1
|
Pancsa R, Andreev DE, Dean K. The implication of non-AUG-initiated N-terminally extended proteoforms in cancer. RNA Biol 2025; 22:1-18. [PMID: 40276932 PMCID: PMC12045569 DOI: 10.1080/15476286.2025.2498203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG codons. If an upstream non-canonical start site is located within a frame with an annotated coding sequence (CDS), such translation events can lead to the production of proteoforms with altered N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors (e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an explanation for previously described functionalities or interactions of the proteins. In all, we identify novel cases where PANTs likely show different localization, functions, partner binding or turnover rates compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of translation initiation, often seen under conditions of cellular stress, may result in reprogramming of translation to generate novel PANTs that influence cancer progression.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Trudrung MA, Bacig C, Zee BV, Potter H. Basal cell carcinoma and squamous cell carcinoma of the conjunctiva in a single lesion. Am J Ophthalmol Case Rep 2025; 38:102300. [PMID: 40123701 PMCID: PMC11928762 DOI: 10.1016/j.ajoc.2025.102300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Basal cell carcinoma (BCC) occurrences in the conjunctiva are exceptionally rare. These lesions become exceedingly rarer next to an adjacent area of squamous cell carcinoma. A collision tumor of both basal cell and squamous cell carcinoma is infrequently encountered in the literature. Case presentation An elderly male patient was evaluated for concern of ocular surface squamous neoplasia on his left conjunctiva. The lesion appeared as a tan-white elevated lesion with atypical vessels in papillary fronds. The patient underwent surgical excision of the lesion, and the tissue was sent to ocular pathology for histopathologic evaluation. The final diagnosis was basal cell carcinoma and squamous cell carcinoma. The two tumors of both basal cell carcinoma and squamous cell carcinoma were juxtaposed with an abrupt transition zone with no fluidity of differentiation. The lesion had typical features for BCC with positive stain for Bcl-2, P63, P53, CD10, and BerEP4. Additionally, the SCC region stained positive for EMA, P63, and P53. Conclusion We report a single lesion of the conjunctiva with features of both basal cell carcinoma and squamous cell carcinoma. This case report describes a unique case of two independent neoplasms of the conjunctiva. This further adds to the literature of collision tumors to characterize the lesion with appropriate immunohistochemical analysis.
Collapse
Affiliation(s)
- Melissa A. Trudrung
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cole Bacig
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Brandon Vander Zee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather Potter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
3
|
Wang J, Zhao Y, Wei Y, Li T, Huang T, Pan T, Wu J, Bai L, Zhu D, Zhao Q, Wang Z, Feng F, Zhou X. Mai-wei-yang-fei decoction protects against pulmonary fibrosis by reducing telomere shortening and inhibiting AECII senescence via FBW7/TPP1 regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156682. [PMID: 40215816 DOI: 10.1016/j.phymed.2025.156682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a fatal disease associated with ageing. The senescence of alveolar epithelial type II cells (AECIIs) can drive PF. Therefore, reducing AECII senescence is a promising treatment to prevent PF. Mai-wei-yang-fei decoction (MWYF) has shown significant clinical efficacy in the treatment of patients with PF. However, its mechanism of action remains unclear. PURPOSE To investigate the role and underlying mechanism of MWYF in protecting against PF. METHODS The main chemical components of MWYF were identified using UPLC-MS. The mouse and in vitro cell models of PF were established using BLM. Micro-CT, H&E, and Masson staining were used to observe the protective effect of MWYF on mice with PF. Immunohistochemistry, β-galactosidase staining, and IF-FISH were used to observe the inhibitory effect of MWYF on senescence and telomere shortening in mouse lung tissue or A549 cells. The Transwell assay and cell co-culture method were used to observe the effect of MWYF on the migration and activation of lung fibroblasts by inhibiting AECII senescence. Finally, lentiviral vector was used to overexpress FBW7 gene in A549 cells in vitro to observe the mechanism pathway of MWYF inhibiting AECII senescence and telomere shortening. RESULTS MWYF was effective in protecting against bleomycin (BLM)-induced PF. Furthermore, MWYF alleviated cellular senescence by reducing the DNA damage response (DDR) and shortening of the telomere in AECⅡs in mouse lung tissues. Mechanistically, genes related to telomere disorders were detected in BLM-induced PF mouse models using q-PCR. MWYF mainly inhibited telomere shortening by regulating FBW7 and reducing the degradation of TPP1. In vitro, MWYF reduced BLM-induced senescence in A549 cells, as well as proliferation and migration of MRC5 cells, by inhibiting DDR and telomere shortening via regulation of the FBW7/TPP1 axis. CONCLUSION MWYF is a potential therapeutic agent against PF, as it inhibits telomere shortening and reduces AECII senescence by regulating FBW7/TPP1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Wei
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyuan Li
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tongxing Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyu Pan
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jieyu Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Bai
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongwei Zhu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhao
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Fanchao Feng
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xianmei Zhou
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Liu R, Huang Y, Tang Y, Wa Q, Chen Z. Extracutaneous second primary cancer risk in nonmelanoma skin cancer patients: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2025; 212:104769. [PMID: 40412580 DOI: 10.1016/j.critrevonc.2025.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Survivors of nonmelanoma skin cancer (NMSC) may be at an elevated risk of developing second primary cancers (SPCs), but high-risk sites and specific population characteristics remain unclear. METHODS PubMed, Embase, Medline, Web of Science, and the Cochrane Library were systematically searched to identify population-based studies reporting standardized incidence ratios (SIRs) of SPCs in NMSC patients. Meta-analyses were performed for non-skin cancer risk and 34 site-specific SPCs. Subgroup analyses were stratified by gender, NMSC category, age, time since NMSC diagnosis, and geographic region. Heterogeneity was assessed using Q-test and I² statistic. RESULTS Nineteen studies involving 560371 NMSC survivors and 77507 SPC cases were included. NMSC patients exhibited elevated risks for non-skin SPCs (SIR = 1.20, 95 % CI = 1.13-1.29). The risks were elevated for 20/34 site-specific SPCs. The highest extracutaneous cancer risks were observed in salivary glands (SIR = 4.75), lip (SIR = 2.90), and nose (SIR = 1.96). Subgroup analyses showed that basal cell carcinoma patients had increased risks for more SPC types than squamous cell carcinoma patients (15/30 vs. 9/28 sites analyzed). Patients diagnosed before age 60 showed elevated cancer risks of breast and liver/gallbladder. The SPC risks increased beyond 5 years post-diagnosis. CONCLUSION Our findings identified high-risk NMSC survivors who would benefit most from enhanced SPC surveillance. Instead of universal screening, we recommend risk-based surveillance for patients diagnosed before age 60, with basal cell carcinoma, or with longer post-diagnosis intervals. This targeted strategy balances early SPC detection with resource use.
Collapse
Affiliation(s)
- Ruolin Liu
- Medical Cosmetic Centre, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Yuqian Huang
- Medical Cosmetic Centre, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Yong Tang
- Department of Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Qingbiao Wa
- Medical Cosmetic Centre, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Zhibing Chen
- Medical Cosmetic Centre, Chengdu Second People's Hospital, Chengdu 610017, China.
| |
Collapse
|
5
|
Pham TTQ, Kuo YC, Chang WL, Weng HJ, Huang YH. Double-sided niche regulation in skin stem cell and cancer: mechanisms and clinical applications. Mol Cancer 2025; 24:147. [PMID: 40399946 PMCID: PMC12093937 DOI: 10.1186/s12943-025-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 05/23/2025] Open
Abstract
The niche microenvironment plays a crucial role in regulating the fate of normal skin stem cells (SSCs) and cancer stem cells (CSCs). Therapeutically targeting the CSC niche holds promise as an effective strategy; however, the dual effects of shared SSC niche signaling in CSCs have contributed to the aggressive characteristics of tumors and poor survival rates in skin cancer patients. The lack of a clear underlying mechanism has significantly hindered drug development for effective treatment. This article explores recent advances in understanding how niche factors regulate cell fate determination between skin stem cells and skin CSCs, along with their clinical implications. The dual roles of key components of the adhesive niche, including the dermo-epidermal junction and adherens junction, various cell types-especially immune cells and fibroblasts-as well as major signaling pathways such as Sonic hedgehog (Shh), Wingless-related integration site (Wnt)/β-catenin, YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif), and Notch, are highlighted. Additionally, recent advances in clinical trials and drug development targeting these pathways are discussed. Overall, this review provides valuable insights into the complex interactions between skin cancer stem cells and their microenvironment, laying the groundwork for future research and clinical strategies.
Collapse
Affiliation(s)
- Trang Thao Quoc Pham
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Wei-Ling Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hao-Jui Weng
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
6
|
Mao J, Ma X, Sun Y, Wang W, Li B. IL-17C-Mediated Upregulation of SMURF2 Induces Psoriatic Changes in Keratinocytes by Facilitating PPP6C Ubiquitination. Cell Biol Int 2025. [PMID: 40244332 DOI: 10.1002/cbin.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Psoriasis, a persistent inflammatory skin condition, affects approximately 2%-3% of the world's population. Increased IL-17C levels are noted in psoriatic lesions, alongside IL-17's ability to diminish protein phosphatase 6 catalytic subunit (PPP6C) expression in keratinocytes. Additionally, SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) facilitates the degradation of specific substrates through ubiquitination. However, the precise mechanisms of action involving IL-17C, SMURF2, and PPP6C in psoriasis remain unclear. Therefore, this study aims to delve into how IL-17C, SMURF2, and PPP6C contribute to psoriasis development. A psoriasis mice model was established using 5% imiquimod cream. And the expression of IL-17C, SMURF2, and PPP6C was tested. Further, an investigation was conducted using experimental techniques such as CCK-8, flow cytometry, colony formation assay, ELISA, qRT-PCR, western blot assay, co-immunoprecipitation, and ubiquitination assays. Employing both lentiviral transfection and plasmid transfection methods, an in-depth investigation was conducted into the contributions of IL-17C, SMURF2, and PPP6C to psoriasis. The results showed that the IL-17C, Keratin 17 and SMURF2 were increased, and PPP6C was decreased in psoriasis mice model. Further, IL-17C enhanced the cell viability of human epidermal keratinocytes (HaCaT), induced inflammatory responses, and upregulated SMURF2 and Keratin 17 expression. When SMURF2 was silenced, the effects of IL-17C on HaCaT cells were significantly inhibited. Moreover, SMURF2 interacted with PPP6C, promoting its ubiquitination and degradation. Overexpression of SMURF2 further enhanced the effects of IL-17C on HaCaT cells by targeting PPP6C. In conclusion, our study uncovered the upregulation of SMURF2 mediated by IL-17C, leading to psoriasis-like alterations in keratinocytes through the promotion of PPP6C ubiquitination. This novel finding not only provides crucial insights into the molecular mechanisms of psoriasis but also offers potential avenues for innovative therapeutic strategies targeting this mechanism.
Collapse
Affiliation(s)
- Jingyi Mao
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Sun
- Department of Dermatology, Suzhou Hospital Affiliated to Anhui Medical University, Anhui, China
| | - Wuqing Wang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Draper E, Li YY, Mahadevan NR, Laga AC, Hanna J, Russell-Goldman E. Clinicopathologic and Molecular Characterization of Basal Cell Carcinoma Arising at Sun-protected Sites. Am J Surg Pathol 2025; 49:328-335. [PMID: 39807820 DOI: 10.1097/pas.0000000000002366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Basal cell carcinomas (BCC) are driven primarily by cumulative ultraviolet (UV) radiation exposure resulting in activation of the Hedgehog (Hh) signaling pathway, often as a result of UV-mediated Patched-1 ( PTCH1) gene inactivation. Accordingly, BCCs most commonly arise at sun-exposed sites such as the head and neck. Very rarely, BCCs can arise at sun-protected sites such as the genital skin and perianal area. This can pose significant diagnostic challenges not only due to the rarity of BCC at these sites but also due to the potential morphologic overlap with other entities such as basaloid squamous cell carcinoma, trichoblastic carcinoma, and even benign neoplasms such as trichoblastomas. Hh pathway alterations have not yet been described in BCCs arising at genital and perianal sites, and the role of UV radiation is uncertain at these anatomic locations. To address this ambiguity, we report the clinicopathologic features of a cohort of 14 BCCs arising at sun-protected sites (perianal n=7, vulva n=4, scrotum n=3). Furthermore, we use a next-generation DNA sequencing platform to investigate their pathogenesis and compare it to that of a cohort of 8 BCCs arising on sun-exposed skin. We find that BCCs arising on sun-protected sites display a spectrum of morphologic patterns, rarely recur, and do not metastasize. Both sun-protected and sun-exposed BCCs are characterized by recurrent PTCH1 alterations (93% and 100% of cases, respectively), supporting the classification of the tumors arising at sun-protected sites as bona fide BCCs. Notably, in contrast to conventional BCCs, none of the sun-protected BCCs harbored a UV mutation signature, suggesting an alternative mechanism of mutagenesis. Furthermore, the presence of upstream Hh pathway alterations in sun-protected BCCs supports their susceptibility to Hh pathway inhibitors such as vismodegib and sonidegib.
Collapse
Affiliation(s)
| | - Yvonne Y Li
- Department of Pathology, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Navin R Mahadevan
- Department of Pathology, Brigham and Women's Hospital
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alvaro C Laga
- Department of Pathology, Brigham and Women's Hospital
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital
| | | |
Collapse
|
8
|
Elsayed AM, Kittaneh M, Cebulla CM, Abdel-Rahman MH. An overview of BAP1 biological functions and current therapeutics. Biochim Biophys Acta Rev Cancer 2025; 1880:189267. [PMID: 39842618 DOI: 10.1016/j.bbcan.2025.189267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss-of-function variants in BAP1 are associated with a tumor predisposition syndrome with at least four cancers: uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Emerging evidence substantiates the fundamental role of BAP1 in suppressing cancer initiation and progression by tuning DNA damage repair, apoptosis, ferroptosis, immune response, Warburg phenomenon, and metastasis. Multiple treatment strategies such as poly (ADP-ribose) polymerase (PARP) inhibitors, EZH2 inhibitors, alkylating agents, and immunotherapy have been used as potential therapies for BAP1-mutated tumors. Although these agents showed promising results in BAP1-mutated tumors in preclinical studies, the results of most clinical trials are still dismal. The objectives of this review are to summarize the current state of knowledge regarding the biological functions of BAP1, the implications of these functions in tumorigenesis, and the current progress in BAP1-targeted therapy.
Collapse
Affiliation(s)
- Abdelrahman M Elsayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Muaiad Kittaneh
- Department of Oncology, Loyola University Chicago, Maywood, IL 60660, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Chen G, Mohsin A, Zheng H, Rosenberg-Hasson Y, Padilla C, Sarin KY, Dekker CL, Grant P, Maecker HT, Lu Y, Furman D, Shen-Orr S, Khatri P, Davis MM. Age-dependent cytokine surge in blood precedes cancer diagnosis. Proc Natl Acad Sci U S A 2025; 122:e2420502122. [PMID: 40117305 PMCID: PMC11962427 DOI: 10.1073/pnas.2420502122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/28/2025] [Indexed: 03/23/2025] Open
Abstract
Aging is associated with increased variability and dysregulation of the immune system. We performed a system-level analysis of serum cytokines in a longitudinal cohort of 133 healthy individuals over 9 y. We found that cancer incidence is a major contributor to increased cytokine abundance variability. Circulating cytokines increase up to 4 y before a cancer diagnosis in subjects with age over 80 y. We also analyzed cytokine expression in 10 types of early-stage cancers from The Cancer Genome Atlas. We found that a similar set of cytokines is upregulated in tumor tissues, specifically after the age of 80 y. Similarly, cellular senescence activity and CDKN1A/p21 expression increase with age in cancer tissues. Finally, we demonstrated that the cytokine levels in serum can be used to predict cancers among subjects age at 80+ y. Our results suggest that latent senescent cancers contribute to age-related chronic inflammation.
Collapse
Affiliation(s)
- Guangbo Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Azam Mohsin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Hong Zheng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA94304
| | - Yael Rosenberg-Hasson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Cindy Padilla
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA94304
| | - Kavita Y. Sarin
- Department of Dermatology, School of Medicine, Stanford University, Palo Alto, CA94304
| | - Cornelia L. Dekker
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA94304
| | - Philip Grant
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA94304
| | - Holden T. Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- The Human Immune Monitoring Center, Stanford University, Palo Alto, CA94304
| | - Ying Lu
- Department of Biomedical Data Science, School of Medicine, Stanford University, Palo Alto, CA94304
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA94945
- Stanford 1,000 Immunomes Project, Stanford School of Medicine, Stanford, CA94305
- Davis School of Gerontology, University of Southern California, Los Angeles, CA90007
| | - Shai Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion Israel Institute of Technology, Haifa3525422, Israel
| | - Purvesh Khatri
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA94304
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
10
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
11
|
Krantz S, Bell B, Lund K, Parra NS, Ng Y, De Oliveira Rosa N, Mukhopadhyay S, Croix BS, Sarin KY, Weigert R, Raimondi F, Iglesias-Bartolome R. Dissection of Gαs and Hedgehog signaling crosstalk reveals therapeutic opportunities to target adenosine receptor 2b in Hedgehog-dependent tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639530. [PMID: 40060632 PMCID: PMC11888225 DOI: 10.1101/2025.02.21.639530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Basal cell carcinoma (BCC), the most common human cancer, is driven by hyperactivation of Hedgehog Smoothened (SMO) and GLI transcription. Gαs and protein kinase A (PKA) negatively regulate Hedgehog signaling, offering an alternative BCC development and treatment pathway. Here, using histology alongside bulk and single-cell RNA sequencing, we find that mouse BCC-like tumors that originate from Gαs pathway inactivation are strikingly similar to those driven by canonical Hedgehog SMO. Interestingly, mutations that reduce Gαs and PKA activity are present in human BCC. Tumors from Gαs pathway inactivation are independent of the canonical Hedgehog regulators SMO and GPR161, establishing them as an SMO-independent oncogenic Hedgehog signaling model. Finally, we demonstrate that activation of the Gαs-coupled adenosine 2B receptor counteracts oncogenic SMO, reducing Hedgehog signaling and tumor formation and offering a potential therapeutic strategy for BCC.
Collapse
Affiliation(s)
- Sarah Krantz
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Braden Bell
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Texas, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, United States
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
12
|
Seretis K, Bounas N, Rapti E, Lampri E, Moschovos V, Lykoudis EG. Basal Cell Carcinoma in Patients over 80 Years Presenting for Surgical Excision: Clinical Characteristics and Surgical Outcomes. Curr Oncol 2025; 32:120. [PMID: 40136323 PMCID: PMC11940936 DOI: 10.3390/curroncol32030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
Background. Complete basal cell carcinoma (BCC) excision remains the most common treatment modality. However, its clinical characteristics and the surgical outcomes achieved in patients over 80 years-often with several medical comorbidities and potentially limited life expectancy-have not been thoroughly examined. This clinical study aims to investigate tumor-specific characteristics and surgical outcomes following surgical treatment of BCC in older individuals. Methods. An observational cohort study based on a prospectively maintained database was conducted in a tertiary center using a predetermined protocol. Patients who underwent BCC surgery between January 2010 and September 2024 were included and grouped by age under or over 80 years. The inclusion criterion was a histologically confirmed BCC, while patients with syndromes predisposing BCC development were excluded. Results. Among the 1396 biopsy-proven BCCs, 35% of the patients were older than 80 years. No significant differences were observed in their baseline characteristics. The pathogenic capacity was greater in elderly patients, who exhibited higher rates of multiple and concurrent skin cancers, larger BCC diameters, and routine involvement in high-risk areas. More lesions were classified as high-risk for recurrence, and the surgical treatment was accompanied by a higher frequency of positive or close margins, high-grade subtypes, and perineural invasion. Logistic regression of 1150 BCCs revealed that age > 80, advanced TNM stage, and margin status robustly predict high-risk histology and high NCCN risk of tumor recurrence. Conclusions. This study highlights that BCC in the elderly population tends to present with a more aggressive tumor status, based on the key clinical and pathology features. These findings underscore the need for tailored surgical strategies in this population.
Collapse
Affiliation(s)
- Konstantinos Seretis
- Department of Plastic Surgery, Medical School, University of Ioannina, 45110 Ioannina, Greece; (N.B.); (E.R.); (V.M.); (E.G.L.)
| | - Nikos Bounas
- Department of Plastic Surgery, Medical School, University of Ioannina, 45110 Ioannina, Greece; (N.B.); (E.R.); (V.M.); (E.G.L.)
| | - Erasmia Rapti
- Department of Plastic Surgery, Medical School, University of Ioannina, 45110 Ioannina, Greece; (N.B.); (E.R.); (V.M.); (E.G.L.)
| | - Evangeli Lampri
- Department of Pathology, Medical School, University of Ioannina, 45110 Ioannina, Greece;
| | - Vasilios Moschovos
- Department of Plastic Surgery, Medical School, University of Ioannina, 45110 Ioannina, Greece; (N.B.); (E.R.); (V.M.); (E.G.L.)
| | - Efstathios G. Lykoudis
- Department of Plastic Surgery, Medical School, University of Ioannina, 45110 Ioannina, Greece; (N.B.); (E.R.); (V.M.); (E.G.L.)
| |
Collapse
|
13
|
Elmer DP, Stockmaier G, Grund-Gröschke S, Strobl V, Dang HH, Wiederstein M, Licha D, Strobl A, Eglseer A, Sternberg C, Tesanovic S, Gruber W, Wolff F, Moriggl R, Risch A, Reischl R, Huber CG, Krenn PW, Fortelny N, Horejs-Hoeck J, Aberger F. Cooperative Hedgehog/GLI and JAK/STAT signaling drives immunosuppressive tryptophan/kynurenine metabolism via synergistic induction of IDO1 in skin cancer. Cell Commun Signal 2025; 23:91. [PMID: 39962447 PMCID: PMC11834474 DOI: 10.1186/s12964-025-02101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Pharmacological targeting of Hedgehog (HH)/GLI has proven effective for certain blood, brain and skin cancers including basal cell carcinoma (BCC). However, limited response rates and the development of drug resistance call for improved anti-HH therapies that take synergistic crosstalk mechanisms and immune evasion strategies into account. In previous work, we demonstrated that cooperation of HH/GLI and Interleukin 6 (IL6)/STAT3 signaling drives BCC growth. Whether synergistic HH-IL6 signaling promotes BCC via the activation of immune evasion mechanisms remained unclear. METHODS HH-IL6 regulated immunosuppressive genes such as indoleamine 2,3-dioxygenase 1 (IDO1) were identified by gene expression profiling. IDO1 expression was evaluated in human BCC and melanoma models by qPCR and Western blot analyses. The cis-regulatory region of IDO1 was interrogated for HH-IL6-regulated GLI and STAT transcription factor binding and epigenetic modifications by targeted chromatin-immunoprecipitation and bisulfite pyrosequencing. Functional analyses of the immunosuppressive effects of IDO1 involved HPLC-MS measurements of its metabolites and the assessment of T cell proliferation via flow cytometry. Bioinformatic analyses of GLI-STAT cooperation were conducted on published bulk and single-cell RNA-seq data of human BCC and melanoma patients. RESULTS We identified IDO1 as a target gene of cooperative GLI-STAT activity in BCC and melanoma. GLI1 and STAT3 transcription factors synergistically enhanced IDO1 expression by jointly binding to the cis-regulatory region of IDO1 and by increasing active chromatin marks at the histone level. In human melanoma cells, inhibition of GLI1 expression prevented the induction of IDO1 expression in response to IL6/STAT3 and IFNγ/STAT1 signaling. Pharmacological targeting of HH/GLI signaling reduced IDO1 expression, resulting in decreased production of the immunosuppressive metabolite kynurenine. Further, inhibition of GLI1 enhanced the efficacy of the selective IDO1 inhibitor epacadostat and rescued T cell proliferation by attenuating IDO1/kynurenine-mediated immunosuppression. Elevated expression of IDO1 correlated with active HH/GLI and JAK/STAT signaling in skin cancer patients supporting the clinical relevance of the mechanistic data presented. CONCLUSIONS These results identify the immunosuppressive IDO1-kynurenine pathway as a novel pro-tumorigenic target of oncogenic GLI and STAT1/STAT3 cooperation. Our data suggest simultaneous pharmacological targeting of these signaling axes as rational combination therapy in melanoma and non-melanoma skin cancers.
Collapse
Affiliation(s)
- Dominik P Elmer
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Georg Stockmaier
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Sandra Grund-Gröschke
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Victoria Strobl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Markus Wiederstein
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - David Licha
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Anna Strobl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Anna Eglseer
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Christina Sternberg
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Suzana Tesanovic
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Wolfgang Gruber
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Florian Wolff
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Richard Moriggl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Risch
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Roland Reischl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria.
| |
Collapse
|
14
|
Abdulrahman FA, Benford KA, Lin GT, Maroun AJ, Sammons C, Shirzad DN, Tsai H, Van Brunt VL, Jones Z, Marquez JE, Ratkus EC, Shehadeh AK, Abasto Valle H, Fejzo D, Gilbert AE, McWee CA, Underwood LF, Indico E, Rork BB, Nanjundan M. zDHHC-Mediated S-Palmitoylation in Skin Health and Its Targeting as a Treatment Perspective. Int J Mol Sci 2025; 26:1673. [PMID: 40004137 PMCID: PMC11854935 DOI: 10.3390/ijms26041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
S-acylation, which includes S-palmitoylation, is the only known reversible lipid-based post-translational protein modification. S-palmitoylation is mediated by palmitoyl acyltransferases (PATs), a family of 23 enzymes commonly referred to as zDHHCs, which catalyze the addition of palmitate to cysteine residues on specific target proteins. Aberrant S-palmitoylation events have been linked to the pathogenesis of multiple human diseases. While there have been advances in elucidating the molecular mechanisms underlying the pathogenesis of various skin conditions, there remain gaps in the knowledge, specifically with respect to the contribution of S-palmitoylation to the maintenance of skin barrier function. Towards this goal, we performed PubMed literature searches relevant to S-palmitoylation in skin to define current knowledge and areas that may benefit from further research studies. Furthermore, to identify alterations in gene products that are S-palmitoylated, we utilized bioinformatic tools such as SwissPalm and analyzed relevant data from publicly available databases such as cBioportal. Since the targeting of S-palmitoylated targets may offer an innovative treatment perspective, we surveyed small molecules inhibiting zDHHCs, including 2-bromopalmitate (2-BP) which is associated with off-target effects, and other targeting strategies. Collectively, our work aims to advance both basic and clinical research on skin barrier function with a focus on zDHHCs and relevant protein targets that may contribute to the pathogenesis of skin conditions such as atopic dermatitis, psoriasis, and skin cancers including melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (F.A.A.); (K.A.B.); (G.T.L.); (A.J.M.); (C.S.); (D.N.S.); (H.T.); (V.L.V.B.); (Z.J.); (J.E.M.); (E.C.R.); (A.K.S.); (H.A.V.); (D.F.); (A.E.G.); (C.A.M.); (L.F.U.); (E.I.); (B.B.R.)
| |
Collapse
|
15
|
Vincenzi M, Mercurio FA, Autiero I, Leone M. Sam-Sam Association Between EphA2 and SASH1: In Silico Studies of Cancer-Linked Mutations. Molecules 2025; 30:718. [PMID: 39942820 PMCID: PMC11820823 DOI: 10.3390/molecules30030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Recently, SASH1 has emerged as a novel protein interactor of a few Eph tyrosine kinase receptors like EphA2. These interactions involve the first N-terminal Sam (sterile alpha motif) domain of SASH1 (SASH1-Sam1) and the Sam domain of Eph receptors. Currently, the functional meaning of the SASH1-Sam1/EphA2-Sam complex is unknown, but EphA2 is a well-established and crucial player in cancer onset and progression. Thus, herein, to investigate a possible correlation between the formation of the SASH1-Sam1/EphA2-Sam complex and EphA2 activity in cancer, cancer-linked mutations in SASH1-Sam1 were deeply analyzed. Our research plan relied first on searching the COSMIC database for cancer-related SASH1 variants carrying missense mutations in the Sam1 domain and then, through a variety of bioinformatic tools and molecular dynamic simulations, studying how these mutations could affect the stability of SASH1-Sam1 alone, leading eventually to a defective fold. Next, through docking studies, with the support of AlphaFold2 structure predictions, we investigated if/how mutations in SASH1-Sam1 could affect binding to EphA2-Sam. Our study, apart from presenting a solid multistep research protocol to analyze structural consequences related to cancer-associated protein variants with the support of cutting-edge artificial intelligence tools, suggests a few mutations that could more likely modulate the interaction between SASH1-Sam1 and EphA2-Sam.
Collapse
Affiliation(s)
| | | | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (I.A.)
| |
Collapse
|
16
|
Barbieux S, Jouenne F, Machet MC, Fraitag S, Macagno N, Battistella M, Cribier B, Sohier P, Laurent-Roussel S, Carlotti A, Beltzung F, Jullié ML, Moulonguet I, Basset-Seguin N, Deschamps L, Mourah S, Samimi M, Guyétant S, Kervarrec T. Re-evaluation of the concept of basaloid follicular hamartoma associated with naevoid basal cell carcinoma syndrome: a morphological, immunohistochemical and molecular study. Pathology 2025; 57:49-56. [PMID: 39455322 DOI: 10.1016/j.pathol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 10/28/2024]
Abstract
Naevoid basal cell carcinoma syndrome (NBCCS) is a rare genodermatosis caused by germline mutations in genes of the Sonic Hedgehog (SHH) pathway and is characterised by early onset of multiple basal cell carcinomas (BCCs). Although skin tumours with follicular differentiation, notably basaloid follicular hamartoma (BFH), have been reported in NBCCS, their relations with BCC are poorly defined. In this context, the aim of this study was to clarify morphological, immunohistochemical and molecular features of BFH arising in a context of NBCCS. A total of 140 skin tumours from NBCCS and 140 control BCC tumours were reviewed, blinded to clinical data and classified as BCC or BFH. The morphological characteristics of these two groups were then compared. Twenty cases were submitted for immunohistochemical and molecular analysis. Thirty-three tumours among the exploratory cohort were classified as BFH and were exclusively detected in NBCCS patients. Histopathological criteria that were significantly different from BCC were as follows: a small size (<1.5 mm), connection to a hair follicle, arborescent organoid architecture, lack of cytological atypia and infundibulocystic differentiation. Immunohistochemical analysis confirmed activation of the SHH pathway in these lesions. Targeted next-generation sequencing suggested that MYCN and GLI2/3 amplifications and TP53 mutations might be involved in progression of these follicular tumours to BCC. Our study confirms the high prevalence of BFH, representing up to 24% of skin tumours in NBCCS and potentially being BCC precursors.
Collapse
Affiliation(s)
- Simon Barbieux
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France.
| | - Fanélie Jouenne
- Department of Tumors Genomics and Pharmacology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Marie-Christine Machet
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Sylvie Fraitag
- Department of Pathology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Nicolas Macagno
- Department of Pathology, Centre Hospitalier de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France; CARADERM Network, France
| | - Maxime Battistella
- CARADERM Network, France; Department of Pathology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Bernard Cribier
- CARADERM Network, France; Department of Dermatology, Hôpitaux Universitaires et Université de Strasbourg, Strasbourg, France
| | - Pierre Sohier
- CARADERM Network, France; Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Sara Laurent-Roussel
- CARADERM Network, France; Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France; National Center of Dermatopathology - La Roquette, Paris, France
| | - Agnès Carlotti
- Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Fanny Beltzung
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Marie-Laure Jullié
- CARADERM Network, France; Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | | | - Nicole Basset-Seguin
- CARADERM Network, France; Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Lydia Deschamps
- CARADERM Network, France; Department of Pathology, Hôpital Bichat, AP-HP, Paris, France
| | - Samia Mourah
- Department of Tumors Genomics and Pharmacology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Mahtab Samimi
- CARADERM Network, France; Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; CARADERM Network, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| |
Collapse
|
17
|
Jasmine F, Almazan A, Khamkevych Y, Argos M, Shahriar M, Islam T, Shea CR, Ahsan H, Kibriya MG. Gene-Environment Interaction: Small Deletions (DELs) and Transcriptomic Profiles in Non-Melanoma Skin Cancer (NMSC) and Potential Implications for Therapy. Cells 2025; 14:95. [PMID: 39851523 PMCID: PMC11764317 DOI: 10.3390/cells14020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Arsenic (As) is a risk factor for non-melanoma skin cancer (NMSC). From a six-year follow-up study on 7000 adults exposed to As, we reported the associations of single-nucleotide variation in tumor tissue and gene expression. Here, we identify the associations of small deletions (DELs) and transcriptomic profiles in NMSC. Comparing the (a) NMSC tissue (n = 32) and corresponding blood samples from each patient, and (b) an independent set of non-lesional, healthy skin (n = 16) and paired blood, we identified NMSC-associated DELs. Differential expressions of certain gene pathways (TGF-β signaling pathway, IL-17 pathway, PD-L1 pathway, etc.) showed significant interactions with these somatic DELs and As exposure. In low-As-exposure cases, the DELs in APC were associated with the up-regulation of inflamed T-Cell-associated genes by a fold change (FC) of 8.9 (95% CI 4.5-17.6), compared to 5.7 (95% CI 2.9-10.8) without APC DELs; in high-As-exposure cases, the APC DELs were associated with an FC of 5.8 (95% CI 3.5-9.8) compared to 1.2 (95% CI -1.3 to 1.8) without APC DELs. We report, for the first time, the significant associations of somatic DELs (many in STR regions) in NMSC tissue and As exposure with many dysregulated gene pathways. These findings may help in selecting groups of patients for potential targeted therapy like PD-L1 inhibitors, IL-17 inhibitors, and TGF-β inhibitors in the future.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Armando Almazan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Yuliia Khamkevych
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Maria Argos
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA;
| | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
| | - Tariqul Islam
- UChicago Research Bangladesh (URB), University of Chicago, Dhaka 1230, Bangladesh;
| | - Christopher R. Shea
- Division of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.); (A.A.); (Y.K.); (M.S.); (H.A.)
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Kervarrec T, Battistella M, Macagno N. [Cutaneous adnexal tumours: Development and synthesis of diagnostic fusion genes]. Ann Pathol 2025; 45:15-28. [PMID: 38839526 DOI: 10.1016/j.annpat.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Cutaneous adnexal tumours are a heterogeneous group of epithelial lesions that includes tumours with follicular, sudoral and/or sebaceous differentiation, or even several combined lines of differentiation. Over the last few years, molecular analysis of these lesions has allowed to identify specific molecular events responsible for tumour development in an increasing number of tumour types. Like other rare neoplasms, such as soft tissue tumours, adnexal tumours display fusion genes resulting from chromosomal translocations that may be specific for the diagnosis if molecular data are properly integrated in the clinical and morphological setting. Molecular testing of adnexal tumours is valuable as it allows to strengthen the robustness of the diagnosis for a group of tumours displaying a wide morphological spectrum. It has allowed to refine the diagnostic criteria and to develop increasingly specific diagnostic immunostainings. Finally, molecular testing has been responsible for the identification of new entities or morphological subtypes of previously known entities. The aim of this review is to provide an update on cutaneous adnexal tumours associated with fusion genes and to evaluate the impact of molecular data on the diagnosis of these lesions.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, université de Tours, hôpital Trousseau, CHRU de Tours, 37044 Tours, France; « Biologie des infections à polyomavirus » team, UMR Inra ISP 1282, université de Tours, Tours, France; CARADERM Network, Lille, France.
| | - Maxime Battistella
- CARADERM Network, Lille, France; Department of Pathology, hôpital Saint-Louis, université Paris 7, AP-HP, Paris, France
| | - Nicolas Macagno
- CARADERM Network, Lille, France; Department of Pathology, Timone University Hospital, Marseille, France
| |
Collapse
|
19
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
20
|
Usoltsev D, Njauw CN, Ji Z, Kumar R, Sergushichev A, Zhang S, Shlyakhto E, Daly MJ, Artomov M, Tsao H. Analysis of Variants Induced by Combined Ex Vivo Irradiation and In Vivo Tumorigenesis Suggests a Role for the ZNF831 p.R1393Q Variant in Cutaneous Melanoma Development. J Invest Dermatol 2024:S0022-202X(24)03015-X. [PMID: 39675662 DOI: 10.1016/j.jid.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 12/17/2024]
Abstract
UVR is known to be the most important environmental carcinogen for cutaneous melanoma. Whereas genomic analyses of melanoma tumors implicate a high rate of UV damage, the experimental induction and recovery of bona fide UV-signature changes have not been directly observed. To replicate recurrent UV variants from The Cancer Genome Atlas_SKCM specimens, we UV irradiated cultured immortalized human melanocytes and subjected them to in vivo tumorigenesis assays. Exome sequencing of the xenografted tumors revealed an increase in UV-signature mutations within the tumors and identified 48 induced variants that overlap with The Cancer Genome Atlas skin cutaneous melanoma UV-hotspot mutations. A UV-induced mutation, ZNF831 p.R1393Q, was correlated with a decreased survival (hazard ratio = 5.44, 95% confidence interval = 1.92-15.47, P = .0015) and was preferentially observed in melanomas compared with that in all The Cancer Genome Atlas tumors (P = 4.42 × 10-7). In addition, ZNF831 mRNA expression loss was strongly associated with decreased patient survival (hazard ratio = 2.14, 95% confidence interval = 1.62-2.83, P = 7.91 × 10-8), although the transcripts may arise from multiple cell types, including T cells. In multiple melanoma lines, overexpression of wild-type ZNF831 reduced spheroid growth, heightened apoptosis, and increased cell motility, with the ZNF831 p.R1393Q variant partially or wholly abolishing these functional phenotypes. We thus experimentally recovered a "functional UV-hotspot mutation" in ZNF831 that is altered in human melanoma specimens.
Collapse
Affiliation(s)
- Dmitrii Usoltsev
- ITMO University, Saint Petersburg, Russia; Almazov National Medical Research Center, Saint Petersburg, Russia; Broad Institute, Cambridge, Massachusetts, USA; The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Selena Zhang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eugene Shlyakhto
- Almazov National Medical Research Center, Saint Petersburg, Russia
| | - Mark J Daly
- Broad Institute, Cambridge, Massachusetts, USA; Institute for Molecular Medicine, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mykyta Artomov
- Broad Institute, Cambridge, Massachusetts, USA; The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| | - Hensin Tsao
- Broad Institute, Cambridge, Massachusetts, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
21
|
Gelbard MK, Grace M, von Schoeler-Ames A, Gnanou I, Munger K. The HPV101 E7 protein shares host cellular targets and biological activities with high-risk HPV16 E7. Tumour Virus Res 2024; 19:200300. [PMID: 39643241 PMCID: PMC11714379 DOI: 10.1016/j.tvr.2024.200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
Human papillomaviruses (HPVs) are a diverse family of viruses with over 450 members that have been identified and fully sequenced. They are classified into five phylogenetic genera: alpha, beta, gamma, mu, and nu. The high-risk alpha HPVs, such as HPV16, have been studied the most extensively due to their medical significance as cancer-causing agents. However, while nearly 70% of all HPVs are members of the gamma genus, they are almost entirely unstudied. This is because gamma HPVs have been considered medically irrelevant commensals as most of them infect the skin and are not known to cause significant clinical lesions in immunocompetent individuals. Members of the gamma 6 HPVs, however, have been detected in the anogenital tract mucosa and HPV101 has been isolated from a premalignant cervical lesion. Moreover, gamma 6 HPVs have a unique genome structure. They lack E6 proteins but in place of E6, they encode unique, small hydrophobic proteins without any close viral or cellular homologs that have been termed E10. Here, we report that HPV101 E7 shares biochemical activities with the high-risk alpha HPV16 E7, including the ability to target the pRB and PTPN14 tumor suppressors for degradation. This study underscores the importance of further characterizing HPV101 and other unstudied HPV species.
Collapse
Affiliation(s)
- Maya K Gelbard
- Genetics, Molecular, and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, 02111, Boston, MA, USA; Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA
| | | | - Ida Gnanou
- Emmanuel College, MA, 02115, Boston, USA
| | - Karl Munger
- Genetics, Molecular, and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, 02111, Boston, MA, USA; Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA.
| |
Collapse
|
22
|
Dohle E, Zhu L, Sader R, Ghanaati S. Effect of Liquid Blood Concentrates on Cell Proliferation and Cell Cycle- and Apoptosis-Related Gene Expressions in Nonmelanoma Skin Cancer Cells: A Comparative In Vitro Study. Int J Mol Sci 2024; 25:12983. [PMID: 39684700 DOI: 10.3390/ijms252312983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Nonmelanoma skin cancer (NMSC) presents a significant challenge to global healthcare due to its rising incidence, prompting the search for innovative treatments to overcome the limitations of current therapies. Our study aims to explore the potential effects of the liquid blood concentrate platelet-rich fibrin (PRF) on basal cell carcinoma cells (BCCs) and squamous cell carcinoma cells (SCCs) in order to obtain results that may lead to new possible adjunctive therapies for managing localized skin cancers, particularly NMSC. Basal cell carcinoma (BCC) cells and squamous cell carcinoma (SCC) cells were indirectly treated with PRF generated via different relative centrifugation forces, namely high and low RCF PRF, for 7 days. PRF-treated cells were comparatively analyzed for cell viability, proliferation and cell cycle- and apoptosis-related gene expression. Analysis of MTS assay results revealed a significant decrease in cell viability in both BCC and SCC cells following PRF treatment for 7 days. Ki-67 staining showed a decreased percentage of Ki-67-positive cells in both BCC and SCC cells after 2 days of treatment compared to the control group. The downregulation of CCND1 gene expression in both cell types at 2 days along with the upregulation of p21 and p53 gene expression in SCC cells demonstrated the effect of PRF in inhibiting cell proliferation and inducing cell cycle arrest, especially during the initial phases of treatment. Increased expression of caspase-8 and caspase-9 was observed, indicating the activation of both extrinsic and intrinsic apoptotic pathways by PRF treatment. Although the exact immunomodulatory properties of PRF require further investigation, the results of our basic in vitro studies are promising and might provide a basis for future investigations of PRF as an adjunctive therapy for managing localized skin cancers, particularly NMSC.
Collapse
Affiliation(s)
- Eva Dohle
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Lianna Zhu
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Robert Sader
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Shahram Ghanaati
- FORM, Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| |
Collapse
|
23
|
Rahmouni E, Saadallah F, Zemni I, Gallas A, Sahraoui G, Dhiab TB. Metatypical basal cell carcinoma: A successful balance between oncologic outcome and aesthetic result, a case report. Int J Surg Case Rep 2024; 125:110569. [PMID: 39522409 PMCID: PMC11585664 DOI: 10.1016/j.ijscr.2024.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Metatypical basal cell carcinoma is a rare and aggressive subtype of skin cancer. It necessitates a careful and nuanced approach to management. The first-line treatment is a wide surgical excision, which can lead to significant tissue loss. Herein is our case. CASE REPORT A 67-year-old female patient presented with an ulcerated exophytic mass on the right parietal scalp. She underwent a large excision of the tumor, sentinel lymph node biopsy, and reconstruction with a transposition flap. Histopathological examination revealed a metatypical basal cell carcinoma with minimal clear surgical margins of 1 cm; lymph nodes were negative. Adjuvant radiotherapy was recommended. DISCUSSION Metatypical basal cell carcinoma is a rare and aggressive subtype of non-melanoma skin cancer, accounting for about 2 % of all cases. It has a higher risk of metastasis and recurrence compared to typical basal cell carcinoma. Metatypical basal cell carcinoma most often develops in sun-exposed areas of the head, although it can occur in other locations less frequently. Despite the absence of established treatment guidelines, it is recommended to use wider surgical margins than those typically applied for basal cell carcinoma. This approach often leads to substantial tissue loss, which may necessitate challenging reconstructive procedures. Ongoing research is crucial as we navigate the complexities of managing metatypical basal cell carcinoma, particularly concerning surgical margin cutoffs, lymph node staging, and adjuvant therapies. CONCLUSION Due to its rarity, metatypical basal cell carcinoma presents ongoing challenges with no consensual management strategies.
Collapse
Affiliation(s)
- Eya Rahmouni
- Department of Surgical Oncology, Salah Azaiez Institute, Tunis, Tunisia.
| | - Fatma Saadallah
- Department of Surgical Oncology, Salah Azaiez Institute, Tunis, Tunisia
| | - Ines Zemni
- Department of Surgical Oncology, Salah Azaiez Institute, Tunis, Tunisia
| | - Amira Gallas
- Department of Surgical Oncology, Salah Azaiez Institute, Tunis, Tunisia
| | - Ghada Sahraoui
- Department of Anatomical Pathology, Salah Azaiez Institute, Tunis, Tunisia
| | - Tarek Ben Dhiab
- Department of Surgical Oncology, Salah Azaiez Institute, Tunis, Tunisia
| |
Collapse
|
24
|
Lang BM, Balermpas P, Bauer A, Blum A, Dirschka T, Follmann M, Frank J, Frerich B, Fritz K, Hauschild A, Heindl LM, Howaldt H, Ihrler S, Kakkassery V, Klumpp B, Krause‐Bergmann A, Löser C, Meissner M, Sachse MM, Schlaak M, Schön MP, Tischendorf L, Tronnier M, Vordermark D, Welzel J, Weichenthal M, Wiegand S, Kaufmann R, Grabbe S. S2k guideline basal cell carcinoma of the skin (update 2023). J Dtsch Dermatol Ges 2024; 22:1697-1714. [PMID: 39584658 PMCID: PMC11626229 DOI: 10.1111/ddg.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 11/26/2024]
Abstract
Basal cell carcinoma is the most common malignant tumor in the fair-skinned population and its incidence continues to rise. An update of the S2k guideline with the participation of all specialist societies familiar with the clinical picture and previous literature research is of great importance for the quality of care for affected patients. In addition to epidemiology, diagnostics and histology are discussed. After risk stratification, therapy is divided into topical, systemic and radiation therapy. Surgical removal remains the treatment of first choice in most cases. The approval of anti-PD1 inhibitors for locally advanced and metastatic tumors has opened up a new option in second-line therapy (after hedgehog inhibitors).
Collapse
Affiliation(s)
- Berenice M. Lang
- Department of DermatologyMainz University Medical CenterMainzGermany
| | | | - Andrea Bauer
- Department of DermatologyUniversity Hospital Carl Gustav CarusTechnical University DresdenDresdenGermany
| | | | - Thomas Dirschka
- CentroDermWuppertalGermany
- Faculty of HealthUniversity of Witten‐HerdeckeWittenGermany
| | | | - Jorge Frank
- Department of DermatologyVenereology and AllergologyGöttingen University Medical CenterGöttingenGermany
| | - Bernhard Frerich
- Department of Oral and Maxillofacial Plastic SurgeryRostock University Medical CenterRostockGermany
| | | | - Axel Hauschild
- Department of DermatologyVenereology and AllergologyUniversity Hospital Schleswig‐HolsteinCampus KielGermany
| | - Ludwig M. Heindl
- Department of OphthalmologyCologne University Medical CenterCologneGermany
| | - Hans‐Peter Howaldt
- Department of Oral and Maxillofacial Plastic SurgeryGießen University Medical CenterGießenGermany
| | - Stephan Ihrler
- Laboratory for Dermatohistology and Oral PathologyMunichGermany
| | | | - Bernhard Klumpp
- Department of Diagnostic and Interventional RadiologyTübingen University Medical CenterTübingenGermany
- Department of RadiologyRems‐Murr Medical CenterWinnendenGermany
| | | | - Christoph Löser
- Department of DermatologySkin Tumor CenterLudwigshafen Medical CenterLudwigshafenGermany
| | | | - Michael M. Sachse
- Department of DermatologyAllergology and PhlebologyBremerhaven Medical CenterBremerhavenGermany
| | - Max Schlaak
- Department of DermatologyVenereology and AllergologySkin Tumor CenterCharité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Michael P. Schön
- Department of DermatologyVenereology and AllergologyGöttingen University Medical CenterGöttingenGermany
| | | | - Michael Tronnier
- Department of DermatologyVenereology and AllergologyHelios Medical CenterHildesheimGermany
| | - Dirk Vordermark
- Department of Radiation OncologyHalle University Medical CenterMartin Luther University Halle‐WittenbergHalleGermany
| | - Julia Welzel
- Department of Dermatology and AllergologyAugsburg University Medical CenterAugsburgGermany
| | - Michael Weichenthal
- Department of DermatologyVenereology and AllergologyUniversity Hospital Schleswig‐HolsteinCampus KielGermany
| | - Susanne Wiegand
- Department of OtorhinolaryngologyLeipzig University Medical CenterLeipzigGermany
| | - Roland Kaufmann
- Department of DermatologyVenereology and AllergologyFrankfurt University Medical CenterFrankfurtGermany
| | - Stephan Grabbe
- Department of DermatologyMainz University Medical CenterMainzGermany
| |
Collapse
|
25
|
Carvalho C, Silva R, Melo TMVDPE, Inga A, Saraiva L. P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis. Cancers (Basel) 2024; 16:3978. [PMID: 39682165 DOI: 10.3390/cancers16233978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D. Collectively, this review not only opens new avenues for future research, but also offers promising prospects for the development of novel beneficial approaches in the field of SC.
Collapse
Affiliation(s)
- Carla Carvalho
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Han H, Huang Z, Xu C, Seo G, An J, Yang B, Liu Y, Lan T, Yan J, Ren S, Xu Y, Xiao D, Yan JK, Ahn C, Fishman DA, Meng Z, Guan KL, Qi R, Luo R, Wang W. Functional annotation of the Hippo pathway somatic mutations in human cancers. Nat Commun 2024; 15:10106. [PMID: 39572544 PMCID: PMC11582751 DOI: 10.1038/s41467-024-54480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
The Hippo pathway is commonly altered in cancer initiation and progression; however, exactly how this pathway becomes dysregulated to promote human cancer development remains unclear. Here we analyze the Hippo somatic mutations in the human cancer genome and functionally annotate their roles in targeting the Hippo pathway. We identify a total of 85 loss-of-function (LOF) missense mutations for Hippo pathway genes and elucidate their underlying mechanisms. Interestingly, we reveal zinc-finger domain as an integral structure for MOB1 function, whose LOF mutations in head and neck cancer promote tumor growth. Moreover, the schwannoma/meningioma-derived NF2 LOF mutations not only inhibit its tumor suppressive function in the Hippo pathway, but also gain an oncogenic role for NF2 by activating the VANGL-JNK pathway. Collectively, our study not only offers a rich somatic mutation resource for investigating the Hippo pathway in human cancers, but also provides a molecular basis for Hippo-based cancer therapy.
Collapse
Affiliation(s)
- Han Han
- Department of Pathophysiology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Zhen Huang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, USA
| | - Congsheng Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jeongmin An
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Yuhan Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Tian Lan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jiachen Yan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Shanshan Ren
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yue Xu
- Department of Pathophysiology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Di Xiao
- Department of Pathophysiology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jonathan K Yan
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Claire Ahn
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Dmitry A Fishman
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ruxi Qi
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
27
|
Chaurasiya M, Kumar G, Paul S, Verma SS, Rawal RK. Natural product-loaded lipid-based nanocarriers for skin cancer treatment: An overview. Life Sci 2024; 357:123043. [PMID: 39233200 DOI: 10.1016/j.lfs.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The skin is essential for body protection and regulating physiological processes. It is the largest organ and serves as the first-line barrier against UV radiation, harmful substances, and infections. Skin cancer is considered the most prevalent type of cancer worldwide, while melanoma skin cancer is having high mortality rates. Skin cancer, including melanoma and non-melanoma forms, is primarily caused by prolonged exposure to UV sunlight and pollution. Currently, treatments for skin cancer include surgery, chemotherapy, and radiotherapy. However, several factors hinder the effectiveness of these treatments, such as low efficacy, the necessity for high concentrations of active components to achieve a therapeutic effect, and poor drug permeation into the stratum corneum or lesions. Additionally, low bioavailability at the target site necessitates high doses, leading to skin irritation and further obstructing drug absorption through the stratum corneum. To overcome these challenges, recent research focuses on developing a medication delivery system based on nanotechnology as an alternative to this traditional approach. Nano-drug delivery systems have demonstrated great promise in treating skin cancer by providing a more effective means of delivering drugs with better stability and drug absorption. An overview of various lipid-based nanocarriers is given in this review article that are utilized to carry natural compounds to treat skin cancer.
Collapse
Affiliation(s)
- Mithilesh Chaurasiya
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gaurav Kumar
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Smita Paul
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shweta Singh Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Ravindra K Rawal
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
28
|
Abstract
Human papillomavirus (HPV) infection is the leading viral cause of cancer. Over the past several decades, research on HPVs has provided remarkable insight into human cell biology and into the pathology of viral and non-viral cancers. The HPV E6 and E7 proteins engage host cellular proteins to establish an environment in infected cells that is conducive to virus replication. They rewire host cell signaling pathways to promote proliferation, inhibit differentiation, and limit cell death. The activity of the "high-risk" HPV E6 and E7 proteins is so potent that their dysregulated expression is sufficient to drive the initiation and maintenance of HPV-associated cancers. Consequently, intensive research efforts have aimed to identify the host cell targets of E6 and E7, in part with the idea that some or all of the virus-host interactions would be essential cancer drivers. These efforts have identified a large number of potential binding partners of each oncoprotein. However, over the same time period, parallel research has revealed that a relatively small number of genetic mutations drive carcinogenesis in most non-viral cancers. We therefore propose that a high-priority goal is to identify which of the many targets of E6 and E7 are critical drivers of HPV carcinogenesis. By identifying the cancer-driving targets of E6 and E7, it should be possible to better understand the distinct roles of other targets, perhaps in the viral life cycle, and to focus efforts to develop anti-cancer therapies on the subset of virus-host interactions for which therapeutic intervention would have the greatest impact.
Collapse
Affiliation(s)
- Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Rejnowicz E, Batchelor M, Leen E, Ahangar MS, Burgess SG, Richards MW, Kalverda AP, Bayliss R. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Biochem J 2024; 481:1535-1556. [PMID: 39370942 PMCID: PMC11555651 DOI: 10.1042/bcj20240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.
Collapse
Affiliation(s)
- Ewa Rejnowicz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Selena G. Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W. Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
30
|
Yan G, Wang X, Zhang G. Unraveling the landscape of non-melanoma skin cancer through single-cell RNA sequencing technology. Front Oncol 2024; 14:1500300. [PMID: 39558960 PMCID: PMC11570581 DOI: 10.3389/fonc.2024.1500300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) mainly includes basal cell carcinoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma, showing a low mortality rate but the highest incidence worldwide. In recent decades, research has focused on understanding the pathogenesis and clinical treatments of NMSC, leading to significant advances in our knowledge of these diseases and the development of novel therapies, including immunotherapy. Nevertheless, the low to moderate objective response rate, high recurrence, and therapeutic resistance remain persistent challenges, which are partly attributable to the intratumoral heterogeneity. This heterogeneity indicates that tumor cells, immune cells, and stromal cells in the tumor microenvironment can be reshaped to a series of phenotypic and transcriptional cell states that vary in invasiveness and treatment responsiveness. The advent of single-cell RNA sequencing (scRNA-seq) has enabled the comprehensive profiling of gene expression heterogeneity at the single-cell level, which has been applied to NMSC to quantify cell compositions, define states, understand tumor evolution, and discern drug resistance. In this review, we highlight the key findings, with a focus on intratumoral heterogeneity and the mechanism of drug resistance in NMSC, as revealed by scRNA-seq. Furthermore, we propose potential avenues for future research in NMSC using scRNA-seq.
Collapse
Affiliation(s)
- Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Ai H, He Z, Deng Z, Chu GC, Shi Q, Tong Z, Li JB, Pan M, Liu L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat Struct Mol Biol 2024; 31:1745-1755. [PMID: 38918638 DOI: 10.1038/s41594-024-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.
Collapse
Affiliation(s)
- Huasong Ai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Zaozhen He
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Harms PW, Runge M, Chan MP, Liu CJ, Qin Z, Worden F, Robinson DR, Chinnaiyan AM, Mclean SA, Harms KL, Fullen DR, Patel RM, Andea AA, Udager AM. Squamoid Eccrine Ductal Carcinoma Displays Ultraviolet Mutations and Intermediate Gene Expression Relative to Squamous Cell Carcinoma, Microcystic Adnexal Carcinoma, and Porocarcinoma. Mod Pathol 2024; 37:100592. [PMID: 39154783 PMCID: PMC11585436 DOI: 10.1016/j.modpat.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Squamoid eccrine ductal carcinoma is a rare infiltrative tumor with morphologic features intermediate between squamous cell carcinoma (SCC) and sweat gland carcinomas such as microcystic adnexal carcinoma. Although currently classified as a sweat gland carcinoma, it has been debated whether squamoid eccrine ductal carcinoma is better classified as a variant of SCC. Furthermore, therapeutic options for patients with advanced disease are lacking. Here, we describe clinicopathologic features of a cohort of 15 squamoid eccrine ductal carcinomas from 14 unique patients, with next-generation sequencing DNA profiling for 12 cases. UV signature mutations were the dominant signature in the majority of cases. TP53 mutations were the most highly recurrent specific gene alteration, followed by mutations in NOTCH genes. Recurrent mutations in driver oncogenes were not identified. By unsupervised comparison of global transcriptome profiles in squamoid eccrine ductal carcinoma (n = 7) to SCC (n = 10), porocarcinoma (n = 4), and microcystic adnexal carcinoma (n = 4), squamoid eccrine ductal carcinomas displayed an intermediate phenotype between SCC and sweat gland tumors. Squamoid eccrine ductal carcinoma displayed significantly higher expression of 364 genes (including certain eccrine markers) and significantly lower expression of 525 genes compared with other groups. Our findings support the classification of squamoid eccrine ductal carcinoma as a carcinoma with intermediate features between SCC and sweat gland carcinoma.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Mason Runge
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - May P Chan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhaoping Qin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Francis Worden
- Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dan R Robinson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan; Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Mclean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Cutaneous Pathology, WCP Laboratories, Inc, Maryland Heights, Missouri
| | - Aleodor A Andea
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Roswell Park Comprehensive Cancer Center, Buffalo, New York, New York
| | - Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
33
|
Pan W, Biswas T, Shahabi S, Suryajaya W, Vasquez A, Du Q, Ghosh G, Wang VYF. Phosphorylation-induced flexibility of proto-oncogenic Bcl3 regulates transcriptional activation by NF-κB p52 homodimer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601400. [PMID: 38979190 PMCID: PMC11230411 DOI: 10.1101/2024.06.30.601400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
B cell lymphoma 3 (Bcl3), a member of the IκB family proteins, modulates transcription by primarily associating with NF-κB p50 and p52 homodimers. Bcl3 undergoes extensive phosphorylation, though the functions of many of these modifications remain unclear. We previously described that phosphorylation at Ser33, Ser114 and Ser446 partially switches Bcl3 from acting as an IκB-like inhibitor to a transcription regulator by associating with the (p52:p52):DNA binary complex. Here, we identified another critical phosphorylation site, Ser366. Substituting at all four residues to phospho-mimetic glutamate further enhances Bcl3's transcriptional activity. Phospho-modifications retain Bcl3's ability to stably bind p52 but induces reciprocal structural changes as revealed by HDX-MS experiments; the N-terminal region stiffens, while the C-terminus becomes more flexible. The increased flexibility allowed the Bcl3:(p52p52) binary complex to better accommodate DNA. The removal of the C-terminal 28-residues transformed Bcl3 into a transcriptional activator independent of phosphorylation. Notably, most identified mutations in Bcl3 from various cancers map to its C-terminus, suggesting the functional relevance of Bcl3 C-terminal structural flexibility and enhanced interaction with (p52p52):DNA complex to transcriptional potential and disease. Overall, this study uncovers the mechanistic basis by which phosphorylation-driven structural changes convert Bcl3 from an inhibitor to a transcriptional cofactor of NF-κB, and how deregulation of its activity through altered phosphorylation or mutation can lead to cancer.
Collapse
|
34
|
Esposito M, Yerly L, Shukla P, Hermes V, Sella F, Balazs Z, Lattmann E, Tastanova A, Turko P, Lang R, Kolm I, Staeger R, Kuonen F, Krauthammer M, Hafner J, Levesque MP, Restivo G. COL10A1 expression distinguishes a subset of cancer-associated fibroblasts present in the stroma of high-risk basal cell carcinoma. Br J Dermatol 2024; 191:775-790. [PMID: 38916477 DOI: 10.1093/bjd/ljae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most frequently diagnosed skin cancer and the most common malignancy in humans. Different morphological subtypes of BCC are associated with a low or high risk of recurrence and aggressiveness, but the underlying biology of how the individual subtypes arise remains largely unknown. As the majority of BCCs appear to arise from mutations in the same pathway, we hypothesized that BCC development, growth and invasive potential is also influenced by the tumour microenvironment and, in particular, by cancer-associated fibroblasts (CAFs) and the factors they secrete. OBJECTIVES To characterize the stroma of the different BCC subtypes with a focus on CAF populations. METHODS To investigate the stromal features of the different BCC subtypes, we used laser capture microdissection (LCM) followed by RNA sequencing (RNA-Seq). Fifteen BCC samples from five different 'pure' subtypes (i.e. superficial, nodular, micronodular, sclerosing and basosquamous; n = 3 each) were selected and included in the analysis. Healthy skin was used as a control (n = 6). The results were confirmed by immunohistochemistry (IHC). We validated our findings in two independent public single-cell RNA-Seq (scRNA-Seq) datasets and by RNAscope. RESULTS The stroma of the different BCC subtypes were found to have distinct gene expression signatures. Nodular and micronodular appeared to have the most similar signatures, while superficial and sclerosing the most different. By comparing low- and high-risk BCC subtypes, we found that COL10A1 is overexpressed in the stroma of sclerosing/infiltrative and basosquamous but not in micronodular high-risk subtypes. Those findings were confirmed by IHC in 93 different BCC and 13 healthy skin samples. Moreover, scRNA-Seq analysis of BCCs from two independent datasets found that the COL10A1-expressing population of cells is associated with the stroma adjacent to infiltrative BCC and shows extracellular matrix remodelling features. CONCLUSIONS We identified COL10A1 as a marker of high-risk BCC, in particular of the sclerosing/infiltrative and basosquamous subtypes. We demonstrated at the single-cell level that COL10A1 is expressed by a specific CAF population associated with the stroma of infiltrative BCC. This opens up new, tailored treatment options, and suggests COL10A1 as a new prognostic biomarker for BCC progression.
Collapse
Affiliation(s)
- Mauro Esposito
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Yerly
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Prachi Shukla
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victoria Hermes
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zsolt Balazs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland
| | - Evelyn Lattmann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Lang
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Staeger
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland
| | - Juerg Hafner
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Douki T, Millot O, Buhot A. Data Processing for Predicting DNA Damaging Properties of Complex UV Sources. Chemphyschem 2024; 25:e202400549. [PMID: 39031647 DOI: 10.1002/cphc.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/22/2024]
Abstract
A growing number of experimental evidence emphasizes that photobiological phenomena are not always the sum of the effect of individual wavelengths present in the emission spectrum of light sources. Unfortunately, tools are missing to identify such non-additive effects and predict effects of various exposure conditions. In the present work, we addressed these points for the formation of pyrimidine dimers in DNA upon co-exposure to UVC, UVB and UVA radiation. We first applied a combination index approach to determine whether mixtures of theses UV ranges exhibited additive, inhibitory or synergistic effects on the formation of cyclobutane pyrimidine dimers, (6-4) photoproducts and Dewar valence isomers. A predictive approach based on an experimental design strategy was then used to quantify the contribution of each wavelength range to the formation of DNA photoproducts. The obtained models allowed us to accurately predict the level of pyrimidine dimers in DNA irradiated under different conditions. The data were found to be more accurate than those obtained with the simple additive approach underlying the use of action spectra. Experimental design thus appears as an attractive concept that could be widely applied in photobiology even for cellular experiments.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES/CIBEST, 38000, Grenoble, France
| | - Océane Millot
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES/CIBEST, 38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES/CREAB, 38000, Grenoble, France
| |
Collapse
|
36
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. mBio 2024; 15:e0181124. [PMID: 39248565 PMCID: PMC11481495 DOI: 10.1128/mbio.01811-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Alkassis S, Shatta M, Wong DJ. Therapeutic Advances in Advanced Basal Cell Carcinoma. Cancers (Basel) 2024; 16:3075. [PMID: 39272933 PMCID: PMC11394629 DOI: 10.3390/cancers16173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Basal cell carcinoma (BCC) is the most common type of cancer with an estimated 3.6 million cases diagnosed annually in the US alone. While most cases are treatable with low recurrence rates, 1-10% progress to an advanced stage which can behave aggressively, leading to local destruction and posing substantial challenges in management. The pathogenesis often involves dysregulation of the patched/hedgehog protein family, a pivotal pathway targeted by recently approved therapies. Furthermore, the role of immunotherapy is evolving in this type of tumor as we learn more about tumor microenvironment dynamics. In recent years, there have been advancements in the therapeutic landscape of advanced BCC, offering patients new hope and options for managing this complex and potentially life-threatening condition. In this review, we aim to provide a comprehensive overview of this disease, including the risk factors, underlying pathogenesis, current treatment options of advanced disease, and the ongoing exploration and development of novel therapies.
Collapse
Affiliation(s)
- Samer Alkassis
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Maya Shatta
- Covenant Health-Statcare Hospitalist Group, Knoxville, TN 37919, USA
| | - Deborah J Wong
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Nguyen AJ, Fogarty ZC, Davila J, Markovic SN, Wang C, Guo R. Uncovering the hidden risk of metastatic cutaneous basal cell carcinoma by molecular profiling: A retrospective review. JAAD Int 2024; 16:189-191. [PMID: 39036739 PMCID: PMC11260329 DOI: 10.1016/j.jdin.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Affiliation(s)
- Amanda J. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Zachary C. Fogarty
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jaime Davila
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, Minnesota
| | | | - Chen Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
39
|
Dainese-Marque O, Garcia V, Andrieu-Abadie N, Riond J. Contribution of Keratinocytes in Skin Cancer Initiation and Progression. Int J Mol Sci 2024; 25:8813. [PMID: 39201498 PMCID: PMC11354502 DOI: 10.3390/ijms25168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Keratinocytes are major cellular components of the skin and are strongly involved in its homeostasis. Oncogenic events, starting mainly from excessive sun exposure, lead to the dysregulation of their proliferation and differentiation programs and promote the initiation and progression of non-melanoma skin cancers (NMSCs). Primary melanomas, which originate from melanocytes, initiate and develop in close interaction with keratinocytes, whose role in melanoma initiation, progression, and immune escape is currently being explored. Recent studies highlighted, in particular, unexpected modes of communication between melanocytic cells and keratinocytes, which may be of interest as sources of new biomarkers in melanomagenesis or potential therapeutic targets. This review aims at reporting the various contributions of keratinocytes in skin basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and melanoma, with a greater focus on the latter in order to highlight some recent breakthrough findings. The readers are referred to recent reviews when contextual information is needed.
Collapse
Affiliation(s)
| | | | - Nathalie Andrieu-Abadie
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| |
Collapse
|
40
|
Montano E, Bhatia N, Ostojić J. Biomarkers in Cutaneous Keratinocyte Carcinomas. Dermatol Ther (Heidelb) 2024; 14:2039-2058. [PMID: 39030446 PMCID: PMC11333699 DOI: 10.1007/s13555-024-01233-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024] Open
Abstract
Skin cancer is the most common cancer type in the USA, with over five million annually treated cases and one in five Americans predicted to develop the disease by the age of 70. Skin cancer can be classified as melanoma or non-melanoma (NMSC), the latter including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). Development of BCC and SCC is impacted by environmental, behavioral, and genetic risk factors and the incidence is on the rise, with the associated number of deaths surpassing those caused by melanoma, according to recent reports. Substantial morbidity is related to both BCC and SCC, including disfigurement, loss of function, and chronic pain, driving high treatment costs, and representing a heavy financial burden to patients and healthcare systems worldwide. Clinical presentations of BCC and SCC can be diverse, sometimes carrying considerable phenotypic similarities to benign lesions, and underscoring the need for the development of disease-specific biomarkers. Skin biomarker profiling plays an important role in deeper disease understanding, as well as in guiding clinical diagnosis and patient management, prompting the use of both invasive and non-invasive tools to evaluate specific biomarkers. In this work, we review the known and emerging biomarkers of BCC and SCC, with a focus on molecular and histologic biomarkers relevant for aspects of patient management, including prevention/risk assessments, tumor diagnosis, and therapy selection.
Collapse
Affiliation(s)
- Erica Montano
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA
| | - Neal Bhatia
- Therapeutics Clinical Research, San Diego, CA, USA
| | - Jelena Ostojić
- DermTech, Inc., 12340 El Camino Real, San Diego, CA, 92130, USA.
| |
Collapse
|
41
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
42
|
Barker CA, Dufault S, Arron ST, Ho AL, Algazi AP, Dunn LA, Humphries AA, Hultman C, Lian M, Knott PD, Yom SS. Phase II, Single-Arm Trial of Induction and Concurrent Vismodegib With Curative-Intent Radiation Therapy for Locally Advanced, Unresectable Basal Cell Carcinoma. J Clin Oncol 2024; 42:2327-2335. [PMID: 38630954 PMCID: PMC11479655 DOI: 10.1200/jco.23.01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024] Open
Abstract
PURPOSE Locally advanced, unresectable basal cell carcinoma (LA BCC) can be treated with radiation therapy (RT), but locoregional control (LRC) rates are unsatisfactory. Vismodegib is a hedgehog pathway inhibitor (HPI) active in BCC that may radiosensitize BCC. We evaluated the combination of vismodegib and RT for patients with LA BCC. METHODS In this multicenter, single-arm, phase II study, patients with unresectable LA BCC received 12 weeks of induction vismodegib, followed by 7 weeks of concurrent vismodegib and RT. The primary end point was LRC rate at 1 year after the end of treatment. Secondary end points included objective response, progression-free survival (PFS), overall survival (OS), safety, and patient-reported quality of life (PRQOL). RESULTS Twenty-four patients received vismodegib; five were unable to complete 12 weeks of induction therapy. LRC was achieved in 91% (95% CI, 68 to 98) of patients at 1 year. The response rate was 63% (95% CI, 38 to 84) after induction vismodegib and 83% (95% CI, 59 to 96) after concurrent vismodegib and RT. With a median follow-up of 5.7 years, 1-year PFS and OS rates were 100% and 96%, and at 5 years PFS and OS rates were 78% and 83%, respectively. Distant metastasis or BCC-related death has not been observed. The most frequent treatment-related adverse events (AEs) were dysgeusia, fatigue, and myalgias occurring in 83%, 75%, and 75% of patients. No grade 4 to 5 treatment-related AEs occurred. PRQOL demonstrated clinically meaningful improvements in all subscales, with emotions and functioning improvements persisting for a year after the end of treatment. CONCLUSION In patients with unresectable LA BCC, the combination of vismodegib and RT yielded high rates of LRC and PFS and durable improvements in PRQOL.
Collapse
Affiliation(s)
- Christopher A. Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Suzanne Dufault
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | - Sarah T. Arron
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - Alan L. Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alain P. Algazi
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Lara A. Dunn
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Audrey A. Humphries
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - Carter Hultman
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - Ming Lian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - P. Daniel Knott
- Department of Department of Otolaryngology – Head and Neck Surgery, University of California San Francisco, San Francisco, CA
| | - Sue S. Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
- Department of Department of Otolaryngology – Head and Neck Surgery, University of California San Francisco, San Francisco, CA
| |
Collapse
|
43
|
Sol S, Boncimino F, Todorova K, Waszyn SE, Mandinova A. Therapeutic Approaches for Non-Melanoma Skin Cancer: Standard of Care and Emerging Modalities. Int J Mol Sci 2024; 25:7056. [PMID: 39000164 PMCID: PMC11241167 DOI: 10.3390/ijms25137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Skin cancer encompasses a range of cutaneous malignancies, with non-melanoma skin cancers (NMSCs) being the most common neoplasm worldwide. Skin exposure is the leading risk factor for initiating NMSC. Ultraviolet (UV) light induces various genomic aberrations in both tumor-promoting and tumor-suppressing genes in epidermal cells. In conjunction with interactions with a changed stromal microenvironment and local immune suppression, these aberrations contribute to the occurrence and expansion of cancerous lesions. Surgical excision is still the most common treatment for these lesions; however, locally advanced or metastatic disease significantly increases the chances of morbidity or death. In recent years, numerous pharmacological targets were found through extensive research on the pathogenic mechanisms of NMSCs, leading to the development of novel treatments including Hedgehog pathway inhibitors for advanced and metastatic basal cell carcinoma (BCC) and PD-1/PD-L1 inhibitors for locally advanced cutaneous squamous cell carcinoma (cSCC) and Merkel cell carcinoma (MCC). Despite the efficacy of these new drugs, drug resistance and tolerability issues often arise with long-term treatment. Ongoing studies aim to identify alternative strategies with reduced adverse effects and increased tolerability. This review summarizes the current and emerging therapies used to treat NMSC.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
44
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583953. [PMID: 38496413 PMCID: PMC10942435 DOI: 10.1101/2024.03.07.583953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active site were required for PTPN14 to promote differentiation. Taken together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Current address: Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
45
|
Li J, Ma X, Wang X, Hu X, Fang S, Jin G, Liu K, Dong Z. Mutations found in cancer patients compromise DNA binding of the winged helix protein STK19. Sci Rep 2024; 14:14098. [PMID: 38890355 PMCID: PMC11189558 DOI: 10.1038/s41598-024-64840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Serine/threonine protein kinase 19 (STK19) has been reported to phosphorylate and activate oncogenic NRAS to promote melanomagenesis. However, concerns have been raised about whether STK19 is a kinase. STK19 has also been identified as a putative factor involved in the transcription-coupled nucleotide excision repair (TC-NER) pathway. In this study, we determined the 1.32 Å crystal structure of human STK19. The structure reveals that STK19 is a winged helix (WH) protein consisting of three tandem WH domains. STK19 binds more strongly to double-stranded DNA and RNA (dsDNA/dsRNA) than to ssDNA. A positively charged patch centered on helix WH3-H1 contributes to dsDNA binding, which is unusual because the WH domain typically uses helix H3 as the recognition helix. Importantly, mutations of the conserved residues in the basic patch, K186N, R200W, and R215W, are found in cancer patients, and these mutations compromise STK19 DNA binding. Other mutations have been predicted to produce a similar effect, including two mutations that disrupt the nuclear localization signal (NLS) motif. These mutations may indirectly impact the DNA binding capacity of STK19 by interfering with its nuclear localization.
Collapse
Affiliation(s)
- Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
| | - Xiaoyu Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaotong Hu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shaobo Fang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450003, Henan, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
46
|
Jasmine F, Argos M, Khamkevych Y, Islam T, Rakibuz-Zaman M, Shahriar M, Shea CR, Ahsan H, Kibriya MG. Molecular Profiling and the Interaction of Somatic Mutations with Transcriptomic Profiles in Non-Melanoma Skin Cancer (NMSC) in a Population Exposed to Arsenic. Cells 2024; 13:1056. [PMID: 38920684 PMCID: PMC11201393 DOI: 10.3390/cells13121056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Exposure to inorganic arsenic (As) is recognized as a risk factor for non-melanoma skin cancer (NMSC). We followed up with 7000 adults for 6 years who were exposed to As. During follow-up, 2.2% of the males and 1.3% of the females developed basal cell carcinoma (BCC), while 0.4% of the male and 0.2% of the female participants developed squamous cell carcinoma (SCC). Using a panel of more than 400 cancer-related genes, we detected somatic mutations (SMs) in the first 32 NMSC samples (BCC = 26 and SCC = 6) by comparing paired (tissue-blood) samples from the same individual and then comparing them to the SM in healthy skin tissue from 16 participants. We identified (a) a list of NMSC-associated SMs, (b) SMs present in both NMSC and healthy skin, and (c) SMs found only in healthy skin. We also demonstrate that the presence of non-synonymous SMs in the top mutated genes (like PTCH1, NOTCH1, SYNE1, PKHD1 in BCC and TP53 in SCC) significantly affects the magnitude of differential expressions of major genes and gene pathways (basal cell carcinoma pathways, NOTCH signaling, IL-17 signaling, p53 signaling, Wnt signaling pathway). These findings may help select groups of patients for targeted therapy, like hedgehog signaling inhibitors, IL17 inhibitors, etc., in the future.
Collapse
Affiliation(s)
- Farzana Jasmine
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.)
| | - Maria Argos
- Epidemiology & Biostatistics, Global Health, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yuliia Khamkevych
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.)
| | - Tariqul Islam
- UChicago Research Bangladesh (URB), University of Chicago, Dhaka 1230, Bangladesh
| | | | - Mohammad Shahriar
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.)
| | - Christopher R. Shea
- Division of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.)
- Department of Public Health Sciences, Biological Science Division, University of Chicago, Chicago, IL 60637, USA
| | - Muhammad G. Kibriya
- Institute for Population and Precision Health (IPPH), University of Chicago, Chicago, IL 60637, USA; (F.J.)
- Department of Public Health Sciences, Biological Science Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
47
|
Long GR, Kurdian AI, Atwood SX. Applying Multiomics to Basosquamous Carcinoma. J Invest Dermatol 2024; 144:1181-1183. [PMID: 38385917 PMCID: PMC11884641 DOI: 10.1016/j.jid.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/23/2024]
Affiliation(s)
- Gavin R Long
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Arinnae I Kurdian
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Scott X Atwood
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Department of Dermatology, School of Medicine, University of California, Irvine, Irvine, California, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
48
|
Pierce ES, Jindal C, Choi YM, Cassidy K, Efird JT. Pathogenic mechanisms and etiologic aspects of Mycobacterium avium subspecies paratuberculosis as an infectious cause of cutaneous melanoma. MEDCOMM - ONCOLOGY 2024; 3:e72. [PMID: 38831791 PMCID: PMC11145504 DOI: 10.1002/mog2.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infectious etiologies have previously been proposed as causes of both melanoma and non-melanoma skin cancer. This exploratory overview explains and presents the evidence for the hypothesis that a microorganism excreted in infected ruminant animal feces, Mycobacterium avium subspecies paratuberculosis (MAP), is the cause of some cases of cutaneous melanoma (CM). Occupational, residential, and recreational contact with MAP-contaminated feces, soil, sand, and natural bodies of water may confer a higher rate of CM. Included in our hypothesis are possible reasons for the differing rates and locations of CM in persons with white versus nonwhite skin, why CM develops underneath nails and in vulvar skin, why canine melanoma is an excellent model for human melanoma, and why the Bacille Calmette-Guérin (BCG) vaccine has demonstrated efficacy in the prevention and treatment of CM. The pathogenic mechanisms and etiologic aspects of MAP, as a transmittable agent underlying CM risk, are carefully deliberated in this paper. Imbalances in gut and skin bacteria, genetic risk factors, and vaccine prevention/therapy are also discussed, while acknowledging that the evidence for a causal association between MAP exposure and CM remains circumstantial.
Collapse
Affiliation(s)
- Ellen S. Pierce
- Independent Physician Researcher, Spokane Valley, Washington, USA
| | - Charulata Jindal
- School of Medicine and Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yuk Ming Choi
- Provider Services, Signify Health, Dallas, Texas, USA
| | - Kaitlin Cassidy
- VA Boston Healthcare System, Cooperative Studies Program Coordinating Center, Boston, Massachusetts, USA
| | - Jimmy T. Efird
- VA Boston Healthcare System, Cooperative Studies Program Coordinating Center, Boston, Massachusetts, USA
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Laughery MF, Wilson HE, Sewell A, Stevison S, Wyrick JJ. The Surprising Diversity of UV-Induced Mutations. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300205. [PMID: 38884048 PMCID: PMC11170076 DOI: 10.1002/ggn2.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Indexed: 06/18/2024]
Abstract
Ultraviolet (UV) light is the most pervasive environmental mutagen and the primary cause of skin cancer. Genome sequencing of melanomas and other skin cancers has revealed that the vast majority of somatic mutations in these tumors are cytosine-to-thymine (C>T) substitutions in dipyrimidine sequences, which, together with tandem CC>TT substitutions, comprise the canonical UV mutation "signature". These mutation classes are caused by DNA damage directly induced by UV absorption, namely cyclobutane pyrimidine dimers (CPDs) or 6-4 pyrimidine-pyrimidone photoproducts (6-4PP), which form between neighboring pyrimidine bases. However, many of the key driver mutations in melanoma do not fit this mutation signature, but instead are caused by T>A, T>C, C>A, or AC>TT substitutions, frequently occurring in non-dipyrimidine sequence contexts. This article describes recent studies indicating that UV light causes a more diverse spectrum of mutations than previously appreciated, including many of the mutation classes observed in melanoma driver mutations. Potential mechanisms for these diverse mutation signatures are discussed, including UV-induced pyrimidine-purine photoproducts and indirect DNA damage induced by UVA light. Finally, the article reviews recent findings indicating that human DNA polymerase eta normally suppresses these non-canonical UV mutation classes, which can potentially explain why canonical C>T substitutions predominate in human skin cancers.
Collapse
Affiliation(s)
- Marian F. Laughery
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - Hannah E. Wilson
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - Allysa Sewell
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - Scott Stevison
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| | - John J. Wyrick
- School of Molecular BiosciencesWashington State UniversityPullmanWA99164USA
| |
Collapse
|
50
|
Nishio Y, Kato K, Oishi H, Takahashi Y, Saitoh S. MYCN in human development and diseases. Front Oncol 2024; 14:1417607. [PMID: 38884091 PMCID: PMC11176553 DOI: 10.3389/fonc.2024.1417607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|