LAX56, BLQ5 and LAX7R) and in two mature B-cell lines (3301015 and 5680001) as controls. We found that pharmacological Artemis inhibition substantially decreases proliferation of B-ALL cell lines while normal mature B-cell lines are not markedly affected. Inhibition of DNA-PKcs (which regulates Artemis) using the DNA-PK inhibitor AZD7648 had minor effects on these same primary patient-derived ALL lines, indicating that inhibition of V(D)J hairpin opening requires direct inhibition of Artemis, rather than indirect suppression of the kinase that regulates Artemis. Our data provides a basis for further evaluation of pharmacological Artemis inhibition of proliferation of B- and T-ALL.
Collapse
Affiliation(s)
- Heather A. Ogana
- Department of Pediatrics, Children’s Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha Hurwitz
- Department of Pediatrics, Children’s Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chih-Lin Hsieh
- Department of Urology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Huimin Geng
- Department of Laboratory Medicine, UCSF, San Francisco, CA, United States
| | - Markus Müschen
- Department of Immunobiology, Center of Molecular and Cellular Oncology, Yale University, New Haven, CT, United States
| | - Deepa Bhojwani
- Department of Pediatrics, Children’s Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | | | - Michael R. Lieber
- Departments of Pathology, The Molecular and Computational Biology Section of the Department of Biological Sciences, USC Norris Comprehensive Cancer Center, Biochemistry and Molecular Biology, Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yong Mi Kim
- Department of Pediatrics, Children’s Hospital Los Angeles, Division of Hematology and Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
38
|
Missinato MA, Murphy S, Lynott M, Yu MS, Kervadec A, Chang YL, Kannan S, Loreti M, Lee C, Amatya P, Tanaka H, Huang CT, Puri PL, Kwon C, Adams PD, Qian L, Sacco A, Andersen P, Colas AR. Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells. Nat Commun 2023; 14:1709. [PMID: 36973293 PMCID: PMC10043290 DOI: 10.1038/s41467-023-37256-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Defining the mechanisms safeguarding cell fate identity in differentiated cells is crucial to improve 1) - our understanding of how differentiation is maintained in healthy tissues or altered in a disease state, and 2) - our ability to use cell fate reprogramming for regenerative purposes. Here, using a genome-wide transcription factor screen followed by validation steps in a variety of reprogramming assays (cardiac, neural and iPSC in fibroblasts and endothelial cells), we identified a set of four transcription factors (ATF7IP, JUNB, SP7, and ZNF207 [AJSZ]) that robustly opposes cell fate reprogramming in both lineage and cell type independent manners. Mechanistically, our integrated multi-omics approach (ChIP, ATAC and RNA-seq) revealed that AJSZ oppose cell fate reprogramming by 1) - maintaining chromatin enriched for reprogramming TF motifs in a closed state and 2) - downregulating genes required for reprogramming. Finally, KD of AJSZ in combination with MGT overexpression, significantly reduced scar size and improved heart function by 50%, as compared to MGT alone post-myocardial infarction. Collectively, our study suggests that inhibition of barrier to reprogramming mechanisms represents a promising therapeutic avenue to improve adult organ function post-injury.
Collapse
Affiliation(s)
- Maria A Missinato
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael S Yu
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu-Ling Chang
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Lee
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Prashila Amatya
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hiroshi Tanaka
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chun-Teng Huang
- Viral Vector Core Facility Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
39
|
Mohiuddin Malla T, Amin Shah Z, Hussain Bhat A, Ahmad Malik M, Anjum Baba R, Rasool R, Rasool J, Ashaq S, Haq F. Fishing for ETV6/RUNX1 fusion and MLL gene rearrangements and their additional abnormalities in childhood acute lymphoblastic leukemia patients of Kashmir. Gene 2023; 856:147128. [PMID: 36565795 DOI: 10.1016/j.gene.2022.147128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence suggests that ETV6/RUNX1 translocation in pediatric acute lymphocytic leukemia shows geographical variation. Therefore, the present study aimed at unveiling the incidence of ETV6/RUNX1 fusion in pediatric acute lymphocytic leukemia cases of this region using fluorescent in-situ hybridization. Besides, we aimed to determine the incidence of MLL gene rearrangement and the pattern of chromosomal abnormalities in this study group. METHODS Samples from 57 acute lymphocytic leukemia cases of pediatric age group were subjected to fluorescent in-situ hybridization and conventional cytogenetic analysis using standard methods. RESULTS Conventional cytogenetic analysis revealed chromosomal abnormalities in 19.3% cases. The other major chromosomal abnormalities reported were monosomies in 10.5%, hypodiploidy in 7%, marker chromosomes in 3.5% and deletions in 3.5% cases. We found a 44,XX,-7,-18, r(5), i(17q) complex karyotype in one of the cases. Fluorescent in-situ hybridization analysis revealed ETV6/RUNX1 translocation to be present in 28.07% cases and MLL gene rearrangement in 3.5% cases. 12.5% of ETV6/RUNX1 fusion positive cases were found to have a loss of ETV6 allele. Besides, 8.8% cases were found to exhibit a signal pattern suggestive of RUNX1 amplification. ETV6 gene deletion and MLL gene amplification was detected in 3.5% cases each, of our study. CONCLUSIONS Frequency of ETV6/RUNX1 fusion oncogene was found to be higher in pediatric ALL cases of Kashmir region as compared to that reported from other parts of India. Besides, a case was found to have a karyotype viz 44,XX,-7,-18, r(5), i(17q) that has not been reported elsewhere in the childhood ALL.
Collapse
Affiliation(s)
- Tahir Mohiuddin Malla
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Zafar Amin Shah
- Department of Immunology & Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India.
| | - Aashiq Hussain Bhat
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Manzoor Ahmad Malik
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Rafia Anjum Baba
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Roohi Rasool
- Department of Immunology & Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Javaid Rasool
- Department of Hematology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Sozi Ashaq
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Faizanul Haq
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
40
|
Bushman FD. DNA transposon mechanisms and pathways of genotoxicity. Mol Ther 2023; 31:613-615. [PMID: 36754054 PMCID: PMC10014265 DOI: 10.1016/j.ymthe.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Ryan SL, Peden JF, Kingsbury Z, Schwab CJ, James T, Polonen P, Mijuskovic M, Becq J, Yim R, Cranston RE, Hedges DJ, Roberts KG, Mullighan CG, Vora A, Russell LJ, Bain R, Moorman AV, Bentley DR, Harrison CJ, Ross MT. Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukaemia. Leukemia 2023; 37:518-528. [PMID: 36658389 PMCID: PMC9991920 DOI: 10.1038/s41375-022-01806-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Childhood B-cell acute lymphoblastic leukaemia (B-ALL) is characterised by recurrent genetic abnormalities that drive risk-directed treatment strategies. Using current techniques, accurate detection of such aberrations can be challenging, due to the rapidly expanding list of key genetic abnormalities. Whole genome sequencing (WGS) has the potential to improve genetic testing, but requires comprehensive validation. We performed WGS on 210 childhood B-ALL samples annotated with clinical and genetic data. We devised a molecular classification system to subtype these patients based on identification of key genetic changes in tumour-normal and tumour-only analyses. This approach detected 294 subtype-defining genetic abnormalities in 96% (202/210) patients. Novel genetic variants, including fusions involving genes in the MAP kinase pathway, were identified. WGS results were concordant with standard-of-care methods and whole transcriptome sequencing (WTS). We expanded the catalogue of genetic profiles that reliably classify PAX5alt and ETV6::RUNX1-like subtypes. Our novel bioinformatic pipeline improved detection of DUX4 rearrangements (DUX4-r): a good-risk B-ALL subtype with high survival rates. Overall, we have validated that WGS provides a standalone, reliable genetic test to detect all subtype-defining genetic abnormalities in B-ALL, accurately classifying patients for the risk-directed treatment stratification, while simultaneously performing as a research tool to identify novel disease biomarkers.
Collapse
Affiliation(s)
- Sarra L Ryan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - John F Peden
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Zoya Kingsbury
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Claire J Schwab
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Terena James
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jenn Becq
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Richard Yim
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Dale J Hedges
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Lisa J Russell
- Biosciences Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Robert Bain
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Anthony V Moorman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - David R Bentley
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Christine J Harrison
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Mark T Ross
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK.
| |
Collapse
|
42
|
Kaczmarska A, Derebas J, Pinkosz M, Niedźwiecki M, Lejman M. The Landscape of Secondary Genetic Rearrangements in Pediatric Patients with B-Cell Acute Lymphoblastic Leukemia with t(12;21). Cells 2023; 12:cells12030357. [PMID: 36766699 PMCID: PMC9913634 DOI: 10.3390/cells12030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The most frequent chromosomal rearrangement in childhood B-cell acute lymphoblastic leukemia (B-ALL) is translocation t(12;21)(p13;q22). It results in the fusion of the ETV6::RUNX1 gene, which is active in the regulation of multiple crucial cellular pathways. Recent studies hypothesize that many translocations are influenced by RAG-initiated deletions, as well as defects in the RAS and NRAS pathways. According to a "two-hit" model for the molecular pathogenesis of pediatric ETV6::RUNX1-positive B-ALL, the t(12;21) translocation requires leukemia-causing secondary mutations. Patients with ETV6::RUNX1 express up to 60 different aberrations, which highlights the heterogeneity of this B-ALL subtype and is reflected in differences in patient response to treatment and chances of relapse. Most studies of secondary genetic changes have concentrated on deletions of the normal, non-rearranged ETV6 allele. Other predominant structural changes included deletions of chromosomes 6q and 9p, loss of entire chromosomes X, 8, and 13, duplications of chromosome 4q, or trisomy of chromosomes 21 and 16, but the impact of these changes on overall survival remains unclarified. An equally genetically diverse group is the recently identified new B-ALL subtype ETV6::RUNX1-like ALL. In our review, we provide a comprehensive description of recurrent secondary mutations in pediatric B-ALL with t(12;21) to emphasize the value of investigating detailed molecular mechanisms in ETV6::RUNX1-positive B-ALL, both for our understanding of the etiology of the disease and for future clinical advances in patient treatment and management.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Justyna Derebas
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Michalina Pinkosz
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
43
|
Dutta B, Osato M. The RUNX Family, a Novel Multifaceted Guardian of the Genome. Cells 2023; 12:255. [PMID: 36672189 PMCID: PMC9856552 DOI: 10.3390/cells12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The DNA repair machinery exists to protect cells from daily genetic insults by orchestrating multiple intrinsic and extrinsic factors. One such factor recently identified is the Runt-related transcription factor (RUNX) family, a group of proteins that act as a master transcriptional regulator for multiple biological functions such as embryonic development, stem cell behaviors, and oncogenesis. A significant number of studies in the past decades have delineated the involvement of RUNX proteins in DNA repair. Alterations in RUNX genes cause organ failure and predisposition to cancers, as seen in patients carrying mutations in the other well-established DNA repair genes. Herein, we review the currently existing findings and provide new insights into transcriptional and non-transcriptional multifaceted regulation of DNA repair by RUNX family proteins.
Collapse
Affiliation(s)
- Bibek Dutta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Motomi Osato
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
44
|
Ford AM, Colman S, Greaves M. Covert pre-leukaemic clones in healthy co-twins of patients with childhood acute lymphoblastic leukaemia. Leukemia 2023; 37:47-52. [PMID: 36536099 PMCID: PMC9883163 DOI: 10.1038/s41375-022-01756-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Susan Colman
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
45
|
Garcia-Gimenez A, Richardson SE. The role of microenvironment in the initiation and evolution of B-cell precursor acute lymphoblastic leukemia. Front Oncol 2023; 13:1150612. [PMID: 36959797 PMCID: PMC10029760 DOI: 10.3389/fonc.2023.1150612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Richardson
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Cambridge, United Kingdom
- *Correspondence: Simon E. Richardson,
| |
Collapse
|
46
|
Nuclear corepressors NCOR1/NCOR2 regulate B cell development, maintain genomic integrity and prevent transformation. Nat Immunol 2022; 23:1763-1776. [PMID: 36316474 PMCID: PMC9772092 DOI: 10.1038/s41590-022-01343-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022]
Abstract
The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.
Collapse
|
47
|
Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers K. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res 2022; 50:11696-11711. [PMID: 36370096 PMCID: PMC9723617 DOI: 10.1093/nar/gkac1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin C Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karla K Rodgers
- To whom correspondence should be addressed. Tel: +1 405 271 2227 (Ext 61248);
| |
Collapse
|
48
|
Brady SW, Roberts KG, Gu Z, Shi L, Pounds S, Pei D, Cheng C, Dai Y, Devidas M, Qu C, Hill AN, Payne-Turner D, Ma X, Iacobucci I, Baviskar P, Wei L, Arunachalam S, Hagiwara K, Liu Y, Flasch DA, Liu Y, Parker M, Chen X, Elsayed AH, Pathak O, Li Y, Fan Y, Michael JR, Rusch M, Wilkinson MR, Foy S, Hedges DJ, Newman S, Zhou X, Wang J, Reilly C, Sioson E, Rice SV, Pastor Loyola V, Wu G, Rampersaud E, Reshmi SC, Gastier-Foster J, Guidry Auvil JM, Gesuwan P, Smith MA, Winick N, Carroll AJ, Heerema NA, Harvey RC, Willman CL, Larsen E, Raetz EA, Borowitz MJ, Wood BL, Carroll WL, Zweidler-McKay PA, Rabin KR, Mattano LA, Maloney KW, Winter SS, Burke MJ, Salzer W, Dunsmore KP, Angiolillo AL, Crews KR, Downing JR, Jeha S, Pui CH, Evans WE, Yang JJ, Relling MV, Gerhard DS, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet 2022; 54:1376-1389. [PMID: 36050548 PMCID: PMC9700506 DOI: 10.1038/s41588-022-01159-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine & Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yunfeng Dai
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley N Hill
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pradyuamna Baviskar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Wei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sasi Arunachalam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abdelrahman H Elsayed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Omkar Pathak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Robert Michael
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dale J Hedges
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victor Pastor Loyola
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shalini C Reshmi
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Jaime M Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Office of Data Sharing, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Smith
- Cancer Therapeutics Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naomi Winick
- Department of Pediatric Hematology Oncology and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Richard C Harvey
- Department of Pathology, University of New Mexico Cancer Center, Albuquerque, NM, USA
| | | | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Michael J Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - William L Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | | | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Kelly W Maloney
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Stuart S Winter
- Children's Minnesota Research Institute and Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wanda Salzer
- Uniformed Services University, School of Medicine, Bethesda, MD, USA
| | | | | | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
49
|
Hutter K, Rülicke T, Szabo TG, Andersen L, Villunger A, Herzog S. The miR-15a/16-1 and miR-15b/16-2 clusters regulate early B cell development by limiting IL7R receptor expression. Front Immunol 2022; 13:967914. [PMID: 36110849 PMCID: PMC9469637 DOI: 10.3389/fimmu.2022.967914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | - Tamas G. Szabo
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Lill Andersen
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Villunger
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- *Correspondence: Sebastian Herzog,
| |
Collapse
|
50
|
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature 2022; 608:724-732. [PMID: 35948631 PMCID: PMC9402440 DOI: 10.1038/s41586-022-05072-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Collapse
Affiliation(s)
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, United Kingdom
| | | | - Alyssa Cull
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK
- Biofidelity, 330 Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Krishnaa Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|