1
|
Jaeger M, Dietschmann A, Austermeier S, Dinçer S, Porschitz P, Vornholz L, Maas RJ, Sprenkeler EG, Ruland J, Wirtz S, Azam T, Joosten LA, Hube B, Netea MG, Dinarello CA, Gresnigt MS. Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence 2024; 15:2333367. [PMID: 38515333 PMCID: PMC11008552 DOI: 10.1080/21505594.2024.2333367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic β-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sude Dinçer
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Pauline Porschitz
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ralph J.A. Maas
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien G.G. Sprenkeler
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, USA
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| |
Collapse
|
2
|
Boucher MJ, Banerjee S, Joshi MB, Wei AL, Huang MY, Lei S, Ciranni M, Condon A, Langen A, Goddard TD, Caradonna I, Goranov AI, Homer CM, Mortensen Y, Petnic S, Reilly MC, Xiong Y, Susa KJ, Pastore VP, Zaro BW, Madhani HD. Phenotypic landscape of a fungal meningitis pathogen reveals its unique biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619677. [PMID: 39484549 PMCID: PMC11526942 DOI: 10.1101/2024.10.22.619677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis and the top-ranked W.H.O. priority fungal pathogen. Only distantly related to model fungi, C. neoformans is also a powerful experimental system for exploring conserved eukaryotic mechanisms lost from specialist model yeast lineages. To decipher its biology globally, we constructed 4328 gene deletions and measured-with exceptional precision--the fitness of each mutant under 141 diverse growth-limiting in vitro conditions and during murine infection. We defined functional modules by clustering genes based on their phenotypic signatures. In-depth studies leveraged these data in two ways. First, we defined and investigated new components of key signaling pathways, which revealed animal-like pathways/components not predicted from studies of model yeasts. Second, we identified environmental adaptation mechanisms repurposed to promote mammalian virulence by C. neoformans, which lacks a known animal reservoir. Our work provides an unprecedented resource for deciphering a deadly human pathogen.
Collapse
Affiliation(s)
- Michael J Boucher
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sanjita Banerjee
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Angela L Wei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Manning Y Huang
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Susan Lei
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Massimiliano Ciranni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Andrew Condon
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Andreas Langen
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Thomas D Goddard
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ippolito Caradonna
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Alexi I Goranov
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Christina M Homer
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yassaman Mortensen
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sarah Petnic
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Morgann C Reilly
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Ying Xiong
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Katherine J Susa
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Vito Paolo Pastore
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via alla Opera Pia 13, 16145 Genoa, Italy
| | - Balyn W Zaro
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Dept. of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Vazquez-Munoz R, Thompson A, Sobue T, Dongari-Bagtzoglou A. Lactobacillus johnsonii is a dominant Lactobacillus in the murine oral mucosa and has chitinase activity that compromises fungal cell wall integrity. mBio 2024; 15:e0241624. [PMID: 39287438 PMCID: PMC11481578 DOI: 10.1128/mbio.02416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
The oral microbiome is a critical determinant of health and disease, as interactions between oral microorganisms can influence their physiology and the development or severity of oral infections. Lactobacilli have a widely recognized antagonistic relationship with Candida albicans and may exhibit probiotic properties that limit oral fungal infection. We previously reported that Lactobacillus johnsonii strain MT4, an oral strain isolated from C57BL/6 mice, can induce global changes in the murine oral microbiome and has anti-Candida activity in vitro. To build on this information, we analyzed its abundance on the mouse oral mucosa, tested its impact on the severity and progression of oropharyngeal candidiasis (OPC) in a mouse model, and further explored the mechanism of antifungal activity in vitro. Our findings reveal that L. johnsonii MT4 is a dominant cultivable Lactobacillus in the oral mucosa of C57BL/6 mice. Strain MT4 has chitinase activity against C. albicans, which damages the cell wall and compromises fungal metabolic activity. Oral inoculation with strain MT4 causes a reduction in the Candida-induced rise in the abundance of oral enterococci and oral mucosal damage. This research underscores the potential of L. johnsonii strain MT4 as a novel probiotic agent in the prevention or management of OPC, and it contributes to a better understanding of the role of oral bacterial microbiota role in the pathogenesis of fungal infections. IMPORTANCE The interactions between the opportunistic pathogen Candida albicans and resident oral bacteria are particularly crucial in maintaining oral health. Emerging antifungal drug-resistant strains, slow-paced drug discovery, and the risk of side effects can compromise the effectiveness of current treatments available for oropharyngeal candidiasis. This study advances the search for alternative microbiome-targeted therapies in oral fungal infections. We report that Lactobacillus johnsonii strain MT4 prevents the Candida-induced bloom of dysbiotic oral enterococci and reduces oral mucosal lesions in an oropharyngeal candidiasis murine model. We also show that this strain directly compromises the cell wall and reduces fungal metabolic activity, partly due to its chitinase activity.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Takanori Sobue
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
5
|
Swenson KA, Min K, Konopka JB. Candida albicans pathways that protect against organic peroxides and lipid peroxidation. PLoS Genet 2024; 20:e1011455. [PMID: 39432552 PMCID: PMC11527291 DOI: 10.1371/journal.pgen.1011455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Human fungal pathogens must survive diverse reactive oxygen species (ROS) produced by host immune cells that can oxidize a range of cellular molecules including proteins, lipids, and DNA. Formation of lipid radicals can be especially damaging, as it leads to a chain reaction of lipid peroxidation that causes widespread damage to the plasma membrane. Most previous studies on antioxidant pathways in fungal pathogens have been conducted with hydrogen peroxide, so the pathways used to combat organic peroxides and lipid peroxidation are not well understood. The most well-known peroxidase in Candida albicans, catalase, can only act on hydrogen peroxide. We therefore characterized a family of four glutathione peroxidases (GPxs) that were predicted to play an important role in reducing organic peroxides. One of the GPxs, Gpx3 is also known to activate the Cap1 transcription factor that plays the major role in inducing antioxidant genes in response to ROS. Surprisingly, we found that the only measurable role of the GPxs is activation of Cap1 and did not find a significant role for GPxs in the direct detoxification of peroxides. Furthermore, a CAP1 deletion mutant strain was highly sensitive to organic peroxides and oxidized lipids, indicating an important role for antioxidant genes upregulated by Cap1 in protecting cells from organic peroxides. We identified GLR1 (Glutathione reductase), a gene upregulated by Cap1, as important for protecting cells from oxidized lipids, implicating glutathione utilizing enzymes in the protection against lipid peroxidation. Furthermore, an RNA-sequencing study in C. albicans showed upregulation of a diverse set of antioxidant genes and protein damage pathways in response to organic peroxides. Overall, our results identify novel mechanisms by which C. albicans responds to oxidative stress resistance which open new avenues for understanding how fungal pathogens resist ROS in the host.
Collapse
Affiliation(s)
- Kara A. Swenson
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
6
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
7
|
Luo G, Zhang J, Wang T, Cui H, Bai Y, Luo J, Zhang J, Zhang M, Di L, Yuan Y, Xiong K, Yu X, Zhang Y, Shen C, Zhu C, Wang Y, Su C, Lu Y. A human commensal-pathogenic fungus suppresses host immunity via targeting TBK1. Cell Host Microbe 2024; 32:1536-1551.e6. [PMID: 39084229 DOI: 10.1016/j.chom.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Candida albicans stably colonizes humans but is the leading cause of hospital-acquired fungemia. Traditionally, masking immunogenic moieties has been viewed as a tactic for immune evasion. Here, we demonstrate that C. albicans blocks type I interferon (IFN-I) signaling via translocating an effector protein Cmi1 into host cells. Mechanistically, Cmi1 binds and inhibits TANK-binding kinase 1 (TBK1) to abrogate IFN-regulatory factor 3 (IRF3) phosphorylation, thereby suppressing the IFN-I cascade. Murine infection with a cmi1 mutant displays an exaggerated IFN-I response in both kidneys and bone-marrow-derived macrophages, leading to rapid fungal clearance and host survival. Remarkably, the lack of CMI1 compromises gut commensalism and increases IFN-I response in mouse colonic cells. These phenotypes of cmi1 are rescued by the depletion of IFN-I receptor. This work establishes the importance of TBK1 inhibition in fungal pathogenesis and reveals that a human commensal-pathogenic fungus significantly impacts host immunity during gut colonization and infection via delivering effector proteins into host cells.
Collapse
Affiliation(s)
- Gang Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jingkai Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Tianxu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Bai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jianchen Luo
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jinqiu Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Mao Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Linyan Di
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuncong Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kang Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangtai Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaling Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Lu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Jensen O, Trujillo E, Hanson L, Ost KS. Controlling Candida: immune regulation of commensal fungi in the gut. Infect Immun 2024; 92:e0051623. [PMID: 38647290 PMCID: PMC11385159 DOI: 10.1128/iai.00516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.
Collapse
Affiliation(s)
- Owen Jensen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma Trujillo
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Hanson
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kyla S. Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Kramara J, Kim MJ, Ollinger TL, Ristow LC, Wakade RS, Zarnowski R, Wellington M, Andes DR, Mitchell AG, Krysan DJ. Systematic analysis of the Candida albicans kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation in vitro and in vivo. mBio 2024; 15:e0124924. [PMID: 38949302 PMCID: PMC11323567 DOI: 10.1128/mbio.01249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Protein kinases are critical regulatory proteins in both prokaryotes and eukaryotes. Accordingly, protein kinases represent a common drug target for a wide range of human diseases. Therefore, understanding protein kinase function in human pathogens such as the fungus Candida albicans is likely to extend our knowledge of its pathobiology and identify new potential therapies. To facilitate the study of C. albicans protein kinases, we constructed a library of 99 non-essential protein kinase homozygous deletion mutants marked with barcodes in the widely used SN genetic background. Here, we describe the construction of this library and the characterization of the competitive fitness of the protein kinase mutants under 11 different growth and stress conditions. We also screened the library for protein kinase mutants with altered filamentation and biofilm formation, two critical virulence traits of C. albicans. An extensive network of protein kinases governs these virulence traits in a manner highly dependent on the specific environmental conditions. Studies on specific protein kinases revealed that (i) the cell wall integrity MAPK pathway plays a condition-dependent role in filament initiation and elongation; (ii) the hyper-osmolar glycerol MAPK pathway is required for both filamentation and biofilm formation, particularly in the setting of in vivo catheter infection; and (iii) Sok1 is dispensable for filamentation in hypoxic environments at the basal level of a biofilm but is required for filamentation in normoxia. In addition to providing a new genetic resource for the community, these observations emphasize the environmentally contingent function of C. albicans protein kinases.IMPORTANCECandida albicans is one of the most common causes of fungal disease in humans for which new therapies are needed. Protein kinases are key regulatory proteins and are increasingly targeted by drugs for the treatment of a wide range of diseases. Understanding protein kinase function in C. albicans pathogenesis may facilitate the development of new antifungal drugs. Here, we describe a new library of 99 protein kinase deletion mutants to facilitate the study of protein kinases. Furthermore, we show that the function of protein kinases in two virulence-related processes, filamentation and biofilm formation, is dependent on the specific environmental conditions.
Collapse
Affiliation(s)
- Juraj Kramara
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Tomye L. Ollinger
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Laura C. Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Aaron G. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Lash E, Maufrais C, Janbon G, Robbins N, Herzel L, Cowen LE. The spliceosome impacts morphogenesis in the human fungal pathogen Candida albicans. mBio 2024; 15:e0153524. [PMID: 38980041 PMCID: PMC11323467 DOI: 10.1128/mbio.01535-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.
Collapse
Affiliation(s)
- Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Corinne Maufrais
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
- HUB Bioinformatique et Biostatistique, Institut Pasteur, Université Paris Cité, Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lydia Herzel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Farheen A, Case NT, MacAlpine J, Fu C, Robbins N, Cowen LE. The putative prenyltransferase Nus1 is required for filamentation in the human fungal pathogen Candida albicans. G3 (BETHESDA, MD.) 2024; 14:jkae124. [PMID: 38874344 PMCID: PMC11304969 DOI: 10.1093/g3journal/jkae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Candida albicans is a major fungal pathogen of humans that can cause serious systemic infections in vulnerable immunocompromised populations. One of its virulence attributes is its capacity to transition between yeast and filamentous morphologies, but our understanding of this process remains incomplete. Here, we analyzed data from a functional genomic screen performed with the C. albicans Gene Replacement And Conditional Expression collection to identify genes crucial for morphogenesis in host-relevant conditions. Through manual scoring of microscopy images coupled with analysis of each image using a deep learning-based method termed Candescence, we identified 307 genes important for filamentation in tissue culture medium at 37°C with 5% CO2. One such factor was orf19.5963, which is predicted to encode the prenyltransferase Nus1 based on sequence homology to Saccharomyces cerevisiae. We further showed that Nus1 and its predicted interacting partner Rer2 are important for filamentation in multiple liquid filament-inducing conditions as well as for wrinkly colony formation on solid agar. Finally, we highlight that Nus1 and Rer2 likely govern C. albicans morphogenesis due to their importance in intracellular trafficking, as well as maintaining lipid homeostasis. Overall, this work identifies Nus1 and Rer2 as important regulators of C. albicans filamentation and highlights the power of functional genomic screens in advancing our understanding of gene function in human fungal pathogens.
Collapse
Affiliation(s)
- Aiman Farheen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicola T Case
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
12
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
13
|
Vande Zande P, Gautier C, Kawar N, Maufrais C, Metzner K, Wash E, Beach AK, Bracken R, Maciel EI, Pereira de Sá N, Fernandes CM, Solis NV, Del Poeta M, Filler SG, Berman J, Ene IV, Selmecki A. Step-wise evolution of azole resistance through copy number variation followed by KSR1 loss of heterozygosity in Candida albicans. PLoS Pathog 2024; 20:e1012497. [PMID: 39213436 PMCID: PMC11392398 DOI: 10.1371/journal.ppat.1012497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial drug resistance poses a global health threat, requiring a deeper understanding of the evolutionary processes that lead to its emergence in pathogens. Complex evolutionary dynamics involve multiple mutations that can result in cooperative or competitive (clonal interference) effects. Candida albicans, a major fungal pathogen, displays high rates of copy number variation (CNV) and loss of heterozygosity (LOH). CNV and LOH events involve large numbers of genes and could synergize during evolutionary adaptation. Understanding the contributions of CNV and LOH to antifungal drug adaptation is challenging, especially in the context of whole-population genome sequencing. Here, we document the sequential evolution of fluconazole tolerance and then resistance in a C. albicans isolate involving an initial CNV on chromosome 4, followed by an LOH on chromosome R that involves KSR1. Similar LOH events involving KSR1, which encodes a reductase in the sphingolipid biosynthesis pathway, were also detected in independently evolved fluconazole resistant isolates. We dissect the specific KSR1 codons that affect fluconazole resistance and tolerance. The combination of the chromosome 4 CNV and KSR1 LOH results in a >500-fold decrease in azole susceptibility relative to the progenitor, illustrating a compelling example of rapid, yet step-wise, interplay between CNV and LOH in drug resistance evolution.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cécile Gautier
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Nora Kawar
- Shmunis School of Biotechnology and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
- Institut Pasteur Bioinformatic Hub, Université Paris Cité, Paris, France
| | - Katura Metzner
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth Wash
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Annette K. Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryan Bracken
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eli Isael Maciel
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Nívea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Judith Berman
- Shmunis School of Biotechnology and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
14
|
Ewald J, He Z, Dimitriew W, Schuster S. Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells. NPJ Syst Biol Appl 2024; 10:77. [PMID: 39025861 PMCID: PMC11258256 DOI: 10.1038/s41540-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Energy metabolism is crucial for all living cells, especially during fast growth or stress scenarios. Many cancer and activated immune cells (Warburg effect) or yeasts (Crabtree effect) mostly rely on aerobic glucose fermentation leading to lactate or ethanol, respectively, to generate ATP. In recent years, several mathematical models have been proposed to explain the Warburg effect on theoretical grounds. Besides glucose, glutamine is a very important substrate for eukaryotic cells-not only for biosynthesis, but also for energy metabolism. Here, we present a minimal constraint-based stoichiometric model for explaining both the classical Warburg effect and the experimentally observed respirofermentation of glutamine (WarburQ effect). We consider glucose and glutamine respiration as well as the respective fermentation pathways. Our resource allocation model calculates the ATP production rate, taking into account enzyme masses and, therefore, pathway costs. While our calculation predicts glucose fermentation to be a superior energy-generating pathway in human cells, different enzyme characteristics in yeasts reduce this advantage, in some cases to such an extent that glucose respiration is preferred. The latter is observed for the fungal pathogen Candida albicans, which is a known Crabtree-negative yeast. Further, optimization results show that glutamine is a valuable energy source and important substrate under glucose limitation, in addition to its role as a carbon and nitrogen source of biomass in eukaryotic cells. In conclusion, our model provides insights that glutamine is an underestimated fuel for eukaryotic cells during fast growth and infection scenarios and explains well the observed parallel respirofermentation of glucose and glutamine in several cell types.
Collapse
Affiliation(s)
- Jan Ewald
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Leipzig University, Humboldtstraße 25, 04105, Leipzig, Germany
| | - Ziyang He
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Wassili Dimitriew
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich Schiller University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| |
Collapse
|
15
|
Liu Y, Wang R, Liu J, Fan M, Ye Z, Hao Y, Xie F, Wang T, Jiang Y, Liu N, Cui X, Lv Q, Yan L. The vacuolar fusion regulated by HOPS complex promotes hyphal initiation and penetration in Candida albicans. Nat Commun 2024; 15:4131. [PMID: 38755250 PMCID: PMC11099166 DOI: 10.1038/s41467-024-48525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between yeast and hyphae is crucial for regulating the commensalism and pathogenicity in Candida albicans. The mechanisms that affect the invasion of hyphae in solid media, whose deficiency is more related to the pathogenicity of C. albicans, have not been elucidated. Here, we found that the disruption of VAM6 or VPS41 which are components of the homotypic vacuolar fusion and protein sorting (HOPS) complex, or the Rab GTPase YPT72, all responsible for vacuole fusion, led to defects in hyphal growth in both liquid and solid media, but more pronounced on solid agar. The phenotypes of vac8Δ/Δ and GTR1OE-vam6Δ/Δ mutants indicated that these deficiencies are mainly caused by the reduced mechanical forces that drive agar and organs penetration, and confirmed that large vacuoles are required for hyphal mechanical penetration. In summary, our study revealed that large vacuoles generated by vacuolar fusion support hyphal penetration and provided a perspective to refocus attention on the role of solid agar in evaluating C. albicans invasion.
Collapse
Affiliation(s)
- Yu Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ruina Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Jiacun Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Mengting Fan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Zi Ye
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yumeng Hao
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Fei Xie
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ting Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yuanying Jiang
- School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ningning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Xiaoyan Cui
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| | - Quanzhen Lv
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| | - Lan Yan
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
16
|
Zhou T, Solis NV, Marshall M, Yao Q, Garleb R, Yang M, Pearlman E, Filler SG, Liu H. Hyphal Als proteins act as CR3 ligands to promote immune responses against Candida albicans. Nat Commun 2024; 15:3926. [PMID: 38724513 PMCID: PMC11082240 DOI: 10.1038/s41467-024-48093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Patients with decreased levels of CD18 (β2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMβ2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the β-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1β release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Norma V Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michaela Marshall
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Qing Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Gilead Sciences Inc., Foster City, CA, USA
| | - Rachel Garleb
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Mengli Yang
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Zymo Research Corporation, Irvine, CA, USA
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
17
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for the competitive fitness of pathogenic microorganisms in dental biofilm models. mBio 2024; 15:e0018424. [PMID: 38624207 PMCID: PMC11077948 DOI: 10.1128/mbio.00184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Boucher MJ, Madhani HD. Convergent evolution of innate immune-modulating effectors in invasive fungal pathogens. Trends Microbiol 2024; 32:435-447. [PMID: 37985333 DOI: 10.1016/j.tim.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Invasive fungal infections pose a major threat to human health. Bacterial and protozoan pathogens secrete protein effectors that overcome innate immune barriers to promote microbial colonization, yet few such molecules have been identified in human fungal pathogens. Recent studies have begun to reveal these long-sought effectors and have illuminated how they subvert key cellular pathways, including apoptosis, myeloid cell polarization, Toll-like receptor signaling, and phagosome action. Thus, despite lacking the specialized secretion systems of bacteria and parasites, it is increasingly clear that fungi independently evolved effectors targeting pathways often subverted by other classes of pathogens. These findings demonstrate the remarkable power of convergent evolution to enable diverse microbes to infect humans while also setting the stage for detailed dissection of fungal disease mechanisms.
Collapse
Affiliation(s)
- Michael J Boucher
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Zhang Y, Zhang N, Gao C, Cheng Y, Guan Y, Wei C, Guan J. The Fungal Diversity and Potential Pathogens Associated with Postharvest Fruit Rot of 'Huangguan' Pear ( Pyrus bretschneideri) in Hebei Province, China. PLANT DISEASE 2024; 108:1382-1390. [PMID: 38115565 DOI: 10.1094/pdis-08-23-1528-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Postharvest fruit rot caused by pathogens is a serious problem in the pear industry. This study investigated the fungal diversity and main pathogens and identified a new pathogen in the stored 'Huangguan' pear (Pyrus bretschneideri Rehd.), the dominant pear variety in northern China. We sampled 20 refrigeration houses from five main producing regions in Hebei Province and used Illumina sequencing technology to detect the fungal composition. Alternaria (56.3%) was the most abundant fungus, followed by Penicillium (9.2%) and Monilinia (6.2%). We also isolated and identified nine strains of Alternaria and four strains of Penicillium. Moreover, we observed a new postharvest fruit disease in 'Huangguan' pear caused by Stemphylium eturmiunum, which was confirmed by phylogenetic analysis by combining the sequences of three conserved genes, including internal transcribed spacer, gapdh, and calmodulin. This study marks the first documentation of S. eturmiunum causing fruit rot in 'Huangguan' pears, offering valuable insights for identifying and controlling this newly identified postharvest disease.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei 050051, China
| | - Nan Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Congcong Gao
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Yeqing Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Chuangqi Wei
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei 050051, China
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
20
|
Arribas V, Monteoliva L, Hernáez ML, Gil C, Molero G. Unravelling the Role of Candida albicans Prn1 in the Oxidative Stress Response through a Proteomics Approach. Antioxidants (Basel) 2024; 13:527. [PMID: 38790632 PMCID: PMC11118716 DOI: 10.3390/antiox13050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Candida albicans Prn1 is a protein with an unknown function similar to mammalian Pirin. It also has orthologues in other pathogenic fungi, but not in Saccharomyces cerevisiae. Prn1 highly increases its abundance in response to H2O2 treatment; thus, to study its involvement in the oxidative stress response, a C. albicans prn1∆ mutant and the corresponding wild-type strain SN250 have been studied. Under H2O2 treatment, Prn1 absence led to a higher level of reactive oxygen species (ROS) and a lower survival rate, with a higher percentage of death by apoptosis, confirming its relevant role in oxidative detoxication. The quantitative differential proteomics studies of both strains in the presence and absence of H2O2 indicated a lower increase in proteins with oxidoreductase activity after the treatment in the prn1∆ strain, as well as an increase in proteasome-activating proteins, corroborated by in vivo measurements of proteasome activity, with respect to the wild type. In addition, remarkable differences in the abundance of some transcription factors were observed between mutant and wild-type strains, e.g., Mnl1 or Nrg1, an Mnl1 antagonist. orf19.4850, a protein orthologue to S. cerevisiae Cub1, has shown its involvement in the response to H2O2 and in proteasome function when Prn1 is highly expressed in the wild type.
Collapse
Affiliation(s)
- Victor Arribas
- University of Salamanca (USAL), 37008 Salamanca, Spain;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Lucia Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - María Luisa Hernáez
- Proteomics Unit, Biological Techniques Center, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
- Proteomics Unit, Biological Techniques Center, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
| | - Gloria Molero
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (L.M.); (G.M.)
- Ramon y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
21
|
Ross RL, Santiago-Tirado FH. Advanced genetic techniques in fungal pathogen research. mSphere 2024; 9:e0064323. [PMID: 38470131 PMCID: PMC11036804 DOI: 10.1128/msphere.00643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Although fungi have been important model organisms for solving genetic, molecular, and ecological problems, recently, they are also becoming an important source of infectious disease. Despite their high medical burden, fungal pathogens are understudied, and relative to other pathogenic microbes, less is known about how their gene functions contribute to disease. This is due, in part, to a lack of powerful genetic tools to study these organisms. In turn, this has resulted in inappropriate treatments and diagnostics and poor disease management. There are a variety of reasons genetic studies were challenging in pathogenic fungi, but in recent years, most of them have been overcome or advances have been made to circumvent these barriers. In this minireview, we highlight how recent advances in genetic studies in fungal pathogens have resulted in the discovery of important biology and potential new antifungals and have created the tools to comprehensively study these important pathogens.
Collapse
Affiliation(s)
- Robbi L. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
22
|
Lo TL, Wang Q, Nickson J, van Denderen BJW, Deveson Lucas D, Chai HX, Knott GJ, Weerasinghe H, Traven A. The C-terminal protein interaction domain of the chromatin reader Yaf9 is critical for pathogenesis of Candida albicans. mSphere 2024; 9:e0069623. [PMID: 38376217 PMCID: PMC10964406 DOI: 10.1128/msphere.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair. The YEATS domain is one such reader recognizing both crotonylated and acetylated histones. Here, we performed a detailed structure/function analysis of the Candida albicans YEATS domain reader Yaf9, a subunit of the NuA4 histone acetyltransferase and the SWR1 chromatin remodeling complex. We have previously demonstrated that the homozygous deletion mutant yaf9Δ/Δ displays growth defects and is avirulent in mice. Here we show that a YEATS domain mutant expected to inactivate Yaf9's chromatin binding does not display strong phenotypes in vitro, nor during infection of immune cells or in a mouse systemic infection model, with only a minor virulence reduction in vivo. In contrast to the YEATS domain mutation, deletion of the C-terminal domain of Yaf9, a protein-protein interaction module necessary for its interactions with SWR1 and NuA4, phenocopies the null mutant. This shows that the C-terminal domain is essential for Yaf9 roles in vitro and in vivo, including C. albicans virulence. Our study informs on the strategies for therapeutic targeting of Yaf9, showing that approaches taken for the mammalian YEATS domains by disrupting their chromatin binding might not be effective in C. albicans, and provides a foundation for studying YEATS proteins in human fungal pathogens.IMPORTANCEThe scarcity of available antifungal drugs and rising resistance demand the development of therapies with new modes of action. In this context, chromatin regulation may be a target for novel antifungal therapeutics. To realize this potential, we must better understand the roles of chromatin regulators in fungal pathogens. Toward this goal, here, we studied the YEATS domain chromatin reader Yaf9 in Candida albicans. Yaf9 uses the YEATS domain for chromatin binding and a C-terminal domain to interact with chromatin remodeling complexes. By constructing mutants in these domains and characterizing their phenotypes, our data indicate that the Yaf9 YEATS domain might not be a suitable therapeutic drug target. Instead, the Yaf9 C-terminal domain is critical for C. albicans virulence. Collectively, our study informs how a class of chromatin regulators performs their cellular and pathogenesis roles in C. albicans and reveals strategies to inhibit them.
Collapse
Affiliation(s)
- Tricia L. Lo
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Qi Wang
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Joshua Nickson
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Bryce J. W. van Denderen
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | | | - Her Xiang Chai
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Gavin J. Knott
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
23
|
Yang KZ, Wang M, Gao MY, Wang YT, Zhang ZL. Dynamic selection of high-affinity aptamers using a magnetically activated continuous deflection microfluidic chip. Chem Commun (Camb) 2024; 60:2772-2775. [PMID: 38353965 DOI: 10.1039/d4cc00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
To accelerate the discovery of high-affinity aptamers, a magnetically activated continuous deflection (MACD) chip was designed. The MACD chip could achieve dynamic selection in a continuous flow, which meant that the binding and separation were carried out consecutively. Dynamic selection could make selection efficient. Low-affinity sequences could be eluted in time and high-affinity sequences could be enriched via dynamic selection. The stringency of the conditions could be further increased by lowering the target concentration in the dynamic selection. Finally, a C.al3 aptamer with high-affinity and high-specificity for Candida albicans (C. albicans) was obtained through six rounds of selection. Its dissociation constant (Kd) was 7.9 nM. This demonstrated that dynamic selection using a MACD chip was an effective method for high-affinity aptamer selection.
Collapse
Affiliation(s)
- Ke-Zhu Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Meng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Ming-Yue Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yong-Tao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
24
|
Chávez-Tinoco M, García-Ortega LF, Mancera E. Genetic modification of Candida maltosa, a non-pathogenic CTG species, reveals EFG1 function. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001447. [PMID: 38456839 PMCID: PMC10999747 DOI: 10.1099/mic.0.001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Candida maltosa is closely related to important pathogenic Candida species, especially C. tropicalis and C. albicans, but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of Candida species. Here, we generated a cohesive assembly of the C. maltosa genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with C. albicans and C. tropicalis revealed a substantial reduction in the total number of genes in C. maltosa. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in C. maltosa. To be able to edit the genome of C. maltosa we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic Candida species. As a proof of concept, we generated gene knockouts of EFG1, a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in C. albicans and C. tropicalis. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in C. maltosa, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using C. maltosa for comparative and evolutionary studies at a molecular level.
Collapse
Affiliation(s)
- Marco Chávez-Tinoco
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Luis F. García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Eugenio Mancera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
25
|
Sprague JL, Schille TB, Allert S, Trümper V, Lier A, Großmann P, Priest EL, Tsavou A, Panagiotou G, Naglik JR, Wilson D, Schäuble S, Kasper L, Hube B. Candida albicans translocation through the intestinal epithelial barrier is promoted by fungal zinc acquisition and limited by NFκB-mediated barrier protection. PLoS Pathog 2024; 20:e1012031. [PMID: 38427950 PMCID: PMC10907035 DOI: 10.1371/journal.ppat.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Jakob L. Sprague
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Tim B. Schille
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Adrian Lier
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Peter Großmann
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Gianni Panagiotou
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
26
|
Xiong J, Wang L, Feng Z, Hang S, Yu J, Feng Y, Lu H, Jiang Y. Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to Candida albicans. Antioxidants (Basel) 2024; 13:223. [PMID: 38397821 PMCID: PMC10886025 DOI: 10.3390/antiox13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against C. albicans presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and H2O2) by suppressing the response of C. albicans to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the Galleria mellonella infection model. These findings provide evidence that targeting the oxidative stress response of C. albicans and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
27
|
Cui H, Yang D, Gong S, Zhang Y, Dong B, Su C, Yang L, Lu Y. The transcription factor Ofi1 is critical for white-opaque switching in natural MTLa/α isolates of Candida albicans. Mol Microbiol 2024; 121:275-290. [PMID: 38167837 DOI: 10.1111/mmi.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Candida albicans, an opportunistic fungal pathogen, is able to switch between two distinct cell types: white and opaque. While white-to-opaque switching is typically repressed by the a1/α2 heterodimer in MTLa/α cells, it was recently reported that switching can also occur in some natural MTLa/α strains under certain environmental conditions. However, the regulatory program governing white-opaque switching in MTLa/α cells is not fully understood. Here, we collected 90 clinical isolates of C. albicans, 16 of which possess the ability to form opaque colonies. Among the known regulators implicated in white-opaque switching, only OFI1 exhibited significantly higher expression in these 16 strains compared to the reference strain SC5314. Importantly, ectopic expression of OFI1 in both clinical isolates and laboratory strains promoted switching frequency even in the absence of N-acetylglucosamine and high CO2 , the optimal condition for white-to-opaque switching in MTLa/α strains. Deleting OFI1 resulted in a reduction in opaque-formation frequency and the stability of the opaque cell in MTLa/α cells. Ofi1 binds to the promoters of WOR1 and WOR3 to induce their expression, which facilitates white-to-opaque switching. Ofi1 is conserved across the CTG species. Altogether, our study reported the identification of a transcription factor Ofi1 as the critical regulator that promotes white-to-opaque switching in natural MTLa/α isolates of C. albicans.
Collapse
Affiliation(s)
- Hao Cui
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Dandan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shengwei Gong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yaling Zhang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bin Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Lu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Banerjee A, Kang CY, An M, Koff BB, Sunder S, Kumar A, Tenuta LMA, Stockbridge RB. Fluoride export is required for competitive fitness of pathogenic microorganisms in dental biofilm models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576223. [PMID: 38293214 PMCID: PMC10827179 DOI: 10.1101/2024.01.18.576223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride, but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time, and biochemical purification the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms, and that S. mutans is especially susceptible to fluoride toxicity.
Collapse
Affiliation(s)
- Aditya Banerjee
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - B. Ben Koff
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Randy B. Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
MacAlpine J, Liu Z, Hossain S, Whitesell L, Robbins N, Cowen LE. DYRK-family kinases regulate Candida albicans morphogenesis and virulence through the Ras1/PKA pathway. mBio 2023; 14:e0218323. [PMID: 38015416 PMCID: PMC10746247 DOI: 10.1128/mbio.02183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Candida albicans is an opportunistic human fungal pathogen that frequently causes life-threatening infections in immunocompromised individuals. To cause disease, the fungus employs several virulence traits, including its ability to transition between yeast and filamentous states. Previous work identified a role for the kinase Yak1 in regulating C. albicans filamentation. Here, we demonstrate that Yak1 regulates morphogenesis through the canonical cAMP/PKA pathway and that this regulation is environmentally contingent, as host-relevant concentrations of CO2 bypass the requirement of Yak1 for C. albicans morphogenesis. We show a related kinase, Pom1, is important for filamentation in the absence of Yak1 under these host-relevant conditions, as deletion of both genes blocked filamentous growth under all conditions tested. Finally, we demonstrate that Yak1 is required for filamentation in a mouse model of C. albicans dermatitis using genetic and pharmacological approaches. Overall, our results expand our understanding of how Yak1 regulates an important virulence trait in C. albicans.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Case NT, Westman J, Hallett MT, Plumb J, Farheen A, Maxson ME, MacAlpine J, Liston SD, Hube B, Robbins N, Whitesell L, Grinstein S, Cowen LE. Respiration supports intraphagosomal filamentation and escape of Candida albicans from macrophages. mBio 2023; 14:e0274523. [PMID: 38038475 PMCID: PMC10746240 DOI: 10.1128/mbio.02745-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Candida albicans is a leading human fungal pathogen that often causes life-threatening infections in immunocompromised individuals. The ability of C. albicans to transition between yeast and filamentous forms is key to its virulence, and this occurs in response to many host-relevant cues, including engulfment by host macrophages. While previous efforts identified C. albicans genes required for filamentation in other conditions, the genes important for this morphological transition upon internalization by macrophages remained largely enigmatic. Here, we employed a functional genomic approach to identify genes that enable C. albicans filamentation within macrophages and uncovered a role for the mitochondrial ribosome, respiration, and the SNF1 AMP-activated kinase complex. Additionally, we showed that glucose uptake and glycolysis by macrophages support C. albicans filamentation. This work provides insights into the metabolic dueling that occurs during the interaction of C. albicans with macrophages and identifies vulnerabilities in C. albicans that could serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Nicola T. Case
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Johannes Westman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jonathan Plumb
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aiman Farheen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sean D. Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Douglas LM, Min K, Konopka JB. Candida albicans resistance to hypochlorous acid. mBio 2023; 14:e0267123. [PMID: 38032204 PMCID: PMC10746268 DOI: 10.1128/mbio.02671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Hypochlorous acid (HOCl), commonly known as bleach, is generated during the respiratory burst by phagocytes and is a key weapon used to attack Candida albicans and other microbial pathogens. However, the effects of hypochlorous acid on C. albicans have been less well studied than H2O2, a different type of oxidant produced by phagocytes. HOCl kills C. albicans more effectively than H2O2 and results in disruption of the plasma membrane. HOCl induced a very different transcriptional response than H2O2, and there were significant differences in the susceptibility of mutant strains of C. albicans to these oxidants. Altogether, these results indicate that HOCl has distinct effects on cells that could be targeted in novel therapeutic strategies to enhance the killing of C. albicans and other pathogens.
Collapse
Affiliation(s)
- Lois M. Douglas
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Kyunghun Min
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
32
|
Matos GS, Fernandes CM, Del Poeta M. Role of sphingolipids in the host-pathogen interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159384. [PMID: 37673393 PMCID: PMC11218662 DOI: 10.1016/j.bbalip.2023.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity. Here we discuss some of these properties as well as their role in fungal diseases, focusing on the subgroup of glycosphingolipids, as they represent promising molecules for drug discovery and for the development of fungal vaccines.
Collapse
Affiliation(s)
- Gabriel Soares Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | | | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, USA; Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
33
|
Glazier VE, Kramara J, Ollinger T, Solis NV, Zarnowski R, Wakade RS, Kim MJ, Weigel GJ, Liang SH, Bennett RJ, Wellington M, Andes DR, Stamnes MA, Filler SG, Krysan DJ. The Candida albicans reference strain SC5314 contains a rare, dominant allele of the transcription factor Rob1 that modulates filamentation, biofilm formation, and oral commensalism. mBio 2023; 14:e0152123. [PMID: 37737633 PMCID: PMC10653842 DOI: 10.1128/mbio.01521-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Candida albicans is a commensal fungus that colonizes the human oral cavity and gastrointestinal tract but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogeneous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These findings explain, in part, the outlier phenotype of the reference strain and highlight the role heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.
Collapse
Affiliation(s)
| | - Juraj Kramara
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Tomye Ollinger
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Gabriel J. Weigel
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
35
|
Alings F, Scharmann K, Eggers C, Böttcher B, Sokołowski M, Shvetsova E, Sharma P, Roth J, Rashiti L, Glatt S, Brunke S, Leidel SA. Ncs2* mediates in vivo virulence of pathogenic yeast through sulphur modification of cytoplasmic transfer RNA. Nucleic Acids Res 2023; 51:8133-8149. [PMID: 37462076 PMCID: PMC10450187 DOI: 10.1093/nar/gkad564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex.
Collapse
Affiliation(s)
- Fiona Alings
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Karin Scharmann
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ekaterina Shvetsova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Joël Roth
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Leon Rashiti
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Ullah A, Huang Y, Zhao K, Hua Y, Ullah S, Rahman MU, Wang J, Wang Q, Hu X, Zheng L. Characteristics and potential clinical applications of the extracellular vesicles of human pathogenic Fungi. BMC Microbiol 2023; 23:227. [PMID: 37598156 PMCID: PMC10439556 DOI: 10.1186/s12866-023-02945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Collapse
Affiliation(s)
- Amir Ullah
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Kening Zhao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Yuneng Hua
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shafi Ullah
- Department of pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
37
|
Ramírez-Zavala B, Krüger I, Wollner A, Schwanfelder S, Morschhäuser J. The Ypk1 protein kinase signaling pathway is rewired and not essential for viability in Candida albicans. PLoS Genet 2023; 19:e1010890. [PMID: 37561787 PMCID: PMC10443862 DOI: 10.1371/journal.pgen.1010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Andreas Wollner
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Metzner K, O’Meara MJ, Halligan B, Wotring JW, Sexton JZ, O’Meara TR. Imaging-Based Screening Identifies Modulators of the eIF3 Translation Initiation Factor Complex in Candida albicans. Antimicrob Agents Chemother 2023; 67:e0050323. [PMID: 37382550 PMCID: PMC10353439 DOI: 10.1128/aac.00503-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure toward resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC50 values ranging from 0.2 to 150 μM. Multiple compounds showed a phenyl sulfone chemotype, prompting further analysis. Of these phenyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans.
Collapse
Affiliation(s)
- Katura Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin Halligan
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jesse W. Wotring
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Glazier VE, Kramara J, Ollinger T, Solis NV, Zarnowski R, Wakade RS, Kim MJ, Weigel GJ, Liang SH, Bennett RJ, Wellington M, Andes DR, Stamnes MA, Filler SG, Krysan DJ. The Candida albicans reference strain SC5314 contains a rare, dominant allele of the transcription factor Rob1 that modulates biofilm formation and oral commensalism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.17.545405. [PMID: 37398495 PMCID: PMC10312810 DOI: 10.1101/2023.06.17.545405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Candida albicans is a diploid human fungal pathogen that displays significant genomic and phenotypic heterogeneity over a range of virulence traits and in the context of a variety of environmental niches. Here, we show that the effects of Rob1 on biofilm and filamentation virulence traits is dependent on both the specific environmental condition and the clinical strain of C. albicans . The C. albicans reference strain SC5314 is a ROB1 heterozygote with two alleles that differ by a single nucleotide polymorphism at position 946 resulting in a serine or proline containing isoform. An analysis of 224 sequenced C. albicans genomes indicates that SC5314 is the only ROB1 heterozygote documented to date and that the dominant allele contains a proline at position 946. Remarkably, the ROB1 alleles are functionally distinct and the rare ROB1 946S allele supports increased filamentation in vitro and increased biofilm formation in vitro and in vivo, suggesting it is a phenotypic gain-of-function allele. SC5314 is amongst the most highly filamentous and invasive strains characterized to date. Introduction of the ROB1 946S allele into a poorly filamenting clinical isolate increases filamentation and conversion of an SC5314 laboratory strain to a ROB1 946S homozygote increases in vitro filamentation and biofilm formation. In a mouse model of oropharyngeal infection, the predominant ROB1 946P allele establishes a commensal state while the ROB1 946S phenocopies the parent strain and invades into the mucosae. These observations provide an explanation for the distinct phenotypes of SC5314 and highlight the role of heterozygosity as a driver of C. albicans phenotypic heterogeneity. Importance Candida albicans is a commensal fungus that colonizes human oral cavity and gastrointestinal tracts but also causes mucosal as well as invasive disease. The expression of virulence traits in C. albicans clinical isolates is heterogenous and the genetic basis of this heterogeneity is of high interest. The C. albicans reference strain SC5314 is highly invasive and expresses robust filamentation and biofilm formation relative to many other clinical isolates. Here, we show that SC5314 derivatives are heterozygous for the transcription factor Rob1 and contain an allele with a rare gain-of-function SNP that drives filamentation, biofilm formation, and virulence in a model of oropharyngeal candidiasis. These finding explain, in part, the outlier phenotype of the reference strain and highlight the role of heterozygosity plays in the strain-to-strain variation of diploid fungal pathogens.
Collapse
Affiliation(s)
| | - Juraj Kramara
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Tomye Ollinger
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison WI
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison WI
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, GA
| | - Gabriel J. Weigel
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - David R. Andes
- Department of Medicine, Section of Infectious Disease, University of Wisconsin, Madison WI
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison WI
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City IA
| |
Collapse
|
40
|
Amann V, Kissmann AK, Mildenberger V, Krebs I, Perez-Erviti JA, Martell-Huguet EM, Otero-Gonzalez AJ, Morales-Vicente F, Rodríguez-Castaño GP, Firacative C, Rodríguez A, Ständker L, Weil T, Spellerberg B, Stenger S, Rosenau F. Cm-p5 Peptide Dimers Inhibit Biofilms of Candida albicans Clinical Isolates, C. parapsilosis and Fluconazole-Resistant Mutants of C. auris. Int J Mol Sci 2023; 24:9788. [PMID: 37372935 DOI: 10.3390/ijms24129788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising class of therapeutic biomolecules that show antimicrobial activity against a broad range of microorganisms, including life-threatening pathogens. In contrast to classic AMPs with membrane-disrupting activities, new peptides with a specific anti-biofilm effect are gaining in importance since biofilms could be the most important way of life, especially for pathogens, as the interaction with host tissues is crucial for the full development of their virulence in the event of infection. Therefore, in a previous study, two synthetic dimeric derivatives (parallel Dimer 1 and antiparallel Dimer 2) of the AMP Cm-p5 showed specific inhibition of the formation of Candida auris biofilms. Here we show that these derivatives are also dose-dependently effective against de novo biofilms that are formed by the widespread pathogenic yeasts C. albicans and C. parapsilosis. Moreover, the activity of the peptides was demonstrated even against two fluconazole-resistant strains of C. auris.
Collapse
Affiliation(s)
- Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Vanessa Mildenberger
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Imke Krebs
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julio A Perez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba
| | - Ernesto M Martell-Huguet
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Anselmo J Otero-Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba
| | - Fidel Morales-Vicente
- Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, La Habana 10600, Cuba
| | - Gina P Rodríguez-Castaño
- Vidarium Nutrition, Health and Wellness Research Center, Grupo Nutresa, Calle 8 sur #50-67, Medellín 050023, Colombia
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Barbara Spellerberg
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
41
|
Wildeman AS, Patel NK, Cormack BP, Culotta VC. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog 2023; 19:e1011478. [PMID: 37363924 PMCID: PMC10328360 DOI: 10.1371/journal.ppat.1011478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.
Collapse
Affiliation(s)
- Asia S Wildeman
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Naisargi K Patel
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
42
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
43
|
Metzner K, O’Meara MJ, Halligan B, Wotring JW, Sexton JZ, O’Meara TR. Imaging-based screening identifies modulators of the eIF3 translation initiation factor complex in Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537517. [PMID: 37131825 PMCID: PMC10153179 DOI: 10.1101/2023.04.19.537517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure towards resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC 50 values ranging from 0.2 to 150 µM. Multiple compounds showed a phenyl vinyl sulfone chemotype, prompting further analysis. Of these phenyl vinyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans .
Collapse
Affiliation(s)
- Katura Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew J O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Halligan
- University of Michigan Center for Drug Repurposing, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jesse W. Wotring
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA
- University of Michigan Center for Drug Repurposing, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA
- University of Michigan Center for Drug Repurposing, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Teresa R O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Lee Y, Hossain S, MacAlpine J, Robbins N, Cowen LE. Functional genomic analysis of Candida albicans protein kinases reveals modulators of morphogenesis in diverse environments. iScience 2023; 26:106145. [PMID: 36879823 PMCID: PMC9984565 DOI: 10.1016/j.isci.2023.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is a leading cause of mycotic infection. The ability to transition between yeast and filamentous forms is critical to C. albicans virulence and complex signaling pathways regulate this process. Here, we screened a C. albicans protein kinase mutant library in six environmental conditions to identify regulators of morphogenesis. We identified the uncharacterized gene orf19.3751 as a negative regulator of filamentation and follow-up investigations implicated a role for orf19.3751 in cell cycle regulation. We also uncovered a dual role for the kinases Ire1 and protein kinase A (Tpk1 and Tpk2) in C. albicans morphogenesis, specifically as negative regulators of wrinkly colony formation on solid medium but positive regulators of filamentation in liquid medium. Further analyses suggested Ire1 modulates morphogenesis in both media states in part through the transcription factor Hac1 and in part through independent mechanisms. Overall, this work provides insights into the signaling governing morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
45
|
La Bella AA, Andersen MJ, Gervais NC, Molina JJ, Molesan A, Stuckey PV, Wensing L, Nobile CJ, Shapiro RS, Santiago-Tirado FH, Flores-Mireles AL. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection. SCIENCE ADVANCES 2023; 9:eade7689. [PMID: 36867691 PMCID: PMC9984171 DOI: 10.1126/sciadv.ade7689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections (HAIs). As 20 to 50% of hospitalized patients receive catheters, CAUTIs are one of the most common HAIs, resulting in increased morbidity, mortality, and health care costs. Candida albicans is the second most common CAUTI uropathogen, yet relative to its bacterial counterparts, little is known about how fungal CAUTIs are established. Here, we show that the catheterized bladder environment induces Efg1- and fibrinogen (Fg)-dependent biofilm formation that results in CAUTI. In addition, we identify the adhesin Als1 as the critical fungal factor for C. albicans Fg-urine biofilm formation. Furthermore, we show that in the catheterized bladder, a dynamic and open system, both filamentation and attachment are required, but each by themselves are not sufficient for infection. Our study unveils the mechanisms required for fungal CAUTI establishment, which may aid in the development of future therapies to prevent these infections.
Collapse
Affiliation(s)
- Alyssa Ann La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Nicholas C. Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Alex Molesan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
46
|
Human Tooth as a Fungal Niche: Candida albicans Traits in Dental Plaque Isolates. mBio 2023; 14:e0276922. [PMID: 36602308 PMCID: PMC9973264 DOI: 10.1128/mbio.02769-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Candida albicans, a fungus typically found in the mucosal niche, is frequently detected in biofilms formed on teeth (dental plaque) of toddlers with severe childhood caries, a global public health problem that causes rampant tooth decay. However, knowledge about fungal traits on the tooth surface remains limited. Here, we assess the phylogeny, phenotype, and interkingdom interactions of C. albicans isolated from plaque of diseased toddlers and compare their properties to reference strains, including 529L (mucosal isolate). C. albicans isolates exhibit broad phenotypic variations, but all display cariogenic traits, including high proteinase activity, acidogenicity, and acid tolerance. Unexpectedly, we find distinctive variations in filamentous growth, ranging from hyphal defective to hyperfilamentous. We then investigate the ability of tooth isolates to form interkingdom biofilms with Streptococcus mutans (cariogenic partner) and Streptococcus gordonii (mucosal partner). The hyphal-defective isolate lacks cobinding with S. gordonii, but all C. albicans isolates develop robust biofilms with S. mutans irrespective of their filamentation state. Moreover, either type of C. albicans (hyphae defective or hyperfilamentous) enhances sucrose metabolism and biofilm acidogenicity, creating highly acidic environmental pH (<5.5). Notably, C. albicans isolates show altered transcriptomes associated with pH, adhesion, and cell wall composition (versus reference strains), further supporting niche-associated traits. Our data reveal that C. albicans displays distinctive adaptive mechanisms on the tooth surface and develops interactions with pathogenic bacteria while creating an acidogenic state regardless of fungal morphology, contrasting with interkingdom partnerships in mucosal infections. Human tooth may provide new insights into fungal colonization/adaptation, interkingdom biofilms, and contributions to disease pathogenesis. IMPORTANCE Severe early childhood caries is a widespread global public health problem causing extensive tooth decay and systemic complications. Candida albicans, a fungus typically found in mucosal surfaces, is frequently detected in dental plaque formed on teeth of diseased toddlers. However, the clinical traits of C. albicans isolated from tooth remain underexplored. Here, we find that C. albicans tooth isolates exhibit unique biological and transcriptomic traits. Notably, interkingdom biofilms with S. mutans can be formed irrespective of their filamentation state. Furthermore, tooth isolates commonly share dental caries-promoting functions, including acidogenesis, proteolytic activity, and enhanced sugar metabolism, while displaying increased expression of pH-responsive and adhesion genes. Our findings reveal that C. albicans colonizing human teeth displays distinctive adaptive mechanisms to mediate interkingdom interactions associated with a disease-causing state on a mineralized surface, providing new insights into Candida pathobiology and its role in a costly pediatric disease.
Collapse
|
47
|
Wakade RS, Ristow LC, Wellington M, Krysan DJ. Intravital imaging-based genetic screen reveals the transcriptional network governing Candida albicans filamentation during mammalian infection. eLife 2023; 12:e85114. [PMID: 36847358 PMCID: PMC9995110 DOI: 10.7554/elife.85114] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is one of the most common human fungal pathogens. C. albicans pathogenesis is tightly linked to its ability to under a morphogenetic transition from typically budding yeast to filamentous forms of hyphae and pseudohyphae. Filamentous morphogenesis is the most intensively studied C. albicans virulence traits; however, nearly all of these studies have been based on in vitro induction of filamentation. Using an intravital imaging assay of filamentation during mammalian (mouse) infection, we have screened a library of transcription factor mutants to identify those that modulate both the initiation and maintenance of filamentation in vivo. We coupled this initial screen with genetic interaction analysis and in vivo transcription profiling to characterize the transcription factor network governing filamentation in infected mammalian tissue. Three core positive (Efg1, Brg1, and Rob1) and two core negative regulators (Nrg1 and Tup1) of filament initiation were identified. No previous systematic analysis of genes affecting the elongation step has been reported and we found that large set of transcription factors affect filament elongation in vivo including four (Hms1, Lys14, War1, Dal81) with no effect on in vitro elongation. We also show that the gene targets of initiation and elongation regulators are distinct. Genetic interaction analysis of the core positive and negative regulators revealed that the master regulator Efg1 primarily functions to mediate relief of Nrg1 repression and is dispensable for expression of hypha-associated genes in vitro and in vivo. Thus, our analysis not only provide the first characterization of the transcriptional network governing C. albicans filamentation in vivo but also revealed a fundamentally new mode of function for Efg1, one of the most widely studied C. albicans transcription factors.
Collapse
Affiliation(s)
- Rohan S Wakade
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
- Departments of Microbiology and Immunology, Carver College of Medicine, University of IowaIowa CityUnited States
- Molecular Physiology and Biophysics, Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
48
|
Zeng L, Huang Y, Tan J, Peng J, Hu N, Liu Q, Cao Y, Zhang Y, Chen J, Huang X. QCR7 affects the virulence of Candida albicans and the uptake of multiple carbon sources present in different host niches. Front Cell Infect Microbiol 2023; 13:1136698. [PMID: 36923588 PMCID: PMC10009220 DOI: 10.3389/fcimb.2023.1136698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Candida albicans is a commensal yeast that may cause life-threatening infections. Studies have shown that the cytochrome b-c1 complex subunit 7 gene (QCR7) of C. albicans encodes a protein that forms a component of the mitochondrial electron transport chain complex III, making it an important target for studying the virulence of this yeast. However, to the best of our knowledge, the functions of QCR7 have not yet been characterized. Methods A QCR7 knockout strain was constructed using SN152, and BALb/c mice were used as model animals to determine the role of QCR7 in the virulence of C. albicans. Subsequently, the effects of QCR7 on mitochondrial functions and use of carbon sources were investigated. Next, its mutant biofilm formation and hyphal growth maintenance were compared with those of the wild type. Furthermore, the transcriptome of the qcr7Δ/Δ mutant was compared with that of the WT strain to explore pathogenic mechanisms. Results Defective QCR7 reduced recruitment of inflammatory cells and attenuated the virulence of C. albicans infection in vivo. Furthermore, the mutant influenced the use of multiple alternative carbon sources that exist in several host niches (GlcNAc, lactic acid, and amino acid, etc.). Moreover, it led to mitochondrial dysfunction. Furthermore, the QCR7 knockout strain showed defects in biofilm formation or the maintenance of filamentous growth. The overexpression of cell-surface-associated genes (HWP1, YWP1, XOG1, and SAP6) can restore defective virulence phenotypes and the carbon-source utilization of qcr7Δ/Δ. Conclusion This study provides new insights into the mitochondria-based metabolism of C. albicans, accounting for its virulence and the use of variable carbon sources that promote C. albicans to colonize host niches.
Collapse
Affiliation(s)
- Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yongcheng Huang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Junjun Tan
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Peng
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Niya Hu
- The First Affiliated Hospital of Nanchang University, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - YanLi Cao
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuping Zhang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Junzhu Chen
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- The First Affiliated Hospital of Nanchang University, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
49
|
Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans. mBio 2023; 14:e0343422. [PMID: 36809010 PMCID: PMC10128014 DOI: 10.1128/mbio.03434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The ability to transition between yeast and filamentous growth states is critical for virulence of the leading human fungal pathogen Candida albicans. Large-scale genetic screens have identified hundreds of genes required for this morphological switch, but the mechanisms by which many of these genes orchestrate this developmental transition remain largely elusive. In this study, we characterized the role of Ent2 in governing morphogenesis in C. albicans. We showed that Ent2 is required for filamentous growth under a wide range of inducing conditions and is also required for virulence in a mouse model of systemic candidiasis. We found that the epsin N-terminal homology (ENTH) domain of Ent2 enables morphogenesis and virulence and does so via a physical interaction with the Cdc42 GTPase-activating protein (GAP) Rga2 and regulation of its localization. Further analyses revealed that overexpression of the Cdc42 effector protein Cla4 can overcome the requirement for the ENTH-Rga2 physical interaction, indicating that Ent2 functions, at least in part, to enable proper activation of the Cdc42-Cla4 signaling pathway in the presence of a filament-inducing cue. Overall, this work characterizes the mechanism by which Ent2 regulates hyphal morphogenesis in C. albicans, unveils the importance of this factor in enabling virulence in an in vivo model of systemic candidiasis and adds to the growing understanding of the genetic control of a key virulence trait. IMPORTANCE Candida albicans is a leading human fungal pathogen that can cause life-threatening infections in immunocompromised individuals, with mortality rates of ~40%. The ability of this organism to grow in both yeast and filamentous forms is critical for the establishment of systemic infection. Genomic screens have identified many genes required for this morphological transition, yet our understanding of the mechanisms that regulate this key virulence trait remains incomplete. In this study, we characterized Ent2 as a core regulator of C. albicans morphogenesis. We show that Ent2 regulates hyphal morphogenesis through an interaction between its ENTH domain and the Cdc42 GAP, Rga2, which signals through the Cdc42-Cla4 signaling pathway. Finally, we show that the Ent2 protein, and specifically its ENTH domain, is required for virulence in a mouse model of systemic candidiasis. Overall, this work identifies Ent2 as a key regulator of filamentation and virulence in C. albicans.
Collapse
|
50
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|