1
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
2
|
Yi JS, Perla S, Bennett AM. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Cardiovasc Drugs Ther 2023; 37:1193-1204. [PMID: 35156148 PMCID: PMC11726350 DOI: 10.1007/s10557-022-07324-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Wang D, Wen X, Xu LL, Chen QX, Yan TX, Xiao HT, Xu XW. Nf1 in heart development: a potential causative gene for congenital heart disease: a narrative review. Physiol Genomics 2023; 55:415-426. [PMID: 37519249 DOI: 10.1152/physiolgenomics.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
Congenital heart disease is the most frequent congenital disorder, affecting a significant number of live births. Gaining insights into its genetic etiology could lead to a deeper understanding of this condition. Although the Nf1 gene has been identified as a potential causative gene, its role in congenital heart disease has not been thoroughly clarified. We searched and summarized evidence from cohort-based and experimental studies on the issue of Nf1 and heart development in congenital heart diseases from various databases. Available evidence demonstrates a correlation between Nf1 and congenital heart diseases, mainly pulmonary valvar stenosis. The mechanism underlying this correlation may involve dysregulation of epithelial-mesenchymal transition (EMT). The Nf1 gene affects the EMT process via multiple pathways, including directly regulating the expression of EMT-related transcription factors and indirectly regulating the EMT process by regulating the MAPK pathway. This narrative review provides a comprehensive account of the Nf1 involvement in heart development and congenital cardiovascular diseases in terms of epidemiology and potential mechanisms. RAS signaling may contribute to congenital heart disease independently or in cooperation with other signaling pathways. Efficient management of both NF1 and cardiovascular disease patients would benefit from further research into these issues.
Collapse
Affiliation(s)
- Dun Wang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Wen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Li-Li Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Qing-Xing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Tian-Xing Yan
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Hai-Tao Xiao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue-Wen Xu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Ekure EN, Musa KO, Ulonnam N, Kruszka P, Muenke M, Adeyemo AA. Ambiguous genitalia, giant congenital melanocytic nevus and subpulmonic outlet ventricular septal defect in an African child with Neurofibromatosis 1. Am J Med Genet A 2023; 191:2411-2415. [PMID: 37313780 DOI: 10.1002/ajmg.a.63317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/03/2023] [Indexed: 06/15/2023]
Abstract
Neurofibromatosis type 1 is an autosomal dominant multisystemic disease caused by mutation of the neurofibromin (NF1) gene located on chromosome 17q11. We report a case of Neurofibromatosis 1 with ambiguous genitalia, giant congenital melanocytic nevus, and associated subpulmonic outlet ventricular septal defect, hitherto unreported in sub-Saharan Africa. In addition, a literature review of congenital heart diseases associated with Neurofibromatosis 1 is presented.
Collapse
Affiliation(s)
- Ekanem N Ekure
- Department of Paediatrics, College of Medicine, University of Lagos & Lagos University Teaching Hospital Idi-Araba, Lagos, Nigeria
| | - Kareem O Musa
- Department of Ophthalmology, College of Medicine, University of Lagos & Lagos University Teaching Hospital Idi-Araba, Lagos, Nigeria
| | - Ngozi Ulonnam
- Department of Paediatrics, Lagos University Teaching Hospital Idi-Araba, Lagos, Nigeria
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
- GeneDx, Gaithersburg, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
- American College of Medical Genetics and Genomics, 7101 Wisconsin Ave Suite 1101, Bethesda, Maryland, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous genetic disorders, presenting with different cutaneous features such as café-au-lait macules, intertriginous skin freckling, and neurofibromas. Although most of the disease manifestations are benign, patients are at risk for a variety of malignancies, including malignant transformation of plexiform neurofibromas. Numerous studies have investigated the mechanisms by which these characteristic neurofibromas develop, with progress made toward unraveling the various players involved in their complex pathogenesis. In this review, we summarize the current understanding of the cells that give rise to NF1 neoplasms as well as the molecular mechanisms and cellular changes that confer tumorigenic potential. We also discuss the role of the tumor microenvironment and the key aspects of its various cell types that contribute to NF1-associated tumorigenesis. An increased understanding of these intrinsic and extrinsic components is critical for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Ashley Bui
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunhui Jiang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renee M McKay
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura J Klesse
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Kobar K, Collett K, Prykhozhij SV, Berman JN. Zebrafish Cancer Predisposition Models. Front Cell Dev Biol 2021; 9:660069. [PMID: 33987182 PMCID: PMC8112447 DOI: 10.3389/fcell.2021.660069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.
Collapse
Affiliation(s)
- Kim Kobar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keon Collett
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
8
|
Cutruzzolà A, Irace C, Frazzetto M, Sabatino J, Gullace R, De Rosa S, Spaccarotella C, Concolino D, Indolfi C, Gnasso A. Functional and morphological cardiovascular alterations associated with neurofibromatosis 1. Sci Rep 2020; 10:12070. [PMID: 32694667 PMCID: PMC7374589 DOI: 10.1038/s41598-020-68908-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/30/2020] [Indexed: 11/26/2022] Open
Abstract
Subjects with Neurofibromatosis 1 (NF1) develop vascular complications. The protein product of the gene affected in NF1, neurofibromin, physiologically modulates endothelial function and preserves vascular and myocardial structure. Our study aimed to verify whether subjects with NF1 have early, preclinical abnormalities of carotid artery structure, brachial artery function, and cardiac function. We recruited 22 NF1 subjects without previous cardiovascular events and 22 healthy control subjects. All subjects underwent measurement of carotid artery intima-media thickness (IMT), evaluation of brachial artery endothelial function after ischemia and exercise, and cardiac function. Mean IMT was 543 ± 115 μ in NF1 subjects and 487 ± 70 μ in Controls (p < 0.01). Endothelial function was significantly dumped in NF1 subjects. The dilation after ischemia and exercise was respectively 7.5(± 4.8)% and 6.7(± 3.0)% in NF1 versus 10.5(± 1.2)% and 10.5(± 2.1)% in control subjects (p < 0.02; p < 0.002). Left ventricular systolic function assessed by Global Longitudinal Strain was significantly different between NF1 subjects and Controls: − 19.3(± 1.7)% versus − 21.5(± 2.7)% (p < 0.008). These findings demonstrate that NF1 patients have early morphological and functional abnormalities of peripheral arteries and systolic cardiac impairment and suggest the need for a tight cardiovascular risk evaluation and primary prevention in subjects with NF1.
Collapse
Affiliation(s)
- Antonio Cutruzzolà
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Viale Europa Località Germaneto, 88100, Catanzaro, Italy
| | - Concetta Irace
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Marco Frazzetto
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Jolanda Sabatino
- Dipartimento di Scienze Mediche e Chirurgiche, University Magna Græcia, Catanzaro, Italy.,Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Rosa Gullace
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Salvatore De Rosa
- Dipartimento di Scienze Mediche e Chirurgiche, University Magna Græcia, Catanzaro, Italy.,Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Carmen Spaccarotella
- Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Daniela Concolino
- Dipartimento di Scienze della Salute, University Magna Græcia, Catanzaro, Italy
| | - Ciro Indolfi
- Dipartimento di Scienze Mediche e Chirurgiche, University Magna Græcia, Catanzaro, Italy.,Center of Cardiovascular Research, University Magna Graecia, Mediterranea Cardio Centro, Catanzaro, Napoli, Italy
| | - Agostino Gnasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Viale Europa Località Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
9
|
Harrell Stewart DR, Clark GJ. Pumping the brakes on RAS - negative regulators and death effectors of RAS. J Cell Sci 2020; 133:133/3/jcs238865. [PMID: 32041893 DOI: 10.1242/jcs.238865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.
Collapse
Affiliation(s)
- Desmond R Harrell Stewart
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| | - Geoffrey J Clark
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| |
Collapse
|
10
|
Colliva A, Braga L, Giacca M, Zacchigna S. Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J Physiol 2019; 598:2923-2939. [PMID: 30816576 PMCID: PMC7496632 DOI: 10.1113/jp276758] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between endothelial cells and cardiomyocytes has emerged as a requisite for normal cardiac development, but also a key pathogenic player during the onset and progression of cardiac disease. Endothelial cells and cardiomyocytes are in close proximity and communicate through the secretion of paracrine signals, as well as through direct cell-to-cell contact. Here, we provide an overview of the endothelial cell-cardiomyocyte interactions controlling heart development and the main processes affecting the heart in normal and pathological conditions, including ischaemia, remodelling and metabolic dysfunction. We also discuss the possible role of these interactions in cardiac regeneration and encourage the further improvement of in vitro models able to reproduce the complex environment of the cardiac tissue, in order to better define the mechanisms by which endothelial cells and cardiomyocytes interact with a final aim of developing novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy.,Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34149, Trieste, Italy
| |
Collapse
|
11
|
Perbellini F, Watson SA, Bardi I, Terracciano CM. Heterocellularity and Cellular Cross-Talk in the Cardiovascular System. Front Cardiovasc Med 2018; 5:143. [PMID: 30443550 PMCID: PMC6221907 DOI: 10.3389/fcvm.2018.00143] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Cellular specialization and interactions with other cell types are the essence of complex multicellular life. The orchestrated function of different cell populations in the heart, in combination with a complex network of intercellular circuits of communication, is essential to maintain a healthy heart and its disruption gives rise to pathological conditions. Over the past few years, the development of new biological research tools has facilitated more accurate identification of the cardiac cell populations and their specific roles. This review aims to provide an overview on the significance and contributions of the various cellular components: cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, pericytes, and inflammatory cells. It also aims to describe their role in cardiac development, physiology and pathology with a particular focus on the importance of heterocellularity and cellular interaction between these different cell types.
Collapse
Affiliation(s)
- Filippo Perbellini
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Cesare M. Terracciano
- Division of Cardiovascular Sciences, Myocardial Function, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Chen Z, Mo J, Brosseau JP, Shipman T, Wang Y, Liao CP, Cooper JM, Allaway RJ, Gosline SJC, Guinney J, Carroll TJ, Le LQ. Spatiotemporal Loss of NF1 in Schwann Cell Lineage Leads to Different Types of Cutaneous Neurofibroma Susceptible to Modification by the Hippo Pathway. Cancer Discov 2018; 9:114-129. [PMID: 30348677 DOI: 10.1158/2159-8290.cd-18-0151] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/18/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a cancer predisposition disorder that results from inactivation of the tumor suppressor neurofibromin, a negative regulator of RAS signaling. Patients with NF1 present with a wide range of clinical manifestations, and the tumor with highest prevalence is cutaneous neurofibroma (cNF). Most patients harboring cNF suffer greatly from the burden of those tumors, which have no effective medical treatment. Ironically, none of the numerous NF1 mouse models developed so far recapitulate cNF. Here, we discovered that HOXB7 serves as a lineage marker to trace the developmental origin of cNF neoplastic cells. Ablating Nf1 in the HOXB7 lineage faithfully recapitulates both human cutaneous and plexiform neurofibroma. In addition, we discovered that modulation of the Hippo pathway acts as a "modifier" for neurofibroma tumorigenesis. This mouse model opens the doors for deciphering the evolution of cNF to identify effective therapies, where none exist today. SIGNIFICANCE: This study provides insights into the developmental origin of cNF, the most common tumor in NF1, and generates the first mouse model that faithfully recapitulates both human cutaneous and plexiform neurofibroma. The study also demonstrates that the Hippo pathway can modify neurofibromagenesis, suggesting that dampening the Hippo pathway could be an attractive therapeutic target.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Zhiguo Chen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Juan Mo
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jean-Philippe Brosseau
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tracey Shipman
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yong Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chung-Ping Liao
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan M Cooper
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | - Thomas J Carroll
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.,Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
13
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Almeida PN, Barboza DDN, Luna EB, Correia MCDM, Dias RB, Siquara de Sousa AC, Duarte MEL, Rossi MID, Cunha KS. Increased extracellular matrix deposition during chondrogenic differentiation of dental pulp stem cells from individuals with neurofibromatosis type 1: an in vitro 2D and 3D study. Orphanet J Rare Dis 2018; 13:98. [PMID: 29941005 PMCID: PMC6020206 DOI: 10.1186/s13023-018-0843-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1) presents a wide range of clinical manifestations, including bone alterations. Studies that seek to understand cellular and molecular mechanisms underlying NF1 orthopedic problems are of great importance to better understand the pathogenesis and the development of new therapies. Dental pulp stem cells (DPSCs) are being used as an in vitro model for several diseases and appear as a suitable model for NF1. The aim of this study was to evaluate in vitro chondrogenic differentiation of DPSCs from individuals with NF1 using two-dimensional (2D) and three-dimensional (3D) cultures. Results To fulfill the criteria of the International Society for Cellular Therapy, DPSCs were characterized by surface antigen expression and by their multipotentiality, being induced to differentiate towards adipogenic, osteogenic, and chondrogenic lineages in 2D cultures. Both DPSCs from individuals with NF1 (NF1 DPSCs) and control cultures were positive for CD90, CD105, CD146 and negative for CD13, CD14, CD45 and CD271, and successfully differentiated after the protocols. Chondrogenic differentiation was evaluated in 2D and in 3D (pellet) cultures, which were further evaluated by optical microscopy and transmission electron microscopy (TEM). 2D cultures showed greater extracellular matrix deposition in NF1 DPSCs comparing with controls during chondrogenic differentiation. In semithin sections, control pellets hadhomogenous-sized intra and extracelullar matrix vesicles, whereas NF1 cultures had matrix vesicles of different sizes. TEM analysis showed higher amount of collagen fibers in NF1 cultures compared with control cultures. Conclusion NF1 DPSCs presented increased extracellular matrix deposition during chondrogenic differentiation, which could be related to skeletal changes in individuals with NF1. Electronic supplementary material The online version of this article (10.1186/s13023-018-0843-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Nascimento Almeida
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deuilton do Nascimento Barboza
- Oral and Maxillofacial Surgery, Antônio Pedro University Hospital, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Eloá Borges Luna
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rhayra Braga Dias
- National Institute of Traumatology and Orthopedics (Instituto Nacional de Traumatologia e Ortopedia), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Eugenia Leite Duarte
- National Institute of Traumatology and Orthopedics (Instituto Nacional de Traumatologia e Ortopedia), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Isabel Doria Rossi
- Institute of Biomedical Sciences, and Clementino Fraga Filho University Hospital, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karin Soares Cunha
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil. .,Neurofibromatosis National Center (Centro Nacional de Neurofibromatose), Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Artap S, Manderfield LJ, Smith CL, Poleshko A, Aghajanian H, See K, Li L, Jain R, Epstein JA. Endocardial Hippo signaling regulates myocardial growth and cardiogenesis. Dev Biol 2018; 440:22-30. [PMID: 29727635 DOI: 10.1016/j.ydbio.2018.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/17/2023]
Abstract
The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells.
Collapse
Affiliation(s)
- Stanley Artap
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren J Manderfield
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl L Smith
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelvin See
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, The Cardiovascular Institute and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Monroe CL, Dahiya S, Gutmann DH. Dissecting Clinical Heterogeneity in Neurofibromatosis Type 1. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:53-74. [PMID: 28135565 DOI: 10.1146/annurev-pathol-052016-100228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common neurogenetic disorder in which affected children and adults are predisposed to the development of benign and malignant nervous system tumors. Caused by a germline mutation in the NF1 tumor suppressor gene, individuals with NF1 are prone to optic gliomas, malignant gliomas, neurofibromas, and malignant peripheral nerve sheath tumors, as well as behavioral, cognitive, motor, bone, cardiac, and pigmentary abnormalities. Although NF1 is a classic monogenic syndrome, the clinical features of the disorder and their impact on patient morbidity are variable, even within individuals who bear the same germline NF1 gene mutation. As such, NF1 affords unique opportunities to define the factors that contribute to disease heterogeneity and to develop therapies personalized to a given individual (precision medicine). This review highlights the clinical features of NF1 and the use of genetically engineered mouse models to define the molecular and cellular pathogenesis of NF1-associated nervous system tumors.
Collapse
Affiliation(s)
- Courtney L Monroe
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
17
|
Cellular interplay via cytokine hierarchy causes pathological cardiac hypertrophy in RAF1-mutant Noonan syndrome. Nat Commun 2017; 8:15518. [PMID: 28548091 PMCID: PMC5458545 DOI: 10.1038/ncomms15518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Noonan syndrome (NS) is caused by mutations in RAS/ERK pathway genes, and is characterized by craniofacial, growth, cognitive and cardiac defects. NS patients with kinase-activating RAF1 alleles typically develop pathological left ventricular hypertrophy (LVH), which is reproduced in Raf1L613V/+ knock-in mice. Here, using inducible Raf1L613V expression, we show that LVH results from the interplay of cardiac cell types. Cardiomyocyte Raf1L613V enhances Ca2+ sensitivity and cardiac contractility without causing hypertrophy. Raf1L613V expression in cardiomyocytes or activated fibroblasts exacerbates pressure overload-evoked fibrosis. Endothelial/endocardial (EC) Raf1L613V causes cardiac hypertrophy without affecting contractility. Co-culture and neutralizing antibody experiments reveal a cytokine (TNF/IL6) hierarchy in Raf1L613V-expressing ECs that drives cardiomyocyte hypertrophy in vitro. Furthermore, postnatal TNF inhibition normalizes the increased wall thickness and cardiomyocyte hypertrophy in vivo. We conclude that NS-cardiomyopathy involves cardiomyocytes, ECs and fibroblasts, TNF/IL6 signalling components represent potential therapeutic targets, and abnormal EC signalling might contribute to other forms of LVH. The human congenital disorder Noonan Syndrome (NS) is caused by germ-line mutations that hyperactivate the RAS/ERK signalling pathway, and can feature pathologic cardiac enlargement. Here, the authors find that a complex cellular and molecular interplay involving a cytokine hierarchy underlies cardiac hypertrophy caused by a NS-associated Raf allele.
Collapse
|
18
|
Kehrer-Sawatzki H, Mautner VF, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet 2017; 136:349-376. [PMID: 28213670 PMCID: PMC5370280 DOI: 10.1007/s00439-017-1766-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
The most frequent recurring mutations in neurofibromatosis type 1 (NF1) are large deletions encompassing the NF1 gene and its flanking regions (NF1 microdeletions). The majority of these deletions encompass 1.4-Mb and are associated with the loss of 14 protein-coding genes and four microRNA genes. Patients with germline type-1 NF1 microdeletions frequently exhibit dysmorphic facial features, overgrowth/tall-for-age stature, significant delay in cognitive development, large hands and feet, hyperflexibility of joints and muscular hypotonia. Such patients also display significantly more cardiovascular anomalies as compared with patients without large deletions and often exhibit increased numbers of subcutaneous, plexiform and spinal neurofibromas as compared with the general NF1 population. Further, an extremely high burden of internal neurofibromas, characterised by >3000 ml tumour volume, is encountered significantly, more frequently, in non-mosaic NF1 microdeletion patients than in NF1 patients lacking such deletions. NF1 microdeletion patients also have an increased risk of malignant peripheral nerve sheath tumours (MPNSTs); their lifetime MPNST risk is 16-26%, rather higher than that of NF1 patients with intragenic NF1 mutations (8-13%). NF1 microdeletion patients, therefore, represent a high-risk group for the development of MPNSTs, tumours which are very aggressive and difficult to treat. Co-deletion of the SUZ12 gene in addition to NF1 further increases the MPNST risk in NF1 microdeletion patients. Here, we summarise current knowledge about genotype-phenotype relationships in NF1 microdeletion patients and discuss the potential role of the genes located within the NF1 microdeletion interval whose haploinsufficiency may contribute to the more severe clinical phenotype.
Collapse
Affiliation(s)
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246, Hamburg, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
19
|
Abstract
The RAS/MAPK signaling pathway plays key roles in development, cell survival and proliferation, as well as in cancer pathogenesis. Molecular genetic studies have identified a group of developmental syndromes, the RASopathies, caused by germ line mutations in this pathway. The syndromes included within this classification are neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML, formerly known as LEOPARD syndrome), Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS, NF1-like syndrome), capillary malformation-arteriovenous malformation syndrome (CM-AVM), and hereditary gingival fibromatosis (HGF) type 1. Although these syndromes present specific molecular alterations, they are characterized by a large spectrum of functional and morphological abnormalities, which include heart defects, short stature, neurocognitive impairment, craniofacial malformations, and, in some cases, cancer predisposition. The development of genetically modified animals, such as mice (Mus musculus), flies (Drosophila melanogaster), and zebrafish (Danio rerio), has been instrumental in elucidating the molecular and cellular bases of these syndromes. Moreover, these models can also be used to determine tumor predisposition, the impact of different genetic backgrounds on the variable phenotypes found among the patients and to evaluate preventative and therapeutic strategies. Here, we review a wide range of genetically modified mouse models used in the study of RASopathies and the potential application of novel technologies, which hopefully will help us resolve open questions in the field.
Collapse
|
20
|
Mia MM, Chelakkot-Govindalayathil AL, Singh MK. Targeting NF2-Hippo/Yap signaling pathway for cardioprotection after ischemia/reperfusion injury. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:545. [PMID: 28149906 DOI: 10.21037/atm.2016.11.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857, Singapore
| | | | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857, Singapore; ; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore
| |
Collapse
|
21
|
Wilsbacher L, McNally EM. Genetics of Cardiac Developmental Disorders: Cardiomyocyte Proliferation and Growth and Relevance to Heart Failure. ANNUAL REVIEW OF PATHOLOGY 2016; 11:395-419. [PMID: 26925501 PMCID: PMC8978617 DOI: 10.1146/annurev-pathol-012615-044336] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Cardiac developmental disorders represent the most common of human birth defects, and anomalies in cardiomyocyte proliferation drive many of these disorders. This review highlights the molecular mechanisms of prenatal cardiac growth. Trabeculation represents the initial ventricular growth phase and is necessary for embryonic survival. Later in development, the bulk of the ventricular wall derives from the compaction process, yet the arrest of this process can still be compatible with life. Cardiomyocyte proliferation and growth form the basis of both trabeculation and compaction, and mouse models indicate that cardiomyocyte interactions with the surrounding environment are critical for these proliferative processes. The human genetics of left ventricular noncompaction cardiomyopathy suggest that cardiomyocyte cell-autonomous mechanisms contribute to the compaction process. Understanding the determinants of prenatal or early postnatal cardiomyocyte proliferation and growth provides critical information that identifies risk factors for cardiovascular disease, including heart failure and its associated complications of arrhythmias and thromboembolic events.
Collapse
Affiliation(s)
- Lisa Wilsbacher
- Department of Medicine, Center for Genetic Medicine, and Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | - Elizabeth M McNally
- Department of Medicine, Center for Genetic Medicine, and Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| |
Collapse
|
22
|
He S, Mansour MR, Zimmerman MW, Ki DH, Layden HM, Akahane K, Gjini E, de Groh ED, Perez-Atayde AR, Zhu S, Epstein JA, Look AT. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. eLife 2016; 5. [PMID: 27130733 PMCID: PMC4900799 DOI: 10.7554/elife.14713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1’s role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical “developmental tumor”, NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation. DOI:http://dx.doi.org/10.7554/eLife.14713.001 Neuroblastoma is one of the most common childhood cancers and is responsible for about 15% of childhood deaths due to cancer. The neuroblastoma tumors arise in cells that develop into and form part of the body’s nervous system. Many researchers have studied the genetics of this disease and have recognised common patterns. In particular, neuroblastomas can occur when a protein called MYCN is over-produced and a tumor suppressor protein called NF1 is lost. NF1 is a large protein with several distinct parts or domains. The most studied domain of NF1 is called the GRD, and it is mainly responsible for dampening down signals that cause cells to grow, specialize and survive. However, experiments in mice have revealed that this protein uses its other domains to control the normal development of part of the nervous system. He et al. wanted to know which domains of NF1 are important for suppressing the growth of neuroblastomas. The experiments were conducted in zebrafish that had been engineered to produce an excess of the human version of MYCN. When He et al. also deleted the gene for the zebrafish’s version of NF1, the fish quickly developed neuroblastomas. Supplying the zebrafish with just the GRD of NF1 was enough to supress the growth of the tumors. These experiments show that NF1 uses different domains and signalling pathways to regulate the normal development of part of the nervous system and to prevent formation of neuroblastoma. These engineered zebrafish represent an animal model of neuroblastoma that mimics the human disease in many ways. This model will make it possible to test new drug combinations and to find more effective treatments for neuroblastoma patients. DOI:http://dx.doi.org/10.7554/eLife.14713.002
Collapse
Affiliation(s)
- Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Hematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Dong Hyuk Ki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Hillary M Layden
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Koshi Akahane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Evisa Gjini
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Eric D de Groh
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Antonio R Perez-Atayde
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, United States
| | - Shizhen Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, United States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
23
|
Jindal GA, Goyal Y, Burdine RD, Rauen KA, Shvartsman SY. RASopathies: unraveling mechanisms with animal models. Dis Model Mech 2016. [PMID: 26203125 PMCID: PMC4527292 DOI: 10.1242/dmm.020339] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. Summary: Developmental disorders caused by germline mutations in the Ras-MAPK pathway are called RASopathies. Studies with animal models, including mice, zebrafish and Drosophila, continue to enhance our understanding of these diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katherine A Rauen
- Department of Pediatrics, MIND Institute, Division of Genomic Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
24
|
Yzaguirre AD, Padmanabhan A, de Groh ED, Engleka KA, Li J, Speck NA, Epstein JA. Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. eLife 2015; 4:e07780. [PMID: 26460546 PMCID: PMC4714971 DOI: 10.7554/elife.07780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Type I neurofibromatosis (NF1) is caused by mutations in the NF1 gene encoding neurofibromin. Neurofibromin exhibits Ras GTPase activating protein (Ras-GAP) activity that is thought to mediate cellular functions relevant to disease phenotypes. Loss of murine Nf1 results in embryonic lethality due to heart defects, while mice with monoallelic loss of function mutations or with tissue-specific inactivation have been used to model NF1. Here, we characterize previously unappreciated phenotypes in Nf1-/- embryos, which are inhibition of hemogenic endothelial specification in the dorsal aorta, enhanced yolk sac hematopoiesis, and exuberant cardiac blood island formation. We show that a missense mutation engineered into the active site of the Ras-GAP domain is sufficient to reproduce ectopic blood island formation, cardiac defects, and overgrowth of neural crest-derived structures seen in Nf1-/-embryos. These findings demonstrate a role for Ras-GAP activity in suppressing the hemogenic potential of the heart and restricting growth of neural crest-derived tissues. DOI:http://dx.doi.org/10.7554/eLife.07780.001 Messages are carried from the surface of a cell to the cell’s nucleus in order to regulate various processes such as how often the cell will divide. The Ras-signaling pathway carries some of these messages. A gene called Nf1 encodes a protein in this pathway that deactivates another protein called Ras when the message is no longer required. If a mutation in Nf1 prevents it from deactivating Ras, the pathway becomes hyperactivated. In humans, this results in a disorder called Neurofibromatosis type I, which is characterized by tumors that affect many parts of the body. When the expression of Nf1 is turned off in mice, the mice die as embryos because of cardiac defects. But a mouse in which Nf1 has been turned off in specific organs or tissues other than the heart can survive, and these mice are used to model Neurofibromatosis type I and to help to identify potential treatments. Yzaguirre et al. have now identified new roles for Nf1 during embryonic development. In the embryo, blood cells originate from the cells lining the blood vessels. The experiments revealed that, when the Nf1 gene was mutated in mice, fewer blood cells formed from the lining of the major blood vessel that leaves the embryonic heart. In contrast, these mutant mice formed more structures called cardiac blood islands than a normal mouse. These structures line the heart, and have the potential to generate new blood cells for the heart to pump. These results shed new light on how blood is originally formed from the lining of the heart and blood vessels, and show that Ras signaling must be tightly regulated to maintain normal blood development in the embryo. Furthermore, Yzaguirre et al. demonstrated that this excessive formation of cardiac blood islands resulted specifically from the loss of Nf1’s role in the Ras-signaling pathway. This was achieved by using gene targeting to generate a mouse that expresses Nf1 with a minor change that affects only the protein’s interaction with Ras. In the future, this new strain of mouse will be a useful tool in determining if specific aspects of Neurofibromatosis type I can be attributed to loss of Nf1’s role in Ras-signaling and could therefore be treated by medicines that target this pathway. DOI:http://dx.doi.org/10.7554/eLife.07780.002
Collapse
Affiliation(s)
- Amanda D Yzaguirre
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Arun Padmanabhan
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Eric D de Groh
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Kurt A Engleka
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Jun Li
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Nancy A Speck
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Jonathan A Epstein
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
25
|
Burger NB, Bekker MN, de Groot CJM, Christoffels VM, Haak MC. Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms. Prenat Diagn 2015; 35:517-28. [DOI: 10.1002/pd.4586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/09/2014] [Accepted: 02/21/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Nicole B. Burger
- Department of Obstetrics and Gynaecology; VU University Medical Center; Amsterdam The Netherlands
| | - Mireille N. Bekker
- Department of Obstetrics and Gynaecology; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Vincent M. Christoffels
- Department of Anatomy, Embryology & Physiology; Academic Medical Center; Amsterdam The Netherlands
| | - Monique C. Haak
- Department of Obstetrics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
26
|
Epstein JA, Ingram DA, Hirbe AC, Gutmann DH. A multidisciplinary approach in neurofibromatosis 1--authors' reply. Lancet Neurol 2015; 14:30-1. [PMID: 25496893 DOI: 10.1016/s1474-4422(14)70298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, The Institute for Regenerative Medicine and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Ingram
- Department of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela C Hirbe
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
27
|
MacGrogan D, Luxán G, Driessen-Mol A, Bouten C, Baaijens F, de la Pompa JL. How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harb Perspect Med 2014; 4:a013912. [PMID: 25368013 DOI: 10.1101/cshperspect.a013912] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial-mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function.
Collapse
Affiliation(s)
- Donal MacGrogan
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Guillermo Luxán
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Anita Driessen-Mol
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Carlijn Bouten
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Frank Baaijens
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - José Luis de la Pompa
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
28
|
Zhang P, Xu X, Hu X, Wang H, Fassett J, Huo Y, Chen Y, Bache RJ. DDAH1 deficiency attenuates endothelial cell cycle progression and angiogenesis. PLoS One 2013; 8:e79444. [PMID: 24260221 PMCID: PMC3832548 DOI: 10.1371/journal.pone.0079444] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthase (NOS). ADMA is eliminated largely by the action of dimethylarginine dimethylaminohydrolase1 (DDAH1). Decreased DDAH activity is found in several pathological conditions and is associated with increased risk of vascular disease. Overexpression of DDAH1 has been shown to augment endothelial proliferation and angiogenesis. To better understand the mechanism by which DDAH1 influences endothelial proliferation, this study examined the effect of DDAH1 deficiency on cell cycle progression and the expression of some cell cycle master regulatory proteins. DDAH1 KO decreased in vivo Matrigel angiogenesis and depressed endothelial repair in a mouse model of carotid artery wire injury. DDAH1 deficiency decreased VEGF expression in HUVEC and increased NF1 expression in both HUVEC and DDAH1 KO mice. The expression of active Ras could overcome the decreased VEGF expression caused by the DDAH1 depletion. The addition of VEGF and knockdown NF1 could both restore proliferation in cells with DDAH1 depletion. Flow cytometry analysis revealed that DDAH1 sRNAi knockdown in HUVEC caused G1 and G2/M arrest that was associated with decreased expression of CDC2, CDC25C, cyclin D1 and cyclin E. MEF cells from DDAH1 KO mice also demonstrated G2/M arrest that was associated with decreased cyclin D1 expression and Akt activity. Our findings indicate that DDAH1 exerts effects on cyclin D1 and cyclin E expression through multiple mechanisms, including VEGF, the NO/cGMP/PKG pathway, the Ras/PI3K/Akt pathway, and NF1 expression. Loss of DDAH1 effects on these pathways results in impaired endothelial cell proliferation and decreased angiogenesis. The findings provide background information that may be useful in the development of therapeutic strategies to manipulate DDAH1 expression in cardiovascular diseases or tumor angiogenesis.
Collapse
Affiliation(s)
- Ping Zhang
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Xin Xu
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Huan Wang
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - John Fassett
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Yingjie Chen
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Robert J. Bache
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
29
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
30
|
Rodrigues LO, Rodrigues LOC, Castro LL, Rezende NA, Ribeiro ALP. Non-invasive endothelial function assessment in patients with neurofibromatosis type 1: a cross-sectional study. BMC Cardiovasc Disord 2013; 13:18. [PMID: 23497412 PMCID: PMC3606630 DOI: 10.1186/1471-2261-13-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/19/2013] [Indexed: 01/30/2023] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a multi-systemic disease caused by neurofibromin deficiency. The reduced life expectancy of patients with NF1 has been attributed to NF1-associated malignant neoplasms. However, an analysis of death certificates in the USA suggests that vascular disease could be an important cause of early death among these patients. Endothelial dysfunction (ED) is related to vasculopathy and is an early marker of subclinical atherosclerosis. Since neurofibromin has already been demonstrated to affect endothelial cell function, ED may be associated with NF1. The purpose of this study was to assess endothelial function in patients with NF1 using a non-invasive method. Methods NF1 patients and healthy control subjects, aged 18 to 35 years, were included. Subjects were excluded if they had any risk factor for vascular disease or any other condition known to affect endothelial function. Endothelial function was assessed using reactive hyperemia-peripheral arterial tone (RH-PAT) technology. ED was defined as a reactive hyperemia index (RHI) lower than 1.35. Results Four of the 29 (13.8%) NF1 patients and 1 of the 30 (3.3%) healthy volunteers had ED (p = 0.153). RHI medians and interquartile intervals were 1.8 (1.58-2.43) for the NF1 group and 2.02 (1.74 – 2.49) for the control group (p = 0.361). Conclusion The prevalence of ED was similar in NF1 patients and healthy controls.
Collapse
Affiliation(s)
- Luiza O Rodrigues
- Department of Internal Medicine, Federal University of Minas Gerais, Av, Prof, Alfredo Balena, 190-246, Belo Horizonte, MG, Cep:30130-100, Brazil.
| | | | | | | | | |
Collapse
|
31
|
King PD, Lubeck BA, Lapinski PE. Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal 2013; 6:re1. [PMID: 23443682 DOI: 10.1126/scisignal.2003669] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inactivation of the small guanosine triphosphate-binding protein Ras during receptor signal transduction is mediated by Ras guanosine triphosphatase (GTPase)-activating proteins (RasGAPs). Ten different RasGAPs have been identified and have overlapping patterns of tissue distribution. However, genetic analyses are revealing critical nonredundant functions for each RasGAP in tissue homeostasis and as regulators of disease processes in mouse and man. Here, we discuss advances in understanding the role of RasGAPs in the maintenance of tissue integrity.
Collapse
Affiliation(s)
- Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
32
|
Jun is required in Isl1-expressing progenitor cells for cardiovascular development. PLoS One 2013; 8:e57032. [PMID: 23437302 PMCID: PMC3578783 DOI: 10.1371/journal.pone.0057032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/18/2013] [Indexed: 01/20/2023] Open
Abstract
Jun is a highly conserved member of the multimeric activator protein 1 transcription factor complex and plays an important role in human cancer where it is known to be critical for proliferation, cell cycle regulation, differentiation, and cell death. All of these biological functions are also crucial for embryonic development. Although all Jun null mouse embryos die at mid-gestation with persistent truncus arteriosus, a severe cardiac outflow tract defect also seen in human congenital heart disease, the developmental mechanisms are poorly understood. Here we show that murine Jun is expressed in a restricted pattern in several cell populations important for cardiovascular development, including the second heart field, pharyngeal endoderm, outflow tract and atrioventricular endocardial cushions and post-migratory neural crest derivatives. Several genes, including Isl1, molecularly mark the second heart field. Isl1 lineages include myocardium, smooth muscle, neural crest, endocardium, and endothelium. We demonstrate that conditional knockout mouse embryos lacking Jun in Isl1-expressing progenitors display ventricular septal defects, double outlet right ventricle, semilunar valve hyperplasia and aortic arch artery patterning defects. In contrast, we show that conditional deletion of Jun in Tie2-expressing endothelial and endocardial precursors does not result in aortic arch artery patterning defects or embryonic death, but does result in ventricular septal defects and a low incidence of semilunar valve defects, atrioventricular valve defects and double outlet right ventricle. Our results demonstrate that Jun is required in Isl1-expressing progenitors and, to a lesser extent, in endothelial cells and endothelial-derived endocardium for cardiovascular development but is dispensable in both cell types for embryonic survival. These data provide a cellular framework for understanding the role of Jun in the pathogenesis of congenital heart disease.
Collapse
|
33
|
Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:499-530. [PMID: 24014420 DOI: 10.1002/wdev.98] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mature outflow tract (OFT) is, in basic terms, a short conduit. It is a simple, although vital, connection situated between contracting muscular heart chambers and a vast embryonic vascular network. Unfortunately, it is also a focal point underlying many multifactorial congenital heart defects (CHDs). Through the use of various animal models combined with human genetic investigations, we are beginning to comprehend the molecular and cellular framework that controls OFT morphogenesis. Clear roles of neural crest cells (NCC) and second heart field (SHF) derivatives have been established during OFT formation and remodeling. The challenge now is to determine how the SHF and cardiac NCC interact, the complex reciprocal signaling that appears to be occurring at various stages of OFT morphogenesis, and finally how endocardial progenitors and primary heart field (PHF) communicate with both these colonizing extra-cardiac lineages. Although we are beginning to understand that this dance of progenitor populations is wonderfully intricate, the underlying pathogenesis and the spatiotemporal cell lineage interactions remain to be fully elucidated. What is now clear is that OFT alignment and septation are independent processes, invested via separate SHF and cardiac neural crest (CNC) lineages. This review will focus on our current understanding of the respective contributions of the SHF and CNC lineage during OFT development and pathogenesis.
Collapse
Affiliation(s)
- Zachary Neeb
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
34
|
Nguyen R, Mir TS, Kluwe L, Jett K, Kentsch M, Mueller G, Kehrer-Sawatzki H, Friedman JM, Mautner VF. Cardiac characterization of 16 patients with large NF1 gene deletions. Clin Genet 2012; 84:344-9. [PMID: 23278345 DOI: 10.1111/cge.12072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
The aim of this study was to characterize cardiac features of patients with neurofibromatosis 1 (NF1) and large deletions of the NF1 gene region. The study participants were 16 patients with large NF1 deletions and 16 age- and sex-matched NF1 patients without such deletions. All the patients were comprehensively characterized clinically and by echocardiography. Six of 16 NF1 deletion patients but none of 16 non-deletion NF1 patients have major cardiac abnormalities (p = 0.041). Congenital heart defects (CHDs) include mitral insufficiency in two patients and ventricular septal defect, aortic stenosis, and aortic insufficiency in one patient each. Three deletion patients have hypertrophic cardiomyopathy. Two patients have intracardiac tumors. NF1 patients without large deletions have increased left ventricular (LV) diastolic posterior wall thickness (p < 0.001) and increased intraventricular diastolic septal thickness (p = 0.001) compared with a healthy reference population without NF1, suggestive of eccentric LV hypertrophy. CHDs and other cardiovascular anomalies are more frequent among patients with large NF1 deletion and may cause serious clinical complications. Eccentric LV hypertrophy may occur in NF1 patients without whole gene deletions, but the clinical significance of this finding is uncertain. All patients with clinical suspicion for NF1 should be referred to a cardiologist for evaluation and surveillance.
Collapse
Affiliation(s)
- R Nguyen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pediatrics, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, Eaves D, Widemann B, Kim MO, Dombi E, Sabo J, Hardiman Dudley A, Niwa-Kawakita M, Page GP, Giovannini M, Aronow BJ, Cripe TP, Ratner N. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2012; 123:340-7. [PMID: 23221341 DOI: 10.1172/jci60578] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/23/2012] [Indexed: 01/18/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1(fl/fl);Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.
Collapse
Affiliation(s)
- Walter J Jessen
- Children’s Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, 3333 Burnet Ave., M.L.C. 7013, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bajaj A, Li QF, Zheng Q, Pumiglia K. Loss of NF1 expression in human endothelial cells promotes autonomous proliferation and altered vascular morphogenesis. PLoS One 2012; 7:e49222. [PMID: 23145129 PMCID: PMC3492274 DOI: 10.1371/journal.pone.0049222] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/04/2012] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis is a well known familial tumor syndrome, however these patients also suffer from a number of vascular anomalies. The loss of NFl from the endothelium is embryonically lethal in mouse developmental models, however little is known regarding the molecular regulation by NF1 in endothelium. We investigated the consequences of losing NF1 expression on the function of endothelial cells using shRNA. The loss of NF1 was sufficient to elevate levels of active Ras under non-stimulated conditions. These elevations in Ras activity were associated with activation of downstream signaling including activation of ERK, AKT and mTOR. Cells knocked down in NF1 expression exhibited no cellular senescence. Rather, they demonstrated augmented proliferation and autonomous entry into the cell cycle. These proliferative changes were accompanied by enhanced expression of cyclin D, phosphorylation of p27KIP, and decreases in total p27KIP levels, even under growth factor free conditions. In addition, NF1-deficient cells failed to undergo normal branching morphogenesis in a co-culture assay, instead forming planar islands with few tubules and branches. We find the changes induced by the loss of NF1 could be mitigated by co-expression of the GAP-related domain of NF1 implicating Ras regulation in these effects. Using doxycycline-inducible shRNA, targeting NF1, we find that the morphogenic changes are reversible. Similarly, in fully differentiated and stable vascular-like structures, the silencing of NF1 results in the appearance of abnormal vascular structures. Finally, the proliferative changes and the abnormal vascular morphogenesis are normalized by low-dose rapamycin treatment. These data provide a detailed analysis of the molecular and functional consequences of NF1 loss in human endothelial cells. These insights may provide new approaches to therapeutically addressing vascular abnormalities in these patients while underscoring a critical role for normal Ras regulation in maintaining the health and function of the vasculature.
Collapse
Affiliation(s)
- Anshika Bajaj
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Qing-fen Li
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Qingxia Zheng
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Kevin Pumiglia
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012; 139:3277-99. [PMID: 22912411 DOI: 10.1242/dev.063495] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
38
|
Dai C, Santagata S, Tang Z, Shi J, Cao J, Kwon H, Bronson RT, Whitesell L, Lindquist S. Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 2012; 122:3742-54. [PMID: 22945628 DOI: 10.1172/jci62727] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/12/2012] [Indexed: 01/25/2023] Open
Abstract
Intrinsic stress response pathways are frequently mobilized within tumor cells. The mediators of these adaptive mechanisms and how they contribute to carcinogenesis remain poorly understood. A striking example is heat shock factor 1 (HSF1), master transcriptional regulator of the heat shock response. Surprisingly, we found that loss of the tumor suppressor gene neurofibromatosis type 1 (Nf1) increased HSF1 levels and triggered its activation in mouse embryonic fibroblasts. As a consequence, Nf1-/- cells acquired tolerance to proteotoxic stress. This activation of HSF1 depended on dysregulated MAPK signaling. HSF1, in turn, supported MAPK signaling. In mice, Hsf1 deficiency impeded NF1-associated carcinogenesis by attenuating oncogenic RAS/MAPK signaling. In cell lines from human malignant peripheral nerve sheath tumors (MPNSTs) driven by NF1 loss, HSF1 was overexpressed and activated, which was required for tumor cell viability. In surgical resections of human MPNSTs, HSF1 was overexpressed, translocated to the nucleus, and phosphorylated. These findings reveal a surprising biological consequence of NF1 deficiency: activation of HSF1 and ensuing addiction to this master regulator of the heat shock response. The loss of NF1 function engages an evolutionarily conserved cellular survival mechanism that ultimately impairs survival of the whole organism by facilitating carcinogenesis.
Collapse
Affiliation(s)
- Chengkai Dai
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Osuala K, Baker CN, Nguyen HL, Martinez C, Weinshenker D, Ebert SN. Physiological and genomic consequences of adrenergic deficiency during embryonic/fetal development in mice: impact on retinoic acid metabolism. Physiol Genomics 2012; 44:934-47. [PMID: 22911456 DOI: 10.1152/physiolgenomics.00180.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenergic hormones are essential for early heart development. To gain insight into understanding how these hormones influence heart development, we evaluated genomic expression changes in embryonic hearts from adrenergic-deficient and wild-type control mice. To perform this study, we used a mouse model with targeted disruption of the Dopamine β-hydroxylase (Dbh) gene, whose product is responsible for enzymatic conversion of dopamine into norepinephrine. Embryos homozygous for the null allele (Dbh(-/-)) die from heart failure beginning as early as embryonic day 10.5 (E10.5). To assess underlying causes of heart failure, we isolated hearts from Dbh(-/-) and Dbh(+/+) embryos prior to manifestation of the phenotype and examined gene expression changes using genomic Affymetrix 430A 2.0 arrays, which enabled simultaneous evaluation of >22,000 genes. We found that only 22 expressed genes showed a significant twofold or greater change, representing ~0.1% of the total genes analyzed. More than half of these genes are associated with either metabolism (31%) or signal transduction (22%). Remarkably, several of the altered genes encode for proteins that are directly involved in retinoic acid (RA) biosynthesis and transport. Subsequent evaluation showed that RA concentrations were significantly elevated by an average of ~3-fold in adrenergic-deficient (Dbh(-/-)) embryos compared with controls, thereby suggesting that RA may be an important downstream mediator of adrenergic action during embryonic heart development.
Collapse
Affiliation(s)
- Kingsley Osuala
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida 32827, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Baek ST, Tallquist MD. Nf1 limits epicardial derivative expansion by regulating epithelial to mesenchymal transition and proliferation. Development 2012; 139:2040-9. [PMID: 22535408 DOI: 10.1242/dev.074054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The epicardium is the primary source of coronary vascular smooth muscle cells (cVSMCs) and fibroblasts that reside in the compact myocardium. To form these epicardial-derived cells (EPDCs), the epicardium undergoes the process of epithelial to mesenchymal transition (EMT). Although several signaling pathways have been identified that disrupt EMT, no pathway has been reported that restricts this developmental process. Here, we identify neurofibromin 1 (Nf1) as a key mediator of epicardial EMT. To determine the function of Nf1 during epicardial EMT and the formation of epicardial derivatives, cardiac fibroblasts and cVSMCs, we generated mice with a tissue-specific deletion of Nf1 in the epicardium. We found that mutant epicardial cells transitioned more readily to mesenchymal cells in vitro and in vivo. The mesothelial epicardium lost epithelial gene expression and became more invasive. Using lineage tracing of EPDCs, we found that the process of EMT occurred earlier in Nf1 mutant hearts, with an increase in epicardial cells entering the compact myocardium. Moreover, loss of Nf1 caused increased EPDC proliferation and resulted in more cardiac fibroblasts and cVSMCs. Finally, we were able to partially reverse the excessive EMT caused by loss of Nf1 by disrupting Pdgfrα expression in the epicardium. Conversely, Nf1 activation was able to inhibit PDGF-induced epicardial EMT. Our results demonstrate a regulatory role for Nf1 during epicardial EMT and provide insights into the susceptibility of patients with disrupted NF1 signaling to cardiovascular disease.
Collapse
Affiliation(s)
- Seung Tae Baek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
41
|
Brossier NM, Carroll SL. Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2011; 88:58-71. [PMID: 21855613 DOI: 10.1016/j.brainresbull.2011.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1), the most common genetic disorder affecting the human nervous system, is characterized by the development of multiple benign Schwann cell tumors in skin and large peripheral nerves. These neoplasms, which are termed dermal and plexiform neurofibromas respectively, have distinct clinical courses; of particular note, plexiform, but not dermal, neurofibromas often undergo malignant progression to form malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy occurring in NF1 patients. In recent years, a number of genetically engineered mouse models have been created to investigate the molecular mechanisms driving the pathogenesis of these tumors. These models have been designed to address key questions including: (1) whether NF1 loss in the Schwann cell lineage is essential for tumorigenesis; (2) what cell type(s) in the Schwann cell lineage gives rise to dermal neurofibromas, plexiform neurofibromas and MPNSTs; (3) how the tumor microenvironment contributes to neoplasia; (4) what additional mutations contribute to neurofibroma-MPNST progression; (5) what role different neurofibromin-regulated Ras proteins play in this process and (6) how dysregulated growth factor signaling facilitates PNS tumorigenesis. In this review, we summarize the major findings from each of these models and their limitations as well as how discrepancies between these models may be reconciled. We also discuss how information gleaned from these models can be synthesized to into a comprehensive model of tumor formation in peripheral nervous system and consider several of the major questions that remain unanswered about this process.
Collapse
Affiliation(s)
- Nicole M Brossier
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
42
|
Azhar M, Brown K, Gard C, Chen H, Rajan S, Elliott DA, Stevens MV, Camenisch TD, Conway SJ, Doetschman T. Transforming growth factor Beta2 is required for valve remodeling during heart development. Dev Dyn 2011; 240:2127-41. [PMID: 21780244 DOI: 10.1002/dvdy.22702] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2011] [Indexed: 01/31/2023] Open
Abstract
Although the function of transforming growth factor beta2 (TGFβ2) in epithelial mesenchymal transition (EMT) is well studied, its role in valve remodeling remains to be fully explored. Here, we used histological, morphometric, immunohistochemical and molecular approaches and showed that significant dysregulation of major extracellular matrix (ECM) components contributed to valve remodeling defects in Tgfb2(-/-) embryos. The data indicated that cushion mesenchymal cell differentiation was impaired in Tgfb2(-/-) embryos. Hyaluronan and cartilage link protein-1 (CRTL1) were increased in hyperplastic valves of Tgfb2(-/-) embryos, indicating increased expansion and diversification of cushion mesenchyme into the cartilage cell lineage during heart development. Finally, Western blot and immunohistochemistry analyses indicate that the activation of SMAD2/3 was decreased in Tgfb2(-/-) embryos during valve remodeling. Collectively, the data indicate that TGFβ2 promotes valve remodeling and differentiation by inducing matrix organization and suppressing cushion mesenchyme differentiation into cartilage cell lineage during heart development.
Collapse
Affiliation(s)
- Mohamad Azhar
- BIO5 Institute, University of Arizona, Tucson, Arizona; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mayes DA, Rizvi TA, Cancelas JA, Kolasinski NT, Ciraolo GM, Stemmer-Rachamimov AO, Ratner N. Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res 2011; 71:4675-85. [PMID: 21551249 PMCID: PMC3464476 DOI: 10.1158/0008-5472.can-10-4558] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plexiform neurofibromas are peripheral nerve sheath tumors initiated by biallelic mutation of the NF1 tumor suppressor gene in the Schwann cell lineage. To understand whether neurofibroma formation is possible after birth, we induced Nf1 loss of function with an inducible proteolipid protein Cre allele. Perinatal loss of Nf1 resulted in the development of small plexiform neurofibromas late in life, whereas loss in adulthood caused large plexiform neurofibromas and morbidity beginning 4 months after onset of Nf1 loss. A conditional EGFP reporter allele identified cells showing recombination, including peripheral ganglia satellite cells, peripheral nerve S100β+ myelinating Schwann cells, and peripheral nerve p75+ cells. Neurofibromas contained cells with Remak bundle disruption but no recombination within GFAP+ nonmyelinating Schwann cells. Extramedullary lympho-hematopoietic expansion was also observed in PlpCre;Nf1fl/fl mice. These tumors contained EGFP+/Sca-1+ stromal cells among EGFP-negative lympho-hematopoietic cells indicating a noncell autonomous effect and unveiling a role of Nf1-deleted microenvironment on lympho-hematopoietic proliferation in vivo. Together these findings define a tumor suppressor role for Nf1 in the adult and narrow the range of potential neurofibroma-initiating cell populations.
Collapse
Affiliation(s)
- Debra A. Mayes
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Tilat A. Rizvi
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Jose A. Cancelas
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Hoxworth Blood Center, University of Cincinnati
| | - Nathan T. Kolasinski
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | | | | | - Nancy Ratner
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
44
|
Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011; 109:47-59. [PMID: 21597009 PMCID: PMC3140796 DOI: 10.1161/circresaha.110.237206] [Citation(s) in RCA: 502] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/05/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE The developing heart requires both mechanical load and vascularization to reach its proper size, yet the regulation of human heart growth by these processes is poorly understood. OBJECTIVE We seek to elucidate the responses of immature human myocardium to mechanical load and vascularization using tissue engineering approaches. METHODS AND RESULTS Using human embryonic stem cell and human induced pluripotent stem cell-derived cardiomyocytes in a 3-dimensional collagen matrix, we show that uniaxial mechanical stress conditioning promotes 2-fold increases in cardiomyocyte and matrix fiber alignment and enhances myofibrillogenesis and sarcomeric banding. Furthermore, cyclic stress conditioning markedly increases cardiomyocyte hypertrophy (2.2-fold) and proliferation rates (21%) versus unconditioned constructs. Addition of endothelial cells enhances cardiomyocyte proliferation under all stress conditions (14% to 19%), and addition of stromal supporting cells enhances formation of vessel-like structures by ≈10-fold. Furthermore, these optimized human cardiac tissue constructs generate Starling curves, increasing their active force in response to increased resting length. When transplanted onto hearts of athymic rats, the human myocardium survives and forms grafts closely apposed to host myocardium. The grafts contain human microvessels that are perfused by the host coronary circulation. CONCLUSIONS Our results indicate that both mechanical load and vascular cell coculture control cardiomyocyte proliferation, and that mechanical load further controls the hypertrophy and architecture of engineered human myocardium. Such constructs may be useful for studying human cardiac development as well as for regenerative therapy.
Collapse
Affiliation(s)
- Nathaniel L. Tulloch
- Molecular and Cellular Biology Program Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Veronica Muskheli
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Maria V. Razumova
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - F. Steven Korte
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Michael Regnier
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Kip D. Hauch
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Lil Pabon
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Hans Reinecke
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Charles E. Murry
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
- Department of Medicine/Cardiology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| |
Collapse
|
45
|
Wu B, Wang Y, Lui W, Langworthy M, Tompkins KL, Hatzopoulos AK, Baldwin HS, Zhou B. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res 2011; 109:183-92. [PMID: 21597012 DOI: 10.1161/circresaha.111.245035] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Formation of heart valves requires early endocardial to mesenchymal transformation (EMT) to generate valve mesenchyme and subsequent endocardial cell proliferation to elongate valve leaflets. Nfatc1 (nuclear factor of activated T cells, cytoplasmic 1) is highly expressed in valve endocardial cells and is required for normal valve formation, but its role in the fate of valve endocardial cells during valve development is unknown. OBJECTIVE Our aim was to investigate the function of Nfatc1 in cell-fate decision making by valve endocardial cells during EMT and early valve elongation. METHODS AND RESULTS Nfatc1 transcription enhancer was used to generate a novel valve endocardial cell-specific Cre mouse line for fate-mapping analyses of valve endocardial cells. The results demonstrate that a subpopulation of valve endocardial cells marked by the Nfatc1 enhancer do not undergo EMT. Instead, these cells remain within the endocardium as a proliferative population to support valve leaflet extension. In contrast, loss of Nfatc1 function leads to enhanced EMT and decreased proliferation of valve endocardium and mesenchyme. The results of blastocyst complementation assays show that Nfatc1 inhibits EMT in a cell-autonomous manner. We further reveal by gene expression studies that Nfatc1 suppresses transcription of Snail1 and Snail2, the key transcriptional factors for initiation of EMT. CONCLUSIONS These results show that Nfatc1 regulates the cell-fate decision making of valve endocardial cells during valve development and coordinates EMT and valve elongation by allocating endocardial cells to the 2 morphological events essential for valve development.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Price Center 420, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW It has been known for decades that in order to grow, tumors need to activate quiescent endothelial cells to form a functional vascular network, a process termed 'angiogenesis'. However, the molecular determinants that reverse this endothelial quiescence to facilitate pathological angiogenesis are not yet completely understood. This review examines a critical regulatory switch at the level of Ras that activates this angiogenic switch process and the role that microRNAs play in this process. RECENT FINDINGS In the last few years, microRNAs, a new class of small RNA molecules, have emerged as key regulators of several cellular processes, including angiogenesis. MicroRNAs such as miR-126, miR-296, and miR-92a have been shown to play important roles in angiogenesis. We recently described how miR-132, an angiogenic growth factor inducible microRNA in the endothelium, facilitates pathological angiogenesis by downregulating p120RasGAP, a molecular brake for Ras. Importantly, targeting miR-132 with a complementary, synthetic antimicroRNA restored the brake and decreased angiogenesis and tumor burden in multiple tumor models. Taken together, emerging evidence suggests a central role for microRNAs downstream of multiple growth factors in regulating endothelial proliferation, migration, and vascular patterning. SUMMARY Further research into miR-132-p120RasGAP biology and more broadly, microRNA regulation of Ras pathways in the endothelium will not only advance our understanding of angiogenesis but also provide opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Sudarshan Anand
- Moores UCSD Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
47
|
DeLaughter DM, Saint-Jean L, Baldwin HS, Barnett JV. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. ACTA ACUST UNITED AC 2011; 91:511-25. [PMID: 21538818 DOI: 10.1002/bdra.20809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/08/2011] [Accepted: 02/17/2011] [Indexed: 12/16/2022]
Abstract
Specific cell and tissue interactions drive the formation and function of the vertebrate cardiovascular system. Although much attention has been focused on the muscular components of the developing heart, the endocardium plays a key role in the formation of a functioning heart. Endocardial cells exhibit heterogeneity that allows them to participate in events such as the formation of the valves, septation of the outflow tract, and trabeculation. Here we review, the contributions of the endocardium to cardiovascular development and outline useful approaches developed in the chick and mouse that have revealed endocardial cell heterogeneity, the signaling molecules that direct endocardial cell behavior, and how these insights have contributed to our understanding of cardiovascular development and disease.
Collapse
Affiliation(s)
- Daniel M DeLaughter
- Departments of Cell & Developmental Biology, Vanderbilt University Medical Center, 2220 Pierce Ave., Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
48
|
Zhang P, Hu X, Xu X, Chen Y, Bache RJ. Dimethylarginine dimethylaminohydrolase 1 modulates endothelial cell growth through nitric oxide and Akt. Arterioscler Thromb Vasc Biol 2011; 31:890-7. [PMID: 21212404 PMCID: PMC3064458 DOI: 10.1161/atvbaha.110.215640] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 12/21/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Dimethylarginine dimethylaminohydrolase 1 (DDAH1) modulates NO production by degrading the endogenous nitric oxide (NO) synthase (NOS) inhibitors asymmetrical dimethylarginine (ADMA) and L-NG-monomethyl arginine (L-NMMA). This study examined whether, in addition to degrading ADMA, DDAH1 exerts ADMA-independent effects that influence endothelial function. METHODS AND RESULTS Using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in human umbilical vein endothelial cells, we found that DDAH1 acts to promote endothelial cell proliferation, migration, and tube formation by Akt phosphorylation, as well as through the traditional role of degrading ADMA. Incubation of human umbilical vein endothelial cells with the NOS inhibitors l-NG-nitro-arginine methyl ester (L-NAME) or ADMA, the soluble guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo-(4,3-2)quinoxalin-1-one, or the cGMP analog 8-(4-Chlorophenylthio)-cGMP had no effect on phosphorylated (p)-Akt(Ser473), indicating that the increase in p-Akt(Ser473) produced by DDAH1 was independent of the NO-cGMP signaling pathway. DDAH1 formed a protein complex with Ras, and DDAH1 overexpression increased Ras activity. The Ras inhibitor manumycin-A or dominant-negative Ras significantly attenuated the DDAH1-induced increase in p-Akt(Ser473). Furthermore, DDAH1 knockout impaired endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescued endothelial sprouting in the aortic rings from these mice. CONCLUSIONS DDAH1 exerts a unique role in activating Akt that affects endothelial function independently of degrading endogenous NOS inhibitors.
Collapse
Affiliation(s)
- Ping Zhang
- Division of Cardiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
49
|
Mysliwiec MR, Bresnick EH, Lee Y. Endothelial Jarid2/Jumonji is required for normal cardiac development and proper Notch1 expression. J Biol Chem 2011; 286:17193-204. [PMID: 21402699 DOI: 10.1074/jbc.m110.205146] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Jarid2/Jumonji critically regulates developmental processes including cardiovascular development. Jarid2 knock-out mice exhibit cardiac defects including hypertrabeculation with noncompaction of the ventricular wall. However, molecular mechanisms underlying Jarid2-mediated cardiac development remain unknown. To determine the cardiac lineage-specific roles of Jarid2, we generated myocardial, epicardial, cardiac neural crest, or endothelial conditional Jarid2 knock-out mice using Cre-loxP technology. Only mice with an endothelial deletion of Jarid2 recapitulate phenotypic defects observed in whole body mutants including hypertrabeculation and noncompaction of the ventricle. To identify potential targets of Jarid2, combinatorial approaches using microarray and candidate gene analyses were employed on Jarid2 knock-out embryonic hearts. Whole body or endothelial deletion of Jarid2 leads to increased endocardial Notch1 expression in the developing ventricle, resulting in increased Notch1-dependent signaling to the adjacent myocardium. Using quantitative chromatin immunoprecipitation analysis, Jarid2 was found to occupy a specific region on the endogenous Notch1 locus. We propose that failure to properly regulate Notch signaling in Jarid2 mutants likely leads to the defects in the developing ventricular chamber. The identification of Jarid2 as a potential regulator of Notch1 signaling has broad implications for many cellular processes including development, stem cell maintenance, and tumor formation.
Collapse
Affiliation(s)
- Matthew R Mysliwiec
- Department of Anatomy, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
50
|
|