1
|
Peng J, Liang D, Zhang Z. Palmitoylation of synaptic proteins: roles in functional regulation and pathogenesis of neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:108. [PMID: 39127627 DOI: 10.1186/s11658-024-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Palmitoylation is a type of lipid modification that plays an important role in various aspects of neuronal function. Over the past few decades, several studies have shown that the palmitoylation of synaptic proteins is involved in neurotransmission and synaptic functions. Palmitoyl acyltransferases (PATs), which belong to the DHHC family, are major players in the regulation of palmitoylation. Dysregulated palmitoylation of synaptic proteins and mutated/dysregulated DHHC proteins are associated with several neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). In this review, we summarize the recent discoveries on the subcellular distribution of DHHC proteins and analyze their expression patterns in different brain cells. In particular, this review discusses how palmitoylation of synaptic proteins regulates synaptic vesicle exocytotic fusion and the localization, clustering, and transport of several postsynaptic receptors, as well as the role of palmitoylation of other proteins in regulating synaptic proteins. Additionally, some of the specific known associations of these factors with neurodegenerative disorders are explored, with a few suggestions for the development of therapeutic strategies. Finally, this review provides possible directions for future research to reveal detailed and specific mechanisms underlying the roles of synaptic protein palmitoylation.
Collapse
Affiliation(s)
- Jiaying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Danchan Liang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
2
|
Dantas AG, Nunes BC, Nunes N, Galante P, Asprino PF, Ota VK, Melaragno MI. Next-generation sequencing profiling of miRNAs in individuals with 22q11.2 deletion syndrome revealed altered expression of miR-185-5p. Hum Genomics 2024; 18:64. [PMID: 38872198 PMCID: PMC11170780 DOI: 10.1186/s40246-024-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with highly variable phenotypic manifestations, even though most patients present the typical 3 Mb microdeletion, usually affecting the same ~ 106 genes. One of the genes affected by this deletion is DGCR8, which plays a crucial role in miRNA biogenesis. Therefore, the haploinsufficiency of DGCR8 due to this microdeletion can alter the modulation of the expression of several miRNAs involved in a range of biological processes. RESULTS In this study, we used next-generation sequencing to evaluate the miRNAs profiles in the peripheral blood of 12 individuals with typical 22q11DS compared to 12 healthy matched controls. We used the DESeq2 package for differential gene expression analysis and the DIANA-miTED dataset to verify the expression of differentially expressed miRNAs in other tissues. We used miRWalk to predict the target genes of differentially expressed miRNAs. Here, we described two differentially expressed miRNAs in patients compared to controls: hsa-miR-1304-3p, located outside the 22q11.2 region, upregulated in patients, and hsa-miR-185-5p, located in the 22q11.2 region, which showed downregulation. Expression of miR-185-5p is observed in tissues frequently affected in patients with 22q11DS, and previous studies have reported its downregulation in individuals with 22q11DS. hsa-miR-1304-3p has low expression in blood and, thus, needs more validation, though using a sensitive technology allowed us to identify differences in expression between patients and controls. CONCLUSIONS Thus, lower expression of miR-185-5p can be related to the 22q11.2 deletion and DGCR8 haploinsufficiency, leading to phenotypic consequences in 22q11.2DS patients, while higher expression of hsa-miR-1304-3p might be related to individual genomic variances due to the heterogeneous background of the Brazilian population.
Collapse
Affiliation(s)
- Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Carvalho Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natália Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Pedro Galante
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Vaughan RA, Henry LK, Foster JD, Brown CR. Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:1-33. [PMID: 38467478 DOI: 10.1016/bs.apha.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
5
|
Gu M, Jiang H, Tan M, Yu L, Xu N, Li Y, Wu H, Hou Q, Dai C. Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation. Nat Commun 2023; 14:6682. [PMID: 37865665 PMCID: PMC10590414 DOI: 10.1038/s41467-023-42476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
palmitoylation, a reversible post-translational modification, is initiated by the DHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases. However, the role and mechanisms for protein palmitoylation in renal fibrosis have not been elucidated. Here we show protein palmitoylation and DHHC9 were downregulated in the fibrotic kidneys of mouse models and chronic kidney disease (CKD) patients. Ablating DHHC9 in tubular cells aggravated, while inducing DHHC9 overexpression with adeno-DHHC9 transfection or iproniazid treatment protected against kidney fibrosis in male mouse models. Mechanistically, DHHC9 palmitoylated β-catenin, thereby promoted its ubiquitination and degradation. Additionally, acyl protein thioesterase 1 (APT1) was induced in the fibrotic kidneys, which depalmitoylated β-catenin, increased its abundance and nuclear translocation. Ablating tubular APT1 or inhibiting APT1 with ML348 markedly protected against unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI)-induced kidney fibrosis in male mice. This study reveals the regulatory mechanism of protein palmitoylation in kidney fibrosis.
Collapse
Affiliation(s)
- Mengru Gu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Hanlu Jiang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengzhu Tan
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Long Yu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Ning Xu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Ying Li
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Han Wu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qing Hou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Li MD, Wang L, Zheng YQ, Huang DH, Xia ZX, Liu JM, Tian D, OuYang H, Wang ZH, Huang Z, Lin XS, Zhu XQ, Wang SY, Chen WK, Yang SW, Zhao YL, Liu JA, Shen ZC. DHHC2 regulates fear memory formation, LTP, and AKAP150 signaling in the hippocampus. iScience 2023; 26:107561. [PMID: 37664599 PMCID: PMC10469764 DOI: 10.1016/j.isci.2023.107561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Palmitoyl acyltransferases (PATs) have been suggested to be involved in learning and memory. However, the underlying mechanisms have not yet been fully elucidated. Here, we found that the activity of DHHC2 was upregulated in the hippocampus after fear conditioning, and DHHC2 knockdown impaired fear induced memory and long-term potentiation (LTP). Additionally, the activity of DHHC2 and its synaptic expression were increased after high frequency stimulation (HFS) or glycine treatment. Importantly, fear learning selectively augmented the palmitoylation level of AKAP150, not PSD-95, and this effect was abolished by DHHC2 knockdown. Furthermore, 2-bromopalmitic acid (2-BP), a palmitoylation inhibitor, attenuated the increased palmitoylation level of AKAP150 and the interaction between AKAP150 and PSD-95 induced by HFS. Lastly, DHHC2 knockdown reduced the phosphorylation level of GluA1 at Ser845, and also induced an impairment of LTP in the hippocampus. Our results suggest that DHHC2 plays a critical role in regulating fear memory via AKAP150 signaling.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lu Wang
- Department of Nephrology, Fuzhou Children’s Hospital of Fujian Province, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yu-Qi Zheng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan-Hong Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Hui OuYang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zi-Hao Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jia-An Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
7
|
Koropouli E, Wang Q, Mejías R, Hand R, Wang T, Ginty DD, Kolodkin AL. Palmitoylation regulates neuropilin-2 localization and function in cortical neurons and conveys specificity to semaphorin signaling via palmitoyl acyltransferases. eLife 2023; 12:e83217. [PMID: 37010951 PMCID: PMC10069869 DOI: 10.7554/elife.83217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/22/2023] [Indexed: 04/04/2023] Open
Abstract
Secreted semaphorin 3F (Sema3F) and semaphorin 3A (Sema3A) exhibit remarkably distinct effects on deep layer excitatory cortical pyramidal neurons; Sema3F mediates dendritic spine pruning, whereas Sema3A promotes the elaboration of basal dendrites. Sema3F and Sema3A signal through distinct holoreceptors that include neuropilin-2 (Nrp2)/plexinA3 (PlexA3) and neuropilin-1 (Nrp1)/PlexA4, respectively. We find that Nrp2 and Nrp1 are S-palmitoylated in cortical neurons and that palmitoylation of select Nrp2 cysteines is required for its proper subcellular localization, cell surface clustering, and also for Sema3F/Nrp2-dependent dendritic spine pruning in cortical neurons, both in vitro and in vivo. Moreover, we show that the palmitoyl acyltransferase ZDHHC15 is required for Nrp2 palmitoylation and Sema3F/Nrp2-dependent dendritic spine pruning, but it is dispensable for Nrp1 palmitoylation and Sema3A/Nrp1-dependent basal dendritic elaboration. Therefore, palmitoyl acyltransferase-substrate specificity is essential for establishing compartmentalized neuronal structure and functional responses to extrinsic guidance cues.
Collapse
Affiliation(s)
- Eleftheria Koropouli
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Qiang Wang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Rebeca Mejías
- Department of Physiology,University of SevilleSevilleSpain
| | - Randal Hand
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Alex L Kolodkin
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
8
|
Abazari D, Wild AR, Qiu T, Dickinson BC, Bamji SX. Activity-dependent post-translational regulation of palmitoylating and depalmitoylating enzymes in the hippocampus. J Cell Sci 2023; 136:jcs260629. [PMID: 37039765 PMCID: PMC10113885 DOI: 10.1242/jcs.260629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 04/12/2023] Open
Abstract
Activity-induced changes in protein palmitoylation can regulate the plasticity of synaptic connections, critically impacting learning and memory. Palmitoylation is a reversible post-translational modification regulated by both palmitoyl-acyl transferases that mediate palmitoylation and palmitoyl thioesterases that depalmitoylate proteins. However, it is not clear how fluctuations in synaptic activity can mediate the dynamic palmitoylation of neuronal proteins. Using primary hippocampal cultures, we demonstrate that synaptic activity does not impact the transcription of palmitoylating and depalmitoylating enzymes, changes in thioesterase activity, or post-translational modification of the depalmitoylating enzymes of the ABHD17 family and APT2 (also known as LYPLA2). In contrast, synaptic activity does mediate post-translational modification of the palmitoylating enzymes ZDHHC2, ZDHHC5 and ZDHHC9 (but not ZDHHC8) to influence protein-protein interactions, enzyme stability and enzyme function. Post-translational modifications of the ZDHHC enzymes were also observed in the hippocampus following fear conditioning. Taken together, our findings demonstrate that signaling events activated by synaptic activity largely impact activity of the ZDHHC family of palmitoyl-acyl transferases with less influence on the activity of palmitoyl thioesterases.
Collapse
Affiliation(s)
- Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Angela R. Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tian Qiu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Shernaz X. Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
9
|
Neuroinflammation and Oxidative Stress in Individuals Affected by DiGeorge Syndrome. Int J Mol Sci 2023; 24:ijms24044242. [PMID: 36835652 PMCID: PMC9965448 DOI: 10.3390/ijms24044242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
DiGeorge syndrome (DGS) is a rare genetic disease caused by microdeletions of the 22q11.2 region (DGS1). A haploinsufficiency at 10p level has been proposed also as a DGS cause (DGS2). Clinical manifestations are variable. The most frequent features are thymic hypoplasia or aplasia with consequent immune deficiency, cardiac malformations, hypoparathyroidism, facial and palatine abnormalities, variable degrees of cognitive impairment and psychiatric disorders. The specific aim of this descriptive report is to discuss the correlation between oxidative stress and neuroinflammation in DGS patients with microdeletions of the 22q11.2 region. The deleted chromosomic region maps various genes involved in mitochondrial metabolisms, such as DGCR8 and TXNRD2, that could lead to reactive oxygen species (ROS) increased production and antioxidant depletion. Furthermore, increased levels of ROS in mitochondria would lead to the destruction of the projection neurons in the cerebral cortex with consequent neurocognitive impairment. Finally, the increase in modified protein belonging to the family of sulfoxide compounds and hexoses, acting as inhibitors of the IV and V mitochondria complex, could result in direct ROS overproduction. Neuroinflammation in DGS individuals could be directly related to the development of the syndrome's characteristic psychiatric and cognitive disorders. In patients with psychotic disorders, the most frequent psychiatric manifestation in DGS, Th-17, Th-1 and Th-2 cells are increased with consequent elevation of proinflammatory cytokine IL-6 and IL1β. In patients with anxiety disorders, both CD3 and CD4 are increased. Some patients with autism spectrum disorders (ASDs) have an augmented level of proinflammatory cytokines IL-12, IL-6 and IL-1β, while IFNγ and the anti-inflammatory cytokine IL-10 seem to be reduced. Other data proposed that altered synaptic plasticity could be directly involved in DGS cognitive disorders. In conclusion, the use of antioxidants for restoring mitochondrial functionality in DGS could be a useful tool to protect cortical connectivity and cognitive behavior.
Collapse
|
10
|
Buszka A, Pytyś A, Colvin D, Włodarczyk J, Wójtowicz T. S-Palmitoylation of Synaptic Proteins in Neuronal Plasticity in Normal and Pathological Brains. Cells 2023; 12:cells12030387. [PMID: 36766729 PMCID: PMC9913408 DOI: 10.3390/cells12030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.
Collapse
|
11
|
Fiksinski AM, Hoftman GD, Vorstman JAS, Bearden CE. A genetics-first approach to understanding autism and schizophrenia spectrum disorders: the 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:341-353. [PMID: 36192458 PMCID: PMC9812786 DOI: 10.1038/s41380-022-01783-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Recently, increasing numbers of rare pathogenic genetic variants have been identified that are associated with variably elevated risks of a range of neurodevelopmental outcomes, notably including Autism Spectrum Disorders (ASD), Schizophrenia Spectrum Disorders (SSD), and Intellectual Disability (ID). This review is organized along three main questions: First, how can we unify the exclusively descriptive basis of our current psychiatric diagnostic classification system with the recognition of an identifiable, highly penetrant genetic risk factor in an increasing proportion of patients with ASD or SSD? Second, what can be learned from studies of individuals with ASD or SSD who share a common genetic basis? And third, what accounts for the observed variable penetrance and pleiotropy of neuropsychiatric phenotypes in individuals with the same pathogenic variant? In this review, we focus on findings of clinical and preclinical studies of the 22q11.2 deletion syndrome (22q11DS). This particular variant is not only one of the most common among the increasing list of known rare pathogenic variants, but also one that benefits from a relatively long research history. Consequently, 22q11DS is an appealing model as it allows us to: (1) elucidate specific genotype-phenotype associations, (2) prospectively study behaviorally defined classifications, such as ASD or SSD, in the context of a known, well-characterized genetic basis, and (3) elucidate mechanisms underpinning variable penetrance and pleiotropy, phenomena with far-reaching ramifications for research and clinical practice. We discuss how findings from animal and in vitro studies relate to observations in human studies and can help elucidate factors, including genetic, environmental, and stochastic, that impact the expression of neuropsychiatric phenotypes in 22q11DS, and how this may inform mechanisms underlying neurodevelopmental expression in the general population. We conclude with research priorities for the field, which may pave the way for novel therapeutics.
Collapse
Affiliation(s)
- Ania M Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, Maastricht University, Maastricht, The Netherlands
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute, and Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Wild AR, Hogg PW, Flibotte S, Nasseri GG, Hollman RB, Abazari D, Haas K, Bamji SX. Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. eLife 2022; 11:e75804. [PMID: 35819139 PMCID: PMC9365392 DOI: 10.7554/elife.75804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that plays a critical role in neuronal development and plasticity, while dysregulated S-palmitoylation underlies a number of severe neurological disorders. Dynamic S-palmitoylation is regulated by a large family of ZDHHC palmitoylating enzymes, their accessory proteins, and a small number of known de-palmitoylating enzymes. Here, we curated and analyzed expression data for the proteins that regulate S-palmitoylation from publicly available RNAseq datasets, providing a comprehensive overview of their distribution in the mouse nervous system. We developed a web-tool that enables interactive visualization of the expression patterns for these proteins in the nervous system (http://brainpalmseq.med.ubc.ca/), and explored this resource to find region and cell-type specific expression patterns that give insight into the function of palmitoylating and de-palmitoylating enzymes in the brain and neurological disorders. We found coordinated expression of ZDHHC enzymes with their accessory proteins, de-palmitoylating enzymes and other brain-expressed genes that included an enrichment of S-palmitoylation substrates. Finally, we utilized ZDHHC expression patterns to predict and validate palmitoylating enzyme-substrate interactions.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Peter W Hogg
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Stephane Flibotte
- Life Sciences Institute Bioinformatics Facility, University of British ColumbiaVancouverCanada
| | - Glory G Nasseri
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Rocio B Hollman
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Danya Abazari
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Kurt Haas
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
13
|
Identification of Ten-Gene Related to Lipid Metabolism for Predicting Overall Survival of Breast Invasive Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8348780. [PMID: 35919504 PMCID: PMC9293542 DOI: 10.1155/2022/8348780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Background. Predicting the risk of poor prognosis of breast cancer is crucial to treating breast cancer. This study investigated the prognostic assessment of 10 lipid metabolism-related genes constructed as breast cancer models based on this study. Methods. The TCGA database was used to obtain clinical information and expression data of breast cancer patients, and GSEA analysis and univariate and multivariate Cox proportional risk regression models were performed to identify lipid metabolism genes closely associated with overall survival (OS) of breast cancer patients and to construct a prognostic risk score model based on lipid metabolism gene markers. The Kaplan–Meier method was used to analyze the survival status of patients with high and low-risk scores, and ROC curves assessed the accuracy of this risk score. Finally, the relationship between this risk score and clinicopathological characteristics of BRCA was analyzed in a stratified manner, and the validity of this risk score as an independent prognostic factor was determined using univariate and multivariate Cox regression analyses. Results. One hundred and forty-four differentially expressed lipid metabolism-related genes were identified in cancer and paracancerous tissues in BRCA, 21 of which were associated with overall survival (OS) in BRCA
. Univariate and multivariate Cox analyses revealed that age, grade, and risk score were independent prognostic factors for BRCA. Multivariate Cox regression analysis further identified APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and RAB2A lipid metabolism-related genes as independent prognostic markers for BRCA. A prognostic risk score model was developed by labeling lipid metabolism genes with these 10 genes, and patients with BRCA with high-risk scores in the model sample had significantly worse OS than those with low-risk
. The ROC curve area (AUC) of this risk score model was 0.712. Conclusion. By mining the TCGA database, we identified 10 lipid metabolism-related genes APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and RAB2A, which are closely related to the prognosis of BRCA patients, and constructed a prognostic risk scoring system based on 10 lipid metabolism genes tags.
Collapse
|
14
|
Nehme R, Pietiläinen O, Artomov M, Tegtmeyer M, Valakh V, Lehtonen L, Bell C, Singh T, Trehan A, Sherwood J, Manning D, Peirent E, Malik R, Guss EJ, Hawes D, Beccard A, Bara AM, Hazelbaker DZ, Zuccaro E, Genovese G, Loboda AA, Neumann A, Lilliehook C, Kuismin O, Hamalainen E, Kurki M, Hultman CM, Kähler AK, Paulo JA, Ganna A, Madison J, Cohen B, McPhie D, Adolfsson R, Perlis R, Dolmetsch R, Farhi S, McCarroll S, Hyman S, Neale B, Barrett LE, Harper W, Palotie A, Daly M, Eggan K. The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia. Nat Commun 2022; 13:3690. [PMID: 35760976 PMCID: PMC9237031 DOI: 10.1038/s41467-022-31436-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Mykyta Artomov
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Vera Valakh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Leevi Lehtonen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Christina Bell
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Aditi Trehan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - John Sherwood
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Danielle Manning
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Emily Peirent
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Rhea Malik
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ellen J Guss
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Anne M Bara
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Alexander A Loboda
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Christina Lilliehook
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Outi Kuismin
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Eija Hamalainen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mitja Kurki
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Jon Madison
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Bruce Cohen
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - Donna McPhie
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - Rolf Adolfsson
- Umea University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry, 901 85, Umea, Sweden
| | - Roy Perlis
- Psychiatry Dept., Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ricardo Dolmetsch
- Novartis Institutes for Biomedical Research, Novartis, Cambridge, MA, 02139, USA
| | - Samouil Farhi
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Steven Hyman
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ben Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Wade Harper
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark Daly
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
- BioMarin Pharmaceutical, San Rafael, CA, 94901, USA.
| |
Collapse
|
15
|
Agajanian MJ, Potjewyd FM, Bowman BM, Solomon S, LaPak KM, Bhatt DP, Smith JL, Goldfarb D, Axtman AD, Major MB. Protein proximity networks and functional evaluation of the casein kinase 1 gamma family reveal unique roles for CK1γ3 in WNT signaling. J Biol Chem 2022; 298:101986. [PMID: 35487243 PMCID: PMC9157009 DOI: 10.1016/j.jbc.2022.101986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aberrant activation or suppression of WNT/β-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the β-catenin-dependent and β-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated β-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and β-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.
Collapse
Affiliation(s)
- Megan J Agajanian
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Frances M Potjewyd
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brittany M Bowman
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Smaranda Solomon
- Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dhaval P Bhatt
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Jeffery L Smith
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Alison D Axtman
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Department of Otolaryngology, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
16
|
Mondal A, Appu AP, Sadhukhan T, Bagh MB, Previde RM, Sadhukhan S, Stojilkovic S, Liu A, Mukherjee AB. Ppt1-deficiency dysregulates lysosomal Ca ++ homeostasis contributing to pathogenesis in a mouse model of CLN1 disease. J Inherit Metab Dis 2022; 45:635-656. [PMID: 35150145 PMCID: PMC9090967 DOI: 10.1002/jimd.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Inactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases. Thus, it has been proposed that Ppt1-deficiency leads to lysosomal accumulation of ceroid lipofuscin leading to CLN1 disease. While S-palmitoylation is catalyzed by palmitoyl acyltransferases (called ZDHHCs), palmitoyl-protein thioesterases (PPTs) depalmitoylate these proteins. We sought to determine the mechanism by which Ppt1-deficiency may impair lysosomal degradative function leading to infantile neuronal ceroid lipofuscinosis pathogenesis. Here, we report that in Ppt1-/- mice, which mimic CLN1 disease, low level of inositol 3-phosphate receptor-1 (IP3R1) that mediates Ca++ transport from the endoplasmic reticulum to the lysosome dysregulated lysosomal Ca++ homeostasis. Intriguingly, the transcription factor nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4), which regulates IP3R1-expression, required S-palmitoylation for trafficking from the cytoplasm to the nucleus. We identified two palmitoyl acyltransferases, ZDHHC4 and ZDHHC8, which catalyzed S-palmitoylation of NFATC4. Notably, in Ppt1-/- mice, reduced ZDHHC4 and ZDHHC8 levels markedly lowered S-palmitoylated NFATC4 (active) in the nucleus, which inhibited IP3R1-expression, thereby dysregulating lysosomal Ca++ homeostasis. Consequently, Ca++ -dependent lysosomal enzyme activities were markedly suppressed. Impaired lysosomal degradative function impaired autophagy, which caused lysosomal storage of undigested cargo. Importantly, IP3R1-overexpression in Ppt1-/- mouse fibroblasts ameliorated this defect. Our results reveal a previously unrecognized role of Ppt1 in regulating lysosomal Ca++ homeostasis and suggest that this defect contributes to pathogenesis of CLN1 disease.
Collapse
Affiliation(s)
- Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine
| | - Abhilash P. Appu
- Section on Developmental Genetics, Division of Translational Medicine
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine
| | - Maria B. Bagh
- Section on Developmental Genetics, Division of Translational Medicine
| | - Rafael M. Previde
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | | | - Stanko Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine
- Correspondence to AM () or ABM ()
| |
Collapse
|
17
|
de Oliveira Figueiredo EC, Bondiolotti BM, Laugeray A, Bezzi P. Synaptic Plasticity Dysfunctions in the Pathophysiology of 22q11 Deletion Syndrome: Is There a Role for Astrocytes? Int J Mol Sci 2022; 23:ijms23084412. [PMID: 35457231 PMCID: PMC9028090 DOI: 10.3390/ijms23084412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.
Collapse
Affiliation(s)
| | - Bianca Maria Bondiolotti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
- Department of Pharmacology and Physiology, University of Rome Sapienza, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
18
|
Zhang CY, Xiao X, Zhang Z, Hu Z, Li M. An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data. Mol Psychiatry 2022; 27:95-112. [PMID: 33686213 DOI: 10.1038/s41380-021-01037-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Alternative splicing of schizophrenia risk genes, such as DRD2, GRM3, and DISC1, has been extensively described. Nevertheless, the alternative splicing characteristics of the growing number of schizophrenia risk genes identified through genetic analyses remain relatively opaque. Recently, transcriptomic analyses in human brains based on short-read RNA-sequencing have discovered many "local splicing" events (e.g., exon skipping junctions) associated with genetic risk of schizophrenia, and further molecular characterizations have identified novel spliced isoforms, such as AS3MTd2d3 and ZNF804AE3E4. In addition, long-read sequencing analyses of schizophrenia risk genes (e.g., CACNA1C and NRXN1) have revealed multiple previously unannotated brain-abundant isoforms with therapeutic potentials, and functional analyses of KCNH2-3.1 and Ube3a1 have provided examples for investigating such spliced isoforms in vitro and in vivo. These findings suggest that alternative splicing may be an essential molecular mechanism underlying genetic risk of schizophrenia, however, the incomplete annotations of human brain transcriptomes might have limited our understanding of schizophrenia pathogenesis, and further efforts to elucidate these transcriptional characteristics are urgently needed to gain insights into the illness-correlated brain physiology and pathology as well as to translate genetic discoveries into novel therapeutic targets.
Collapse
Affiliation(s)
- Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
19
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
20
|
Azizi SA, Lan T, Delalande C, Kathayat RS, Banales Mejia F, Qin A, Brookes N, Sandoval PJ, Dickinson BC. Development of an Acrylamide-Based Inhibitor of Protein S-Acylation. ACS Chem Biol 2021; 16:1546-1556. [PMID: 34309372 DOI: 10.1021/acschembio.1c00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein S-acylation is a dynamic lipid post-translational modification that can modulate the localization and activity of target proteins. In humans, the installation of the lipid onto target proteins is catalyzed by a family of 23 Asp-His-His-Cys domain-containing protein acyltransferases (DHHC-PATs). DHHCs are increasingly recognized as critical players in cellular signaling events and in human disease. However, progress elucidating the functions and mechanisms of DHHC "writers" has been hampered by a lack of chemical tools to perturb their activity in live cells. Herein, we report the synthesis and characterization of cyano-myracrylamide (CMA), a broad-spectrum DHHC family inhibitor with similar potency to 2-bromopalmitate (2BP), the most commonly used DHHC inhibitor in the field. Possessing an acrylamide warhead instead of 2BP's α-halo fatty acid, CMA inhibits DHHC family proteins in cellulo while demonstrating decreased toxicity and avoiding inhibition of the S-acylation eraser enzymes, two of the major weaknesses of 2BP. Our studies show that CMA engages with DHHC family proteins in cells, inhibits protein S-acylation, and disrupts DHHC-regulated cellular events. CMA represents an improved chemical scaffold for untangling the complexities of DHHC-mediated cell signaling by protein S-acylation.
Collapse
Affiliation(s)
- Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Clémence Delalande
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Fernando Banales Mejia
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alice Qin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Noah Brookes
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Perla Jasmine Sandoval
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Shulman ED, Elkon R. Genetic mapping of developmental trajectories for complex traits and diseases. Comput Struct Biotechnol J 2021; 19:3458-3469. [PMID: 34194671 PMCID: PMC8220172 DOI: 10.1016/j.csbj.2021.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/04/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous common genetic variants associated with complex human traits and diseases. However, the translation of GWAS discoveries into biological and clinical insights is highly challenging. In this study, we present a novel bioinformatics approach for enhancing the functional interpretation of GWAS signals, based on their integration with single-cell (sc)RNA-seq datasets that examine developmental processes. Our approach performs three tasks: (1) Identification of links between cell differentiation trajectories and traits; (2) Elucidation of biological processes and molecular pathways that underlie such trajectory-trait links; and (3) Prioritization of target genes that carry the links between trajectories, pathways and traits. We applied our method to a set of 11 traits of various pathologies, and 12 scRNA-seq datasets of diverse developmental processes, and it readily detected well-established biological connections, including those between the maturation of cortical inhibitory interneurons and schizophrenia, hepatocytes and cholesterol levels, and pancreatic beta-islet cells and type-2 diabetes. For each of these associations, our method pinpointed top candidate genes that are strongly associated with both the kinetics of the differentiation trajectory and the disease's genetic risk. By the identification of trajectory-disease links, molecular pathways that underlie them and prioritizing candidate risk genes, our method improves the understanding of the etiology of complex diseases, and thus holds promise for enhancing rational drug development that is aimed at targeting specific biological processes that mediate the genetic predisposition to diseases.
Collapse
Affiliation(s)
- Eldad David Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
23
|
Abstract
Protein palmitoylation is the post-translational attachment of fatty acids, most commonly palmitate (C16 : 0), onto a cysteine residue of a protein. This reaction is catalysed by a family of integral membrane proteins, the zDHHC protein acyltransferases (PATs), so-called due to the presence of an invariant Asp-His-His-Cys (DHHC) cysteine-rich domain harbouring the catalytic centre of the enzyme. Conserved throughout eukaryotes, the zDHHC PATs are encoded by multigene families and mediate palmitoylation of thousands of protein substrates. In humans, a number of zDHHC proteins are associated with human diseases, including intellectual disability, Huntington's disease, schizophrenia and cancer. Key to understanding the physiological and pathophysiological importance of individual zDHHC proteins is the identification of their protein substrates. Here, we will describe the approaches and challenges in assigning substrates for individual zDHHCs, highlighting key mechanisms that underlie substrate recruitment.
Collapse
Affiliation(s)
- Martin Ian P Malgapo
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Maurine E Linder
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
24
|
Gök C, Main A, Gao X, Kerekes Z, Plain F, Kuo CW, Robertson AD, Fraser NJ, Fuller W. Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium 2021; 97:102408. [PMID: 33873072 PMCID: PMC8278489 DOI: 10.1016/j.ceca.2021.102408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Catalyzed by zDHHC-PAT enzymes and reversed by thioesterases, protein palmitoylation is the only post-translational modification recognized to regulate the sodium/calcium exchanger NCX1. NCX1 palmitoylation occurs at a single site at position 739 in its large regulatory intracellular loop. An amphipathic ɑ-helix between residues 740-756 is a critical for NCX1 palmitoylation. Given the rich background of the structural elements involving in NCX1 palmitoylation, the molecular basis of NCX1 palmitoylation is still relatively poorly understood. Here we found that (1) the identity of palmitoylation machinery of NCX1 controls its spatial organization within the cell, (2) the NCX1 amphipathic ɑ-helix directly interacts with zDHHC-PATs, (3) NCX1 is still palmitoylated when it is arrested in either Golgi or ER, indicating that NCX1 is a substrate for multiple zDHHC-PATs, (4) the thioesterase APT1 but not APT2 as a part of NCX1-depalmitoylation machinery governs subcellular organization of NCX1, (5) APT1 catalyzes NCX1 depalmitoylation in the Golgi but not in the ER. We also report that NCX2 and NCX3 are dually palmitoylated, with important implications for substrate recognition and enzyme catalysis by zDHHC-PATs. Our results could support new molecular or pharmacological strategies targeting the NCX1 palmitoylation and depalmitoylation machinery.
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Alice Main
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Xing Gao
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Zsombor Kerekes
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Fiona Plain
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Alan D Robertson
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Niall J Fraser
- School of Medicine, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
25
|
Main A, Fuller W. Protein S-Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS J 2021; 289:861-882. [PMID: 33624421 DOI: 10.1111/febs.15781] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
The lipid post-translational modification S-palmitoylation is a vast developing field, with the modification itself and the enzymes that catalyse the reversible reaction implicated in a number of diseases. In this review, we discuss the past and recent advances in the experimental tools used in this field, including pharmacological tools, animal models and techniques to understand how palmitoylation controls protein localisation and function. Additionally, we discuss the obstacles to overcome in order to advance the field, particularly to the point at which modulating palmitoylation may be achieved as a therapeutic strategy.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
26
|
Peter B, Scherer N, Liang WS, Pophal S, Nielsen C, Grebe TA. A phenotypically diverse family with an atypical 22q11.2 deletion due to an unbalanced 18q23;22q11.2 translocation. Am J Med Genet A 2021; 185:1532-1537. [PMID: 33569883 DOI: 10.1002/ajmg.a.62121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2 DS) is the most common deletion syndrome in humans. In most cases, it occurs de novo. A rare family of three with 22q11.2 deletion syndrome (22q11.2 DS) resulting from an unbalanced 18q;22q translocation is reported here. Their deletion region is atypical in that it includes only 26 of the 36 genes in the minimal critical 22q11.2 DS region but it involves the loss of the centromeric 22q region and the entire p arm. The deletion region overlaps with seven other rare atypical cases; common to all cases was the loss of a region including SEPT5-GP1BB proximally and most of ARVCF distally. Interrogation of the deleted 22q region proximal to the canonical 22q11.2 deletion region in the DECIPHER database showed seven cases with isolated or combined traits of 22q11.2 DS, including three with clefts. The phenotypes in the present family thus may result from the loss of a subset of genes in the critical region, or alternatively the loss of other genes or sequences in the proximal 22q deletion region, or interactive effects among these. Despite the identical deletion locus in the three affected family members, expression of the 22q11.2 DS traits differed substantially among them. These three related cases thus contribute to knowledge of 22q11.2 DS in that their unusual deletion locus co-occurred with the cardinal features of the syndrome while their identical deletions are associated with variable phenotypic expression.
Collapse
Affiliation(s)
- Beate Peter
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe, Arizona, USA.,Department of Communication Sciences and Disorders, Saint Louis University, Saint Louis, Missouri, USA
| | - Nancy Scherer
- Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Stephen Pophal
- Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Colby Nielsen
- College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Theresa A Grebe
- Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
27
|
Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Transl Psychiatry 2021; 11:65. [PMID: 33462194 PMCID: PMC7813841 DOI: 10.1038/s41398-020-01194-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.
Collapse
|
28
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
29
|
Woodley KT, Collins MO. Regulation and function of the palmitoyl-acyltransferase ZDHHC5. FEBS J 2021; 288:6623-6634. [PMID: 33415776 DOI: 10.1111/febs.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023]
Abstract
Protein palmitoylation (S-acylation) has emerged as an important player in a range of cellular processes, and as a result, the palmitoyl-acyltransferase (PAT) enzymes which mediate this modification have entered into the spotlight. Palmitoyltransferase ZDHHC5 (ZDHHC5) is among the more unique members of the PAT family as it is mainly localised to the plasma membrane and contains an extended cytoplasmic domain with several regulatory features. ZDHHC5 plays a vital role in a wide range of processes in different cell types. In this review, we offer a summary of the functions of ZDHHC5 in synaptic plasticity, cardiac function, cell adhesion and fatty acid uptake, among other processes. We also explore recent work has revealed several mechanisms to control the activity, localisation and function of ZDHHC5.
Collapse
Affiliation(s)
- Keith T Woodley
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, UK.,Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, UK
| | - Mark O Collins
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, UK
| |
Collapse
|
30
|
Qin X, Chen J, Zhou T. 22q11.2 deletion syndrome and schizophrenia. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1181-1190. [PMID: 33098288 DOI: 10.1093/abbs/gmaa113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
22q11.2 deletion is a common microdeletion that causes an array of developmental defects including 22q11.2 deletion syndrome (22q11DS) or DiGeorge syndrome and velocardiofacial syndrome. About 30% of patients with 22q11.2 deletion develop schizophrenia. Mice with deletion of the ortholog region in mouse chromosome 16qA13 exhibit schizophrenia-like abnormal behaviors. It is suggested that the genes deleted in 22q11DS are involved in the pathogenesis of schizophrenia. Among these genes, COMT, ZDHHC8, DGCR8, and PRODH have been identified as schizophrenia susceptibility genes. And DGCR2 is also found to be associated with schizophrenia. In this review, we focused on these five genes and reviewed their functions in the brain and the potential pathophysiological mechanisms in schizophrenia, which will give us a deeper understanding of the pathology of schizophrenia.
Collapse
Affiliation(s)
- Xianzheng Qin
- Queen Mary School of Nanchang University, Nanchang University, Nanchang 330031, China
| | - Jiang Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Tian Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
31
|
Collura KM, Niu J, Sanders SS, Montersino A, Holland SM, Thomas GM. The palmitoyl acyltransferases ZDHHC5 and ZDHHC8 are uniquely present in DRG axons and control retrograde signaling via the Gp130/JAK/STAT3 pathway. J Biol Chem 2020; 295:15427-15437. [PMID: 32958558 PMCID: PMC7667964 DOI: 10.1074/jbc.ra120.013815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Palmitoylation, the modification of proteins with the lipid palmitate, is a key regulator of protein targeting and trafficking. However, knowledge of the roles of specific palmitoyl acyltransferases (PATs), which catalyze palmitoylation, is incomplete. For example, little is known about which PATs are present in neuronal axons, although long-distance trafficking of palmitoyl-proteins is important for axon integrity and for axon-to-soma retrograde signaling, a process critical for axon development and for responses to injury. Identifying axonally targeted PATs might thus provide insights into multiple aspects of axonal biology. We therefore comprehensively determined the subcellular distribution of mammalian PATs in dorsal root ganglion (DRG) neurons and, strikingly, found that only two PATs, ZDHHC5 and ZDHHC8, were enriched in DRG axons. Signals via the Gp130/JAK/STAT3 and DLK/JNK pathways are important for axonal injury responses, and we found that ZDHHC5 and ZDHHC8 were required for Gp130/JAK/STAT3, but not DLK/JNK, axon-to-soma signaling. ZDHHC5 and ZDHHC8 robustly palmitoylated Gp130 in cotransfected nonneuronal cells, supporting the possibility that Gp130 is a direct ZDHHC5/8 substrate. In DRG neurons, Zdhhc5/8 shRNA knockdown reduced Gp130 palmitoylation and even more markedly reduced Gp130 surface expression, potentially explaining the importance of these PATs for Gp130-dependent signaling. Together, these findings provide new insights into the subcellular distribution and roles of specific PATs and reveal a novel mechanism by which palmitoylation controls axonal retrograde signaling.
Collapse
Affiliation(s)
- Kaitlin M Collura
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sabrina M Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
Trifu SC, Kohn B, Vlasie A, Patrichi BE. Genetics of schizophrenia (Review). Exp Ther Med 2020; 20:3462-3468. [PMID: 32905096 PMCID: PMC7465115 DOI: 10.3892/etm.2020.8973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive review of the body of genetic studies on schizophrenia seems even more daunting than the battle a psychiatrist wages daily in the office with her archenemy of a thousand faces. The following article reunites some genetic, epigenetic and environmental factors of schizophrenia from revered and vast studies in a chronological and progressive fashion. Twin studies set the basics of heritability and a particular study by Davis and Phelps considers the widely ignored influence of prenatal environment in the development of schizophrenia. Mostly ignited by linkage studies, candidate gene studies explore further by fine-mapping the hypothesized variants [mostly in the forms single nucleotide polymorphisms (SNPs) and less but with greater impact copy number variations (CNVs)] associated with the disease. Genome-wide association studies (GWAS) increase considerably the sample sizes and thus the validity of the results, while the next-generation sequencing (NGS) attain the highest yet unreplicated level of validity results.
Collapse
Affiliation(s)
- Simona Corina Trifu
- Department of Neurosciences, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bianca Kohn
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Andrei Vlasie
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Bogdan-Eduard Patrichi
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
33
|
Zhang H, Li X, Ma C, Wang K, Zhou J, Chen J, Wang Y, Shi Y. Fine-mapping of ZDHHC2 identifies risk variants for schizophrenia in the Han Chinese population. Mol Genet Genomic Med 2020; 8:e1190. [PMID: 32180374 PMCID: PMC7336764 DOI: 10.1002/mgg3.1190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND ZDHHC2 is a member of the DHHC protein family, mediating palmitoylation of postsynaptic density-95 (PSD-95) and A-kinase-anchoring protein 79/150 (AKAP79/150). Genome-wide association studies (GWASs) have identified ZDHHC2 as a candidate gene for schizophrenia (SCZ). We aimed to fine-map variants of ZDHHC2 conferring risk to SCZ in the Han Chinese population. METHODS Targeted sequencing of whole-exome sequences including untranslated regions (UTRs) along with neighboring regions in 1,827 schizophrenic patients and 1,004 normal controls of Han Chinese origin. RESULTS A total of 123 variants, including five common and 118 rare variants, were identified. Among common variants, rs73198534, rs530313445, and rs74406481 were significantly associated with SCZ. Nine nonsynonymous rare variants, p.Glu96fs, p.Arg127X, p.Val145Ile, p.Ala177Thr, p.Arg269Gln, p.Asn312His, p.Glu319Lys, p.Gln340X, and p.Ile347Val, identified only in patients; eight are located in the important domains, including two stop-gain variants. The 3D structural analysis and functional prediction revealed that all these eight variants may affect AMPAR expression or function, and influence the synaptic plasticity by regulating the palmitoylation of PSD95 and AKAP79/150. CONCLUSION Our results first show strong supportive evidences of the association between the ZDHHC2 and SCZ, and also provide a fine-mapping of variants of this gene in Han Chinese SCZ patients.
Collapse
Affiliation(s)
- Han Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersMinistry of EducationCollaborative Innovation Center for Brain ScienceShanghai Jiao Tong UniversityShanghaiChina
| | - Xiuli Li
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersMinistry of EducationCollaborative Innovation Center for Brain ScienceShanghai Jiao Tong UniversityShanghaiChina
| | - Chuanchuan Ma
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersMinistry of EducationCollaborative Innovation Center for Brain ScienceShanghai Jiao Tong UniversityShanghaiChina
| | - Ke Wang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersMinistry of EducationCollaborative Innovation Center for Brain ScienceShanghai Jiao Tong UniversityShanghaiChina
| | - Juan Zhou
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersMinistry of EducationCollaborative Innovation Center for Brain ScienceShanghai Jiao Tong UniversityShanghaiChina
| | - Jianhua Chen
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersMinistry of EducationCollaborative Innovation Center for Brain ScienceShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersShanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yonggang Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yongyong Shi
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersMinistry of EducationCollaborative Innovation Center for Brain ScienceShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Psychotic DisordersShanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered BreathingShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
34
|
Albanesi JP, Barylko B, DeMartino GN, Jameson DM. Palmitoylated Proteins in Dendritic Spine Remodeling. Front Synaptic Neurosci 2020; 12:22. [PMID: 32655390 PMCID: PMC7325885 DOI: 10.3389/fnsyn.2020.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high-throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Joseph P. Albanesi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Barbara Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - George N. DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
35
|
Philippe JM, Jenkins PM. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Mol Membr Biol 2020; 35:60-75. [PMID: 31969037 DOI: 10.1080/09687688.2019.1710274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein palmitoylation is a critical posttranslational modification that regulates protein trafficking, localization, stability, sorting and function. In mammals, addition of this lipid modification onto proteins is mediated by a family of 23 palmitoyl acyl transferases (PATs). PATs often palmitoylate substrates in a promiscuous manner, precluding our understanding of how these enzymes achieve specificity for their substrates. Despite generous efforts to identify consensus motifs defining PAT-substrate specificity, it remains to be determined whether additional factors beyond interaction motifs, such as local palmitoylation, participate in PAT-substrate selection. In this review, we emphasize the role of local palmitoylation, in which substrates are palmitoylated and trapped in the same subcellular compartments as their PATs, as a mechanism of enzyme-substrate specificity. We focus here on non-Golgi-localized PATs, as physical proximity to their substrates enables them to engage in local palmitoylation, compared to Golgi PATs, which often direct trafficking of their substrates elsewhere. PAT subcellular localization may be an under-recognized, yet important determinant of PAT-substrate specificity that may work in conjunction or completely independently of interaction motifs. We also discuss some current hypotheses about protein motifs that contribute to localization of non-Golgi-localized PATs, important for the downstream targeting of their substrates.
Collapse
Affiliation(s)
- Julie M Philippe
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Campbell PD, Granato M. Zebrafish as a tool to study schizophrenia-associated copy number variants. Dis Model Mech 2020; 13:dmm043877. [PMID: 32433025 PMCID: PMC7197721 DOI: 10.1242/dmm.043877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia remains one of the most debilitating human neurodevelopmental disorders, with few effective treatments and striking consequences felt by individuals, communities and society as a whole. As such, there remains a critical need for further investigation into the mechanistic underpinnings of schizophrenia so that novel therapeutic targets can be identified. Because schizophrenia is a highly heritable disorder, genetic risk factors remain an attractive avenue for this research. Given their clear molecular genetic consequences, recurrent microdeletions and duplications, or copy number variants (CNVs), represent one of the most tractable genetic entry points to elucidating these mechanisms. To date, eight CNVs have been shown to significantly increase the risk of schizophrenia. Although rodent models of these CNVs that exhibit behavioral phenotypes have been generated, the underlying molecular mechanisms remain largely elusive. Over the past decades, the zebrafish has emerged as a powerful vertebrate model that has led to fundamental discoveries in developmental neurobiology and behavioral genetics. Here, we review the attributes that make zebrafish exceptionally well suited to investigating individual and combinatorial gene contributions to CNV-mediated brain dysfunction in schizophrenia. With highly conserved genetics and neural substrates, an ever-expanding molecular genetic and imaging toolkit, and ability to perform high-throughput and high-content genetic and pharmacologic screens, zebrafish is poised to generate deep insights into the molecular genetic mechanisms of schizophrenia-associated neurodevelopmental and behavioral deficits, and to facilitate the identification of therapeutic targets.
Collapse
Affiliation(s)
- Philip D Campbell
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Purkey AM, Dell’Acqua ML. Phosphorylation-Dependent Regulation of Ca 2+-Permeable AMPA Receptors During Hippocampal Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:8. [PMID: 32292336 PMCID: PMC7119613 DOI: 10.3389/fnsyn.2020.00008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 01/28/2023] Open
Abstract
Experience-dependent learning and memory require multiple forms of plasticity at hippocampal and cortical synapses that are regulated by N-methyl-D-aspartate receptors (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian input-specific mechanisms that rapidly increase or decrease AMPAR synaptic strength at specific inputs, and homeostatic plasticity that globally scales-up or -down AMPAR synaptic strength across many or even all inputs. Frequently, these changes in synaptic strength are also accompanied by a change in the subunit composition of AMPARs at the synapse due to the trafficking to and from the synapse of receptors lacking GluA2 subunits. These GluA2-lacking receptors are most often GluA1 homomeric receptors that exhibit higher single-channel conductance and are Ca2+-permeable (CP-AMPAR). This review article will focus on the role of protein phosphorylation in regulation of GluA1 CP-AMPAR recruitment and removal from hippocampal synapses during synaptic plasticity with an emphasis on the crucial role of local signaling by the cAMP-dependent protein kinase (PKA) and the Ca2+calmodulin-dependent protein phosphatase 2B/calcineurin (CaN) that is coordinated by the postsynaptic scaffold protein A-kinase anchoring protein 79/150 (AKAP79/150).
Collapse
Affiliation(s)
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
38
|
Post-translational protein modifications in schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:5. [PMID: 32123175 PMCID: PMC7051976 DOI: 10.1038/s41537-020-0093-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Research investigating the pathophysiology of schizophrenia has not yet precisely defined the molecular phenotype of this disorder. Many studies have investigated cellular dysfunction by examining expression levels of molecular targets in postmortem patient brain; however, inconsistencies between transcript and protein measures in schizophrenia are common in the field and represent a challenge to the identification of a unified model of schizophrenia pathogenesis. In humans, >4800 unique proteins are expressed, and the majority of these are modified by glycans and/or lipids. Estimates indicate ~70% of all eukaryotic proteins are modified by at least one type of glycosylation, while nearly 20% of all proteins are known to be lipid-modified. Protein post-translational modification (PTM) by glycosylation and lipidation rely on the spatiotemporal colocalization of enzyme, substrate, and glycan or lipid donor molecule and do not require an upstream “blueprint” or specialized processing machinery for synthesis. Glycan and lipid PTMs can thus facilitate cellular adaptation to environmental signals more rapidly than changes of gene or protein expression, and can significantly impact the localization, function, and interactions of modified substrates, though relatively few studies in schizophrenia have evaluated the PTM status of target proteins. A growing body of literature reports glycosylation and lipidation abnormalities in schizophrenia brain as well as in patient peripheral fluids. In this review, we explain the functional significance of key glycan and lipid PTMs and summarize current findings associated with abnormal glycosylation and lipidation in this illness.
Collapse
|
39
|
Essandoh K, Philippe JM, Jenkins PM, Brody MJ. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol 2020; 11:108. [PMID: 32140110 PMCID: PMC7042378 DOI: 10.3389/fphys.2020.00108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of cardiac physiology is well known to occur through the action of kinases that reversibly phosphorylate ion channels, calcium handling machinery, and signaling effectors. However, it is becoming increasingly apparent that palmitoylation or S-acylation, the post-translational modification of cysteines with saturated fatty acids, plays instrumental roles in regulating the localization, activity, stability, sorting, and function of numerous proteins, including proteins known to have essential functions in cardiomyocytes. However, the impact of this modification on cardiac physiology requires further investigation. S-acylation is catalyzed by the zDHHC family of S-acyl transferases that localize to intracellular organelle membranes or the sarcolemma. Recent work has begun to uncover functions of S-acylation in the heart, particularly in the regulation of cardiac electrophysiology, including modification of the sodium-calcium exchanger, phospholemman and the cardiac sodium pump, as well as the voltage-gated sodium channel. Elucidating the regulatory functions of zDHHC enzymes in cardiomyocytes and determination of how S-acylation is altered in the diseased heart will shed light on how these modifications participate in cardiac pathogenesis and potentially identify novel targets for the treatment of cardiovascular disease. Indeed, proteins with critical signaling roles in the heart are also S-acylated, including receptors and G-proteins, yet the dynamics and functions of these modifications in myocardial physiology have not been interrogated. Here, we will review what is known about zDHHC enzymes and substrate S-acylation in myocardial physiology and highlight future areas of investigation that will uncover novel functions of S-acylation in cardiac homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Morrow BE, McDonald-McGinn DM, Emanuel BS, Vermeesch JR, Scambler PJ. Molecular genetics of 22q11.2 deletion syndrome. Am J Med Genet A 2019; 176:2070-2081. [PMID: 30380194 DOI: 10.1002/ajmg.a.40504] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome-wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior.
Collapse
Affiliation(s)
- Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Joris R Vermeesch
- Center for Human Genetics, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Peter J Scambler
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
41
|
AMPAR Palmitoylation Tunes Synaptic Strength: Implications for Synaptic Plasticity and Disease. J Neurosci 2019; 39:5040-5043. [PMID: 31243093 DOI: 10.1523/jneurosci.0055-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/21/2022] Open
|
42
|
Bolland DE, Moritz AE, Stanislowski DJ, Vaughan RA, Foster JD. Palmitoylation by Multiple DHHC Enzymes Enhances Dopamine Transporter Function and Stability. ACS Chem Neurosci 2019; 10:2707-2717. [PMID: 30965003 PMCID: PMC6746250 DOI: 10.1021/acschemneuro.8b00558] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein that mediates the reuptake of extracellular dopamine (DA) and controls the spatiotemporal dynamics of dopaminergic neurotransmission. The transporter is subject to fine control that tailors clearance of transmitter to physiological demands, and dysregulation of reuptake induced by psychostimulant drugs, transporter polymorphisms, and signaling defects may impact transmitter tone in disease states. We previously demonstrated that DAT undergoes complex regulation by palmitoylation, with acute inhibition of the modification leading to rapid reduction of transport activity and sustained inhibition of the modification leading to transporter degradation and reduced expression. Here, to examine mechanisms and outcomes related to increased modification, we coexpressed DAT with palmitoyl acyltransferases (PATs), also known as DHHC enzymes, which catalyze palmitate addition to proteins. Of 12 PATs tested, DAT palmitoylation was stimulated by DHHC2, DHHC3, DHHC8, DHHC15, and DHHC17, with others having no effect. Increased modification was localized to previously identified palmitoylation site Cys580 and resulted in upregulation of transport kinetics and elevated transporter expression mediated by reduced degradation. These findings confirm palmitoylation as a regulator of multiple DAT properties crucial for appropriate DA homeostasis and identify several potential PAT pathways linked to these effects. Defects in palmitoylation processes thus represent possible mechanisms of transport imbalances in DA disorders.
Collapse
Affiliation(s)
| | | | - Daniel J. Stanislowski
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| |
Collapse
|
43
|
Motahari Z, Moody SA, Maynard TM, LaMantia AS. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects? J Neurodev Disord 2019; 11:7. [PMID: 31174463 PMCID: PMC6554986 DOI: 10.1186/s11689-019-9267-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS), a copy number variation (CNV) disorder, occurs in approximately 1:4000 live births due to a heterozygous microdeletion at position 11.2 (proximal) on the q arm of human chromosome 22 (hChr22) (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011). This disorder was known as DiGeorge syndrome, Velo-cardio-facial syndrome (VCFS) or conotruncal anomaly face syndrome (CTAF) based upon diagnostic cardiovascular, pharyngeal, and craniofacial anomalies (McDonald-McGinn and Sullivan, Medicine 90:1-18, 2011; Burn et al., J Med Genet 30:822-4, 1993) before this phenotypic spectrum was associated with 22q11.2 CNVs. Subsequently, 22q11.2 deletion emerged as a major genomic lesion associated with vulnerability for several clinically defined behavioral deficits common to a number of neurodevelopmental disorders (Fernandez et al., Principles of Developmental Genetics, 2015; Robin and Shprintzen, J Pediatr 147:90-6, 2005; Schneider et al., Am J Psychiatry 171:627-39, 2014). RESULTS The mechanistic relationships between heterozygously deleted 22q11.2 genes and 22q11DS phenotypes are still unknown. We assembled a comprehensive "line-up" of the 36 protein coding loci in the 1.5 Mb minimal critical deleted region on hChr22q11.2, plus 20 protein coding loci in the distal 1.5 Mb that defines the 3 Mb typical 22q11DS deletion. We categorized candidates based upon apparent primary cell biological functions. We analyzed 41 of these genes that encode known proteins to determine whether haploinsufficiency of any single 22q11.2 gene-a one gene to one phenotype correspondence due to heterozygous deletion restricted to that locus-versus complex multigenic interactions can account for single or multiple 22q11DS phenotypes. CONCLUSIONS Our 22q11.2 functional genomic assessment does not support current theories of single gene haploinsufficiency for one or all 22q11DS phenotypes. Shared molecular functions, convergence on fundamental cell biological processes, and related consequences of individual 22q11.2 genes point to a matrix of multigenic interactions due to diminished 22q11.2 gene dosage. These interactions target fundamental cellular mechanisms essential for development, maturation, or homeostasis at subsets of 22q11DS phenotypic sites.
Collapse
Affiliation(s)
- Zahra Motahari
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Sally Ann Moody
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Thomas Michael Maynard
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| | - Anthony-Samuel LaMantia
- The Institute for Neuroscience, and Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington DC, 20037 USA
| |
Collapse
|
44
|
Sohn H, Park M. Palmitoylation-mediated synaptic regulation of AMPA receptor trafficking and function. Arch Pharm Res 2019; 42:426-435. [PMID: 30838509 PMCID: PMC6505502 DOI: 10.1007/s12272-019-01134-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a major glutamate-gated ion channel in the brain and is important for synaptic transmission, synaptic plasticity, and learning. Palmitoylation, a post-translational modification, is a critical process regulating AMPAR trafficking, synaptic function and plasticity, and learning and memory in health and diseases. In this review, we discuss current knowledge on the palmitoylation-dependent regulation of AMPAR trafficking and functions. We focus on the palmitoylation of AMPARs and other synaptic proteins that directly or indirectly interact with AMPARs, including postsynaptic density 95, glutamate receptor-interacting protein/AMPAR-binding protein, A-kinase anchoring protein 79/150, and protein interacting with C kinase 1. Finally, we discuss what future studies should address in the field of palmitoylation-dependent AMPAR trafficking and function with regard to physiology and neurodegenerative diseases.
Collapse
Affiliation(s)
- Heesung Sohn
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Department of Life Sciences, School of Natural Science, Hanyang University, Seoul, 04763, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea. .,Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
45
|
Strassburger K, Kang E, Teleman AA. Drosophila ZDHHC8 palmitoylates scribble and Ras64B and controls growth and viability. PLoS One 2019; 14:e0198149. [PMID: 30735487 PMCID: PMC6368284 DOI: 10.1371/journal.pone.0198149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
Palmitoylation is an important posttranslational modification regulating diverse cellular functions. Consequently, aberrant palmitoylation can lead to diseases such as neuronal disorders or cancer. In humans there are roughly one hundred times more palmitoylated proteins than enzymes catalyzing palmitoylation (palmitoyltransferases). Therefore, it is an important challenge to establish the links between palmitoyltransferases and their targets. From publicly available data, we find that expression of human ZDHHC8 correlates significantly with cancer survival. To elucidate the organismal function of ZDHHC8, we study the Drosophila ortholog of hZDHHC8, CG34449/dZDHHC8. Knockdown of dZDHHC8 causes tissue overgrowth while dZDHHC8 mutants are larval lethal. We provide a list of 159 palmitoylated proteins in Drosophila and present data suggesting that scribble and Ras64B are targets of dZDHHC8.
Collapse
Affiliation(s)
- Katrin Strassburger
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Evangeline Kang
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Aurelio A. Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
46
|
Matt L, Kim K, Chowdhury D, Hell JW. Role of Palmitoylation of Postsynaptic Proteins in Promoting Synaptic Plasticity. Front Mol Neurosci 2019; 12:8. [PMID: 30766476 PMCID: PMC6365469 DOI: 10.3389/fnmol.2019.00008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Many postsynaptic proteins undergo palmitoylation, the reversible attachment of the fatty acid palmitate to cysteine residues, which influences trafficking, localization, and protein interaction dynamics. Both palmitoylation by palmitoyl acyl transferases (PAT) and depalmitoylation by palmitoyl-protein thioesterases (PPT) is regulated in an activity-dependent, localized fashion. Recently, palmitoylation has received attention for its pivotal contribution to various forms of synaptic plasticity, the dynamic modulation of synaptic strength in response to neuronal activity. For instance, palmitoylation and depalmitoylation of the central postsynaptic scaffold protein postsynaptic density-95 (PSD-95) is important for synaptic plasticity. Here, we provide a comprehensive review of studies linking palmitoylation of postsynaptic proteins to synaptic plasticity.
Collapse
Affiliation(s)
- Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Karam Kim
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Dhrubajyoti Chowdhury
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
47
|
ZDHHC8 critically regulates seizure susceptibility in epilepsy. Cell Death Dis 2018; 9:795. [PMID: 30038264 PMCID: PMC6056564 DOI: 10.1038/s41419-018-0842-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Epilepsy is one of the most prevalent and drug-refractory neurological disorders. Zinc finger DHHC-type containing 8 (ZDHHC8) is a putative palmitoyltransferase that is highly expressed in the brain. However, the impact of ZDHHC8 on seizures remains unclear. We aimed to explore the association of ZDHHC8 with epilepsy and investigate its in epileptogenesis in in vivo and in vitro models through behavioral, electrophysiological, and pathological studies. We used kainic acid- and pilocarpine-induced C57BL/6 mice and magnesium-free-induced pyramidal neurons as experimental epileptic models in this study. We first found increased ZDHHC8 expression in the brains of temporal lobe epilepsy (TLE) patients, similar to that observed in chronic epileptic mice, strongly suggesting that ZDHHC8 is correlated with human epilepsy. In the in vitro seizure models, knocking down ZDHHC8 using recombinant adeno-associated virus (rAAV) delayed seizure precipitation and decreased chronic spontaneous recurrent seizures (SRSs) and epileptiform-like discharges, while ZDHHC8 overexpression had the opposite effect. ZDHHC8 levels were consistent with seizure susceptibility in induced mice with SRSs. In an in vitro magnesium-free model, neuronal hyperexcitability and hypersynchrony were reduced in ZDHHC8-knockdown neurons but were increased in ZDHHC8-overexpressing neurons. To further explore the potential mechanisms, we observed that ZDHHC8 had a significant modulatory effect on 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) receptor-related excitatory, but not inhibitory, glutamatergic synaptic neurotransmission, further affecting the inward rectification of AMPA currents in acute hippocampal slices in whole-cell recordings. ZDHHC8 facilitated GluA1 trafficking to the neuronal surface in the hippocampus, as shown by immunoprecipitation and Western blotting. These results suggest that ZDHHC8 may promote the generation and propagation of seizures in humans and that knocking down ZDHHC8 might produce anti-epileptogenic effects in drug-resistant epilepsy. Our study provides evidence that may facilitate the development of an alternative approach for the treatment of epilepsy by modulating AMPA/GluA1-mediated neurotransmission.
Collapse
|
48
|
Lattanzi GM, Buzzanca A, Frascarelli M, Di Fabio F. Genetic and clinical features of social cognition in 22q11.2 deletion syndrome. J Neurosci Res 2018; 96:1631-1640. [DOI: 10.1002/jnr.24265] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Guido Maria Lattanzi
- Department of Human Neurosciences; Sapienza University; Rome 00185 Italy
- Department of Psychosis Studies; Institute of Psychiatry, Psychology and Neuroscience, King's College; London SE5 8AF United Kingdom
| | - Antonino Buzzanca
- Department of Human Neurosciences; Sapienza University; Rome 00185 Italy
| | | | - Fabio Di Fabio
- Department of Human Neurosciences; Sapienza University; Rome 00185 Italy
| |
Collapse
|
49
|
Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct Target Ther 2018; 3:19. [PMID: 30013796 PMCID: PMC6043541 DOI: 10.1038/s41392-018-0017-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Protein methyltransferases have been shown to methylate histone and non-histone proteins, leading to regulation of several biological processes that control cell homeostasis. Over the past few years, the histone-lysine N-methyltransferase SETD7 (SETD7; also known as SET7/9, KIAA1717, KMT7, SET7, SET9) has emerged as an important regulator of at least 30 non-histone proteins and a potential target for the treatment of several human diseases. This review discusses current knowledge of the structure and subcellular localization of SETD7, as well as its function as a histone and non-histone methyltransferase. This work also underlines the putative contribution of SETD7 to the regulation of gene expression, control of cell proliferation, differentiation and endoplasmic reticulum stress, which indicate that SETD7 is a candidate for novel targeted therapies with the aim of either stimulating or inhibiting its activity, depending on the cell signaling context.
Collapse
|
50
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|