1
|
Xing Y, Tan C, Liu Z, Liu Y, Liu S, Wang G, Zhong Y. Resveratrol as a BCL6 natural inhibitor suppresses germinal center derived Non-Hodgkin lymphoma cells growth. J Nat Med 2025; 79:399-411. [PMID: 39815148 PMCID: PMC11880072 DOI: 10.1007/s11418-024-01873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/21/2024] [Indexed: 01/18/2025]
Abstract
Non-Hodgkin lymphomas (NHL), including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and follicular lymphoma (FL), predominantly arise from B cells undergoing germinal center (GC) reactions. The transcriptional repressor B-cell lymphoma 6 (BCL6) is indispensable for GC formation and contributes to lymphomagenesis via its BTB domain-mediated suppression of target genes. Dysregulation of BCL6 underpins the pathogenesis of GC-derived NHL. While pharmacological targeting the BCL6-BTB domain has shown therapeutic promise, natural product-based inhibitors remain underexplored. In this study, resveratrol, a polyphenolic compound derived from grapes, was identified as a potent BCL6 inhibitor through a comprehensive screen of traditional Chinese medicine monomers using Homogeneous Time-Resolved Fluorescence (HTRF) assay. As a BCL6 natural inhibitor, resveratrol effectively disrupted the BCL6/SMRT interaction, reactivated suppressed gene expression, and inhibited the proliferation of GC-derived NHL cells. It also exhibited synergistic efficacy when combined with EZH2 and PRMT5 inhibitors. In vivo, resveratrol suppressed GC formation, reduced follicular helper T-cell frequencies, impaired class-switch recombination, and disrupted immunoglobulin affinity maturation. Furthermore, it markedly inhibited the progression of GC-derived NHL in animal models. Our findings demonstrate that resveratrol functions as a natural BCL6 inhibitor with significant therapeutic potential for the treatment of GC-derived NHL.
Collapse
Affiliation(s)
- Yajing Xing
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Chunbin Tan
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Zhoujiang Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Yanqi Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Yadong Zhong
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
- College of Public Health, Chongqing Medical University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H, Downs-Canner S, Yewdell WT, Sun JC, Chaudhuri J. IL-21 shapes the B cell response in a context-dependent manner. Cell Rep 2025; 44:115190. [PMID: 39792552 DOI: 10.1016/j.celrep.2024.115190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
The T-cell-derived cytokine IL-21 is crucial for germinal center (GC) responses, but its precise role in B cell function has remained elusive. Using IL-21 receptor (Il21r) conditional knockout mice and ex vivo culture systems, we demonstrate that IL-21 has dual effects on B cells. While IL-21 induced apoptosis in a STAT3-dependent manner in naive B cells, it promoted the robust proliferation of pre-activated B cells, particularly IgG1+ B cells. In vivo, B-cell-specific Il21r deletion impaired IgG1 responses post-immunization and disrupted progression from pre-GC to GC states. Although Il21r deficiency did not affect the proportion of IgG1+ cells among GC B cells, it greatly diminished the proportion of IgG1+ cells among the plasmablast/plasma cell population. Collectively, our findings suggest that IL-21 serves as a critical regulator of B cell fates, influencing B cell apoptosis and proliferation in a context-dependent manner.
Collapse
Affiliation(s)
- Youngjun Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| | - Francesca Manara
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kalina T Belcheva
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Kanelly Reyes
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyunu Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | | | - William T Yewdell
- Department of Immunology Discovery, Genentech Inc, South San Francisco, CA 94080, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA.
| |
Collapse
|
3
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
4
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 PMCID: PMC11629774 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman Sarott
- Department of Chemical and Systems Biology, Stanford University
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University
| | - Basel Karim
- Department of Chemistry, Stanford University
| | | | - Haopeng Yang
- Department of Lymphoma-Myeloma, MD Anderson Cancer Center
| | | | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Gerald R. Crabtree
- Department of Pathology, Stanford University
- Department Developmental Biology, Stanford University
| | | |
Collapse
|
5
|
Wang J, Tian L, Zhang W, Tang S, Zhao W, Guo Y, Wu C, Lin Y, Ke X, Jing H. Specific Mutation Predict Relapse/Refractory Diffuse Large B-Cell Lymphoma. J Blood Med 2024; 15:407-419. [PMID: 39279878 PMCID: PMC11401521 DOI: 10.2147/jbm.s471639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background The application of rituximab has significantly enhanced the overall survival rates in patients with diffuse large B-cell lymphoma (DLBCL). Regrettably, a significant number of patients still progress to relapse/refractory DLBCL (rrDLBCL). Methods Herein, we employed targeted sequencing of 55 genes to investigate if gene mutations could predict the progression to rrDLBCL. Additionally, we compared the mutation profiles at the time of DLBCL diagnosis with those found in rrDLBCL cases. Results Our findings highlighted significantly elevated mutation frequencies of TP53, MEF2B and CD58 in diagnostic biopsies from patients who progressed to relapse or refractory disease, with CD58 mutations exclusively observed in the rrDLBCL group. In assessing the predictive power of mutation profiles for treatment responses in primary DLBCL patients, we found that the frequency of CARD11 mutations was substantially higher in non-response group as compared with those who responded to immunochemotherapy. In addition, we revealed mutations in HIST2H2AB, BCL2, NRXN3, FOXO1, HIST1H1C, LYN and TBL1XR1 genes were only detected in initial diagnostic biopsies, mutations in the EBF1 gene were solely detected in the rrDLBCL patients. Conclusion Collectively, this study elucidates some of the genetic mechanisms contributing to the progression of rrDLBCL and suggests that the presence of CD58 mutations might serve as a powerful predictive marker for relapse/refractory outcomes in primary DLBCL patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lei Tian
- Health Management Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Shuhan Tang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Wei Zhao
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yu Guo
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Chaoling Wu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yuansheng Lin
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiaoyan Ke
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| |
Collapse
|
6
|
Yu C, Shen Q, Holmes AB, Mo T, Tosato A, Soni RK, Corinaldesi C, Koul S, Pasqualucci L, Hussein S, Forouhar F, Dalla-Favera R, Basso K. MEF2B C-terminal mutations enhance transcriptional activity and stability to drive B cell lymphomagenesis. Nat Commun 2024; 15:7195. [PMID: 39179580 PMCID: PMC11343756 DOI: 10.1038/s41467-024-51644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The myocyte enhancer factor 2B (MEF2B) transcription factor is frequently mutated in germinal center (GC)-derived B-cell lymphomas. Its ammino (N)-terminal mutations drive lymphomagenesis by escaping interaction with transcriptional repressors, while the function of carboxy (C)-terminal mutations remains to be elucidated. Here, we show that MEF2B C-tail is physiologically phosphorylated at specific residues and phosphorylation at serine (S)324 is impaired by lymphoma-associated mutations. Lack of phosphorylation at S324 enhances the interaction of MEF2B with the SWI/SNF chromatin remodeling complex, leading to higher transcriptional activity. In addition, these mutants show an increased protein stability due to impaired interaction with the CUL3/KLHL12 ubiquitin complex. Mice expressing a phosphorylation-deficient lymphoma-associated MEF2B mutant display GC enlargement and develop GC-derived lymphomas, when crossed with Bcl2 transgenic mice. These results unveil converging mechanisms of action for a diverse spectrum of MEF2B mutations, all leading to its dysregulation and GC B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Anna Tosato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College, City University of New York, Bayside, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
- Departments of Microbiology & Immunology, Genetics & Development, Columbia University, New York, NY, USA.
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H, Downs-Canner S, Yewdell WT, Sun JC, Chaudhuri J. IL-21 Shapes the B Cell Response in a Context-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.600808. [PMID: 39026745 PMCID: PMC11257567 DOI: 10.1101/2024.07.13.600808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The cytokine interleukin-21 (IL-21) is a pivotal T cell-derived signal crucial for germinal center (GC) responses, but the precise mechanisms by which IL-21 influences B cell function remain elusive. Here, we investigated the B cell-intrinsic role of IL-21 signaling by employing a novel IL-21 receptor ( Il21r ) conditional knock-out mouse model and ex vivo culture systems and uncovered a surprising duality of IL-21 signaling in B cells. While IL-21 stimulation of naïve B cells led to Bim-dependent apoptosis, it promoted robust proliferation of pre-activated B cells, particularly class-switched IgG1 + B cells ex vivo . Consistent with this, B cell-specific deletion of Il21r led to a severe defect in IgG1 responses in vivo following immunization. Intriguingly, Il21r -deleted B cells are significantly impaired in their ability to transition from a pre-GC to a GC state following immunization. Although Il21r -deficiency did not affect the proportion of IgG1 + B cells among GC B cells, it greatly diminished the proportion of IgG1 + B cells among the plasmablast/plasma cell population. Collectively, our data suggest that IL-21 serves as a critical regulator of B cell fates, influencing B cell apoptosis and proliferation in a context-dependent manner.
Collapse
|
8
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
9
|
Liu J, Zhang H. Zinc Finger and BTB Domain-Containing 20: A Newly Emerging Player in Pathogenesis and Development of Human Cancers. Biomolecules 2024; 14:192. [PMID: 38397429 PMCID: PMC10887282 DOI: 10.3390/biom14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc finger and BTB domain-containing 20 (ZBTB20), which was initially identified in human dendritic cells, belongs to a family of transcription factors (TFs) with an N-terminal BTB domain and one or more C-terminal DNA-binding zinc finger domains. Under physiological conditions, ZBTB20 acts as a transcriptional repressor in cellular development and differentiation, metabolism, and innate immunity. Interestingly, multiple lines of evidence from mice and human systems have revealed the importance of ZBTB20 in the pathogenesis and development of cancers. ZBTB20 is not only a hotspot of genetic variation or fusion in many types of human cancers, but also a key TF or intermediator involving in the dysregulation of cancer cells. Given the diverse functions of ZBTB20 in both health and disease, we herein summarize the structure and physiological roles of ZBTB20, with an emphasis on the latest findings on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China;
| |
Collapse
|
10
|
Wolpe AG, Luse MA, Baryiames C, Schug WJ, Wolpe JB, Johnstone SR, Dunaway LS, Juśkiewicz ZJ, Loeb SA, Askew Page HR, Chen YL, Sabapathy V, Pavelec CM, Wakefield B, Cifuentes-Pagano E, Artamonov MV, Somlyo AV, Straub AC, Sharma R, Beier F, Barrett EJ, Leitinger N, Pagano PJ, Sonkusare SK, Redemann S, Columbus L, Penuela S, Isakson BE. Pannexin-3 stabilizes the transcription factor Bcl6 in a channel-independent manner to protect against vascular oxidative stress. Sci Signal 2024; 17:eadg2622. [PMID: 38289985 PMCID: PMC11960805 DOI: 10.1126/scisignal.adg2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.
Collapse
Affiliation(s)
- Abigail G. Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Melissa A. Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Wyatt J. Schug
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jacob B. Wolpe
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Luke S. Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zuzanna J. Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Skylar A. Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Henry R. Askew Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vikram Sabapathy
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caitlin M. Pavelec
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugenia Cifuentes-Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mykhaylo V. Artamonov
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V. Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam C. Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugene J. Barrett
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Patrick J. Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Oncology (Division of Experimental Oncology), Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
11
|
Gopalakrishnan V, Roy U, Srivastava S, Kariya KM, Sharma S, Javedakar SM, Choudhary B, Raghavan SC. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell Mol Life Sci 2024; 81:21. [PMID: 38196006 PMCID: PMC11072719 DOI: 10.1007/s00018-023-05042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India
- Department of Zoology, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, 680121, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Khyati M Kariya
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Saniya M Javedakar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
12
|
Konstantakopoulou C, Verykokakis M. Key Functions of the Transcription Factor BCL6 During T-Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:79-94. [PMID: 39017840 DOI: 10.1007/978-3-031-62731-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
T lymphocytes consist of several subtypes with distinct functions that help to coordinate an immune response. They are generated within the thymus through a sequential developmental pathway that produces subsets with diverse antigen specificities and functions. Naïve T cells populate peripheral lymphoid organs and are activated upon foreign antigen encounter. While most T cells die soon after activation, a memory population survives and is able to quickly respond to secondary challenges, thus providing long-term immunity to the host. Although cell identity is largely stable and is instructed by cell-specific transcriptional programs, cells may change their transcriptional profiles to be able to adapt to new functionalities. Central to these dynamic processes are transcription factors, which control cell fate decisions, through direct regulation of gene expression. In this book chapter, we review the functions of the transcription factor B-cell lymphoma 6 (BCL6), which directs the fate of several lymphocyte subsets, including helper, cytotoxic, and innate-like T cells, but can also be involved in lymphomagenesis in humans.
Collapse
Affiliation(s)
- Chara Konstantakopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
- Department of Antibody Research Materials, Genmab B.V., Utrecht, The Netherlands
| | - Mihalis Verykokakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece.
| |
Collapse
|
13
|
Khatri JK, Tahboub I, Anwar K, Masoudi M, Graffeo V, Jamil MO. Diagnosis of Angioimmunoblastic T Cell Lymphoma After Receiving First Dose of Pfizer/BioNTech (BNT162b2) Vaccine: A Case Report. J Investig Med High Impact Case Rep 2024; 12:23247096241231645. [PMID: 38761096 PMCID: PMC11102676 DOI: 10.1177/23247096241231645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 05/20/2024] Open
Abstract
Pfizer/BioNTech (BNT162b2) is a messenger RNA (mRNA) vaccine that is highly effective in preventing the most severe outcomes of COVID-19 infection. Nucleoside-modified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines induce effective stimulation of T follicular helper (TFH) cells, leading to a robust germinal center B cell response. Side effects from the BNT162b2 vaccination, including significant lymphadenopathy, have been reported previously. Here, we present a case of angioimmunoblastic lymphoma (AITL), a rare, peripheral T-cell lymphoma with RHOA-G17v-mutated gene developing in a patient following BNT162B2 vaccine with a plausible explanation. A 60-year-old Asian female received her first dose of Pfizer BNT162B2 mRNA vaccine in August 2021. Right after her vaccination, she developed right axillary lymphadenopathy. She received her second vaccine dose in September 2021. Thereafter, she developed lymph node (LN) enlargement in her neck and groin. She underwent left posterior cervical and left groin LN excisional biopsy in April 2022 due to persistent palpable lymphadenopathy. Biopsy results then demonstrated benign follicular hyperplasia. For progressive B symptoms, a right axillary LN biopsy was done, which demonstrated AITL, with molecular studies revealing mutation in TET-2, IDH-2, and RHOA-G17v genes. Progression of AITL following BNT162B2 mRNA vaccine is limited in literature. Our case demonstrates a plausible correlation between the diagnosis of AITL following mRNA vaccination due to the malignant transformation of the TFH cells in patients who have a predisposing mutation of RHOA-17v. Given the rarity of AITL and the heterogeneity of molecular findings, more studies are needed to establish such an association.
Collapse
|
14
|
Hanson CH, Henry B, Andhare P, Lin FJ, Pak H, Turner JS, Adams LJ, Liu T, Fremont DH, Ellebedy AH, Laidlaw BJ. CD62L expression marks a functionally distinct subset of memory B cells. Cell Rep 2023; 42:113542. [PMID: 38060451 PMCID: PMC10842417 DOI: 10.1016/j.celrep.2023.113542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
The memory B cell response consists of phenotypically distinct subsets that differ in their ability to respond upon antigen re-encounter. However, the pathways regulating the development and function of memory B cell subsets are poorly understood. Here, we show that CD62L and CD44 are progressively expressed on mouse memory B cells and identify transcriptionally and functionally distinct memory B cell subsets. Bcl6 is important in regulating memory B cell subset differentiation with overexpression of Bcl6 resulting in impaired CD62L+ memory B cell development. Bcl6 regulates memory B cell subset development through control of a network of genes, including Bcl2 and Zeb2. Overexpression of Zeb2 impairs the development of CD62L+ memory B cells. Importantly, CD62L is also differentially expressed on human memory B cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and identifies phenotypically distinct populations. Together, these data indicate that CD62L expression marks functionally distinct memory B cell subsets.
Collapse
Affiliation(s)
- Christopher H Hanson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brittany Henry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pradhnesh Andhare
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Frank J Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley Pak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucas J Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tom Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian J Laidlaw
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Borrowing Transcriptional Kinases to Activate Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563687. [PMID: 37961702 PMCID: PMC10634765 DOI: 10.1101/2023.10.23.563687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protein kinases are disease drivers whose therapeutic targeting traditionally centers on inhibition of enzymatic activity. Here chemically induced proximity is leveraged to convert kinase inhibitors into context-specific activators of therapeutic genes. Bivalent molecules that link ligands of the transcription factor B-cell lymphoma 6 (BCL6) to ATP-competitive inhibitors of cyclin-dependent kinases (CDKs) were developed to re-localize CDK to BCL6-bound loci on chromatin and direct phosphorylation of RNA Pol II. The resulting BCL6-target proapoptotic gene expression translated into killing of diffuse large B-cell lymphoma (DLBCL) cells at 72 h with EC50s of 0.9 - 10 nM and highly specific ablation of the BCL6-regulated germinal center response in mice. The molecules exhibited 10,000-fold lower cytotoxicity in normal lymphocytes and are well tolerated in mice. Genomic and proteomic evidence corroborated a gain-of-function mechanism where, instead of global enzyme inhibition, a fraction of total kinase activity is borrowed and re-localized to BCL6-bound loci. The strategy demonstrates how kinase inhibitors can be used to context-specifically activate transcription, accessing new therapeutic space.
Collapse
|
17
|
Carreras J. The pathobiology of follicular lymphoma. J Clin Exp Hematop 2023; 63:152-163. [PMID: 37518274 PMCID: PMC10628832 DOI: 10.3960/jslrt.23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Follicular lymphoma is one of the most frequent lymphomas. Histologically, it is characterized by a follicular (nodular) growth pattern of centrocytes and centroblasts; mixed with variable immune microenvironment cells. Clinically, it is characterized by diffuse lymphadenopathy, bone marrow involvement, and splenomegaly. It is biologically and clinically heterogeneous. In most patients it is indolent, but others have a more aggressive evolution with relapses; and transformation to diffuse large B-cell lymphoma. Tumorigenesis includes an asymptomatic preclinical phase in which premalignant B-lymphocytes with the t(14;18) chromosomal translocation acquire additional genetic alterations in the germinal centers, and clonal evolution occurs, although not all the cells progress to the tumor stage. This manuscript reviews the pathobiology and clinicopathological characteristics of follicular lymphoma. It includes a description of the physiology of the germinal center, the genetic alterations of BCL2 and BCL6, the mutational profile, the immune checkpoint, precision medicine, and highlights in the lymphoma classification. In addition, a comment and review on artificial intelligence and machine (deep) learning are made.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, Tokai University, School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
18
|
Tai Y, Sakaida Y, Kawasaki R, Kanemaru K, Akimoto K, Brombacher F, Ogawa S, Nakamura Y, Harada Y. Foxp3 and Bcl6 deficiency synergistically induces spontaneous development of atopic dermatitis-like skin disease. Int Immunol 2023; 35:423-435. [PMID: 37279329 DOI: 10.1093/intimm/dxad018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin disease caused by immune dysfunction, specifically the hyperactivation of Th2 immunity. AD is a complex disease with multiple factors contributing to its development; however, the interaction between these factors is not fully understood. In this study, we demonstrated that the conditional deletion of both the forkhead box p3 (Foxp3) and B-cell lymphoma 6 (Bcl6) genes induced the spontaneous development of AD-like skin inflammation with hyperactivation of type 2 immunity, skin barrier dysfunction, and pruritus, which were not induced by the single deletion of each gene. Furthermore, the development of AD-like skin inflammation was largely dependent on IL-4/13 signaling but not on immunoglobulin E (IgE). Interestingly, we found that the loss of Bcl6 alone increased the expression of thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 in the skin, suggesting that Bcl6 controls Th2 responses by suppressing TSLP and IL-33 expression in epithelial cells. Our results suggest that Foxp3 and Bcl6 cooperatively suppress the pathogenesis of AD. Furthermore, these results revealed an unexpected role of Bcl6 in suppressing Th2 responses in the skin.
Collapse
Affiliation(s)
- Yuki Tai
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Sakaida
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Riyo Kawasaki
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazunori Akimoto
- Laboratory of Molecular Medical Science, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Frank Brombacher
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component & Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7701, South Africa
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yohsuke Harada
- Laboratory of Pharmaceutical Immunology, Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
19
|
Bello A, Hirth G, Voigt S, Tepper S, Jungnickel B. Mechanism and regulation of secondary immunoglobulin diversification. Cell Cycle 2023; 22:2070-2087. [PMID: 37909747 PMCID: PMC10761156 DOI: 10.1080/15384101.2023.2275397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Secondary immunoglobulin diversification by somatic hypermutation and class switch recombination in B cells is instrumental for an adequate adaptive humoral immune response. These genetic events may, however, also introduce aberrations into other cellular genes and thereby cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch recombination is now well understood, their regulation and in particular the mechanism of their specific targeting to immunoglobulin genes is still rather mysterious. In this review, we summarize the current knowledge on the mechanism and regulation of secondary immunoglobulin diversification and discuss known mechanisms of physiological targeting to immunoglobulin genes and mistargeting to other cellular genes. We summarize open questions in the field and provide an outlook on future research.
Collapse
Affiliation(s)
- Amanda Bello
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Gianna Hirth
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefanie Voigt
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Sandra Tepper
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
20
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
21
|
Phelan JD, Staudt LM. Double-headed molecule activates cell-death pathways in cancer cells. Nature 2023:10.1038/d41586-023-02213-4. [PMID: 37495782 DOI: 10.1038/d41586-023-02213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
|
22
|
Pasqualucci L. The germinal center in the pathogenesis of B cell lymphomas. Hematol Oncol 2023; 41 Suppl 1:62-69. [PMID: 37294970 DOI: 10.1002/hon.3141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The adaptive immune system has evolved to allow effective responses against a virtually unlimited number of invading pathogens. This process requires the transient formation of germinal centers (GC), a dynamic environment that ensures the generation and selection of B cells capable to produce antibodies with high antigen affinity, or to maintain the memory of that antigen for life. However, this comes at a cost, as the unique events accompanying the GC reaction pose a significant risk to the genome of B cells, which must endure elevated levels of replication stress, while proliferating at high rates and undergoing DNA breaks introduced by somatic hypermutation and class switch recombination. Indeed, the genetic/epigenetic disruption of programs implicated in normal GC biology has emerged as a hallmark of most B cell lymphomas. This improved understanding provides a conceptual framework for the identification of cellular pathways that could be exploited for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| |
Collapse
|
23
|
Chen Q, Liu H, Luling N, Reinke J, Dent AL. Evidence that High-Affinity IgE Can Develop in the Germinal Center in the Absence of an IgG1-Switched Intermediate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:905-915. [PMID: 36779803 PMCID: PMC10038918 DOI: 10.4049/jimmunol.2200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/12/2023] [Indexed: 02/14/2023]
Abstract
High-affinity allergen-specific IgE is essential for the severe allergic anaphylaxis response. High-affinity Abs are formed by successive rounds of selection of Ag-specific B cells in the germinal center (GC); however, several studies have shown that IgE+ GC B cells are impaired in their ability to undergo selection in the GC. A pathway, known as the "indirect switching pathway" for IgE, has been described whereby Ag-specific B cells initially switch to the IgG1 isotype and undergo affinity selection in the GC, with a secondary switch to the IgE isotype after affinity selection. In previous work, using a food allergy model in mice, we investigated how high-affinity IgE develops in the GC, but we did not test the indirect switching model. In this study, we analyzed the importance of the indirect switching pathway by constructing IgG1-cre Bcl6-fl/fl mice. In these mice, once B cells switch to IgG1, they delete Bcl6 and thus cannot enter or persist in the GC. When we tested IgG1-cre Bcl6-fl/fl mice with our food allergy model, we found that, as expected, IgG1 Abs had decreased affinity, but unexpectedly, the affinity of IgE for allergen was unchanged. IgG1-cre Bcl6-fl/fl mice underwent anaphylaxis in response to allergen, consistent with the formation of high-affinity IgE. Thus, in a food allergy response, high-affinity IgE can be efficiently formed in the absence of indirect switching to IgG1, either by direct selection of IgE+ GC B cells or indirect selection of IgM+ GC B cells that later switch to IgE.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Hong Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Noelle Luling
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Julia Reinke
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
24
|
Hu W, Wang W, Jiang X, Wang Z, Lin R. Mesenchymal stem cells can prevent or promote the progression of colon cancer based on their timing of administration. J Transl Med 2023; 21:227. [PMID: 36978120 PMCID: PMC10045613 DOI: 10.1186/s12967-023-04028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy has been shown to have some therapeutic effects in rodent models and patients with IBD; however, its role in colon tumor models is controversial. In this study, the potential role and mechanisms of bone marrow-derived MSCs (BM-MSCs) in colitis-associated colon cancer (CAC) were investigated. METHODS The CAC mouse model was established with azoxymethane (AOM) and dextran sulfate sodium (DSS). The mice were administered an intraperitoneal injection of MSCs once weekly for different periods. The progression of CAC and the cytokine expression in tissues was assessed. Immunofluorescence staining was used to detect MSCs localization. Levels of immune cells in the spleen and lamina propria of the colon were detected using flow cytometry. A co-culture of MSCs and naïve T cells was performed to determine the effect of MSCs on naïve T cell differentiation. RESULTS Early administration of MSCs inhibited the occurrence of CAC, while late administration promoted the progression of CAC. The inhibitory effect of early injection in mice was characterized by the expression of inflammatory cytokines in colon tissue was decreased, and induction of T regulatory cells (Tregs) infiltration via TGF-β. The promotive effect of late injection was characterized by a shift of T helper (Th) 1/Th2 immune balance toward a Th2 phenotype through IL-4 secretion. IL-12 can reverse this shift to Th2 accumulation in mice. CONCLUSION MSCs can curb the progression of colon cancer by inducing Treg accumulation via TGF-β at the early stage of inflammatory transformation but promote the progression of colon cancer by inducing a shift in Th1/Th2 immune balance to Th2 through IL-4 secretion at the late stage. And the immune balance of Th1/Th2 influenced by MSCs could be reversed by IL-12.
Collapse
Affiliation(s)
- Weiqian Hu
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijun Wang
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Jiang
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeyu Wang
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Digestive, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
26
|
Foster WS, Lee JL, Thakur N, Newman J, Spencer AJ, Davies S, Woods D, Godfrey L, Hay IM, Innocentin S, Yam-Puc JC, Horner EC, Sharpe HJ, Thaventhiran JE, Bailey D, Lambe T, Linterman MA. Tfh cells and the germinal center are required for memory B cell formation & humoral immunity after ChAdOx1 nCoV-19 vaccination. Cell Rep Med 2022; 3:100845. [PMID: 36455555 PMCID: PMC9663747 DOI: 10.1016/j.xcrm.2022.100845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emergence from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been facilitated by the rollout of effective vaccines. Successful vaccines generate high-affinity plasma blasts and long-lived protective memory B cells. Here, we show a requirement for T follicular helper (Tfh) cells and the germinal center reaction for optimal serum antibody and memory B cell formation after ChAdOx1 nCoV-19 vaccination. We found that Tfh cells play an important role in expanding antigen-specific B cells while identifying Tfh-cell-dependent and -independent memory B cell subsets. Upon secondary vaccination, germinal center B cells generated during primary immunizations can be recalled as germinal center B cells again. Likewise, primary immunization GC-Tfh cells can be recalled as either Tfh or Th1 cells, highlighting the pluripotent nature of Tfh cell memory. This study demonstrates that ChAdOx1 nCoV-19-induced germinal centers are a critical source of humoral immunity.
Collapse
Affiliation(s)
- William S Foster
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Jia Le Lee
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), Oxford OX3 7BN, UK
| | - Joseph Newman
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Sophie Davies
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), Oxford OX3 7BN, UK
| | - Danielle Woods
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Leila Godfrey
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Iain M Hay
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Silvia Innocentin
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Juan Carlos Yam-Puc
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Emily C Horner
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Hayley J Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), Oxford OX3 7BN, UK.
| | - Michelle A Linterman
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
27
|
Gu H, He J, Li Y, Mi D, Guan T, Guo W, Liu B, Chen Y. B-cell Lymphoma 6 Inhibitors: Current Advances and Prospects of Drug Development for Diffuse Large B-cell Lymphomas. J Med Chem 2022; 65:15559-15583. [PMID: 36441945 DOI: 10.1021/acs.jmedchem.2c01433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-cell lymphoma 6 (BCL6) is a transcriptional repressor that regulates the differentiation of B lymphocytes and mediates the formation of germinal centers (GCs) by recruiting corepressors through the BTB domain of BCL6. Physiological processes regulated by BCL6 involve cell activation, differentiation, DNA damage, and apoptosis. BCL6 is highly expressed when the gene is mutated, leading to the malignant proliferation of cells and drives tumorigenesis. BCL6 overexpression is closely correlated with tumorigenesis in diffuse large B-cell lymphoma (DLBCL) and other lymphomas, and BCL6 inhibitors can effectively inhibit some lymphomas and overcome resistance. Therefore, targeting BCL6 might be a promising therapeutic strategy for treating lymphomas. Herein, we comprehensively review the latest development of BCL6 inhibitors in diffuse large B-cell lymphoma and discuss the overview of the pharmacophores of BCL6 inhibitors and their efficacies in vitro and in vivo. Additionally, the current advances in BCL6 degraders are provided.
Collapse
Affiliation(s)
- Haijun Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
28
|
Karimi S, Shahabi F, Mubarak SMH, Arjmandi H, Hashemi ZS, Pourzardosht N, Zakeri A, Mahboobi M, Jahangiri A, Rahbar MR, Khalili S. Impact of SNPs, off-targets, and passive permeability on efficacy of BCL6 degrading drugs assigned by virtual screening and 3D-QSAR approach. Sci Rep 2022; 12:21091. [PMID: 36473934 PMCID: PMC9726907 DOI: 10.1038/s41598-022-25587-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) regulates various genes and is reported to be overexpressed in lymphomas and other malignancies. Thus, BCL6 inhibition or its tagging for degradation would be an amenable therapeutic approach. A library of 2500 approved drugs was employed to find BCL6 inhibitory molecules via virtual screening. Moreover, the 3D core structure of 170 BCL6 inhibitors was used to build a 3D QSAR model and predict the biological activity. The SNP database was analyzed to study the impact on the destabilization of BCL6/drug interactions. Structural similarity search and molecular docking analyses were used to assess the interaction between possible off-targets and BCL6 inhibitors. The tendency of drugs for passive membrane permeability was also analyzed. Lifitegrast (DB11611) had favorable binding properties and biological activity compared to the BI-3802. Missense SNPs were located at the essential interaction sites of the BCL6. Structural similarity search resulted in five BTB-domain containing off-target proteins. BI-3802 and Lifitegrast had similar chemical behavior and binding properties against off-target candidates. More interestingly, the binding affinity of BI-3802 (against off-targets) was higher than Lifitegrast. Energetically, Lifitegrast was less favorable for passive membrane permeability. The interaction between BCL6 and BI-3802 is more prone to SNP-derived variations. On the other hand, higher nonspecific binding of BI-3802 to off-target proteins could bring about higher undesirable properties. It should also be noted that energetically less desirable passive membrane translocation of Lifitegrast would demand drug delivery vehicles. However, further empirical evaluation of Lifitegrast would unveil its true potential.
Collapse
Affiliation(s)
- Solmaz Karimi
- grid.419305.a0000 0001 1943 2944Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Farzaneh Shahabi
- grid.411747.00000 0004 0418 0096Faculty of Advanced Technologies in Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shaden M. H. Mubarak
- grid.442852.d0000 0000 9836 5198Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Hanie Arjmandi
- grid.467532.10000 0004 4912 2930Faculty of Pharmacy, Islamic Azad University of Amol Branch, Amol, Iran
| | - Zahra Sadat Hashemi
- grid.417689.5ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Navid Pourzardosht
- grid.411874.f0000 0004 0571 1549Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Zakeri
- grid.440791.f0000 0004 0385 049XDepartment of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mahdieh Mahboobi
- grid.411521.20000 0000 9975 294XApplied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Jahangiri
- grid.411521.20000 0000 9975 294XApplied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahbar
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- grid.440791.f0000 0004 0385 049XDepartment of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
29
|
McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, Findlay IJ, Persson ML, Duchatel RJ, Mannan A, Germon ZP, Dun MD. B-cell Lymphoma 6 (BCL6): From Master Regulator of Humoral Immunity to Oncogenic Driver in Pediatric Cancers. Mol Cancer Res 2022; 20:1711-1723. [PMID: 36166198 PMCID: PMC9716245 DOI: 10.1158/1541-7786.mcr-22-0567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a protooncogene in adult and pediatric cancers, first identified in diffuse large B-cell lymphoma (DLBCL) where it acts as a repressor of the tumor suppressor TP53, conferring survival, protection, and maintenance of lymphoma cells. BCL6 expression in normal B cells is fundamental in the regulation of humoral immunity, via initiation and maintenance of the germinal centers (GC). Its role in B cells during the production of high affinity immunoglobins (that recognize and bind specific antigens) is believed to underpin its function as an oncogene. BCL6 is known to drive the self-renewal capacity of leukemia-initiating cells (LIC), with high BCL6 expression in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and glioblastoma (GBM) associated with disease progression and treatment resistance. The mechanisms underpinning BCL6-driven therapy resistance are yet to be uncovered; however, high activity is considered to confer poor prognosis in the clinical setting. BCL6's key binding partner, BCL6 corepressor (BCOR), is frequently mutated in pediatric cancers and appears to act in concert with BCL6. Using publicly available data, here we show that BCL6 is ubiquitously overexpressed in pediatric brain tumors, inversely to BCOR, highlighting the potential for targeting BCL6 in these often lethal and untreatable cancers. In this review, we summarize what is known of BCL6 (role, effect, mechanisms) in pediatric cancers, highlighting the two sides of BCL6 function, humoral immunity, and tumorigenesis, as well as to review BCL6 inhibitors and highlight areas of opportunity to improve the outcomes of patients with pediatric cancer.
Collapse
Affiliation(s)
- Tabitha McLachlan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - William C. Matthews
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Evangeline R. Jackson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alicia M. Douglas
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J. Findlay
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ryan J. Duchatel
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P. Germon
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Matthew D. Dun
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Corresponding Author: Matthew D. Dun, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Level 3, Life Sciences Bldg, Callaghan, NSW 2308, Australia. Phone: 612-4921-5693; E-mail:
| |
Collapse
|
30
|
Pray BA, Youssef Y, Alinari L. TBL1X: At the crossroads of transcriptional and posttranscriptional regulation. Exp Hematol 2022; 116:18-25. [PMID: 36206873 PMCID: PMC9929687 DOI: 10.1016/j.exphem.2022.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023]
Abstract
Over the past 2 decades, the adaptor protein transducin β-like 1 (TBL1X) and its homolog TBL1XR1 have been shown to be upregulated in solid tumors and hematologic malignancies, and their overexpression is associated with poor clinical outcomes. Moreover, dysregulation of the TBL1 family of proteins has been implicated as a key component of oncogenic prosurvival signaling, cancer progression, and metastasis. Herein, we discuss how TBL1X and TBL1XR1 are required for the regulation of major transcriptional programs through the silencing mediator for tetanoid and thyroid hormone receptor (SMRT)/nuclear receptor corepressor (NCOR)/ B cell lymphoma 6 (BCL6) complex, Wnt/β catenin, and NF-κB signaling. We outline the utilization of tegavivint (Iterion Therapeutics), a first-in-class small molecule targeting the N-terminus domain of TBL1, as a novel therapeutic strategy in preclinical models of cancer and clinically. Although most published work has focused on the transcriptional role of TBL1X, we recently showed that in diffuse large B-cell lymphoma (DLBCL), the most common lymphoma subtype, genetic knockdown of TBL1X and treatment with tegavivint resulted in decreased expression of critical (onco)-proteins in a posttranscriptional/β-catenin-independent manner by promoting their proteasomal degradation through a Skp1/Cul1/F-box (SCF)/TBL1X supercomplex and potentially through the regulation of protein synthesis. However, given that TBL1X controls multiple oncogenic signaling pathways in cancer, treatment with tegavivint may ultimately result in drug resistance, providing the rationale for combination strategies. Although many questions related to TBL1X function remain to be answered in lymphoma and other diseases, these data provide a growing body of evidence that TBL1X is a promising therapeutic target in oncology.
Collapse
Affiliation(s)
- Betsy A Pray
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Youssef Youssef
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH.
| |
Collapse
|
31
|
Feng H, Zhao Z, Dong C. Adapting to the world: The determination and plasticity of T follicular helper cells. J Allergy Clin Immunol 2022; 150:981-989. [DOI: 10.1016/j.jaci.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
32
|
Almohaisen FLJ, Heidary S, Sobah ML, Ward AC, Liongue C. B cell lymphoma 6A regulates immune development and function in zebrafish. Front Cell Infect Microbiol 2022; 12:887278. [PMID: 36389136 PMCID: PMC9650189 DOI: 10.3389/fcimb.2022.887278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
BCL6A is a transcriptional repressor implicated in the development and survival of B and T lymphoctyes, which is also highly expressed in many non-Hodgkin’s lymphomas, such as diffuse large B cell lymphoma and follicular lymphoma. Roles in other cell types, including macrophages and non-hematopoietic cells, have also been suggested but require further investigation. This study sought to identify and characterize zebrafish BCL6A and investigate its role in immune cell development and function, with a focus on early macrophages. Bioinformatics analysis identified a homologue for BCL6A (bcl6aa), as well as an additional fish-specific duplicate (bcl6ab) and a homologue for the closely-related BCL6B (bcl6b). The human BCL6A and zebrafish Bcl6aa proteins were highly conserved across the constituent BTB/POZ, PEST and zinc finger domains. Expression of bcl6aa during early zebrafish embryogenesis was observed in the lateral plate mesoderm, a site of early myeloid cell development, with later expression seen in the brain, eye and thymus. Homozygous bcl6aa mutants developed normally until around 14 days post fertilization (dpf), after which their subsequent growth and maturation was severely impacted along with their relative survival, with heterozygous bcl6aa mutants showing an intermediate phenotype. Analysis of immune cell development revealed significantly decreased lymphoid and macrophage cells in both homozygous and heterozygous bcl6aa mutants, being exacerbated in homozygous mutants. In contrast, the number of neutrophils was unaffected. Only the homozygous bcl6aa mutants showed decreased macrophage mobility in response to wounding and reduced ability to contain bacterial infection. Collectively, this suggests strong conservation of BCL6A across evolution, including a role in macrophage biology.
Collapse
Affiliation(s)
- Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Department of Medical Laboratory Technology, Southern Technical University, Basra, Iraq
| | | | | | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- *Correspondence: Clifford Liongue,
| |
Collapse
|
33
|
Wiarda JE, Trachsel JM, Sivasankaran SK, Tuggle CK, Loving CL. Intestinal single-cell atlas reveals novel lymphocytes in pigs with similarities to human cells. Life Sci Alliance 2022; 5:e202201442. [PMID: 35995567 PMCID: PMC9396248 DOI: 10.26508/lsa.202201442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphocytes can heavily influence intestinal health, but resolving intestinal lymphocyte function is challenging as the intestine contains a vastly heterogeneous mixture of cells. Pigs are an advantageous biomedical model, but deeper understanding of intestinal lymphocytes is warranted to improve model utility. Twenty-six cell types were identified in the porcine ileum by single-cell RNA sequencing and further compared with cells in human and murine ileum. Though general consensus of cell subsets across species was revealed, some porcine-specific lymphocyte subsets were identified. Differential tissue dissection and in situ analyses conferred spatial context, revealing similar locations of lymphocyte subsets in Peyer's patches and epithelium in pig-to-human comparisons. Like humans, activated and effector lymphocytes were abundant in the ileum but not periphery of pigs, suggesting tissue-specific and/or activation-associated gene expression. Gene signatures for peripheral and ileal innate lymphoid cells newly discovered in pigs were defined and highlighted similarities to human innate lymphoid cells. Overall, we reveal novel lymphocyte subsets in pigs and highlight utility of pigs for intestinal research applications.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Julian M Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
- Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | | | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
34
|
Ding Z, Quast I, Yan F, Liao Y, Pitt C, O-Donnell K, Robinson MJ, Shi W, Kallies A, Zotos D, Tarlinton DM. CD137L and CD4 T cells limit BCL6-expressing pre-germinal center B cell expansion and BCL6-driven B cell malignancy. Immunol Cell Biol 2022; 100:705-717. [PMID: 35916066 DOI: 10.1111/imcb.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/07/2023]
Abstract
Aberrant expression of the proto-oncogene BCL6 is a driver of tumorigenesis in diffuse large B cell lymphoma (DLBCL). Mice overexpressing BCL6 from the B cell-specific immunoglobulin heavy chain μ intron promoter (Iμ-Bcl6Tg/+ ) develop B cell lymphomas with features typical of human DLBCL. While the development of B cell lymphoma in these mice is tightly controlled by T cells, the mechanisms of this immune surveillance are poorly understood. Here we show that CD4 T cells contribute to the control of lymphoproliferative disease in lymphoma-prone Iμ-Bcl6Tg/+ mice. We reveal that this CD4 T cell immuno-surveillance requires signaling by the co-stimulatory molecule CD137 ligand (CD137L; also known as 4-1BBL), which may promote the transition of pre-malignant B cells with an activated phenotype into the germinal center stage via reverse signaling, preventing their hazardous accumulation. Thus, CD137L-mediated CD4 T cell immuno-surveillance adds another layer of protection against B cell malignancy to that provided by CD8 T cell cytotoxicity.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Yang Liao
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Kristy O-Donnell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Wei Shi
- Olivia Newton John Cancer Research Institute, Melbourne, VIC, Australia.,School of Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Axel Kallies
- The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitra Zotos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Wiegreffe C, Wahl T, Joos NS, Bonnefont J, Liu P, Britsch S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6‐dependent pathway. EMBO Rep 2022; 23:e54104. [PMID: 35766181 PMCID: PMC9346488 DOI: 10.15252/embr.202154104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper‐layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6‐dependent molecular pathway in regulation of developmental cell death during corticogenesis.
Collapse
Affiliation(s)
| | - Tobias Wahl
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| | | | - Jerome Bonnefont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI) Université Libre de Bruxelles (ULB) Brussels Belgium
- VIB‐KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neuroscience Leuven Brain Institute Leuven Belgium
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| |
Collapse
|
36
|
Zou W, Izawa T, Rohatgi N, Zou SY, Li Y, Teitelbaum SL. ThPOK
inhibits osteoclast formation via
NFATc1
transcription and function. JBMR Plus 2022; 6:e10613. [PMID: 35434449 PMCID: PMC9009119 DOI: 10.1002/jbm4.10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Both LRF (Zbtb7a) and ThPOK (Zbtb7b) belong to the POK (BTB/POZ and Kruppel) family of transcription repressors that participate in development, differentiation, and oncogenesis. Although LRF mediates osteoclast differentiation by regulating NFATc1 expression, the principal established function of ThPOK is transcriptional control of T‐cell lineage commitment. Whether ThPOK affects osteoclast formation or function is not known. We find that marrow macrophage ThPOK expression diminishes with exposure to receptor activator of NF‐kB ligand (RANKL), but ThPOK deficiency does not affect osteoclast differentiation. On the other hand, enhanced ThPOK, in macrophages, substantially impairs osteoclastogenesis. Excess ThPOK binds the NFATc1 promoter and suppresses its transcription, suggesting a mechanism for its osteoclast inhibitory effect. Despite suppression of osteoclastogenesis by excess ThPOK being associated with diminished NFATc1, osteoclast formation is not rescued by NFATc1 overexpression. Thus, ThPOK appears to inhibit NFATc1 transcription and its osteoclastogenic capacity, while its depletion has no effect on the bone‐resorptive cell. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology Washington University School of Medicine St. Louis MO USA
| | - Takashi Izawa
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology Washington University School of Medicine St. Louis MO USA
- Department of Orthodontics Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2‐5‐1 Shikata‐cho, Kita‐ku Okayama Japan
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology Washington University School of Medicine St. Louis MO USA
| | - Steven Y. Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology Washington University School of Medicine St. Louis MO USA
| | - Yongjia Li
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology Washington University School of Medicine St. Louis MO USA
- Department of Pharmacology Jiangsu University School of Medicine Zhenjiang Jiangsu Province PR China
| | - Steven L. Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology Washington University School of Medicine St. Louis MO USA
- Division of Bone and Mineral Diseases, Department of Medicine Washington University School of Medicine St. Louis MO USA
| |
Collapse
|
37
|
Song W, Antao OQ, Condiff E, Sanchez GM, Chernova I, Zembrzuski K, Steach H, Rubtsova K, Angeletti D, Lemenze A, Laidlaw BJ, Craft J, Weinstein JS. Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers. Immunity 2022; 55:290-307.e5. [PMID: 35090581 PMCID: PMC8965751 DOI: 10.1016/j.immuni.2022.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Tbet+CD11c+ B cells arise during type 1 pathogen challenge, aging, and autoimmunity in mice and humans. Here, we examined the developmental requirements of this B cell subset. In acute infection, T follicular helper (Tfh) cells, but not Th1 cells, drove Tbet+CD11c+ B cell generation through proximal delivery of help. Tbet+CD11c+ B cells developed prior to germinal center (GC) formation, exhibiting phenotypic and transcriptional profiles distinct from GC B cells. Fate tracking revealed that most Tbet+CD11c+ B cells developed independently of GC entry and cell-intrinsic Bcl6 expression. Tbet+CD11c+ and GC B cells exhibited minimal repertoire overlap, indicating distinct developmental pathways. As the infection resolved, Tbet+CD11c+ B cells localized to the marginal zone where splenic retention depended on integrins LFA-1 and VLA-4, forming a competitive memory subset that contributed to antibody production and secondary GC seeding upon rechallenge. Therefore, Tbet+CD11c+ B cells comprise a GC-independent memory subset capable of rapid and robust recall responses.
Collapse
Affiliation(s)
- Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Emily Condiff
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Irene Chernova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Krzysztof Zembrzuski
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Holly Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kira Rubtsova
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
38
|
Abstract
Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA;
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA;
| |
Collapse
|
39
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
40
|
Rauschmeier R, Reinhardt A, Gustafsson C, Glaros V, Artemov AV, Dunst J, Taneja R, Adameyko I, Månsson R, Busslinger M, Kreslavsky T. Bhlhe40 function in activated B and TFH cells restrains the GC reaction and prevents lymphomagenesis. J Exp Med 2021; 219:212923. [PMID: 34919144 PMCID: PMC8689665 DOI: 10.1084/jem.20211406] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
The generation of high-affinity antibodies against pathogens and vaccines requires the germinal center (GC) reaction, which relies on a complex interplay between specialized effector B and CD4 T lymphocytes, the GC B cells and T follicular helper (TFH) cells. Intriguingly, several positive key regulators of the GC reaction are common for both cell types. Here, we report that the transcription factor Bhlhe40 is a crucial cell-intrinsic negative regulator affecting both the B and T cell sides of the GC reaction. In activated CD4 T cells, Bhlhe40 was required to restrain proliferation, thus limiting the number of TFH cells. In B cells, Bhlhe40 executed its function in the first days after immunization by selectively restricting the generation of the earliest GC B cells but not of early memory B cells or plasmablasts. Bhlhe40-deficient mice with progressing age succumbed to a B cell lymphoma characterized by the accumulation of monoclonal GC B-like cells and polyclonal TFH cells in various tissues.
Collapse
Affiliation(s)
- René Rauschmeier
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Annika Reinhardt
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vassilis Glaros
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Artem V. Artemov
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Endocrinology Research Centre, Moscow, Russian Federation
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Igor Adameyko
- Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Zacharchenko T, Kalverda AP, Wright SC. Structural basis of Apt48 inhibition of the BCL6 BTB domain. Structure 2021; 30:396-407.e3. [PMID: 34774129 DOI: 10.1016/j.str.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
B cell lymphoma 6 (BCL6) is a transcriptional repressor that is deregulated in diffuse large B cell lymphoma, and the peptide aptamer, Apt48, inhibits BCL6 by an unknown mechanism. We report the crystal structure of BCL6 in complex with an Apt48 peptide, and show that Apt48 binds to a therapeutically uncharacterized region at the bottom of the BCL6 BTB domain. We show that the corepressor binding site of the BTB domain may be divided conceptually into two low-affinity, peptide-binding regions. An upper region, the lateral groove, binds peptides in robust three-dimensional conformations, whereas a lower binding site is permissive to less-specific interactions. We show that, even with little sequence specificity, the interactions of the lower region are required for the high-affinity binding of the SMRT corepressor and other peptides to the BTB domain. This has relevance for the design of new BCL6 inhibitors and for understanding the evolution of corepressor interactions with the BTB domain.
Collapse
Affiliation(s)
- Thomas Zacharchenko
- School of Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephanie C Wright
- School of Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
42
|
Ke X, Zhang R, Yao Q, Duan S, Hong W, Cao M, Zhou Q, Zhong X, Zhao H. Alternative splicing of medaka bcl6aa and its repression by Prdm1a and Prdm1b. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1229-1242. [PMID: 34218391 DOI: 10.1007/s10695-021-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bcl6 and Prdm1 (Blimp1) are a pair of transcriptional factors that repressing each other in mammals. Prdm1 represses the expression of bcl6 by binding a cis-element of the bcl6 gene in mammals. The homologs of Bcl6 and Prdm1 have been identified in teleost fish. However, whether these two factors regulate each other in the same way in fish like that in mammals is not clear. In this study, the regulation of bcl6aa by Prdm1 was investigated in medaka. The mRNA of bcl6aa has three variants (bcl6aaX1-X3) at the 5'-end by alternative splicing detected by RT-PCR. The three variants can be detected in adult tissues and developing embryos of medaka. Prdm1a and prdm1b are expressed in the tissues and embryos where and when bcl6aa is expressed. The expression of prdm1a was high while the expression of bcl6aa was low, and vice versa, detected in the spleen after stimulation with LPS or polyI:C. In vitro reporter assay indicated that bcl6aa could be directly repressed by both Prdm1a and Prdm1b in a dosage-dependent manner. After mutation of the key base, G, of all predicted binding sites in the core promoter region of bcl6aa, the repression by Prdm1a and/or Prdm1b disappeared. The binding site of Prdm1 in the bcl6aa gene is GAAAA(T/G). These results indicate that both Prdm1a and Prdm1b directly repress the expression of bcl6aa by binding their binding sites where the 5'-G is critical in medaka fish.
Collapse
Affiliation(s)
- Xiaomei Ke
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Runshuai Zhang
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shi Duan
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Wentao Hong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
43
|
Pearce AC, Bamford MJ, Barber R, Bridges A, Convery MA, Demetriou C, Evans S, Gobbetti T, Hirst DJ, Holmes DS, Hutchinson JP, Jayne S, Lezina L, McCabe MT, Messenger C, Morley J, Musso MC, Scott-Stevens P, Manso AS, Schofield J, Slocombe T, Somers D, Walker AL, Wyce A, Zhang XP, Wagner SD. GSK137, a potent small-molecule BCL6 inhibitor with in vivo activity, suppresses antibody responses in mice. J Biol Chem 2021; 297:100928. [PMID: 34274316 PMCID: PMC8350397 DOI: 10.1016/j.jbc.2021.100928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a zinc finger transcriptional repressor possessing a BTB-POZ (BR-C, ttk, and bab for BTB; pox virus and zinc finger for POZ) domain, which is required for homodimerization and association with corepressors. BCL6 has multiple roles in normal immunity, autoimmunity, and some types of lymphoma. Mice bearing disrupted BCL6 loci demonstrate suppressed high-affinity antibody responses to T-dependent antigens. The corepressor binding groove in the BTB-POZ domain is a potential target for small compound-mediated therapy. Several inhibitors targeting this binding groove have been described, but these compounds have limited or absent in vivo activity. Biophysical studies of a novel compound, GSK137, showed an in vitro pIC50 of 8 and a cellular pIC50 of 7.3 for blocking binding of a peptide derived from the corepressor silencing mediator for retinoid or thyroid hormone receptors to the BCL6 BTB-POZ domain. The compound has good solubility (128 μg/ml) and permeability (86 nM/s). GSK137 caused little change in cell viability or proliferation in four BCL6-expressing B-cell lymphoma lines, although there was modest dose-dependent accumulation of G1 phase cells. Pharmacokinetic studies in mice showed a profile compatible with achieving good levels of target engagement. GSK137, administered orally, suppressed immunoglobulin G responses and reduced numbers of germinal centers and germinal center B cells following immunization of mice with the hapten trinitrophenol. Overall, we report a novel small-molecule BCL6 inhibitor with in vivo activity that inhibits the T-dependent antigen immune response.
Collapse
Affiliation(s)
| | - Mark J Bamford
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ruth Barber
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Angela Bridges
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | - Constantinos Demetriou
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Sian Evans
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | | | - David J Hirst
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Sandrine Jayne
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Larissa Lezina
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | | | | | - Joanne Morley
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Ana Sousa Manso
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Jennifer Schofield
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Tom Slocombe
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Don Somers
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ann L Walker
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Simon D Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
44
|
Meyer SJ, Steffensen M, Acs A, Weisenburger T, Wadewitz C, Winkler TH, Nitschke L. CD22 Controls Germinal Center B Cell Receptor Signaling, Which Influences Plasma Cell and Memory B Cell Output. THE JOURNAL OF IMMUNOLOGY 2021; 207:1018-1032. [PMID: 34330755 DOI: 10.4049/jimmunol.2100132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022]
Abstract
Germinal center reactions are established during a thymus-dependent immune response. Germinal center (GC) B cells are rapidly proliferating and undergo somatic hypermutation in Ab genes. This results in the production of high-affinity Abs and establishment of long-lived memory cells. GC B cells show lower BCR-induced signaling when compared with naive B cells, but the functional relevance is not clear. CD22 is a member of the Siglec family and functions as an inhibitory coreceptor on B cells. Interestingly, GC B cells downregulate sialic acid forms that serve as high-affinity ligands for CD22, indicating a role for CD22 ligand binding during GC responses. We studied the role of CD22 in the GC with mixed bone marrow chimeric mice and found a disadvantage of CD22-/- GC B cells during the GC reaction. Mechanistic investigations ruled out defects in dark zone/light zone distribution and affinity maturation. Rather, an increased rate of apoptosis in CD22-/- GC B cells was responsible for the disadvantage, also leading to a lower GC output in plasma cells and memory B cells. CD22-/- GC B cells showed a clearly increased calcium response upon BCR stimulation, which was almost absent in wild-type GC B cells. We conclude that the differential expression of the low-affinity cis CD22 ligands in the GC normally results in a strong attenuation of BCR signaling in GC B cells, probably due to higher CD22-BCR interactions. Therefore, attenuation of BCR signaling by CD22 is involved in GC output and B cell fate.
Collapse
Affiliation(s)
- Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Marie Steffensen
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Andreas Acs
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas Weisenburger
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Charlotte Wadewitz
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
45
|
Wishnie AJ, Chwat-Edelstein T, Attaway M, Vuong BQ. BCR Affinity Influences T-B Interactions and B Cell Development in Secondary Lymphoid Organs. Front Immunol 2021; 12:703918. [PMID: 34381455 PMCID: PMC8350505 DOI: 10.3389/fimmu.2021.703918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre-Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B cells in the EF and GC response. Overall, these studies demonstrate that B cells expressing high affinity BCRs preferentially differentiate into antibody secreting cells (ASCs) while those expressing low affinity BCRs undergo further affinity maturation or differentiate into memory B cells (MBCs).
Collapse
Affiliation(s)
- Alec J Wishnie
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| | - Tzippora Chwat-Edelstein
- Department of Biology, The City College of New York, New York, NY, United States.,Macaulay Honors College, New York, NY, United States
| | - Mary Attaway
- Department of Biology, The City College of New York, New York, NY, United States
| | - Bao Q Vuong
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| |
Collapse
|
46
|
Bagadia P, O'Connor KW, Wu R, Ferris ST, Ward JP, Schreiber RD, Murphy TL, Murphy KM. Bcl6-Independent In Vivo Development of Functional Type 1 Classical Dendritic Cells Supporting Tumor Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:125-132. [PMID: 34135058 PMCID: PMC8797952 DOI: 10.4049/jimmunol.1901010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
The transcriptional repressor Bcl6 has been reported as required for development of a subset of classical dendritic cell (cDCs) called cDC1, which is responsible for cross-presentation. However, mechanisms and in vivo functional analysis have been lacking. We generated a system for conditional deletion of Bcl6 in mouse cDCs. We confirmed the reported in vitro requirement for Bcl6 in cDC1 development and the general role for Bcl6 in cDC development in competitive settings. However, deletion of Bcl6 did not abrogate the in vivo development of cDC1. Instead, Bcl6 deficiency caused only a selective reduction in CD8α expression by cDC1 without affecting XCR1 or CD24 expression. Normal cDC1 development was confirmed in Bcl6cKO mice by development of XCR1+ Zbtb46-GFP+ cDC1 by rejection of syngeneic tumors and by priming of tumor-specific CD8 T cells. In summary, Bcl6 regulates a subset of cDC1-specific markers and is required in vitro but not in vivo for cDC1 development.
Collapse
Affiliation(s)
- Prachi Bagadia
- Department of Oncology, Amgen Inc., South San Francisco, CA
| | - Kevin W O'Connor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Renee Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey P Ward
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
47
|
IRF4 ablation in B cells abrogates allogeneic B cell responses and prevents chronic transplant rejection. J Heart Lung Transplant 2021; 40:1122-1132. [PMID: 34253454 DOI: 10.1016/j.healun.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGOUND B cells contribute to chronic transplant rejection by producing donor-specific antibodies and promoting T cell response, but how these processes are regulated at the transcriptional level remains unclear. Herein, we investigate the role of transcription factor interferon regulatory factor 4 (IRF4) in controlling B cell response during chronic transplant rejection. METHODS We generated the Irf4gfp reporter mice to determine IRF4 expression in B cell lineage. We then used mice with B cell-specific IRF4 deletion to define the role of IRF4 in B cell response after NP-KLH immunization or allogeneic heart transplantation. In particular, graft survival and histology, as well as B and T cell responses, were evaluated after transplantation. RESULTS IRF4 is dynamically expressed at different stages of B cell development and is absent in germinal center (GC) B cells. However, IRF4 ablation in the B cell lineage primarily eliminates GC B cells in both naïve and NP-KLH immunized mice. In the transplantation setting, IRF4 functions intrinsically in B cells and governs allogeneic B cell responses at multiple levels, including GC B cell generation, plasma cell differentiation, donor-specific antibody production, and support of T cell response. B cell-specific IRF4 deletion combined with transient CTLA4-Ig treatment abrogates acute and chronic cardiac allograft rejection in naïve recipient mice but not in donor skin-sensitized recipients. CONCLUSIONS B cells require IRF4 to mediate chronic transplant rejection. IRF4 ablation in B cells abrogates allogeneic B cell responses and may also inhibit the ability of B cells to prime allogenic T cells. Targeting IRF4 in B cells represents a potential therapeutic strategy for eliminating chronic transplant rejection.
Collapse
|
48
|
Sun L, Zhao X, Liu X, Zhong B, Tang H, Jin W, Clevers H, Wang H, Wang X, Dong C. Transcription factor Ascl2 promotes germinal center B cell responses by directly regulating AID transcription. Cell Rep 2021; 35:109188. [PMID: 34077723 DOI: 10.1016/j.celrep.2021.109188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/14/2020] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
During germinal center (GC) reactions, activated B cells undergo clonal expansion and functional maturation to produce high-affinity antibodies and differentiate into plasma and memory cells, accompanied with class-switching recombination (CSR) and somatic hypermutation (SHM). Activation-induced cytidine deaminase (AID) is responsible for both CSR and SHM in GC B cells. Transcriptional mechanisms underlying AID regulation and GC B cell reactions are still not well understood. Here, we show that expression of Ascl2 transcription factor is upregulated in GC B cells. Ectopic expression of Ascl2 promotes GC B cell development and enhances antibody production and affinity maturation. Conversely, deletion of Ascl2 in B cells impairs the GC response. Genome-wide analysis reveals that Ascl2 directly regulates GC B cell-related genes, including AID; ectopic expression of AID in Ascl2-deficient B cells rescues their antibody defects. Thus, Ascl2 regulates AID transcription and promotes GC B cell responses.
Collapse
Affiliation(s)
- Lin Sun
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China; Tsinghua University-Peking University Joint Center for Life Science, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhong
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Beijing, China
| | - Wei Jin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hui Wang
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
49
|
Biology of Germinal Center B Cells Relating to Lymphomagenesis. Hemasphere 2021; 5:e582. [PMID: 34095765 PMCID: PMC8171379 DOI: 10.1097/hs9.0000000000000582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The germinal center (GC) reaction is a key feature of adaptive humoral immunity. GCs represent the site where mature B cells refine their B-cell receptor (BCR) and are selected based on the newly acquired affinity for the antigen. In the GC, B cells undergo multiple cycles of proliferation, BCR remodeling by immunoglobulin somatic hypermutation (SHM), and affinity-based selection before emerging as effector memory B cells or antibody-secreting plasma cells. At least 2 histologically and functionally distinct compartments are identified in the GC: the dark zone (DZ) and the light zone (LZ). The proliferative burst and immunoglobulin remodeling by SHM occur prevalently in the DZ compartment. In the LZ, GC B cells undergo an affinity-based selection process that requires the interaction with the antigen and accessory cells. GC B cells are also targeted by class switch recombination, an additional mechanism of immunoglobulin remodeling that ensures the expression of diverse isotype classes. These processes are regulated by a complex network of transcription factors, epigenetic modifiers, and signaling pathways that act in concert with mechanisms of intra-GC B-cell trafficking. The same mechanisms underlying the unique ability of GC B cells to generate high affinity antibodies and ensure immunological memory are hijacked during lymphomagenesis and become powerful weapons for malignant transformation. This review will summarize the main processes and transcriptional networks that drive GC B-cell development and are relevant for human B-cell lymphomagenesis.
Collapse
|
50
|
OBF1 and Oct factors control the germinal center transcriptional program. Blood 2021; 137:2920-2934. [PMID: 33512466 DOI: 10.1182/blood.2020010175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
OBF1 is a specific coactivator of the POU family transcription factors OCT1 and OCT2. OBF1 and OCT2 are B cell-specific and indispensable for germinal center (GC) formation, but their mechanism of action is unclear. Here, we show by chromatin immunoprecipitation-sequencing that OBF1 extensively colocalizes with OCT1 and OCT2. We found that these factors also often colocalize with transcription factors of the ETS family. Furthermore, we showed that OBF1, OCT2, and OCT1 bind widely to the promoters or enhancers of genes involved in GC formation in mouse and human GC B cells. Short hairpin RNA knockdown experiments demonstrated that OCT1, OCT2, and OBF1 regulate each other and are essential for proliferation of GC-derived lymphoma cell lines. OBF1 downregulation disrupts the GC transcriptional program: genes involved in GC maintenance, such as BCL6, are downregulated, whereas genes related to exit from the GC program, such as IRF4, are upregulated. Ectopic expression of BCL6 does not restore the proliferation of GC-derived lymphoma cells depleted of OBF1 unless IRF4 is also depleted, indicating that OBF1 controls an essential regulatory node in GC differentiation.
Collapse
|