1
|
Han JY, Kim TY, Park J. Clinical and Genetic Characterization of Adolescent-Onset Epilepsy: A Single-Center Experience in Republic of Korea. Biomedicines 2024; 12:2663. [PMID: 39767570 PMCID: PMC11726859 DOI: 10.3390/biomedicines12122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVES This study investigated the characteristics of adolescent-onset epilepsy (AOE) and conducted genetic tests on a cohort of 76 Korean patients to identify variants and expand the spectrum of mutations associated with AOE. METHODS Clinical exome sequencing after routine karyotyping and chromosomal microarray was performed to identify causative variants and expand the spectrum of mutations associated with AOE. RESULTS In cases of AOE without neurodevelopmental delay (NDD), this study identified four likely pathogenic variants (LPVs) or variants of uncertain significance (VUS) and two copy number variations (CNVs). To explore the unique features of AOE; clinical manifestations were compared between patients with and without NDD. The analysis revealed statistically significant differences in the prevalence of males and the yield of genetic testing results. AOE without NDD had a lower prevalence in males (49%) compared to AOE with NDD (60%) (p = 0.007). Genetic alterations: AOE with NDD exhibited a higher frequency of genetic alterations (35%) compared to AOE without NDD (12%) (p = 0.011). Thorough evaluation of AOE can be particularly challenging in adolescent patients. Some individuals may display genetic variations due to a phenomenon known as locus heterogeneity, where different genetic causes lead to similar clinical presentations. CONCLUSIONS Implementing a robust genetic workflow is crucial for accurately diagnosing AOE, even in cases with complex genetic underpinnings. This study underscores the importance of genetic testing as an essential diagnostic tool for AOE. Identifying genetic variants and understanding their clinical correlations can aid in improving diagnostic accuracy and optimizing treatment approaches for adolescent patients with epilepsy.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
2
|
Dwivedi R, Kaushik M, Tripathi M, Dada R, Tiwari P. Unraveling the genetic basis of epilepsy: Recent advances and implications for diagnosis and treatment. Brain Res 2024; 1843:149120. [PMID: 39032529 DOI: 10.1016/j.brainres.2024.149120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Epilepsy, affecting approximately 1% of the global population, manifests as recurring seizures and is heavily influenced by genetic factors. Recent advancements in genetic technologies have revolutionized our understanding of epilepsy's genetic landscape. Key studies, such as the discovery of mutations in ion channels (e.g., SCN1A and SCN2A), neurotransmitter receptors (e.g., GABRA1), and synaptic proteins (e.g., SYNGAP1, KCNQ2), have illuminated critical pathways underlying epilepsy susceptibility and pathogenesis. Genome-wide association studies (GWAS) have identified specific genetic variations linked to epilepsy risk, such as variants near SCN1A and PCDH7, enhancing diagnostic accuracy and enabling personalized treatment strategies. Moreover, epigenetic mechanisms, including DNA methylation (e.g., MBD5), histone modifications (e.g., HDACs), and non-coding RNAs (e.g., miR-134), play pivotal roles in altering gene expression and synaptic plasticity, contributing to epileptogenesis. These discoveries offer promising avenues for therapeutic interventions aimed at improving outcomes for epilepsy patients. Genetic testing has become essential in clinical practice, facilitating precise diagnosis and tailored management approaches based on individual genetic profiles. Furthermore, insights into epigenetic regulation suggest novel therapeutic targets for developing more effective epilepsy treatments. In summary, this review highlights significant progress in understanding the genetic and epigenetic foundations of epilepsy. By integrating findings from key studies and specifying genes involved in epigenetic modifications, we underscore the potential for advanced therapeutic strategies in this complex neurological disorder, emphasizing the importance of personalized medicine approaches in epilepsy management.
Collapse
Affiliation(s)
- Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Prabhakar Tiwari
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
3
|
Qian X, Sheng X, Ding J, Yiming Z, Zheng J, Zhong J, Zhang T, Li X, He S, Li W, Zhang M. Tropisetron, an Antiemetic Drug, Exerts an Anti-Epileptic Effect Through the Activation of α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. CNS Neurosci Ther 2024; 30:e70086. [PMID: 39445711 PMCID: PMC11500210 DOI: 10.1111/cns.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/28/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE), a prevalent chronic neurological disorder, affects millions of individuals and is often resistant to anti-epileptic drugs. Increasing evidence has shown that acetylcholine (ACh) and cholinergic neurotransmission play a role in the pathophysiology of epilepsy. Tropisetron, an antiemetic drug used for chemotherapy in clinic, has displayed potential in the treatment of Alzheimer's disease, depression, and schizophrenia in animal models. However, as a partial agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), whether tropisetron possesses the therapeutic potential for TLE has not yet been determined. METHODS In this study, tropisetron was intraperitoneally injected into pilocarpine-induced epileptic rats for 3 weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was applied to investigate the mechanism of tropisetron. Rats were assessed for spontaneous recurrent seizures (SRS) and cognitive function using video surveillance and Morris's water maze testing. Hippocampal impairment and synaptic structure were evaluated by Nissl staining, immunohistochemistry, and Golgi staining. Additionally, the levels of glutamate, γ-aminobutyric acid (GABA), ACh, α7nAChRs, neuroinflammatory cytokines, glucocorticoids and their receptors, as well as synapse-associated protein (F-actin, cofilin-1) were quantified. RESULTS The results showed that tropisetron significantly reduced SRS, improved cognitive function, alleviated hippocampal sclerosis, and concurrently suppressed synaptic remodeling and the m6A modification of cofilin-1 in TLE rats. Furthermore, tropisetron lowered glutamate levels without affecting GABA levels, reduced neuroinflammation, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. The effects of tropisetron treatment were counteracted by α-bgt. CONCLUSION In summary, these findings indicate that tropisetron exhibits an anti-epileptic effect and provides neuroprotection in TLE rats through the activation of α7nAChRs. The potential mechanism may involve the reduction of glutamate levels, enhancement of cholinergic transmission, and suppression of synaptic remodeling. Consequently, the present study not only highlights the potential of tropisetron as an anti-epileptic drug but also identifies α7nAChRs as a promising therapeutic target for the treatment of TLE.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xinwen Sheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
- Department of PharmacyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jiqiang Ding
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Zulipiya Yiming
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jingjun Zheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jiagui Zhong
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Tengyue Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xuemei Li
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Shuqiao He
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Wei Li
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Mei Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| |
Collapse
|
4
|
Heebner M, Mainali G, Wei S, Kumar A, Naik S, Pradhan S, Kandel P, Tencer J, Carney P, Paudel S. Importance of Genetic Testing in Children With Generalized Epilepsy. Cureus 2024; 16:e59991. [PMID: 38854234 PMCID: PMC11162283 DOI: 10.7759/cureus.59991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Epilepsy is a neurological disorder characterized by the predisposition for recurrent unprovoked seizures. It can broadly be classified as focal, generalized, unclassified, and unknown in its onset. Focal epilepsy originates in and involves networks localized to one region of the brain. Generalized epilepsy engages broader, more diffuse networks. The etiology of epilepsy can be structural, genetic, infectious, metabolic, immune, or unknown. Many generalized epilepsies have presumed genetic etiologies. The aim of this study is to compare the role of genetic testing to brain MRI as diagnostic tools for identifying the underlying causes of idiopathic (genetic) generalized epilepsy (IGE). METHODS We evaluated the diagnostic yield of these two categories in children diagnosed with IGE. Data collection was completed using ICD10 codes filtered by TriNetX to select 982 individual electronic medical records (EMRs) of children in the Penn State Children's Hospital who received a diagnosis of IGE. The diagnosis was confirmed after reviewing the clinical history and electroencephalogram (EEG) data for each patient. RESULTS From this dataset, neuroimaging and genetic testing results were gathered. A retrospective chart review was done on 982 children with epilepsy, of which 143 (14.5%) met the criteria for IGE. Only 18 patients underwent genetic testing. Abnormalities that could be a potential cause for epilepsy were seen in 72.2% (13/18) of patients with IGE and abnormal genetic testing, compared to 30% (37/123) for patients who had a brain MRI with genetic testing. CONCLUSION This study suggests that genetic testing may be more useful than neuroimaging for identifying an etiological diagnosis of pediatric patients with IGE.
Collapse
Affiliation(s)
| | - Gayatra Mainali
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sharon Wei
- Neurology, Penn State University, Hershey, USA
| | - Ashutosh Kumar
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sunil Naik
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | | | - Prakash Kandel
- Biostatistics, Penn State College of Medicine, Hershey, USA
| | - Jaclyn Tencer
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Paul Carney
- Pediatrics and Neurology, University of Missouri, Columbia, USA
| | - Sita Paudel
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| |
Collapse
|
5
|
Daquin G, Bonini F. The landscape of drug resistant absence seizures in adolescents and adults: Pathophysiology, electroclinical spectrum and treatment options. Rev Neurol (Paris) 2024; 180:256-270. [PMID: 38413268 DOI: 10.1016/j.neurol.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024]
Abstract
The persistence of typical absence seizures (AS) in adolescence and adulthood may reduce the quality of life of patients with genetic generalized epilepsies (GGEs). The prevalence of drug resistant AS is probably underestimated in this patient population, and treatment options are relatively scarce. Similarly, atypical absence seizures in developmental and epileptic encephalopathies (DEEs) may be unrecognized, and often persist into adulthood despite improvement of more severe seizures. These two seemingly distant conditions, represented by typical AS in GGE and atypical AS in DEE, share at least partially overlapping pathophysiological and genetic mechanisms, which may be the target of drug and neurostimulation therapies. In addition, some patients with drug-resistant typical AS may present electroclinical features that lie in between the two extremes represented by these generalized forms of epilepsy.
Collapse
Affiliation(s)
- G Daquin
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France
| | - F Bonini
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
6
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes (Basel) 2024; 15:443. [PMID: 38674378 PMCID: PMC11049430 DOI: 10.3390/genes15040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; (M.M.A.); (N.M.); (H.G.S.); (R.A.L.)
| |
Collapse
|
7
|
The role of copy number variants in the genetic architecture of common familial epilepsies. Epilepsia 2024; 65:792-804. [PMID: 38101940 PMCID: PMC10948303 DOI: 10.1111/epi.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE Copy number variants (CNVs) contribute to genetic risk and genetic etiology of both rare and common epilepsies. Whereas many studies have explored the role of CNVs in sporadic or severe cases, fewer have been done in familial generalized and focal epilepsies. METHODS We analyzed exome sequence data from 267 multiplex families and 859 first-degree relative pairs with a diagnosis of genetic generalized epilepsies or nonacquired focal epilepsies to predict CNVs. Validation and segregation studies were performed using an orthogonal method when possible. RESULTS We identified CNVs likely to contribute to epilepsy risk or etiology in the probands of 43 of 1116 (3.9%) families, including known recurrent CNVs (16p13.11 deletion, 15q13.3 deletion, 15q11.2 deletion, 16p11.2 duplication, 1q21.1 duplication, and 5-Mb duplication of 15q11q13). We also identified CNVs affecting monogenic epilepsy genes, including four families with CNVs disrupting the DEPDC5 gene, and a de novo deletion of HNRNPU in one affected individual from a multiplex family. Several large CNVs (>500 kb) of uncertain clinical significance were identified, including a deletion in 18q, a large duplication encompassing the SCN1A gene, and a 15q13.3 duplication (BP4-BP5). SIGNIFICANCE The overall CNV landscape in common familial epilepsies is similar to that of sporadic epilepsies, with large recurrent deletions at 15q11, 15q13, and 16p13 contributing in 2.5%-3% of families. CNVs that interrupt known epilepsy genes and rare, large CNVs were also identified. Multiple etiologies were found in a subset of families, emphasizing the importance of genetic testing for multiple affected family members. Rare CNVs found in a single proband remain difficult to interpret and require larger cohorts to confirm their potential role in disease. Overall, our work indicates that CNVs contribute to the complex genetic architecture of familial generalized and focal epilepsies, supporting the role for clinical testing in affected individuals.
Collapse
|
8
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Paparella A, L’Abbate A, Palmisano D, Chirico G, Porubsky D, Catacchio CR, Ventura M, Eichler EE, Maggiolini FAM, Antonacci F. Structural Variation Evolution at the 15q11-q13 Disease-Associated Locus. Int J Mol Sci 2023; 24:15818. [PMID: 37958807 PMCID: PMC10648317 DOI: 10.3390/ijms242115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The impact of segmental duplications on human evolution and disease is only just starting to unfold, thanks to advancements in sequencing technologies that allow for their discovery and precise genotyping. The 15q11-q13 locus is a hotspot of recurrent copy number variation associated with Prader-Willi/Angelman syndromes, developmental delay, autism, and epilepsy and is mediated by complex segmental duplications, many of which arose recently during evolution. To gain insight into the instability of this region, we characterized its architecture in human and nonhuman primates, reconstructing the evolutionary history of five different inversions that rearranged the region in different species primarily by accumulation of segmental duplications. Comparative analysis of human and nonhuman primate duplication structures suggests a human-specific gain of directly oriented duplications in the regions flanking the GOLGA cores and HERC segmental duplications, representing potential genomic drivers for the human-specific expansions. The increasing complexity of segmental duplication organization over the course of evolution underlies its association with human susceptibility to recurrent disease-associated rearrangements.
Collapse
Affiliation(s)
- Annalisa Paparella
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Alberto L’Abbate
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnology (IBIOM), 70125 Bari, Italy
| | - Donato Palmisano
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Gerardina Chirico
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Claudia R. Catacchio
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute (HHMI), University of Washington, Seattle, WA 98195, USA
| | - Flavia A. M. Maggiolini
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA), 70010 Bari, Italy
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| |
Collapse
|
10
|
Yang X, Mao Y, Wang XK, Ma DN, Xu Z, Gong N, Henning B, Zhang X, He G, Shi YY, Eichler EE, Li ZQ, Takahashi E, Li WD. Population genetics of marmosets in Asian primate research centers and loci associated with epileptic risk revealed by whole-genome sequencing. Zool Res 2023; 44:837-847. [PMID: 37501399 PMCID: PMC10559097 DOI: 10.24272/j.issn.2095-8137.2022.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
The common marmoset ( Callithrix jacchus) has emerged as a valuable nonhuman primate model in biomedical research with the recent release of high-quality reference genome assemblies. Epileptic marmosets have been independently reported in two Asian primate research centers. Nevertheless, the population genetics within these primate centers and the specific genetic variants associated with epilepsy in marmosets have not yet been elucidated. Here, we characterized the genetic relationships and risk variants for epilepsy in 41 samples from two epileptic marmoset pedigrees using whole-genome sequencing. We identified 14 558 184 single nucleotide polymorphisms (SNPs) from the 41 samples and found higher chimerism levels in blood samples than in fingernail samples. Genetic analysis showed fourth-degree of relatedness among marmosets at the primate centers. In addition, SNP and copy number variation (CNV) analyses suggested that the WW domain-containing oxidoreductase ( WWOX) and Tyrosine-protein phosphatase nonreceptor type 21 ( PTPN21) genes may be associated with epilepsy in marmosets. Notably, KCTD18-like gene deletion was more common in epileptic marmosets than control marmosets. This study provides valuable population genomic resources for marmosets in two Asian primate centers. Genetic analyses identified a reasonable breeding strategy for genetic diversity maintenance in the two centers, while the case-control study revealed potential risk genes/variants associated with epilepsy in marmosets.
Collapse
Affiliation(s)
- XiangYu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- WLA Laboratories, World Laureates Association, Shanghai 201203, China
| | - YaFei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Genome Sciences, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Xuan-Kai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong-Ni Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- WLA Laboratories, World Laureates Association, Shanghai 201203, China
| | - Zhen Xu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Barbara Henning
- Department of Genome Sciences, University of Washington School of Medicine, Seattle WA 98195, USA
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- WLA Laboratories, World Laureates Association, Shanghai 201203, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong-Yong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, Shandong 266003, China
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle WA 98195, USA
| | - Zhi-Qiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao Branch of SJTU Bio-X Institutes, Qingdao University, Qingdao, Shandong 266003, China. E-mail:
| | - Eiki Takahashi
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan. E-mail:
| | - Wei-Dong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- WLA Laboratories, World Laureates Association, Shanghai 201203, China
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail:
| |
Collapse
|
11
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
12
|
Montanucci L, Lewis-Smith D, Collins RL, Niestroj LM, Parthasarathy S, Xian J, Ganesan S, Macnee M, Brünger T, Thomas RH, Talkowski M, Helbig I, Leu C, Lal D. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat Commun 2023; 14:4392. [PMID: 37474567 PMCID: PMC10359300 DOI: 10.1038/s41467-023-39539-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | | | - Shridhar Parthasarathy
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie Xian
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Ganesan
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie Macnee
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| |
Collapse
|
13
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
14
|
Wang X, Rao X, Zhang J, Gan J. Genetic mechanisms in generalized epilepsies. ACTA EPILEPTOLOGICA 2023. [DOI: 10.1186/s42494-023-00118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
AbstractThe genetic generalized epilepsies (GGEs) have been proved to generate from genetic impact by twin studies and family studies. The genetic mechanisms of generalized epilepsies are always updating over time. Although the genetics of GGE is complex, there are always new susceptibility genes coming up as well as copy number variations which can lead to important breakthroughs in exploring the problem. At the same time, the development of ClinGen fades out some of the candidate genes. This means we have to figure out what accounts for a reliable gene for GGE, in another word, which gene has sufficient evidence for GGE. This will improve our understanding of the genetic mechanisms of GGE. In this review, important up-to-date genetic mechanisms of GGE were discussed.
Collapse
|
15
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
16
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|
17
|
Impaired OTUD7A-dependent Ankyrin regulation mediates neuronal dysfunction in mouse and human models of the 15q13.3 microdeletion syndrome. Mol Psychiatry 2023; 28:1747-1769. [PMID: 36604605 DOI: 10.1038/s41380-022-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Copy number variations (CNVs) are associated with psychiatric and neurodevelopmental disorders (NDDs), and most, including the recurrent 15q13.3 microdeletion disorder, have unknown disease mechanisms. We used a heterozygous 15q13.3 microdeletion mouse model and patient iPSC-derived neurons to reveal developmental defects in neuronal maturation and network activity. To identify the underlying molecular dysfunction, we developed a neuron-specific proximity-labeling proteomics (BioID2) pipeline, combined with patient mutations, to target the 15q13.3 CNV genetic driver OTUD7A. OTUD7A is an emerging independent NDD risk gene with no known function in the brain, but has putative deubiquitinase function. The OTUD7A protein-protein interaction network included synaptic, axonal, and cytoskeletal proteins and was enriched for ASD and epilepsy risk genes (Ank3, Ank2, SPTAN1, SPTBN1). The interactions between OTUD7A and Ankyrin-G (Ank3) and Ankyrin-B (Ank2) were disrupted by an epilepsy-associated OTUD7A L233F variant. Further investigation of Ankyrin-G in mouse and human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed protein instability, increased polyubiquitination, and decreased levels in the axon initial segment, while structured illumination microscopy identified reduced Ankyrin-G nanodomains in dendritic spines. Functional analysis of human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed shared and distinct impairments to axonal growth and intrinsic excitability. Importantly, restoring OTUD7A or Ankyrin-G expression in 15q13.3 microdeletion neurons led to a reversal of abnormalities. These data reveal a critical OTUD7A-Ankyrin pathway in neuronal development, which is impaired in the 15q13.3 microdeletion syndrome, leading to neuronal dysfunction. Furthermore, our study highlights the utility of targeting CNV genes using cell type-specific proteomics to identify shared and unexplored disease mechanisms across NDDs.
Collapse
|
18
|
Xin C, Guan X, Wang L, Liu J. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects. Neurochem Res 2022; 48:1269-1279. [PMID: 36512293 DOI: 10.1007/s11064-022-03839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Cerebral palsy (CP) describes a heterogeneous group of non-progressive neurodevelopmental disorders affecting movement and posture. The etiology and diagnostic biomarkers of CP are a hot topic in clinical research. Recent advances in omics techniques, including genomics, epigenomics, transcriptomics, metabolomics and proteomics, have offered new insights to further understand the pathophysiology of CP and have allowed for identification of diagnostic biomarkers of CP. In present study, we reviewed the latest multi-omics investigations of CP and provided an in-depth summary of current research progress in CP. This review will offer the basis and recommendations for future fundamental research on the pathogenesis of CP, identification of diagnostic biomarkers, and prevention strategies for CP.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China.
| |
Collapse
|
19
|
Strauss AM, Buhle AC, Finkler DM. Heterozygous Deletion of Chromosome 15q13.3 in a Boy with Developmental Regression, Global Developmental Delay, Hypotonia, and Short Stature. Pediatr Rep 2022; 14:528-532. [PMID: 36548204 PMCID: PMC9780927 DOI: 10.3390/pediatric14040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Two causes of intellectual disability are 15q13.3 deletion syndrome and BRWD3 X-linked intellectual disability. 15q13.3 deletion syndrome causes a heterogenous phenotype including intellectual disability (ID), developmental delay (DD), autism spectrum disorder, epilepsy/seizures, schizophrenia, attention deficit hyperactivity disorder, visual defects, hypotonia, and short stature. BRWD3 variants are rare, and the clinical presentation is largely unknown. Presented here is a 34-month-old male with developmental regression, global DD, hypotonia, and short stature. In this study, the patient and his mother underwent a whole-genome array screening. Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 (PolyPhen-2) analyses were performed to determine the pathogenicity of the BRWD3 mutation. Array comparative genomic hybridization showed a heterozygous, pathogenic deletion of at least 1.6 Mb from the cytogenetic band 15q13.2q13.3 and a BRWD3 variant of unknown clinical significance. This combination of genetic mutations has never been reported together and neither disorder is known to cause developmental regression. The mechanism of developmental regression is undefined but is of great importance due to the opportunity to develop therapies for these patients.
Collapse
Affiliation(s)
- Allison M. Strauss
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Correspondence:
| | - Anna C. Buhle
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - David M. Finkler
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Pediatrics, Carilion Clinic, Roanoke, VA 24014, USA
| |
Collapse
|
20
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
21
|
Lee S, Kim BR, Kim YO. Rates of rare copy number variants in different circumstances among patients with genetic developmental and epileptic encephalopathy. Sci Prog 2022; 105:368504221131233. [PMID: 36217831 PMCID: PMC10481157 DOI: 10.1177/00368504221131233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Most patients with developmental and epileptic encephalopathy (DEE) have genetic etiology, which has been uncovered with different methods. Although chromosomal microarray analysis (CMA) has been broadly used in patients with DEE, data is still limited. METHODS Among 560 children (<18 years) who underwent CMA in our hospital between January 2013 and June 2021, 146 patients with developmental delay and recurrent seizures were screened. Patients with major brain abnormalities, metabolic abnormalities, and specific syndromes were excluded. The rate of rare copy number variants (CNVs) was estimated in total and according to seizure-onset age, relation to first seizure with the diagnosis of developmental delay, epilepsy syndromes, and organ anomalies. RESULTS Among the 110 patients enrolled, the rate of rare CNVs was 16.4%, varying by seizure-onset age: 33.3% in three neonates, 21.2% in 33 infants, 13.3% in 45 early childhood patients, 5.3% in 19 late childhood patients, and 30.0% in 10 adolescents. In relation to the first seizure with the diagnosis of developmental delay, the rates were 3.7%, 22.2%, and 12.5% in "before", "after", and "concurrent" subclasses, respectively. The rates of rare CNVs were 16.7% in "other predominantly focal or multifocal epilepsy", 28.6% in "other predominantly generalized epilepsy (PGE)", and 15.4% in West syndrome. The rates were 27.8% in minor brain anomalies, 37.5% in facial dysmorphism, and 22.2%, 20.0%, and 57.1% in endocrine, genitourinary and cardiovascular anomalies, respectively. CONCLUSION The rate of rare CNVs in patients with genetic DEE was 16.4% in total, which was higher in seizures occurring below the infantile period or after the diagnosis of developmental delay, in PGE, and in the presence of facial dysmorphism or cardiovascular anomalies.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Pediatrics, Chonnam National University Children’s Hospital, Gwangju, Republic of Korea
| | - Bo Ram Kim
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Young Ok Kim
- Department of Pediatrics, Chonnam National University Children’s Hospital, Gwangju, Republic of Korea
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Belyaeva EO, Lebedev IN. Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Kozlova A, Zhang S, Kotlar AV, Jamison B, Zhang H, Shi S, Forrest MP, McDaid J, Cutler DJ, Epstein MP, Zwick ME, Pang ZP, Sanders AR, Warren ST, Gejman PV, Mulle JG, Duan J. Loss of function of OTUD7A in the schizophrenia- associated 15q13.3 deletion impairs synapse development and function in human neurons. Am J Hum Genet 2022; 109:1500-1519. [PMID: 35931052 PMCID: PMC9388388 DOI: 10.1016/j.ajhg.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.
Collapse
Affiliation(s)
- Alena Kozlova
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Alex V Kotlar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Pillar Biosciences Inc., Natick, MA 01760, USA
| | - Brendan Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Serena Shi
- Winston Churchill High School, Potomac, MD 20854, USA
| | - Marc P Forrest
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL 60611, USA
| | - John McDaid
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Senior Vice President for Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Epigenetic genes and epilepsy - emerging mechanisms and clinical applications. Nat Rev Neurol 2022; 18:530-543. [PMID: 35859062 DOI: 10.1038/s41582-022-00693-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/21/2022]
Abstract
An increasing number of epilepsies are being attributed to variants in genes with epigenetic functions. The products of these genes include factors that regulate the structure and function of chromatin and the placing, reading and removal of epigenetic marks, as well as other epigenetic processes. In this Review, we provide an overview of the various epigenetic processes, structuring our discussion around five function-based categories: DNA methylation, histone modifications, histone-DNA crosstalk, non-coding RNAs and chromatin remodelling. We provide background information on each category, describing the general mechanism by which each process leads to altered gene expression. We also highlight key clinical and mechanistic aspects, providing examples of genes that strongly associate with epilepsy within each class. We consider the practical applications of these findings, including tissue-based and biofluid-based diagnostics and precision medicine-based treatments. We conclude that variants in epigenetic genes are increasingly found to be causally involved in the epilepsies, with implications for disease mechanisms, treatments and diagnostics.
Collapse
|
25
|
Moreau C, Tremblay F, Wolking S, Girard A, Laprise C, Hamdan FF, Michaud JL, Minassian BA, Cossette P, Girard SL. Assessment of burden and segregation profiles of CNVs in patients with epilepsy. Ann Clin Transl Neurol 2022; 9:1050-1058. [PMID: 35678011 PMCID: PMC9268881 DOI: 10.1002/acn3.51598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Microdeletions are associated with different forms of epilepsy but show incomplete penetrance, which is not well understood. We aimed to assess whether unmasked variants or double CNVs could explain incomplete penetrance. Methods We analyzed copy number variants (CNVs) in 603 patients with four different subgroups of epilepsy and 945 controls. CNVs were called from genotypes and validated on whole‐genome (WGS) or whole‐exome sequences (WES). CNV burden difference between patients and controls was obtained by fitting a logistic regression. CNV burden was assessed for small and large (>1 Mb) deletions and duplications and for deletions overlapping different gene sets. Results Large deletions were enriched in genetic generalized epilepsies (GGE) compared to controls. We also found enrichment of deletions in epilepsy genes and hotspots for GGE. We did not find truncating or functional variants that could have been unmasked by the deletions. We observed a double CNV hit in two patients. One patient also carried a de novo deletion in the 22q11.2 hotspot. Interpretation We could corroborate previous findings of an enrichment of large microdeletions and deletions in epilepsy genes in GGE. We could also replicate that microdeletions show incomplete penetrance. However, we could not validate the hypothesis of unmasked variants nor the hypothesis of double CNVs to explain the incomplete penetrance. We found a de novo CNV on 22q11.2 that could be of interest. We also observed GGE families carrying a deletion on 15q13.3 hotspot that could be investigated in the Quebec founder population.
Collapse
Affiliation(s)
- Claudia Moreau
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Frédérique Tremblay
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Stefan Wolking
- Department of Neurology and Epileptology, University Hospital RWTH Aachen, Aachen, Germany
| | - Alexandre Girard
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Catherine Laprise
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montreal, Canada.,Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montreal, Canada.,Department of Neurosciences and Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Berge A Minassian
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada.,Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Patrick Cossette
- CHUM Research Center, Montreal, Canada.,Department of Neurosciences, University of Montreal, Montreal, Canada
| | - Simon L Girard
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada.,CERVO Research Center, Laval University, Quebec, Canada
| |
Collapse
|
26
|
Oliver KL, Ellis CA, Scheffer IE, Ganesan S, Leu C, Sadleir LG, Heinzen EL, Mefford HC, Bass AJ, Curtis SW, Harris RV, Whiteman DC, Helbig I, Ottman R, Epstein MP, Bahlo M, Berkovic SF. Common risk variants for epilepsy are enriched in families previously targeted for rare monogenic variant discovery. EBioMedicine 2022; 81:104079. [PMID: 35636315 PMCID: PMC9156876 DOI: 10.1016/j.ebiom.2022.104079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The epilepsies are highly heritable conditions that commonly follow complex inheritance. While monogenic causes have been identified in rare familial epilepsies, most familial epilepsies remain unsolved. We aimed to determine (1) whether common genetic variation contributes to familial epilepsy risk, and (2) whether that genetic risk is enriched in familial compared with non-familial (sporadic) epilepsies. METHODS Using common variants derived from the largest epilepsy genome-wide association study, we calculated polygenic risk scores (PRS) for patients with familial epilepsy (n = 1,818 from 1,181 families), their unaffected relatives (n = 771), sporadic patients (n = 1,182), and population controls (n = 15,929). We also calculated separate PRS for genetic generalised epilepsy (GGE) and focal epilepsy. Statistical analyses used mixed-effects regression models to account for familial relatedness, sex, and ancestry. FINDINGS Patients with familial epilepsies had higher epilepsy PRS compared to population controls (OR 1·20, padj = 5×10-9), sporadic patients (OR 1·11, padj = 0.008), and their own unaffected relatives (OR 1·12, padj = 0.01). The top 1% of the PRS distribution was enriched 3.8-fold for individuals with familial epilepsy when compared to the lowest decile (padj = 5×10-11). Familial PRS enrichment was consistent across epilepsy type; overall, polygenic risk was greatest for the GGE clinical group. There was no significant PRS difference in familial cases with established rare variant genetic etiologies compared to unsolved familial cases. INTERPRETATION The aggregate effects of common genetic variants, measured as polygenic risk scores, play an important role in explaining why some families develop epilepsy, why specific family members are affected while their relatives are not, and why families manifest specific epilepsy types. Polygenic risk contributes to the complex inheritance of the epilepsies, including in individuals with a known genetic etiology. FUNDING National Health and Medical Research Council of Australia, National Institutes of Health, American Academy of Neurology, Thomas B and Jeannette E Laws McCabe Fund, Mirowski Family Foundation.
Collapse
Affiliation(s)
- Karen L. Oliver
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, 245 Burgundy St, Heidelberg, VIC 3084, Australia,Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Colin A. Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ingrid E. Scheffer
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, 245 Burgundy St, Heidelberg, VIC 3084, Australia,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, VIC, Australia,The Florey Institute and Murdoch Children's Research Institute, VIC, Australia
| | - Shiva Ganesan
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK,Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA 02142, USA
| | - Lynette G. Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Erin L. Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew J. Bass
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W. Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebekah V. Harris
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, 245 Burgundy St, Heidelberg, VIC 3084, Australia
| | | | - David C. Whiteman
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruth Ottman
- Departments of Epidemiology and Neurology, and the Sergievsky Center, Columbia University, New York, NY, USA,Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melanie Bahlo
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, the University of Melbourne, Melbourne, VIC 3010, Australia
| | - Samuel F. Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, 245 Burgundy St, Heidelberg, VIC 3084, Australia,Corresponding author.
| |
Collapse
|
27
|
Hirsch E, French J, Scheffer IE, Bogacz A, Alsaadi T, Sperling MR, Abdulla F, Zuberi SM, Trinka E, Specchio N, Somerville E, Samia P, Riney K, Nabbout R, Jain S, Wilmshurst JM, Auvin S, Wiebe S, Perucca E, Moshé SL, Tinuper P, Wirrell EC. ILAE definition of the Idiopathic Generalized Epilepsy Syndromes: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1475-1499. [PMID: 35503716 DOI: 10.1111/epi.17236] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
In 2017, the International League Against Epilepsy (ILAE) Classification of Epilepsies described the "genetic generalized epilepsies" (GGEs), which contained the "idiopathic generalized epilepsies" (IGEs). The goal of this paper is to delineate the four syndromes comprising the IGEs, namely childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, and epilepsy with generalized tonic-clonic seizures alone. We provide updated diagnostic criteria for these IGE syndromes determined by the expert consensus opinion of the ILAE's Task Force on Nosology and Definitions (2017-2021) and international external experts outside our Task Force. We incorporate current knowledge from recent advances in genetic, imaging, and electroencephalographic studies, together with current terminology and classification of seizures and epilepsies. Patients that do not fulfill criteria for one of these syndromes, but that have one, or a combination, of the following generalized seizure types: absence, myoclonic, tonic-clonic and myoclonic-tonic-clonic seizures, with 2.5-5.5 Hz generalized spike-wave should be classified as having GGE. Recognizing these four IGE syndromes as a special grouping among the GGEs is helpful, as they carry prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Edouard Hirsch
- Francis Rohmer Neurology Epilepsy Units, National Institute of Health and Medical Research 1258, Federation of Translational Medicine of Strasbourg, Strasbourg University, Strasbourg, France
| | - Jacqueline French
- New York University Grossman School of Medicine and NYU Langone Health, New York, New York, USA
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Alicia Bogacz
- Institute of Neurology, Clinical Hospital, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Taoufik Alsaadi
- Department of Neurology, American Center for Psychiatry and Neurology, Abu Dhabi, United Arab Emirates
| | - Michael R Sperling
- Department of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fatema Abdulla
- Salmaniya Medical Complex-Government Hospital, Manama, Bahrain
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children and Institute of Health & Wellbeing, University of Glasgow, member of EpiCARE, Glasgow, UK
| | - Eugen Trinka
- Department of Neurology and Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARE, Salzburg, Austria.,Department of Public Health, Health Services Research, and Health Technology Assessment, University for Health Sciences, Medical Informatics, and Technology, Hall in Tirol, Austria
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research and Health Care, member of EpiCARE, Rome, Italy
| | - Ernest Somerville
- Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Pauline Samia
- Department of Pediatrics and Child Health, Aga Khan University, East Africa, Nairobi, Kenya
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, Public Hospital Network of Paris, member of EpiCARE, Imagine Institute, National Institute of Health and Medical Research, Mixed Unit of Research 1163, University of Paris, Paris, France
| | | | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Stephane Auvin
- Pediatric Neurology, Public Hospital Network of Paris, Robert Debré Hospital, NeuroDiderot, National Institute of Health and Medical Research, Department Medico-Universitaire, Innovation Robert-Debré, University of Paris, Paris, France.,University Institute of France, Paris, France
| | - Samuel Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Institute of Neurological Sciences, Scientific Institute for Research and Health Care, member of EpiCARE, Bologna, Italy
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Gupta C, Chandrashekar P, Jin T, He C, Khullar S, Chang Q, Wang D. Bringing machine learning to research on intellectual and developmental disabilities: taking inspiration from neurological diseases. J Neurodev Disord 2022; 14:28. [PMID: 35501679 PMCID: PMC9059371 DOI: 10.1186/s11689-022-09438-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
Abstract
Intellectual and Developmental Disabilities (IDDs), such as Down syndrome, Fragile X syndrome, Rett syndrome, and autism spectrum disorder, usually manifest at birth or early childhood. IDDs are characterized by significant impairment in intellectual and adaptive functioning, and both genetic and environmental factors underpin IDD biology. Molecular and genetic stratification of IDDs remain challenging mainly due to overlapping factors and comorbidity. Advances in high throughput sequencing, imaging, and tools to record behavioral data at scale have greatly enhanced our understanding of the molecular, cellular, structural, and environmental basis of some IDDs. Fueled by the "big data" revolution, artificial intelligence (AI) and machine learning (ML) technologies have brought a whole new paradigm shift in computational biology. Evidently, the ML-driven approach to clinical diagnoses has the potential to augment classical methods that use symptoms and external observations, hoping to push the personalized treatment plan forward. Therefore, integrative analyses and applications of ML technology have a direct bearing on discoveries in IDDs. The application of ML to IDDs can potentially improve screening and early diagnosis, advance our understanding of the complexity of comorbidity, and accelerate the identification of biomarkers for clinical research and drug development. For more than five decades, the IDDRC network has supported a nexus of investigators at centers across the USA, all striving to understand the interplay between various factors underlying IDDs. In this review, we introduced fast-increasing multi-modal data types, highlighted example studies that employed ML technologies to illuminate factors and biological mechanisms underlying IDDs, as well as recent advances in ML technologies and their applications to IDDs and other neurological diseases. We discussed various molecular, clinical, and environmental data collection modes, including genetic, imaging, phenotypical, and behavioral data types, along with multiple repositories that store and share such data. Furthermore, we outlined some fundamental concepts of machine learning algorithms and presented our opinion on specific gaps that will need to be filled to accomplish, for example, reliable implementation of ML-based diagnosis technology in IDD clinics. We anticipate that this review will guide researchers to formulate AI and ML-based approaches to investigate IDDs and related conditions.
Collapse
Affiliation(s)
- Chirag Gupta
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Pramod Chandrashekar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ting Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chenfeng He
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
29
|
Malwade S, Gasthaus J, Bellardita C, Andelic M, Moric B, Korshunova I, Kiehn O, Vasistha NA, Khodosevich K. Identification of Vulnerable Interneuron Subtypes in 15q13.3 Microdeletion Syndrome Using Single-Cell Transcriptomics. Biol Psychiatry 2022; 91:727-739. [PMID: 34838304 DOI: 10.1016/j.biopsych.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND A number of rare copy number variants (CNVs) have been linked to neurodevelopmental disorders. However, because CNVs encompass many genes, it is often difficult to identify the mechanisms that lead to developmental perturbations. METHODS We used 15q13.3 microdeletion to propose and validate a novel strategy to predict the impact of CNV genes on brain development that could further guide functional studies. We analyzed single-cell transcriptomics datasets containing cortical interneurons to identify their developmental vulnerability to 15q13.3 microdeletion, which was validated in mouse models. RESULTS We found that Klf13-but not other 15q13.3 genes-is expressed by precursors and neuroblasts in the medial and caudal ganglionic eminences during development, with a peak of expression at embryonic day (E)13.5 and E18.5, respectively. In contrast, in the adult mouse brain, Klf13 expression is negligible. Using Df(h15q13.3)/+ and Klf13+/- embryos, we observed a precursor subtype-specific impairment in proliferation in the medial ganglionic eminence and caudal ganglionic eminence at E13.5 and E17.5, respectively, corresponding to vulnerability predicted by Klf13 expression patterns. Finally, Klf13+/- mice showed a layer-specific decrease in parvalbumin and somatostatin cortical interneurons accompanied by changes in locomotor and anxiety-related behavior. CONCLUSIONS We show that the impact of 15q13.3 microdeletion on precursor proliferation is grounded in a reduction in Klf13 expression. The lack of Klf13 in Df(h15q13.3)/+ cortex might be the major reason for perturbed density of cortical interneurons. Thus, the behavioral defects seen in 15q13.3 microdeletion could stem from a developmental perturbation owing to selective vulnerability of cortical interneurons during sensitive stages of their development.
Collapse
Affiliation(s)
- Susmita Malwade
- Biotech Research and Innovation Center (BRIC), Copenhagen Biocenter, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janina Gasthaus
- Biotech Research and Innovation Center (BRIC), Copenhagen Biocenter, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carmelo Bellardita
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matej Andelic
- Biotech Research and Innovation Center (BRIC), Copenhagen Biocenter, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Borna Moric
- Biotech Research and Innovation Center (BRIC), Copenhagen Biocenter, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Korshunova
- Biotech Research and Innovation Center (BRIC), Copenhagen Biocenter, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Navneet A Vasistha
- Biotech Research and Innovation Center (BRIC), Copenhagen Biocenter, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Center (BRIC), Copenhagen Biocenter, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022; 23:ijms23073463. [PMID: 35408823 PMCID: PMC8998457 DOI: 10.3390/ijms23073463] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
- NeuroMi, Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
31
|
Zhang X, Zhu Y, Kremling KAG, Romay MC, Bukowski R, Sun Q, Gao S, Buckler ES, Lu F. Genome-wide analysis of deletions in maize population reveals abundant genetic diversity and functional impact. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:273-290. [PMID: 34661697 DOI: 10.1007/s00122-021-03965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Two read depth methods were jointly used in next-generation sequencing data to identify deletions in maize population. GWAS by deletions were analyzed for gene expression pattern and classical traits, respectively. Many studies have confirmed that structural variation (SV) is pervasive throughout the maize genome. Deletion is one type of SV that may impact gene expression and cause phenotypic changes in quantitative traits. In this study, two read count approaches were used to analyze the deletions in the whole-genome sequencing data of 270 maize inbred lines. A total of 19,754 deletion windows overlapped 12,751 genes, which were unevenly distributed across the genome. The deletions explained population structure well and correlated with genomic features. The deletion proportion of genes was determined to be negatively correlated with its expression. The detection of gene expression quantitative trait loci (eQTL) indicated that local eQTL were fewer but had larger effects than distant ones. The common associated genes were related to basic metabolic processes, whereas unique associated genes with eQTL played a role in the stress or stimulus responses in multiple tissues. Compared with the eQTL detected by SNPs derived from the same sequencing data, 89.4% of the associated genes could be detected by both markers. The effect of top eQTL detected by SNPs was usually larger than that detected by deletions for the same gene. A genome-wide association study (GWAS) on flowering time and plant height illustrated that only a few loci could be consistently captured by SNPs, suggesting that combining deletion and SNP for GWAS was an excellent strategy to dissect trait architecture. Our findings will provide insights into characteristic and biological function of genome-wide deletions in maize.
Collapse
Affiliation(s)
- Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China.
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA.
| | - Yonghui Zhu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Karl A G Kremling
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA
| | - Robert Bukowski
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA
- USDA-ARS, R. W. Holley Center, Cornell University, Ithaca, NY, USA
| | - Fei Lu
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
Feng X, Chen L, Qing Y, Li R, Li C, Li SC. SCYN: single cell CNV profiling method using dynamic programming. BMC Genomics 2021; 22:651. [PMID: 34789142 PMCID: PMC8596905 DOI: 10.1186/s12864-021-07941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Copy number variation is crucial in deciphering the mechanism and cure of complex disorders and cancers. The recent advancement of scDNA sequencing technology sheds light upon addressing intratumor heterogeneity, detecting rare subclones, and reconstructing tumor evolution lineages at single-cell resolution. Nevertheless, the current circular binary segmentation based approach proves to fail to efficiently and effectively identify copy number shifts on some exceptional trails. RESULTS Here, we propose SCYN, a CNV segmentation method powered with dynamic programming. SCYN resolves the precise segmentation on in silico dataset. Then we verified SCYN manifested accurate copy number inferring on triple negative breast cancer scDNA data, with array comparative genomic hybridization results of purified bulk samples as ground truth validation. We tested SCYN on two datasets of the newly emerged 10x Genomics CNV solution. SCYN successfully recognizes gastric cancer cells from 1% and 10% spike-ins 10x datasets. Moreover, SCYN is about 150 times faster than state of the art tool when dealing with the datasets of approximately 2000 cells. CONCLUSIONS SCYN robustly and efficiently detects segmentations and infers copy number profiles on single cell DNA sequencing data. It serves to reveal the tumor intra-heterogeneity. The source code of SCYN can be accessed in https://github.com/xikanfeng2/SCYN .
Collapse
Affiliation(s)
- Xikang Feng
- School of Software, Northwestern Polytechnical University, Xi’an Shaanxi, 710072 China
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuhao Qing
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ruikang Li
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chaohui Li
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
33
|
Whitney R, Nair A, McCready E, Keller AE, Adil IS, Aziz AS, Borys O, Siu K, Shah C, Meaney BF, Jones K, RamachandranNair R. The spectrum of epilepsy in children with 15q13.3 microdeletion syndrome. Seizure 2021; 92:221-229. [PMID: 34601452 DOI: 10.1016/j.seizure.2021.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To further define the epilepsy phenotype in a cohort of children with 15q13.3 microdeletion syndrome. METHODS We retrospectively reviewed the phenotypic spectrum of all children aged < 18 years with epilepsy and 15q13.3 microdeletion syndrome. RESULTS Thirteen children were included, 69% were female. The median age of children in the cohort was 12 years (age range: 3 years-15 years). Median age at seizure onset was 4 years. Eleven children (85%) had intellectual disability. Nine of 13 children (69%) had a history of typical absence seizures with median age of onset at 5 years (2 had absence status epilepticus). Thirty-one percent (4/13) had focal with impaired awareness non-motor onset seizures. ILAE recognized absence epilepsy syndromes were diagnosed in 6/13 (46%). The remainder were classified as having genetic generalized epilepsies with overlap clinical features, combined or focal epilepsies. Electroencephalogram in the cohort showed generalized (85%) and focal epileptiform discharges (62%) and posterior dominant rhythm slowing (33%). One child had electrical status epilepticus of sleep. Neuroimaging was performed in 5 children (38%) and revealed abnormal findings in 3. Seizures were drug resistant in a third of the cohort. Valproate resulted in seizure freedom in 5 (42%). Oxcarbazepine caused clinical worsening in one child with combined seizure types. Two children tried cannabidiol and one tried the ketogenic diet; neither was effective. CONCLUSIONS The epilepsy phenotype in children with 15q13.3 microdeletion syndrome is defined by childhood onset absence seizures, and may have atypical features such as, early onset absences, persistence into adolescence, status epilepticus, intellectual disability and treatment resistance. Focal seizures and focal EEG findings may be observed and should be treated cautiously, given the possibility of combined seizure types. Valproate appeared effective, although other treatments must be explored further.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada.
| | - Arjun Nair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - Elizabeth McCready
- Division of Clinical Pathology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Anne E Keller
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - Ishita Siddiq Adil
- Pediatric Neurology Clinic, Oakville, ON, Canada; Division of Neurology, Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Aly Shah Aziz
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada; Pediatric Neurology Clinic, Oakville, ON, Canada
| | - Oksana Borys
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada; Pediatric Neurology Clinic, Oakville, ON, Canada
| | - Kaitlyn Siu
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - Chintan Shah
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - Brandon F Meaney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | - Kevin Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
34
|
Budisteanu M, Papuc SM, Streata I, Cucu M, Pirvu A, Serban-Sosoi S, Erbescu A, Andrei E, Iliescu C, Ioana D, Severin E, Ioana M, Arghir A. The Phenotypic Spectrum of 15q13.3 Region Duplications: Report of 5 Patients. Genes (Basel) 2021; 12:1025. [PMID: 34356041 PMCID: PMC8306426 DOI: 10.3390/genes12071025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Chromosome 15q13.3 microduplications are associated with a wide spectrum of clinical presentations ranging from normal to different neuropsychiatric conditions, such as developmental delay (DD), intellectual disability (ID), epilepsy, hypotonia, autism spectrum disorders (ASD), attention-deficit hyperactivity disorder, and schizophrenia. The smallest region of overlap for 15q13.3 duplications encompasses the Cholinergic Receptor Nicotinic Alpha 7 Subunit (CHRNA7) gene, a strong candidate for the behavioral abnormalities. We report on a series of five patients with 15q13.3 duplications detected by chromosomal microarray. The size of the duplications ranged from 378 to 537 kb, and involved the CHRNA7 gene in all patients. The most common clinical features, present in all patients, were speech delay, autistic behavior, and muscle hypotonia; DD/ID was present in three patients. One patient presented epileptic seizures; EEG anomalies were observed in three patients. No consistent dysmorphic features were noted. Neuroimaging studies revealed anomalies in two patients: Dandy-Walker malformation and a right temporal cyst. 15q13.3 duplications are associated with various neuropsychiatric features, including speech delay, hypotonia, ASD, and ID, also present in our patient group. Our study brings detailed clinical and molecular data from five ASD patients with 15q13.3 microduplications involving the CHRNA7 gene, contributing to the existing knowledge about the association of 15q13.3 duplications with neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
- Department of Genetics, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Sorina Mihaela Papuc
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| | - Ioana Streata
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mihai Cucu
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Andrei Pirvu
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Simona Serban-Sosoi
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Alina Erbescu
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| | - Emanuela Andrei
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Catrinel Iliescu
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Doina Ioana
- Department of Pediatric Neurology, Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania; (M.B.); (E.A.); (C.I.); (D.I.)
| | - Emilia Severin
- Department of Genetics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania;
| | - Mihai Ioana
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.S.); (M.C.); (A.P.); (S.S.-S.); (M.I.)
- Regional Center of Medical Genetics Dolj, 200642 Craiova, Romania
| | - Aurora Arghir
- Medical Genetics Laboratory, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.E.); (A.A.)
| |
Collapse
|
35
|
Vasudevaraja V, Rodriguez JH, Pelorosso C, Zhu K, Buccoliero AM, Onozato M, Mohamed H, Serrano J, Tredwin L, Garonzi M, Forcato C, Zeck B, Ramaswami S, Stafford J, Faustin A, Friedman D, Hidalgo ET, Zagzag D, Skok J, Heguy A, Chiriboga L, Conti V, Guerrini R, Iafrate AJ, Devinsky O, Tsirigos A, Golfinos JG, Snuderl M. Somatic Focal Copy Number Gains of Noncoding Regions of Receptor Tyrosine Kinase Genes in Treatment-Resistant Epilepsy. J Neuropathol Exp Neurol 2021; 80:160-168. [PMID: 33274363 DOI: 10.1093/jnen/nlaa137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a heterogenous group of disorders defined by recurrent seizure activity due to abnormal synchronized activity of neurons. A growing number of epilepsy cases are believed to be caused by genetic factors and copy number variants (CNV) contribute to up to 5% of epilepsy cases. However, CNVs in epilepsy are usually large deletions or duplications involving multiple neurodevelopmental genes. In patients who underwent seizure focus resection for treatment-resistant epilepsy, whole genome DNA methylation profiling identified 3 main clusters of which one showed strong association with receptor tyrosine kinase (RTK) genes. We identified focal copy number gains involving epidermal growth factor receptor (EGFR) and PDGFRA loci. The dysplastic neurons of cases with amplifications showed marked overexpression of EGFR and PDGFRA, while glial and endothelial cells were negative. Targeted sequencing of regulatory regions and DNA methylation analysis revealed that only enhancer regions of EGFR and gene promoter of PDGFRA were amplified, while coding regions did not show copy number abnormalities or somatic mutations. Somatic focal copy number gains of noncoding regulatory represent a previously unrecognized genetic driver in epilepsy and a mechanism of abnormal activation of RTK genes. Upregulated RTKs provide a potential avenue for therapy in seizure disorders.
Collapse
Affiliation(s)
| | | | - Cristiana Pelorosso
- Paediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | | | - Anna Maria Buccoliero
- Pathology Unit, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Maristela Onozato
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | - James Stafford
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, Vermont
| | | | | | | | - David Zagzag
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | | | | | | | - Valerio Conti
- Paediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Orrin Devinsky
- Department of Neurology.,Comprehensive Epilepsy Center (DF, OD).,Department of Neurosurgery, NYU Langone Health, New York, New York
| | | | - John G Golfinos
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | | |
Collapse
|
36
|
Pizzo L, Lasser M, Yusuff T, Jensen M, Ingraham P, Huber E, Singh MD, Monahan C, Iyer J, Desai I, Karthikeyan S, Gould DJ, Yennawar S, Weiner AT, Pounraja VK, Krishnan A, Rolls MM, Lowery LA, Girirajan S. Functional assessment of the "two-hit" model for neurodevelopmental defects in Drosophila and X. laevis. PLoS Genet 2021; 17:e1009112. [PMID: 33819264 PMCID: PMC8049494 DOI: 10.1371/journal.pgen.1009112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
We previously identified a deletion on chromosome 16p12.1 that is mostly inherited and associated with multiple neurodevelopmental outcomes, where severely affected probands carried an excess of rare pathogenic variants compared to mildly affected carrier parents. We hypothesized that the 16p12.1 deletion sensitizes the genome for disease, while "second-hits" in the genetic background modulate the phenotypic trajectory. To test this model, we examined how neurodevelopmental defects conferred by knockdown of individual 16p12.1 homologs are modulated by simultaneous knockdown of homologs of "second-hit" genes in Drosophila melanogaster and Xenopus laevis. We observed that knockdown of 16p12.1 homologs affect multiple phenotypic domains, leading to delayed developmental timing, seizure susceptibility, brain alterations, abnormal dendrite and axonal morphology, and cellular proliferation defects. Compared to genes within the 16p11.2 deletion, which has higher de novo occurrence, 16p12.1 homologs were less likely to interact with each other in Drosophila models or a human brain-specific interaction network, suggesting that interactions with "second-hit" genes may confer higher impact towards neurodevelopmental phenotypes. Assessment of 212 pairwise interactions in Drosophila between 16p12.1 homologs and 76 homologs of patient-specific "second-hit" genes (such as ARID1B and CACNA1A), genes within neurodevelopmental pathways (such as PTEN and UBE3A), and transcriptomic targets (such as DSCAM and TRRAP) identified genetic interactions in 63% of the tested pairs. In 11 out of 15 families, patient-specific "second-hits" enhanced or suppressed the phenotypic effects of one or many 16p12.1 homologs in 32/96 pairwise combinations tested. In fact, homologs of SETD5 synergistically interacted with homologs of MOSMO in both Drosophila and X. laevis, leading to modified cellular and brain phenotypes, as well as axon outgrowth defects that were not observed with knockdown of either individual homolog. Our results suggest that several 16p12.1 genes sensitize the genome towards neurodevelopmental defects, and complex interactions with "second-hit" genes determine the ultimate phenotypic manifestation.
Collapse
Affiliation(s)
- Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Tanzeen Yusuff
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Phoebe Ingraham
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mayanglambam Dhruba Singh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Connor Monahan
- Department of Biology, Boston College, Chestnut Hill, MA, United States of America
| | - Janani Iyer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Inshya Desai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Siddharth Karthikeyan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Dagny J. Gould
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Sneha Yennawar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Alexis T. Weiner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Arjun Krishnan
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, MA, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
37
|
Al-Absi AR, Qvist P, Glerup S, Sanchez C, Nyengaard JR. Df(h15q13)/+ Mouse Model Reveals Loss of Astrocytes and Synaptic-Related Changes of the Excitatory and Inhibitory Circuits in the Medial Prefrontal Cortex. Cereb Cortex 2021; 31:1609-1621. [PMID: 33123721 DOI: 10.1093/cercor/bhaa313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 11/13/2022] Open
Abstract
The 15q13.3 deletion is associated with multiple neurodevelopmental disorders including epilepsy, schizophrenia, and autism. The Df(h15q13)/+ mouse model was recently generated that recapitulates several phenotypic features of the human 15q13.3 deletion syndrome (DS). However, the biological substrates underlying these phenotypes in Df(h15q13)/+ mice have not yet been fully characterized. RNA sequencing followed by real-time quantitative PCR, western blotting, liquid chromatography-mass spectrometry, and stereological analysis were employed to dissect the molecular, structural, and neurochemical phenotypes of the medial prefrontal cortex (mPFC) circuits in Df(h15q13)/+ mouse model. Transcriptomic profiling revealed enrichment for astrocyte-specific genes among differentially expressed genes, translated by a decrease in the number of glial fibrillary acidic protein positive cells in mPFC of Df(h15q13)/+ mice compared with wild-type mice. mPFC in Df(h15q13)/+ mice also showed a deficit of the inhibitory presynaptic marker GAD65, in addition to a reduction in dendritic arborization and spine density of pyramidal neurons from layers II/III. mPFC levels of GABA and glutamate neurotransmitters were not different between genotypes. Our results suggest that the 15q13.3 deletion modulates nonneuronal circuits in mPFC and confers molecular and morphometric alterations in the inhibitory and excitatory neurocircuits, respectively. These alterations potentially contribute to the phenotypes accompanied with the 15q13.3DS.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark.,Center for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, 8000 Aarhus, Denmark
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Center for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
38
|
Abdelwahed M, Maaloul I, Benoit V, Hilbert P, Hachicha M, Kamoun H, Keskes-Ammar L, Belguith N. Copy-number variation of the NPHP1 gene in patients with juvenile Nephronophthisis. Acta Clin Belg 2021; 76:16-24. [PMID: 31402777 DOI: 10.1080/17843286.2019.1655231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Juvenile nephronophthisis (NPHP) is an autosomal recessive cystic disease of the kidney. It represents the most frequent genetic cause of chronic renal failure in children. Methods: we investigated clinical and molecular features in two children with Juvenile nephronophthisis using firstly Multiplex ligation-dependent probe amplification (MLPA) and secondly multiplex PCR. Results: we report a homozygous NPHP1 deletion in two children. Conclusion: NPHP1 deletion analysis using diagnostic methods (e.g. MLPA, Multiplex PCR) should always be considered in patients with nephronophthisis, especially from consanguineous families. Our results provide insights into genotype-phenotype correlations in juvenile nephronophthisis that can be utilized in genetic counseling.
Collapse
Affiliation(s)
- Mayssa Abdelwahed
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Maaloul
- Pediatric Department of Hedi Chaker Hospital, Sfax, Tunisia
| | - Valerie Benoit
- Center of Human Genetics, Institute of Pathology and Genetics, Biopark Charleroi Brussels, Gosselies, Belgium
| | - Pascale Hilbert
- Center of Human Genetics, Institute of Pathology and Genetics, Biopark Charleroi Brussels, Gosselies, Belgium
| | | | - Hassen Kamoun
- Medical Genetics Department of Hedi Chaker Hospital, Sfax, Tunisia
| | - Leila Keskes-Ammar
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Medical Genetics Department of Hedi Chaker Hospital, Sfax, Tunisia
| |
Collapse
|
39
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
40
|
Albuz B, Ozdemir O, Silan F. The high frequency of chromosomal copy number variations and candidate genes in epilepsy patients. Clin Neurol Neurosurg 2021; 202:106487. [PMID: 33484953 DOI: 10.1016/j.clineuro.2021.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/29/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Epilepsy is a chronic brain disease and is estimated to affect more than 50 million people worldwide.Epilepsy is a polygenic and multifactorial disease.Genetic causes play a major role in 40-60 % of all epilepsies.Copy number variations(CNVs) have been reported in approximately 5-12 % of patients with different types of epilepsy.Here we aimed to determine the diagnostic yield of the aCGH in epilepsy and to reveal new candidate genes and CNVs by analyzing aCGH data retrospectively. METHODS The clinical data of 80 patients with the diagnosis of epilepsy were examined retrospectively and the raw data of aCGH of these patients were reanalyzed in the light of current literature. RESULTS Pathogenic/likely pathogenic CNVs were detected in 14 of 80 patients and 12 of these CNVs (15 %) were associated with epilepsy phenotype. In addition, 18 CNVs in 16 different chromosomal loci that were evaluated as the variant of unknown clinical significance(VOUS). In four cases (5%), CNVs associated with epilepsy were less than 100 kb and these accounted for 13.3 % of all epilepsy associated CNVs. CONCLUSION The diagnostic yield of aCGH in epilepsy patients was found to be higher than most studies in the literature. MACROD2,ADGRB3(BAI3),SOX8,HIP1,PARK2 and TAFA2 genes were evaluated as potential epilepsy-related genes and NEDD9,RASAL2 and TNR genes thought to be the candidate genes for epilepsy. Our study showed that the diagnostic efficiency of aCGH in epilepsy is high and with more comprehensive studies, it will contribute to the elucidation of genes involved in genetic etiology in epilepsy patients.
Collapse
Affiliation(s)
- Burcu Albuz
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
| |
Collapse
|
41
|
Abdelzaher LA, Hussein OA, Ashry IEM. The Novel Potential Therapeutic Utility of Montelukast in Alleviating Autistic Behavior Induced by Early Postnatal Administration of Thimerosal in Mice. Cell Mol Neurobiol 2021; 41:129-150. [PMID: 32303879 PMCID: PMC11448635 DOI: 10.1007/s10571-020-00841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM: Thimerosal (THIM) is a mercury-containing preservative widely used in many biological and medical products including many vaccines. It has been accused of being a possible etiological factor for some neurodevelopmental disorders such as autistic spectrum disorders (ASDs). In our study, the potential therapeutic effect of montelukast, a leukotriene receptor antagonist used to treat seasonal allergies and asthma, on THIM mice model (ASDs model) was examined. METHODOLOGY Newborn mice were randomly distributed into three groups: (Group 1) Control (Cont.) group received saline injections. (Group 2) THIM-treated (THIM) group received THIM intramuscular (IM) at a dose of 3000 μg Hg/kg on postnatal days 7, 9, 11, and 15. (Group 3) Montelukast-treated (Monte) group received THIM followed by montelukast sodium (10 mg/kg/day) intraperitoneal (IP) for 3 weeks. Mice were evaluated for growth development, social interactions, anxiety, locomotor activity, and cognitive function. Brain histopathology, alpha 7 nicotinic acetylcholine receptors (α7nAChRs), nuclear factor kappa B p65 (NF-κB p65), apoptotic factor (Bax), and brain injury markers were evaluated as well. RESULTS THIIM significantly impaired social activity and growth development. Montelukast mitigated THIM-induced social deficit probably through α7nAChRs upregulation, NF-κB p65, Bax, and brain injury markers downregulation, thus suppressing THIM-induced neuronal toxicity and inflammation. CONCLUSION Neonatal exposure to THIM can induce growth retardation and abnormal social interactions similar to those observed in ASDs. Some of these abnormalities could be ameliorated by montelukast via upregulation of α7nAChRs that inhibited NF-κB activation and significant suppression of neuronal injury and the associated apoptosis.
Collapse
Affiliation(s)
- Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ola A Hussein
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - I E M Ashry
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
42
|
Pavone P, Pappalardo XG, Ohazuruike UNN, Striano P, Parisi P, Corsello G, Marino SD, Ruggieri M, Parano E, Falsaperla R. Chromosome 15q BP4-BP5 Deletion in a Girl with Nocturnal Frontal Lobe Epilepsy, Migraine, Circumscribed Hypertrichosis, and Language Impairment. J Epilepsy Res 2020; 10:84-91. [PMID: 33659201 PMCID: PMC7903043 DOI: 10.14581/jer.20014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
The 15q13.3 microdeletion (microdel15q13.3) syndrome (OMIM 612001) has been reported in healthy subjects as well as in individuals with a wide spectrum of clinical manifestations ranging from mild to severe neurological disorders, including developmental delay/intellectual disability, autism spectrum disorder, schizophrenia, epilepsy, behavioral problems and speech dysfunction. This study explored the link between this genomic rearrangement and nocturnal frontal lobe epilepsy (NFLE), which could improve the clinical interpretation. A clinical and genomic investigation was carried out on an 8-year-girl with a de novo deletion flanking the breakpoints (BPs) 4 and 5 of 15q13.3 detected by array comparative genomic hybridization analysis, affected by NFLE, migraine with aura, minor facial features, mild cognitive and language impairment, and circumscribed hypertrichosis. Literature survey of clinical studies was included. Nine years follow-up have displayed a benign course of the epileptic disorder with a progressive reduction and disappearance of the epileptic seizures, mild improvement of cognitive and language skills, partial cutaneous hypertrichosis regression, but stable ongoing of migraine episodes. A likely relationship between the BP4–BP5 deletion and NFLE with other symptoms presented by the girl is discussed together with a review of the literature on phenotypic features in microdel15q13.3.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, Genoa, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine & Psychology, "Sapienza" University, c/o Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Enrico Parano
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Neonatology University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
43
|
Niestroj LM, Perez-Palma E, Howrigan DP, Zhou Y, Cheng F, Saarentaus E, Nürnberg P, Stevelink R, Daly MJ, Palotie A, Lal D. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain 2020; 143:2106-2118. [PMID: 32568404 DOI: 10.1093/brain/awaa171] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 11/14/2022] Open
Abstract
Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5-3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.
Collapse
Affiliation(s)
- Lisa-Marie Niestroj
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, 50931, Germany
| | - Eduardo Perez-Palma
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany
| | - Remi Stevelink
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aarno Palotie
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dennis Lal
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, 50931, Germany.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | | |
Collapse
|
44
|
Common variants in FAN1, located in 15q13.3, confer risk for schizophrenia and bipolar disorder in Han Chinese. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109973. [PMID: 32450113 DOI: 10.1016/j.pnpbp.2020.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Multiple genetic risk factors have been associated with psychiatric disorders which provides the genetic insight to these disorders; however, the etiology of these disorders is still elusive. 15q13.3 was previously associated with schizophrenia, bipolar and other neurodevelopmental disorders. Whereas, the FAN1 which encodes the Fanconi anemia associated nuclease 1 was suggested to be causal gene for 15q13.3 related psychiatric disorders. This study aimed to investigate the association of FAN1 with three major psychiatric disorders. Herein, we conducted a case-control study with the Chinese Han population. Three single nucleotide polymorphisms (SNPs) of FAN1 were genotyped in 1248 schizophrenia cases, 1344 bipolar disorder cases, 1056 major depressive disorder cases and 1248 normal controls. We found that SNPs rs7171212 was associated with bipolar (pallele = 0.023, pgenotype = 0.022, OR = 0.658) and schizophrenia (pallele = 0.021, pgenotype = 0.019, OR = 0.645). Whereas, rs4779796 was associated with schizophrenia (pgenotype = 0.001, adjusted pgenotype = 0.003, OR = 1.089). In addition, rs7171212 (adjusted pallele = 0.018, adjusted pgenotype = 0.018, OR = 0.652) and rs4779796 (adjusted pgenotype = 0.024, OR = 1.12) showed significantly associated with combined cases of schizophrenia and bipolar disorder. Further, meta-analysis was performed with the case-control data and dataset extracted from previously reported genome-wide association study to validate the promising SNPs. Our results provide the new evidence that FAN1 may be a common susceptibility gene for schizophrenia and bipolar disorder in Han Chinese. These novel findings need further validation with larger sample size and functional characterization to understand the underlying pathogenic mechanism behind FAN1 in the prevalence of schizophrenia and bipolar disorders.
Collapse
|
45
|
Thakran S, Guin D, Singh P, Singh P, Kukal S, Rawat C, Yadav S, Kushwaha SS, Srivastava AK, Hasija Y, Saso L, Ramachandran S, Kukreti R. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int J Mol Sci 2020; 21:E7784. [PMID: 33096746 PMCID: PMC7589654 DOI: 10.3390/ijms21207784] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is highly heterogeneous in nature. Based on the prevalence, epilepsy is classified into two types: common and rare epilepsies. Common epilepsies affecting nearly 95% people with epilepsy, comprise generalized epilepsy which encompass idiopathic generalized epilepsy like childhood absence epilepsy, juvenile myoclonic epilepsy, juvenile absence epilepsy and epilepsy with generalized tonic-clonic seizure on awakening and focal epilepsy like temporal lobe epilepsy and cryptogenic focal epilepsy. In 70% of the epilepsy cases, genetic factors are responsible either as single genetic variant in rare epilepsies or multiple genetic variants acting along with different environmental factors as in common epilepsies. Genetic testing and precision treatment have been developed for a few rare epilepsies and is lacking for common epilepsies due to their complex nature of inheritance. Precision medicine for common epilepsies require a panoramic approach that incorporates polygenic background and other non-genetic factors like microbiome, diet, age at disease onset, optimal time for treatment and other lifestyle factors which influence seizure threshold. This review aims to comprehensively present a state-of-art review of all the genes and their genetic variants that are associated with all common epilepsy subtypes. It also encompasses the basis of these genes in the epileptogenesis. Here, we discussed the current status of the common epilepsy genetics and address the clinical application so far on evidence-based markers in prognosis, diagnosis, and treatment management. In addition, we assessed the diagnostic predictability of a few genetic markers used for disease risk prediction in individuals. A combination of deeper endo-phenotyping including pharmaco-response data, electro-clinical imaging, and other clinical measurements along with genetics may be used to diagnose common epilepsies and this marks a step ahead in precision medicine in common epilepsies management.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Suman S. Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi 110095, India;
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India;
| | - Yasha Hasija
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Srinivasan Ramachandran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- G N Ramachandran Knowledge Centre, Council of Scientific and Industrial Research (CSIR)—Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Seizures can arise in neocortical, thalamocortical, limbic or brainstem networks. Here, we review recent genetic mechanisms implicated in focal and genetic generalized epilepsies (GGEs). RECENT FINDINGS Pathogenic variation in GAP activity toward RAGs 1 (GATOR1) complex genes (i.e., DEPDC5, NPRL2 and NPRL3) mainly result in focal epilepsies. They are associated with high rates of sudden unexpected death in epilepsy and malformations of cortical development (MCD), where "two-hits" in GATOR1-related pathways are also found in MCDs. Large-scale sequencing studies continue to reveal new genetic risk (germline or somatic) variants, and new genes relevant to epileptic encephalopathies (EEs). Genes previously associated with EEs, including GABAA receptor genes, are now known to play a role in both common focal and GGEs in individuals without intellectual disabilities. These findings suggest that there may be a common pathophysiological mechanism in GGEs and focal epilepsies. Finally, polygenic risk scores, based on common genetic variation, offer promise in helping to differentiate between GGEs and common forms of focal epilepsies. Genetic abnormalities are a significant cause of common sporadic epilepsies, epilepsies associated with inflammatory markers, and focal epilepsies with or without MCD. Future studies using genome sequencing may provide more answers to the remaining unresolved epilepsy cases.
Collapse
|
47
|
Banerjee J, Dey S, Dixit AB, Tripathi M, Doddamani R, Sharma MC, Chandra PS. α7 nicotinic receptors contributes to glutamatergic activity in the hippocampus of patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). J Neural Transm (Vienna) 2020; 127:1441-1446. [PMID: 32770411 DOI: 10.1007/s00702-020-02239-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022]
Abstract
Hyperglutamatergic activity in the hippocampus is a major feature of patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). Here we investigated whether tonic α7 nicotinic receptor (nAChR) activity could contribute to enhanced glutamatergic activity in the hippocampus of patients with MTLE-HS. Results showed that frequency and amplitude of glutamatergic events recorded from pyramidal neurons in the hippocampal samples obtained from patients with MTLE-HS were altered by α7 nAChR antagonist, methyllycaconitine, suggesting α7 nAChRs may influence hyperexcitability in MTLE-HS.
Collapse
Affiliation(s)
- Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India.
| | - Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Meher Chand Sharma
- Department of Neuropathology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
48
|
Abstract
Epilepsy encompasses a group of heterogeneous brain diseases that affect more than 50 million people worldwide. Epilepsy may have discernible structural, infectious, metabolic, and immune etiologies; however, in most people with epilepsy, no obvious cause is identifiable. Based initially on family studies and later on advances in gene sequencing technologies and computational approaches, as well as the establishment of large collaborative initiatives, we now know that genetics plays a much greater role in epilepsy than was previously appreciated. Here, we review the progress in the field of epilepsy genetics and highlight molecular discoveries in the most important epilepsy groups, including those that have been long considered to have a nongenetic cause. We discuss where the field of epilepsy genetics is moving as it enters a new era in which the genetic architecture of common epilepsies is starting to be unraveled.
Collapse
Affiliation(s)
- Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3000, Australia.,Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria 3050, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria 3000, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria 3084, Australia;
| |
Collapse
|
49
|
Sjaarda CP, Kaiser B, McNaughton AJM, Hudson ML, Harris-Lowe L, Lou K, Guerin A, Ayub M, Liu X. De novo duplication on Chromosome 19 observed in nuclear family displaying neurodevelopmental disorders. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004721. [PMID: 32321736 PMCID: PMC7304355 DOI: 10.1101/mcs.a004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
Pleiotropy and variable expressivity have been cited to explain the seemingly distinct neurodevelopmental disorders due to a common genetic etiology within the same family. Here we present a family with a de novo 1-Mb duplication involving 18 genes on Chromosome 19. Within the family there are multiple cases of neurodevelopmental disorders including autism spectrum disorder, attention deficit/hyperactivity disorder, intellectual disability, and psychiatric disease in individuals carrying this copy-number variant (CNV). Quantitative polymerase chain reaction (PCR) confirmed the CNV was de novo in the mother and inherited by both sons. Whole-exome sequencing did not uncover further genetic risk factors segregating within the family. Transcriptome analysis of peripheral blood demonstrated a ∼1.5-fold increase in RNA transcript abundance in 12 of the 15 detected genes within the CNV region for individuals carrying the CNV compared with their noncarrier relatives. Examination of transcript abundance across the rest of the transcriptome identified 407 differentially expressed genes (P-value < 0.05; adjusted P-value < 0.1) mapping to immune response, response to endoplasmic reticulum stress, and regulation of epithelial cell proliferation pathways. 16S microbiome profiling demonstrated compositional difference in the gut bacteria between the half-brothers. These results raise the possibility that the observed CNV may contribute to the varied phenotypic characteristics in family members through alterations in gene expression and/or dysbiosis of the gut microbiome. More broadly, there is growing evidence that different neurodevelopmental and psychiatric disorders can share the same genetic variant, which lays a framework for later neurodevelopmental and psychiatric manifestations.
Collapse
Affiliation(s)
- Calvin P Sjaarda
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Beatrice Kaiser
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Amy J M McNaughton
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Melissa L Hudson
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Liam Harris-Lowe
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,School of Applied Science and Computing, St. Lawrence College, Kingston, Ontario K7L 5A6, Canada
| | - Kyle Lou
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Xudong Liu
- Queen's Genomics Laboratory at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Ontario K7M 8A6, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
50
|
Wolking S, Schulz H, Nies AT, McCormack M, Schaeffeler E, Auce P, Avbersek A, Becker F, Klein KM, Krenn M, Møller RS, Nikanorova M, Weckhuysen S, Consortium E, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Weber YG, Krause R, Sisodiya S, Schwab M, Sander T, Lerche H. Pharmacoresponse in genetic generalized epilepsy: a genome-wide association study. Pharmacogenomics 2020; 21:325-335. [DOI: 10.2217/pgs-2019-0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: Pharmacoresistance is a major burden in epilepsy treatment. We aimed to identify genetic biomarkers in response to specific antiepileptic drugs (AEDs) in genetic generalized epilepsies (GGE). Materials & methods: We conducted a genome-wide association study (GWAS) of 3.3 million autosomal SNPs in 893 European subjects with GGE – responsive or nonresponsive to lamotrigine, levetiracetam and valproic acid. Results: Our GWAS of AED response revealed suggestive evidence for association at 29 genomic loci (p <10-5) but no significant association reflecting its limited power. The suggestive associations highlight candidate genes that are implicated in epileptogenesis and neurodevelopment. Conclusion: This first GWAS of AED response in GGE provides a comprehensive reference of SNP associations for hypothesis-driven candidate gene analyses in upcoming pharmacogenetic studies.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Department of Neurosciences, CHUM Research Center, University of Montreal, Montreal, H2X 0A9, Canada
| | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Anne T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72076 Tübingen, Germany
| | - Mark McCormack
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72076 Tübingen, Germany
| | - Pauls Auce
- Walton Centre NHS Foundation Trust, Liverpool, L33 4YD, UK
| | - Andreja Avbersek
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London & Chalfont Centre for Epilepsy, London, SL9 0RJ, UK
| | - Felicitas Becker
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Karl M Klein
- Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rikke S Møller
- Danish Epilepsy Centre – Filadelfia, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB-University of Antwerp, 2650 Edegem, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, 2650 Edegem, Belgium
- Department of Neurology, Antwerp University Hospital, 2650 Edegem, Belgium
| | | | - Gianpiero L Cavalleri
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, SW2 2AZ, UK
| | - Norman Delanty
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
- The FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, SW2 2AZ, UK
| | - Bobby PC Koeleman
- Department of Genetics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Wolfram S Kunz
- Institute of Experimental Epileptology & Cognition Research & Department of Epileptology, University of Bonn, 53127 Bonn, Germany
| | - Anthony G Marson
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London & Chalfont Centre for Epilepsy, London, SL9 0RJ, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, The Netherlands
| | - Graeme J Sills
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Pasquale Striano
- Pediatric Neurology & Muscular Diseases Unit, IRCCS ‘G. Gaslini’ Institute, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal & Child Health, University of Genova, 16147 Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, IRCCS ‘G. Gaslini’ Institute, 16147 Genova, Italy
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yvonne G Weber
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Sanjay Sisodiya
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London & Chalfont Centre for Epilepsy, London, SL9 0RJ, UK
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Pharmacy & Biochemistry, University Tübingen, 72076 Tübingen, Germany
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Holger Lerche
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|