1
|
Yan Z, Xia J, Cao Z, Zhang H, Wang J, Feng T, Shu Y, Zou L. Multi-omics integration reveals potential stage-specific druggable targets in T-cell acute lymphoblastic leukemia. Genes Dis 2024; 11:100949. [PMID: 39071111 PMCID: PMC11282411 DOI: 10.1016/j.gendis.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/11/2023] [Indexed: 07/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a heterogeneous hematological malignancy, is caused by the developmental arrest of normal T-cell progenitors. The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease. In this study, we performed multi-omics integration analysis, which included mRNA expression, chromatin accessibility, and gene-dependency database analyses, to identify potential stage-specific druggable targets and repositioned drugs for this disease. This multi-omics integration helped identify 29 potential pathological genes for T-ALL. These genes exhibited tissue-specific expression profiles and were enriched in the cell cycle, hematopoietic stem cell differentiation, and the AMPK signaling pathway. Of these, four known druggable targets (CDK6, TUBA1A, TUBB, and TYMS) showed dysregulated and stage-specific expression in malignant T cells and may serve as stage-specific targets in T-ALL. The TUBA1A expression level was higher in the early T cell precursor (ETP)-ALL cells, while TUBB and TYMS were mainly highly expressed in malignant T cells arrested at the CD4 and CD8 double-positive or single-positive stage. CDK6 exhibited a U-shaped expression pattern in malignant T cells along the naïve to maturation stages. Furthermore, mebendazole and gemcitabine, which target TUBA1A and TYMS, respectively, exerted stage-specific inhibitory effects on T-ALL cell lines, indicating their potential stage-specific antileukemic role in T-ALL. Collectively, our findings might aid in identifying potential stage-specific druggable targets and are promising for achieving more precise therapeutic strategies for T-ALL.
Collapse
Affiliation(s)
- Zijun Yan
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Jie Xia
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big Health, Guizhou Medical University, Guiyang, Guizhou 554300, China
| | - Ziyang Cao
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Hongyang Zhang
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Tienan Feng
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Shu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
2
|
Wakefield C, Hansen Smith M, Dashkevych U, Proytcheva M, Khurana S. Clinical, Phenotypic and Molecular Characterization of NUP214-ABL1 Fusion Positive Myeloid Malignancies. J Med Cases 2024; 15:250-255. [PMID: 39205695 PMCID: PMC11349118 DOI: 10.14740/jmc4286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The identification of a NUP214-ABL1 fusion has been seen in about 6% of patients with T lymphoblastic leukemia (T-ALL). It has been described at a lower frequency in B-lymphoblastic leukemia (B-ALL) patients as well. To our knowledge, this is the first case report documenting a NUP214-ABL1 fusion in a patient with newly diagnosed myelodysplastic syndrome (MDS) as identified by next-generation sequencing (NGS). A case report by Wang et al recently described a case report of the first NUP214-ABL1 fusion in a patient with newly diagnosed acute myeloid leukemia (AML). This shows that this specific translocation is not isolated to lymphoid malignancies, and can be associated with myeloid malignancies as well. The potential use of tyrosine kinase inhibitors (TKIs) as a line of treatment for patients who harbor this translocation makes this finding of particular interest. However, while there have been individual reports noting the effect of TKIs in T-ALLs with NUP214-ABL1 fusions, additional research is needed to fully understand the role of this mutation in myeloid derived malignancies, and its corresponding treatment and prognostic implications.
Collapse
Affiliation(s)
- Chelby Wakefield
- Department of Hematology and Oncology, University of Arizona, Tucson, AZ, USA
| | | | - Ulyana Dashkevych
- Department of Hematology and Oncology, University of Arizona, Tucson, AZ, USA
| | | | - Sharad Khurana
- Department of Hematology and Oncology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Trinquand A, Betts DR, Rooney S, Storey L, McCarthy P, Barrett N, Broderick V, Evans P, Bond J, O'Marcaigh A, Malone A, Smith OP. MRD-risk stratification mitigates TLX3 prognostic impact in paediatric T-cell acute lymphoblastic leukaemia: A national cohort analysis. Br J Haematol 2024; 205:729-732. [PMID: 38937136 DOI: 10.1111/bjh.19577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Affiliation(s)
- Amélie Trinquand
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - David R Betts
- Department of Clinical Genetic, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sean Rooney
- Haematology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Lorna Storey
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Peter McCarthy
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Neil Barrett
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Valerie Broderick
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Pamela Evans
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Bond
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aengus O'Marcaigh
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Andrea Malone
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Owen P Smith
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity College, University of Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
5
|
Brunetti M, Andersen K, Spetalen S, Lenartova A, Osnes LTN, Vålerhaugen H, Heim S, Micci F. NUP214 fusion genes in acute leukemias: genetic characterization of rare cases. Front Oncol 2024; 14:1371980. [PMID: 38571499 PMCID: PMC10987735 DOI: 10.3389/fonc.2024.1371980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Alterations of the NUP214 gene (9q34) are recurrent in acute leukemias. Rearrangements of chromosomal band 9q34 targeting this locus can be karyotypically distinct, for example t(6;9)(p22;q34)/DEK::NUP214, or cryptic, in which case no visible change of 9q34 is seen by chromosome banding. Methods We examined 9 cases of acute leukemia with NUP214 rearrangement by array Comparative Genomic Hybridization (aCGH), reverse-transcription polymerase chain reaction (RT-PCR), and cycle sequencing/Sanger sequencing to detect which fusion genes had been generated. Results The chimeras DEK::NUP214, SET::NUP214, and NUP214::ABL1 were found, only the first of which can be readily detected by karyotyping. Discussion The identification of a specific NUP214 rearrangement is fundamental in the management of these patients, i.e., AMLs with DEK::NUP214 are classified as an adverse risk group and might be considered for allogenic transplant. Genome- and/or transcriptome-based next generation sequencing (NGS) techniques can be used to screen for these fusions, but we hereby present an alternative, step-wise procedure to detect these rearrangements.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Signe Spetalen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Andrea Lenartova
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | | | - Helen Vålerhaugen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Chen Y, Zhang K, Tan J, Fan Z, Fu Y, Li X, Liu B, Wang G. Design, synthesis, and pharmacological evaluation of novel benzothiazole derivatives targeting LCK in acute lymphoblastic leukemia. Bioorg Chem 2024; 144:107180. [PMID: 38335758 DOI: 10.1016/j.bioorg.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK), a member of the Src family of tyrosine kinases, is implicated in the pathogenesis of almost all types of leukemia via T cells activation and signal transduction. LCK is highly expressed in acute lymphoblastic leukemia (ALL), and knockdown of the LCK gene can significantly inhibit the proliferation of leukemia cell lines. Here, we designed and synthesized a series of benzothiazole derivatives as novel LCK inhibitors using both docking-based virtual screening and activity assays for structural optimization. Among these compounds, 7 m showed a strong inhibitory activity in the proliferation of leukemia cell lines and LCK kinase activity. Moreover, we found that compound 7 m could induce apoptosis while simultaneously blocking cell cycle via decreasing its phosphorylation at Tyr394 of the LCK. Collectively, these findings shed new light on compound 7 m that would be utilized as a promising drug candidate with apoptosis-triggered and cell cycle arrest activities for the future ALL therapy.
Collapse
Affiliation(s)
- Yanmei Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Kai Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiacheng Tan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhichao Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Wu N, Wei L, Zhu Z, Liu Q, Li K, Mao F, Qiao J, Zhao X. Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction. Protein Cell 2024; 15:6-20. [PMID: 37233789 PMCID: PMC10762679 DOI: 10.1093/procel/pwad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Collapse
Affiliation(s)
- Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Wei
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
8
|
Mandahl N, Mertens F, Mitelman F. Gene amplification in neoplasia: A cytogenetic survey of 80 131 cases. Genes Chromosomes Cancer 2024; 63:e23214. [PMID: 38050922 DOI: 10.1002/gcc.23214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Gene amplification is a crucial process in cancer development, leading to the overexpression of oncogenes. It manifests cytogenetically as extrachromosomal double minutes (dmin), homogeneously staining regions (hsr), or ring chromosomes (r). This study investigates the prevalence and distribution of these amplification markers in a survey of 80 131 neoplasms spanning hematologic disorders, and benign and malignant solid tumors. The study reveals distinct variations in the frequency of dmin, hsr, and r among different tumor types. Rings were the most common (3.4%) sign of amplification, followed by dmin (1.3%), and hsr (0.8%). Rings were particularly frequent in malignant mesenchymal tumors, especially liposarcomas (47.5%) and osteosarcomas (23.4%), dmin were prevalent in neuroblastoma (30.9%) and pancreatic carcinoma (21.9%), and hsr frequencies were highest in head and neck carcinoma (14.0%) and neuroblastoma (9.0%). Combining all three amplification markers (dmin/hsr/r), malignant solid tumors consistently exhibited higher frequencies than hematologic disorders and benign solid tumors. The structural characteristics of these amplification markers and their potential role in tumorigenesis and tumor progression highlight the complex interplay between cancer-initiating gene-level alterations, for example, fusion genes, and subsequent amplification dynamics. Further research integrating cytogenetic and molecular approaches is warranted to better understand the underlying mechanisms of these amplifications, in particular, the enigmatic question of why certain malignancies display certain types of amplification. Comparing the present results with molecular genetic data proved challenging because of the diversity in definitions of amplification across studies. This study underscores the need for standardized definitions in future work.
Collapse
Affiliation(s)
- Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Division of Laboratory Medicine, Department of Clinical Genetics and Pathology, University Hospital, Lund, Sweden
| | - Felix Mitelman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
DuVall AS, Wesevich A, Larson RA. Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 2023; 18:217-225. [PMID: 37490229 DOI: 10.1007/s11899-023-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE OF REVIEW Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL. RECENT FINDINGS Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space. When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.
Collapse
Affiliation(s)
- Adam S DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA.
| | - Austin Wesevich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
10
|
De Bie J, Quessada J, Tueur G, Lefebvre C, Luquet I, Toujani S, Cuccuini W, Lafage-Pochitaloff M, Michaux L. Cytogenetics in the management of T-cell acute lymphoblastic leukemia (T-ALL): Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103431. [PMID: 38016418 DOI: 10.1016/j.retram.2023.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Molecular analysis is the hallmark of T-cell acute lymphoblastic leukemia (T-ALL) categorization. Several T-ALL sub-groups are well recognized based on the aberrant expression of specific transcription factors. This recently resulted in the implementation of eight provisional T-ALL entities into the novel 2022 International Consensus Classification, albeit not into the updated World Health Organization classification system. Despite this extensive molecular characterization, cytogenetic analysis remains the backbone of T-ALL diagnosis in many countries as chromosome banding analysis and fluorescence in situ hybridization are relatively inexpensive techniques to obtain results of diagnostic, prognostic and therapeutic interest. Here, we provide an overview of recurrent chromosomal abnormalities detectable in T-ALL patients and propose guidelines regarding their detection. By referring in parallel to the more general molecular classification approach, we hope to offer a diagnostic framework useful in a broad clinical genetic setting.
Collapse
Affiliation(s)
- Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Saloua Toujani
- Service de Cytogénétique et Biologie Cellulaire, CHU de Rennes, Rennes 35033, France
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium.
| |
Collapse
|
11
|
Menchits Y, Salimova T, Komkov A, Abramov D, Konyukhova T, Abasov R, Raykina E, Itov A, Gaskova M, Borkovskaia A, Kazakova A, Soldatkina O, Kashpor S, Semchenkova A, Popov A, Novichkova G, Olshanskaya Y, Maschan A, Zerkalenkova E. Unusual Presentation of SET::NUP214-Associated Concomitant Hematological Neoplasm in a Child-Diagnostic and Treatment Struggle. Int J Mol Sci 2023; 24:14451. [PMID: 37833906 PMCID: PMC10572181 DOI: 10.3390/ijms241914451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Simultaneous multilineage hematologic malignancies are uncommon and associated with poorer prognosis than single-lineage leukemia or lymphoma. Here, we describe a concomitant malignant neoplasm in a 4-year-old boy. The child presented with massive lymphoproliferative syndrome, nasal breathing difficulties, and snoring. Morphological, immunocytochemical, and flow cytometry diagnostics showed coexistence of acute myeloid leukemia (AML) and peripheral T-cell lymphoma (PTCL). Molecular examination revealed a rare t(9;9)(q34;q34)/SET::NUP214 translocation as well as common TCR clonal rearrangements in both the bone marrow and lymph nodes. The disease showed primary refractoriness to both lymphoid and myeloid high-dose chemotherapy as well as combined targeted therapy (trametinib + ruxolitinib). Hence, HSCT was performed, and the patient has since been in complete remission for over a year. This observation highlights the importance of molecular techniques for determining the united nature of complex SET::NUP214-positive malignant neoplasms arising from precursor cells with high lineage plasticity.
Collapse
Affiliation(s)
- Yaroslav Menchits
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Tatiana Salimova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexander Komkov
- Abu Dhabi Stem Cells Center, Mahdar Qutouf Str., 25, Abu Dhabi 22404, United Arab Emirates;
| | - Dmitry Abramov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Tatiana Konyukhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Ruslan Abasov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Elena Raykina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Albert Itov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Marina Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Aleksandra Borkovskaia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Anna Kazakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Olga Soldatkina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Svetlana Kashpor
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| |
Collapse
|
12
|
Li Y, Deng K, Kaner J, Geyer JT, Ouseph M, Fang F, Xu K, Roboz G, Kluk MJ. Detection of Hybrid Fusion Transcripts, Aberrant Transcript Expression, and Specific Single Nucleotide Variants in Acute Leukemia and Myeloid Disorders with Recurrent Gene Rearrangements. Pathobiology 2023; 91:76-88. [PMID: 37490880 DOI: 10.1159/000532085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
INTRODUCTION A variety of gene rearrangements and molecular alterations are key drivers in the pathobiology of acute leukemia and myeloid disorders; current classification systems increasingly incorporate these findings in diagnostic algorithms. Therefore, clinical laboratories require versatile tools, which can detect an increasing number and variety of molecular and cytogenetic alterations of clinical significance. METHODS We validated an RNA-based next-generation sequencing (NGS) assay that enables the detection of: (i) numerous hybrid fusion transcripts (including rare/novel gene partners), (ii) aberrantly expressed EVI1 (MECOM) and IKZF1 (Del exons 4-7) transcripts, and (iii) hotspot variants in KIT, ABL1, NPM1 (relevant in the context of gene rearrangement status). RESULTS For hybrid fusion transcripts, the assay showed 98-100% concordance for known positive and negative samples, with an analytical sensitivity (i.e., limit of detection) of approximately 0.8% cells. Samples with underlying EVI1 (MECOM) translocations demonstrated increased EVI1 (MECOM) expression. Aberrant IKZF1 (Del exons 4-7) transcripts detectable with the assay were also present on orthogonal reverse transcription PCR. Specific hotspot mutations in KIT, ABL1, and NPM1 detected with the assay showed 100% concordance with orthogonal testing. Lastly, several illustrative samples are included to highlight the assay's clinically relevant contributions to patient workup. CONCLUSION Through its ability to simultaneously detect various gene rearrangements, aberrantly expressed transcripts, and hotspot mutations, this RNA-based NGS assay is a valuable tool for clinical laboratories to supplement other molecular and cytogenetic methods used in the diagnostic workup and in clinical research for patients with acute leukemia and myeloid disorders.
Collapse
Affiliation(s)
- Yuewei Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kaifang Deng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Justin Kaner
- Department of Medicine, Hematology and Medical Oncology, Clinical and Translational Leukemia Program, Weill Cornell Medicine, New York, New York, USA
| | - Julia T Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Madhu Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Frank Fang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kemin Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Gail Roboz
- Department of Medicine, Hematology and Medical Oncology, Clinical and Translational Leukemia Program, Weill Cornell Medicine, New York, New York, USA
| | - Michael J Kluk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
13
|
Arshadi A, Tolomeo D, Venuto S, Storlazzi CT. Advancements in Focal Amplification Detection in Tumor/Liquid Biopsies and Emerging Clinical Applications. Genes (Basel) 2023; 14:1304. [PMID: 37372484 PMCID: PMC10298061 DOI: 10.3390/genes14061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Focal amplifications (FAs) are crucial in cancer research due to their significant diagnostic, prognostic, and therapeutic implications. FAs manifest in various forms, such as episomes, double minute chromosomes, and homogeneously staining regions, arising through different mechanisms and mainly contributing to cancer cell heterogeneity, the leading cause of drug resistance in therapy. Numerous wet-lab, mainly FISH, PCR-based assays, next-generation sequencing, and bioinformatics approaches have been set up to detect FAs, unravel the internal structure of amplicons, assess their chromatin compaction status, and investigate the transcriptional landscape associated with their occurrence in cancer cells. Most of them are tailored for tumor samples, even at the single-cell level. Conversely, very limited approaches have been set up to detect FAs in liquid biopsies. This evidence suggests the need to improve these non-invasive investigations for early tumor detection, monitoring disease progression, and evaluating treatment response. Despite the potential therapeutic implications of FAs, such as, for example, the use of HER2-specific compounds for patients with ERBB2 amplification, challenges remain, including developing selective and effective FA-targeting agents and understanding the molecular mechanisms underlying FA maintenance and replication. This review details a state-of-the-art of FA investigation, with a particular focus on liquid biopsies and single-cell approaches in tumor samples, emphasizing their potential to revolutionize the future diagnosis, prognosis, and treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (D.T.); (S.V.)
| |
Collapse
|
14
|
de Oliveira Mota F, Gamba FT, de Carvalho Pires MG, de Toledo SRC, Gouveia JT, Oliveira ID, da Silva Santos N, Delbuono E, Rhein BN, da Costa Guimarães RF, de Sousa AVL. NUP214::ABL1: A Ph-like fusion found in a pediatric acute myeloid leukemia patient with normal karyotype. Pediatr Blood Cancer 2023; 70:e30203. [PMID: 36633225 DOI: 10.1002/pbc.30203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Fernanda de Oliveira Mota
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Francine Tesser Gamba
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Michele Gaboardi de Carvalho Pires
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Silva Regina Caminada de Toledo
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Juliana Thomazini Gouveia
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Nancy da Silva Santos
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Elizabete Delbuono
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | - Bruno Nicolaz Rhein
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| | | | - Ana Virginia Lopes de Sousa
- Department of Pediatric Oncology, Pediatric Oncology Institute - Grupo de Apoio ao Adolescente e à Criança com Câncer GRAACC/ Federal University of São Paulo UNIFESP, São Paulo, Brazil
| |
Collapse
|
15
|
Zhao L, Jiang Y, Lei X, Yang X. Amazing roles of extrachromosomal DNA in cancer progression. Biochim Biophys Acta Rev Cancer 2023; 1878:188843. [PMID: 36464200 DOI: 10.1016/j.bbcan.2022.188843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In cancers, extrachromosomal DNA (ecDNA) has gained renewed interest since its first discovery, presenting its roles in tumorigenesis. Because of the unique structure and genetic characteristics, extrachromosomal DNA shed new light on development, early diagnosis, treatment and prognosis of cancers. Occurs in cancer cells, extrachromosomal DNA, one dissociative circular extrachromosomal element, drives the amplification of oncogenes, promotes the transcription and lifts tumor heterogeneity to participate in tumorigenesis. Given its role act as messenger, extrachromosomal DNA is connected with drug resistance, tumor microenvironment, germline and aging. The diversity of space and time gives extrachromosomal DNA a crucial role in cancer progression that has been ignored for decades. Thus, in this review, we will focus on some unique information of extrachromosomal DNA and the regulation of oncogenes as well as its roles and possible mechanisms in tumorigenesis, which are of great significance for us to understand extrachromosomal DNA comprehensively in carcinogenic mechanism.
Collapse
Affiliation(s)
- Leilei Zhao
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Yicun Jiang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
16
|
Virk H, Sreedharanunni S, Palla S, Rastogi P, Rathore S, Anshu A, Trehan A. Detection of NUP214-ABL1 translocation using BCR-ABL1 dual color FISH probes in T-cell acute lymphoblastic leukemia-an illustrative report and review of literature. Blood Res 2022; 57:278-281. [PMID: 36348635 PMCID: PMC9812733 DOI: 10.5045/br.2022.2022134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Harpreet Virk
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India,Correspondence to: Sreejesh Sreedharanunni Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India, E-mail:
| | - Swetha Palla
- Unit of Paediatric Haemato-Oncology, Department of Paediatrics, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pulkit Rastogi
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shailja Rathore
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anshu Anshu
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Unit of Paediatric Haemato-Oncology, Department of Paediatrics, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Leoncin M, La Starza R, Roti G, Pagliaro L, Bassan R, Mecucci C. Modern treatment approaches to adult acute T-lymphoblastic and myeloid/T-lymphoblastic leukemia: from current standards to precision medicine. Curr Opin Oncol 2022; 34:738-747. [PMID: 36017547 DOI: 10.1097/cco.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most recent advancements in the management of adult T-cell acute lymphoblastic leukemia (T-ALL), we summarize insights into molecular diagnostics, immunotherapy, targeted therapy and new techniques of drug sensitivity profiling that may support further therapeutic progress in T-ALL subsets. RECENT FINDINGS With current induction/consolidation chemotherapy and/or risk-oriented allogeneic stem cell transplantation programs up to 95% adult T-ALL patients achieve a remission and >50% (up to 80% in adolescents and young adults) are cured. The group of patients who fail upfront therapy, between 25% and 40%, is enriched in high-risk characteristics (unfavorable genetics, persistent minimal residual disease) and represents the ideal setting for the study of molecular mechanisms of disease resistance, and consequently explore novel ways of restoration of drug sensitivity and assess patient/subset-specific patterns of drug vulnerability to targeting agents, immunotherapy and cell therapy. SUMMARY The emerging evidence supports the contention that precision medicine may soon allow valuable therapeutic chances to adult patients with high-risk T-ALL. The ongoing challenge is to identify the best way to integrate all these new data into the therapeutic path of newly diagnosed patients, with a view to optimize the individual treatment plan and increase the cure rate.
Collapse
Affiliation(s)
- Matteo Leoncin
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Renato Bassan
- Hematology Unit, Azienda Ulss3 Serenissima, Ospedale dell'Angelo, Venezia-Mestre
| | - Cristina Mecucci
- Department of Medicine and Surgery, University of Perugia, Perugia
| |
Collapse
|
18
|
Wu M, Rai K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput Struct Biotechnol J 2022; 20:6011-6022. [PMID: 36382182 PMCID: PMC9647416 DOI: 10.1016/j.csbj.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Since the advent of sequencing technologies in the 1990s, researchers have focused on the association between aberrations in chromosomal DNA and disease. However, not all forms of the DNA are linear and chromosomal. Extrachromosomal circular DNAs (eccDNAs) are double-stranded, closed-circled DNA constructs free from the chromosome that reside in the nuclei. Although widely overlooked, the eccDNAs have recently gained attention for their potential roles in physiological response, intratumoral heterogeneity and cancer therapeutics. In this review, we summarize the history, classifications, biogenesis, and highlight recent progresses on the emerging topic of eccDNAs and comment on their potential application as biomarkers in clinical settings.
Collapse
Affiliation(s)
- Manrong Wu
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Veltri G, Sandei M, Silvestri D, Bresolin S, Pession A, Santoro N, Ziino O, Veltroni M, Rizzari C, Biffi A, Valsecchi MG, Conter V, Buldini B, Accordi B, Serafin V. NUP214-ABL1 fusion in childhood T-ALL. Pediatr Blood Cancer 2022; 69:e29643. [PMID: 35253360 DOI: 10.1002/pbc.29643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Giulia Veltri
- Maternal and Child Health Department, Division of Pediatric Hematology, Oncology and Stem Cell Transplant, University of Padova and Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Max Sandei
- Maternal and Child Health Department, Division of Pediatric Hematology, Oncology and Stem Cell Transplant, University of Padova and Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Daniela Silvestri
- Medical Statistics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Bresolin
- Maternal and Child Health Department, Division of Pediatric Hematology, Oncology and Stem Cell Transplant, University of Padova and Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Andrea Pession
- Department of Pediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Nicola Santoro
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Ottavio Ziino
- Pediatric Hematology and Oncology, ARNAS Civico Hospital, Palermo, Italy
| | - Marinella Veltroni
- Department of Pediatric Oncology-Hematology, Meyer Children's Hospital, Florence, Italy
| | - Carmelo Rizzari
- Pediatric Hematology Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Alessandra Biffi
- Maternal and Child Health Department, Division of Pediatric Hematology, Oncology and Stem Cell Transplant, University of Padova and Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Maria Grazia Valsecchi
- Medical Statistics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentino Conter
- Pediatric Hematology Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Barbara Buldini
- Maternal and Child Health Department, Division of Pediatric Hematology, Oncology and Stem Cell Transplant, University of Padova and Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Benedetta Accordi
- Maternal and Child Health Department, Division of Pediatric Hematology, Oncology and Stem Cell Transplant, University of Padova and Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Valentina Serafin
- Maternal and Child Health Department, Division of Pediatric Hematology, Oncology and Stem Cell Transplant, University of Padova and Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| |
Collapse
|
20
|
Karami Fath M, Karimfar N, Fazlollahpour Naghibi A, Shafa S, Ghasemi Shiran M, Ataei M, Dehghanzadeh H, Nabi Afjadi M, Ghadiri T, Payandeh Z, Tarhriz V. Revisiting characteristics of oncogenic extrachromosomal DNA as mobile enhancers on neuroblastoma and glioma cancers. Cancer Cell Int 2022; 22:200. [PMID: 35614494 PMCID: PMC9131661 DOI: 10.1186/s12935-022-02617-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer can be induced by a variety of possible causes, including tumor suppressor gene failure and proto-oncogene hyperactivation. Tumor-associated extrachromosomal circular DNA has been proposed to endanger human health and speed up the progression of cancer. The amplification of ecDNA has raised the oncogene copy number in numerous malignancies according to whole-genome sequencing on distinct cancer types. The unusual structure and function of ecDNA, and its potential role in understanding current cancer genome maps, make it a hotspot to study tumor pathogenesis and evolution. The discovery of the basic mechanisms of ecDNA in the emergence and growth of malignancies could lead researchers to develop new cancer therapies. Despite recent progress, different aspects of ecDNA require more investigation. We focused on the features, and analyzed the bio-genesis, and origin of ecDNA in this review, as well as its functions in neuroblastoma and glioma cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nastaran Karimfar
- Faculty of Veterinary Medicine, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | | | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Melika Ghasemi Shiran
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Ataei
- Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran. .,Neurosiences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Steimlé T, Dourthe ME, Alcantara M, Touzart A, Simonin M, Mondesir J, Lhermitte L, Bond J, Graux C, Grardel N, Cayuela JM, Arnoux I, Gandemer V, Balsat M, Vey N, Macintyre E, Ifrah N, Dombret H, Petit A, Baruchel A, Ruminy P, Boissel N, Asnafi V. Clinico-biological features of T-cell acute lymphoblastic leukemia with fusion proteins. Blood Cancer J 2022; 12:14. [PMID: 35082269 PMCID: PMC8791998 DOI: 10.1038/s41408-022-00613-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/23/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) represent 15% of pediatric and 25% of adult ALL. Since they have a particularly poor outcome in relapsed/refractory cases, identifying prognosis factors at diagnosis is crucial to adapting treatment for high-risk patients. Unlike acute myeloid leukemia and BCP ALL, chromosomal rearrangements leading to chimeric fusion-proteins with strong prognosis impact are sparsely reported in T-ALL. To address this issue an RT-MPLA assay was applied to a consecutive series of 522 adult and pediatric T-ALLs and identified a fusion transcript in 20% of cases. PICALM-MLLT10 (4%, n = 23), NUP214-ABL1 (3%, n = 19) and SET-NUP214 (3%, n = 18) were the most frequent. The clinico-biological characteristics linked to fusion transcripts in a subset of 235 patients (138 adults in the GRAALL2003/05 trials and 97 children from the FRALLE2000 trial) were analyzed to identify their prognosis impact. Patients with HOXA trans-deregulated T-ALLs with MLLT10, KMT2A and SET fusion transcripts (17%, 39/235) had a worse prognosis with a 5-year EFS of 35.7% vs 63.7% (HR = 1.63; p = 0.04) and a trend for a higher cumulative incidence of relapse (5-year CIR = 45.7% vs 25.2%, HR = 1.6; p = 0.11). Fusion transcripts status in T-ALL can be robustly identified by RT-MLPA, facilitating risk adapted treatment strategies for high-risk patients.
Collapse
Affiliation(s)
- Thomas Steimlé
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Marie-Emilie Dourthe
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
| | - Marion Alcantara
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
- Center for Cancer Immunotherapy, INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Aurore Touzart
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Mathieu Simonin
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
- Center for Cancer Immunotherapy, INSERM U932, Institut Curie, PSL Research University, Paris, France
- Department of Pediatric Hematology and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), GH HUEP, Armand Trousseau Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 938, CDR Saint-Antoine, GRC n°07, GRC MyPAC, Paris, France
| | - Johanna Mondesir
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Ludovic Lhermitte
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Carlos Graux
- Department of Hematology, Université catholique de Louvain, CHU UCL Namur - site Godinne, Yvoir, Belgium
| | - Nathalie Grardel
- Laboratory of Hematology, CHRU Lille, Lille, France and U1172, INSERM, Lille, France
| | - Jean-Michel Cayuela
- Laboratory of Hematology and EA 3518 University Hospital Saint-Louis, AP-HP and Université de Paris, Paris, France
| | - Isabelle Arnoux
- Hematology Laboratory, Marseille University Hospital Timone, Marseille, France
| | - Virginie Gandemer
- Department of Pediatric Hematology and Oncology, University Hospital of Rennes, Rennes, France
| | - Marie Balsat
- Service d'hématologie clinique, Hôpital Lyon Sud, Marseille, France
| | - Norbert Vey
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Elizabeth Macintyre
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Norbert Ifrah
- PRES LUNAM, CHU Angers service des Maladies du Sang et CRCINA INSERM, Angers, France
| | - Hervé Dombret
- Institut de Recherche Saint-Louis, Université de Paris, EA-3518, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), GH HUEP, Armand Trousseau Hospital, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 938, CDR Saint-Antoine, GRC n°07, GRC MyPAC, Paris, France
| | - André Baruchel
- Department of Pediatric Hematology and Immunology, Robert Debré University Hospital (AP-HP), Université de Paris, Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, EA-3518, Paris, France
| | - Philippe Ruminy
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Nicolas Boissel
- Institut de Recherche Saint-Louis, Université de Paris, EA-3518, Paris, France
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
- AP-HP, Hôpital Saint Louis, Unité d'Hématologie Adolescents et Jeunes Adultes, Paris, France
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
22
|
SFPQ-ABL1 and BCR-ABL1 utilize different signalling networks to drive B-cell acute lymphoblastic leukaemia. Blood Adv 2022; 6:2373-2387. [PMID: 35061886 PMCID: PMC9006296 DOI: 10.1182/bloodadvances.2021006076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
SFPQ-ABL1 is localized to the nuclear compartment and is a relatively weaker driver of cellular proliferation compared with BCR-ABL1. SFPQ-ABL1 and BCR-ABL1 activate distinct signaling networks, both of which converge on inhibiting apoptosis and driving proliferation.
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome–positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase–activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1–expressing cells compared with BCR-ABL1–expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.
Collapse
|
23
|
Nardi V, McAfee SL, Dal Cin P, Tsai HK, Amrein PC, Hobbs GS, Brunner AM, Narayan R, Foster J, Fathi AT, Hock H. OUP accepted manuscript. Oncologist 2022; 27:82-86. [PMID: 35641210 PMCID: PMC8895729 DOI: 10.1093/oncolo/oyab052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
BCR-ABL1 kinase inhibitors have improved the prognosis of Philadelphia-chromosome-positive (Ph+)-acute lymphoblastic leukemia (ALL). Ph-like (or BCR-ABL1-like) ALL does not express BCR-ABL1 but commonly harbors other genomic alterations of signaling molecules that may be amenable to therapy. Here, we report a case with a NUP214-ABL1 fusion detected at relapse by multiplexed, targeted RNA sequencing. It had escaped conventional molecular work-up at diagnosis, including cytogenetic analysis and fluorescence in situ hybridization for ABL1 rearrangements. The patient had responded poorly to initial multi-agent chemotherapy and inotuzumab immunotherapy at relapse before the fusion was revealed. The addition of dasatinib targeting NUP214-ABL1 to inotuzumab resulted in complete molecular remission, but recurrence occurred rapidly with dasatinib alone. However, deep molecular remission was recaptured with a combination of blinatumomab and ponatinib, so he could proceed to allotransplantation. This case illustrates that next-generation sequencing approaches designed to discover cryptic gene fusions can benefit patients with Ph-like ALL.
Collapse
Affiliation(s)
- Valentina Nardi
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Steven L McAfee
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Paola Dal Cin
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Harrison K Tsai
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Philip C Amrein
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriela S Hobbs
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew M Brunner
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Rupa Narayan
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Julia Foster
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amir T Fathi
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hanno Hock
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Corresponding author: Hanno Hock, Massachusetts General Hospital Cancer Center, 185 Cambridge Street CPZN 4212, Boston, MA 02114, USA. Tel: 617-643-3145;
| |
Collapse
|
24
|
Shiraz P, Jehangir W, Agrawal V. T-Cell Acute Lymphoblastic Leukemia-Current Concepts in Molecular Biology and Management. Biomedicines 2021; 9:1621. [PMID: 34829849 PMCID: PMC8615775 DOI: 10.3390/biomedicines9111621] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an uncommon, yet aggressive leukemia that accounts for approximately one-fourth of acute lymphoblastic leukemia (ALL) cases. CDKN2A/CDKN2B and NOTCH1 are the most common mutated genes in T-ALL. Children and young adults are treated with pediatric intensive regimens and have superior outcomes compared to older adults. In children and young adults, Nelarabine added to frontline chemotherapy improves outcomes and end of consolidation measurable residual disease has emerged as the most valuable prognostic marker. While outcomes for de-novo disease are steadily improving, patients with relapsed and refractory T-ALL fare poorly. Newer targeted therapies are being studied in large clinical trials and have the potential to further improve outcomes. The role of allogeneic stem cell transplant (HSCT) is evolving due to the increased use of pediatric-inspired regimens and MRD monitoring. In this review we will discuss the biology, treatment, and outcomes in pediatric and adult T-ALL.
Collapse
Affiliation(s)
- Parveen Shiraz
- Blood and Marrow Transplantation/Cell Therapy, Stanford University, Stanford, CA 94305, USA
| | - Waqas Jehangir
- Avera Medical Group Hematology, Transplant & Cellular Therapy, Sioux Falls, SD 57105, USA;
| | - Vaibhav Agrawal
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
25
|
Luo J, Zheng H, Wang S, Li D, Ma W, Wang L, Crabbe MJC. ABL1 and Cofilin1 promote T-cell acute lymphoblastic leukemia cell migration. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1321-1332. [PMID: 34508625 DOI: 10.1093/abbs/gmab117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
The fusion gene of ABL1 is closely related to tumor proliferation, invasion, and migration. It has been reported recently that ABL1 itself is required for T-cell acute lymphoblastic leukemia (T-ALL) cell migration induced by CXCL12. Further experiments revealed that ABL1 inhibitor Nilotinib inhibited leukemia cell migration induced by CXCL12, indicating the possible application of Nilotinib in T-ALL leukemia treatment. However, the interacting proteins of ABL1 and the specific mechanisms of their involvement in this process need further investigation. In the present study, ABL1 interacting proteins were characterized and their roles in the process of leukemia cell migration induced by CXCL12 were investigated. Co-immunoprecipitation in combination with mass spectrometry analysis identified 333 proteins that interact with ABL1, including Cofilin1. Gene ontology analysis revealed that many of them were enriched in the intracellular organelle or cytoplasm, including nucleic acid binding components, transfectors, or co-transfectors. Kyoto Encyclopedia of Genes and Genomes analysis showed that the top three enriched pathways were translation, glycan biosynthesis, and metabolism, together with human diseases. ABL1 and Cofilin1 were in the same complex. Cofilin1 binds the SH3 domain of ABL1 directly; however, ABL1 is not required for the phosphorylation of Cofilin1. Molecular docking analysis shows that ABL1 interacts with Cofilin1 mainly through hydrogen bonds and ionic interaction between amino acid residues. The mobility of leukemic cells was significantly decreased by Cofilin1 siRNA. These results demonstrate that Cofilin1 is a novel ABL1 binding partner. Furthermore, Cofilin1 participates in the migration of leukemia cells induced by CXCL12. These data indicate that ABL1 and Cofilin1 are possible targets for T-ALL treatment.
Collapse
Affiliation(s)
- Jixian Luo
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Huiguang Zheng
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Sen Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Dingyun Li
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Wenli Ma
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - M James C Crabbe
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
- Wolfson College, University of Oxford, Oxford, Oxfordshire OX2 6UD, UK
- Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, University Square, Luton LU1 3JU, UK
| |
Collapse
|
26
|
Afkhami M, Ally F, Pullarkat V, Pillai RK. Genetics and Diagnostic Approach to Lymphoblastic Leukemia/Lymphoma. Cancer Treat Res 2021; 181:17-43. [PMID: 34626353 DOI: 10.1007/978-3-030-78311-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of the genetics and biology of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia, ALL) has advanced rapidly in the past decade with advances in sequencing and other molecular techniques. Besides recurrent chromosomal abnormalities detected by karyotyping or fluorescence in situ hybridization, these leukemias/lymphomas are characterized by a variety of mutations, gene rearrangements as well as copy number alterations. This is particularly true in the case of Philadelphia-like (Ph-like) ALL, a major subset which has the same gene expression signature as Philadelphia chromosome-positive ALL but lacks BCR-ABL1 translocation. Ph-like ALL is associated with a worse prognosis and hence its detection is critical. However, techniques to detect this entity are complex and are not widely available. This chapter discusses various subsets of ALL and describes our approach to the accurate classification and prognostication of these cases.
Collapse
Affiliation(s)
- Michelle Afkhami
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| | - Feras Ally
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Vinod Pullarkat
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Raju K Pillai
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
27
|
Karami Fath M, Akbari Oryani M, Ramezani A, Barjoie Mojarad F, Khalesi B, Delazar S, Anjomrooz M, Taghizadeh A, Taghizadeh S, Payandeh Z, Pourzardosht N. Extra chromosomal DNA in different cancers: Individual genome with important biological functions. Crit Rev Oncol Hematol 2021; 166:103477. [PMID: 34534658 DOI: 10.1016/j.critrevonc.2021.103477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer can be caused by various factors, including the malfunction of tumor suppressor genes and the hyper-activation of proto-oncogenes. Tumor-associated extrachromosomal circular DNA (eccDNA) has been shown to adversely affect human health and accelerate malignant actions. Whole-genome sequencing (WGS) on different cancer types suggested that the amplification of ecDNA has increased the oncogene copy number in various cancers. The unique structure and function of ecDNA, its profound significance in cancer, and its help in the comprehension of current cancer genome maps, renders it as a hotspot to explore the tumor pathogenesis and evolution. Illumination of the basic mechanisms of ecDNA may provide more insights into cancer therapeutics. Despite the recent advances, different features of ecDNA require further elucidation. In the present review, we primarily discussed the characteristics, biogenesis, genesis, and origin of ecDNA and later highlighted its functions in both tumorigenesis and therapeutic resistance of different cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arefeh Ramezani
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Barjoie Mojarad
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Taghizadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Taghizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
28
|
Genomic and clinical characterization of early T-cell precursor lymphoblastic lymphoma. Blood Adv 2021; 5:2890-2900. [PMID: 34297047 DOI: 10.1182/bloodadvances.2021004334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023] Open
Abstract
Early T-cell precursor phenotype acute lymphoblastic leukemia (ETP-ALL) is a subtype of T-ALL with a unique immunophenotype and genetic abnormalities distinct from conventional T-ALL. A subset of T lymphoblastic lymphoma (T-LLy) also demonstrates the early T-cell precursor immunophenotype and may be a counterpart of ETP-ALL. Unlike ETP-ALL, the incidence, clinical features, and genomic features of ETP-LLy are unknown. We reviewed the immunophenotyping data of 218 T-LLy patients who enrolled in the Children's Oncology Group AALL0434 clinical trial and identified 9 cases (4%) exhibiting a definitive ETP immunophenotype. We performed single-nucleotide polymorphism array profiling on 9 ETP-LLy and 15 non-ETP T-LLy cases. Compared with non-ETP T-LLy, ETP-LLy showed less frequent deletion of 9p (CKDN2A/B), more frequent deletion of 12p (ETV6) and 1p (RPL22), and more frequent absence of biallelic T-cell receptor γ deletions. Recurrent abnormalities previously described in ETP-ALL such as deletions of 5q and 13q and gain of 6q were not observed in ETP-LLy cases. There were no failures of therapy among the ETP-LLy subtype with a 4-year event-free survival of 100%. Overall, ETP-LLy does not exhibit unifying genetic alterations but shows some distinct genomic features from non-ETP T-LLy suggesting that ETP-LLy may be a distinct entity from non-ETP T-LLy.
Collapse
|
29
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|
30
|
Wang HP, He JJ, Zhu QY, Wang L, Li JH, Huang JS, Xie WZ, Zhu HH, Jin J. Case Report: The First Report of NUP214-ABL1 Fusion Gene in Acute Myeloid Leukemia Patient Detected by Next-Generation Sequencing. Front Oncol 2021; 11:706798. [PMID: 34307175 PMCID: PMC8295748 DOI: 10.3389/fonc.2021.706798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The NUP214-ABL1 fusion gene is a constitutively active tyrosine kinase that can be detected in 6% of T-cell acute lymphoblastic leukemia (T-ALL) patients, and it can also be found in B-cell acute lymphoblastic leukaemia (B-ALL). However the NUP214-ABL1 fusion in acute myeloid leukemia (AML) has not yet been reported. Up to now, the sensitivity of NUP214-ABL1-positive patients to tyrosine kinase inhibitor (TKI) is still controversial. Here we report the first case of an AML patient carrying NUP214-ABL1 fusion gene. The conventional AML chemotherapy regimen for the patient was successful. Identification of additional AML patients with NUP214-ABL1 fusion gene will provide treatment experience and prognostic evaluation.
Collapse
Affiliation(s)
- Huan-Ping Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jun-Jun He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiao-Yun Zhu
- Central Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-Hu Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-Song Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Wan-Zhuo Xie
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong-Hu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| |
Collapse
|
31
|
Pocock R, Farah N, Richardson SE, Mansour MR. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 194:28-43. [PMID: 33942287 DOI: 10.1111/bjh.17310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell ALL (T-ALL) is an aggressive malignancy of T-cell progenitors. Although survival outcomes in T-ALL have greatly improved over the past 50 years, relapsed and refractory cases remain extremely challenging to treat and those who cannot tolerate intensive treatment continue to have poor outcomes. Furthermore, T-ALL has proven a more challenging immunotherapeutic target than B-ALL. In this review we explore our expanding knowledge of the basic biology of T-ALL and how this is paving the way for repurposing established treatments and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rachael Pocock
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Simon E Richardson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
32
|
Govaerts I, Prieto C, Vandersmissen C, Gielen O, Jacobs K, Provost S, Nittner D, Maertens J, Boeckx N, De Keersmaecker K, Segers H, Cools J. PSEN1-selective gamma-secretase inhibition in combination with kinase or XPO-1 inhibitors effectively targets T cell acute lymphoblastic leukemia. J Hematol Oncol 2021; 14:97. [PMID: 34167562 PMCID: PMC8223323 DOI: 10.1186/s13045-021-01114-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND T cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype that comprises 10-15% of childhood and 20-25% of adult ALL cases. Over 70% of T-ALL patients harbor activating mutations in the NOTCH1 signaling pathway and are predicted to be sensitive to gamma-secretase inhibitors. We have recently demonstrated that selective inhibition of PSEN1-containing gamma-secretase complexes can overcome the dose-limiting toxicity associated with broad gamma-secretase inhibitors. In this study, we developed combination treatment strategies with the PSEN1-selective gamma-secretase inhibitor MRK-560 and other targeted agents (kinase inhibitors ruxolitinib and imatinib; XPO-1 inhibitor KPT-8602/eltanexor) for the treatment of T-ALL. METHODS We treated T-ALL cell lines in vitro and T-ALL patient-derived xenograft (PDX) models in vivo with MRK-560 alone or in combination with other targeted inhibitors (ruxolitinib, imatinib or KPT-8602/eltanexor). We determined effects on proliferation of the cell lines and leukemia development and survival in the PDX models. RESULTS All NOTCH1-signaling-dependent T-ALL cell lines were sensitive to MRK-560 and its combination with ruxolitinib or imatinib in JAK1- or ABL1-dependent cell lines synergistically inhibited leukemia proliferation. We also observed strong synergy between MRK-560 and KPT-8602 (eltanexor) in all NOTCH1-dependent T-ALL cell lines. Such synergy was also observed in vivo in a variety of T-ALL PDX models with NOTCH1 or FBXW7 mutations. Combination treatment significantly reduced leukemic infiltration in vivo and resulted in a survival benefit when compared to single treatment groups. We did not observe weight loss or goblet cell hyperplasia in single drug or combination treated mice when compared to control. CONCLUSIONS These data demonstrate that the antileukemic effect of PSEN1-selective gamma-secretase inhibition can be synergistically enhanced by the addition of other targeted inhibitors. The combination of MRK-560 with KPT-8602 is a highly effective treatment combination, which circumvents the need for the identification of additional mutations and provides a clear survival benefit in vivo. These promising preclinical data warrant further development of combination treatment strategies for T-ALL based on PSEN1-selective gamma-secretase inhibition.
Collapse
Affiliation(s)
- Inge Govaerts
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Cristina Prieto
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Charlien Vandersmissen
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Olga Gielen
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Kris Jacobs
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sarah Provost
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | | | - Johan Maertens
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Hematology, UZ Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kim De Keersmaecker
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Pediatric Oncology, UZ Leuven, Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
Wang Y, Huang R, Zheng G, Shen J. Small ring has big potential: insights into extrachromosomal DNA in cancer. Cancer Cell Int 2021; 21:236. [PMID: 33902601 PMCID: PMC8077740 DOI: 10.1186/s12935-021-01936-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Recent technical advances have led to the discovery of novel functions of extrachromosomal DNA (ecDNA) in multiple cancer types. Studies have revealed that cancer-associated ecDNA shows a unique circular shape and contains oncogenes that are more frequently amplified than that in linear chromatin DNA. Importantly, the ecDNA-mediated amplification of oncogenes was frequently found in most cancers but rare in normal tissues. Multiple reports have shown that ecDNA has a profound impact on oncogene activation, genomic instability, drug sensitivity, tumor heterogeneity and tumor immunology, therefore may offer the potential for cancer diagnosis and therapeutics. Nevertheless, the underlying mechanisms and future applications of ecDNA remain to be determined. In this review, we summarize the basic concepts, biological functions and molecular mechanisms of ecDNA. We also provide novel insights into the fundamental role of ecDNA in cancer.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
34
|
Tirado CA, Reyes A, Yeh W, Yee J, King J, Kane J, Koss W. Ring chromosome 7 in a child with T-cell acute lymphoblastic leukemia with myeloid markers. Proc (Bayl Univ Med Cent) 2021; 34:302-304. [PMID: 33678971 DOI: 10.1080/08998280.2020.1864700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ring chromosomes are uncommon in hematological diseases. Here we present the case of a 13-year-old girl with leukocytosis, anemia, and lymphadenopathy. Flow cytometry analysis revealed a predominant precursor T lymphoid population expressing CD7, CD5, CD2, and cytoplasmic CD3 with partial expression of CD33, CD34, CD117, and CD11c; TdT was positive, and myeloperoxidase was negative. The bone marrow aspirate showed markedly increased blasts that were positive for CD3, CD7, CD34, TdT, and myeloperoxidase (rare positivity) by immunohistochemistry stain, consistent with T-cell acute lymphoblastic leukemia (T-ALL) extensively involving a hypercellular marrow for age. The karyotype showed a ring 7 in 12 of the 21 metaphase cells examined and deletions of the subtelomeric regions on chromosome 7. Deletions in the short arm of chromosome 7 and the long arm of chromosome 7 are present in 2% to 4% of pediatric T-ALL cases. Ring chromosome 7 is typically seen in myeloid malignancies, including acute myeloid leukemia.
Collapse
Affiliation(s)
- Carlos A Tirado
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Pathology, Baylor Scott and White Health, Temple, Texas
| | - Andrew Reyes
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Biology, University of California Los Angeles, Los Angeles, California
| | - Wilson Yeh
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Biology, University of California Los Angeles, Los Angeles, California
| | - Justin Yee
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Biology, University of California Los Angeles, Los Angeles, California
| | - Joy King
- Department of Pathology, Baylor Scott and White Health, Temple, Texas
| | - Javier Kane
- Department of Pediatric Hematology Oncology, Baylor Scott and White Health, Temple, Texas
| | - William Koss
- Department of Pathology, Baylor Scott and White Health, Temple, Texas
| |
Collapse
|
35
|
Cordo' V, van der Zwet JC, Canté-Barrett K, Pieters R, Meijerink JP. T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies. Blood Cancer Discov 2021; 2:19-31. [PMID: 34661151 PMCID: PMC8447273 DOI: 10.1158/2643-3230.bcd-20-0093] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy characterized by aberrant proliferation of immature thymocytes. Despite an overall survival of 80% in the pediatric setting, 20% of patients with T-ALL ultimately die from relapsed or refractory disease. Therefore, there is an urgent need for novel therapies. Molecular genetic analyses and sequencing studies have led to the identification of recurrent T-ALL genetic drivers. This review summarizes the main genetic drivers and targetable lesions of T-ALL and gives a comprehensive overview of the novel treatments for patients with T-ALL that are currently under clinical investigation or that are emerging from preclinical research. SIGNIFICANCE T-ALL is driven by oncogenic transcription factors that act along with secondary acquired mutations. These lesions, together with active signaling pathways, may be targeted by therapeutic agents. Bridging research and clinical practice can accelerate the testing of novel treatments in clinical trials, offering an opportunity for patients with poor outcome.
Collapse
|
36
|
Zhong Y, Lin F, Xu F, Schubert J, Wu J, Wainwright L, Zhao X, Cao K, Fan Z, Chen J, Lang SS, Kennedy BC, Viaene AN, Santi M, Resnick AC, Storm PB, Li MM. Genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. Cancer Genet 2020; 252-253:37-42. [PMID: 33341678 DOI: 10.1016/j.cancergen.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
Abstract
ALK (Anaplastic lymphoma kinase) fusion proteins are oncogenic and have been seen in various tumors. PPP1CB-ALK fusions are rare but have been reported in a few patients with low- or high-grade gliomas. However, little is known regarding the mechanism of fusion formation and genomic break points of this fusion. We performed genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. The PPP1CB-ALK consists of exons 1-5 of PPP1CB and exons 20-29 of ALK. The genomic translocation breakpoints were determined by real-time quantitative PCR (RT-qPCR) and Sanger sequencing of genomic DNA. Next generation sequencing, RT-qPCR and fluorescence in situ hybridization analyses demonstrated PPP1CB-ALK amplification. Copy number analyses of genes between PPP1CB and ALK using RT-qPCR suggest that the PPP1CB-ALK is likely the result of local chromothripsis followed by episomal amplification. Transcriptome sequencing demonstrated high-level SOX2 expression and predicted WNT/β-catenin pathway activation, suggesting possible therapeutic approaches.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Feng Xu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jeff Schubert
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jinhua Wu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Luanne Wainwright
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xiaonan Zhao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kajia Cao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zhiqian Fan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jiani Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Shih-Shan Lang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Benjamin C Kennedy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adam C Resnick
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Phillip B Storm
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
37
|
Yan Y, Guo G, Huang J, Gao M, Zhu Q, Zeng S, Gong Z, Xu Z. Current understanding of extrachromosomal circular DNA in cancer pathogenesis and therapeutic resistance. J Hematol Oncol 2020; 13:124. [PMID: 32928268 PMCID: PMC7491193 DOI: 10.1186/s13045-020-00960-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal circular DNA was recently found to be particularly abundant in multiple human cancer cells, although its frequency varies among different tumor types. Elevated levels of extrachromosomal circular DNA have been considered an effective biomarker of cancer pathogenesis. Multiple reports have demonstrated that the amplification of oncogenes and therapeutic resistance genes located on extrachromosomal DNA is a frequent event that drives intratumoral genetic heterogeneity and provides a potential evolutionary advantage. This review highlights the current understanding of the extrachromosomal circular DNA present in the tissues and circulation of patients with advanced cancers and provides a detailed discussion of their substantial roles in tumor regulation. Confirming the presence of cancer-related extrachromosomal circular DNA would provide a putative testing strategy for the precision diagnosis and treatment of human malignancies in clinical practice.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) have limited therapeutic options and a poor prognosis. Although a variety of salvage chemotherapy regimens may be used, response rates are unsatisfactory. This article summarizes current approaches and promising emerging strategies for the treatment of relapsed T-ALL. RECENT FINDINGS Although nelarabine is the only agent approved specifically for T-ALL, recent studies have identified a variety of genetic alterations and signaling pathways that are critical in its pathogenesis. Based on these findings, a number of small-molecule inhibitors and other targeted therapies are being studied for relapsed T-ALL, including gamma-secretase inhibitors, BCL-2 inhibitors, cyclin-dependent kinase inhibitors, and mTOR inhibitors. In addition, pre-clinical studies of chimeric antigen receptor T cells targeting CD5 and CD7 as well as the monoclonal antibody daratumumab have shown promising results for T-ALL. Relapsed T-ALL currently remains challenging to treat, but recent pre-clinical studies of targeted and immunotherapeutic agents have shown encouraging results. A number of clinical trials investigating these approaches for T-ALL are currently underway.
Collapse
Affiliation(s)
- Christine M McMahon
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Selina M Luger
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Perelman Center for Advanced Medicine, 12th Floor South Extension, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Lavau CP, Aumann WK, Sze SGK, Gupta V, Ripple K, Port SA, Kehlenbach RH, Wechsler DS. The SQSTM1-NUP214 fusion protein interacts with Crm1, activates Hoxa and Meis1 genes, and drives leukemogenesis in mice. PLoS One 2020; 15:e0232036. [PMID: 32343715 PMCID: PMC7188244 DOI: 10.1371/journal.pone.0232036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
The NUP98 and NUP214 nucleoporins (NUPs) are recurrently fused to heterologous proteins in leukemia. The resulting chimeric oncoproteins retain the phenylalanine-glycine (FG) repeat motifs of the NUP moiety that mediate interaction with the nuclear export receptor Crm1. NUP fusion leukemias are characterized by HOXA gene upregulation; however, their molecular pathogenesis remains poorly understood. To investigate the role of Crm1 in mediating the leukemogenic properties of NUP chimeric proteins, we took advantage of the Sequestosome-1 (SQSTM1)-NUP214 fusion. SQSTM1-NUP214 retains only a short C-terminal portion of NUP214 which contains FG motifs that mediate interaction with Crm1. We introduced point mutations targeting these FG motifs and found that the ability of the resulting SQSTM1-NUP214FGmut protein to interact with Crm1 was reduced by more than 50% compared with SQSTM1-NUP214. Mutation of FG motifs affected transforming potential: while SQSTM1-NUP214 impaired myeloid maturation and conferred robust colony formation to transduced hematopoietic progenitors in a serial replating assay, the effect of SQSTM1-NUP214FGmut was considerably diminished. Moreover, SQSTM1-NUP214 caused myeloid leukemia in all transplanted mice, whereas none of the SQSTM1-NUP214FGmut reconstituted mice developed leukemia. These oncogenic effects coincided with the ability of SQSTM1-NUP214 and SQSTM1-NUP214FGmut to upregulate the expression of Hoxa and Meis1 genes in hematopoietic progenitors. Indeed, chromatin immunoprecipitation assays demonstrated that impaired SQSTM1-NUP214 interaction with Crm1 correlated with impaired binding of the fusion protein to Hoxa and Meis1 genes. These findings highlight the importance of Crm1 in mediating the leukemogenic properties of SQSTM1-NUP214, and suggest a conserved role of Crm1 in recruiting oncoproteins to their effector genes.
Collapse
Affiliation(s)
- Catherine P. Lavau
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Waitman K. Aumann
- Aflac Cancer & Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sei-Gyung K. Sze
- Maine Children’s Cancer Program, Scarborough, Maine, United States of America
| | - Veerain Gupta
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Katelyn Ripple
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sarah A. Port
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ralph H. Kehlenbach
- Department of Molecular Biology, Faculty of Medicine and the Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Daniel S. Wechsler
- Aflac Cancer & Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
40
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
41
|
Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol 2020; 10:273. [PMID: 32185137 PMCID: PMC7059203 DOI: 10.3389/fonc.2020.00273] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma is an aggressive hematological neoplasm whose classification is still based on immunophenotypic findings. Frontline treatment encompass high intensity combination chemotherapy with good overall survival; however, relapsing/refractory patients have very limited options. In the last years, the understanding of molecular physiopathology of this disease, lead to the identification of a subset of patients with peculiar genetic profile, namely “early T-cell precursors” lymphoblastic leukemia, characterized by dismal outcome and indication to frontline allogeneic bone marrow transplant. In general, the most common mutations occur in the NOTCH1/FBXW7 pathway (60% of adult patients), with a positive prognostic impact. Other pathogenic steps encompass transcriptional deregulation of oncogenes/oncosuppressors, cell cycle deregulation, kinase signaling (including IL7R-JAK-STAT pathway, PI3K/AKT/mTOR pathway, RAS/MAPK signaling pathway, ABL1 signaling pathway), epigenetic deregulation, ribosomal dysfunction, and altered expression of oncogenic miRNAs or long non-coding RNA. The insight in the genomic landscape of the disease paves the way to the use of novel targeted drugs that might improve the outcome, particularly in relapse/refractory patients. In this review, we analyse available literature on T-ALL pathogenesis, focusing on molecular aspects of clinical, prognostic, and therapeutic significance.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Jessica Rosa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Juri Alessandro Giannotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Luca Baldini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | | |
Collapse
|
42
|
Kim B, Kim E, Lee ST, Cheong JW, Lyu CJ, Min YH, Choi JR. Detection of recurrent, rare, and novel gene fusions in patients with acute leukemia using next-generation sequencing approaches. Hematol Oncol 2020; 38:82-88. [PMID: 31875988 DOI: 10.1002/hon.2709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023]
Abstract
Identification of gene fusion is an essential part in the management of patients with acute leukemia, not only for diagnosis but also in predicting the treatment outcome and selecting appropriate treatment. Adopting next-generation sequencing (NGS) technology for identification of gene fusion in patients with acute leukemia can be a good alternative to conventional tests. In the present study, the NGS RNA fusion gene panel test was applied to diagnostic samples of patients with acute leukemia to identify fusion genes more efficiently. Among 134 patients with acute leukemia, 53 gene fusions were detected in 52 patients. In addition to the recurrent gene fusions specified in the WHO diagnostic criteria, 11 rare or novel gene fusions were identified. Of those, two were gene fusions associated with Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), two were novel gene fusions, three were gene fusions with novel partner genes, and six were rare gene fusions from previous reports. We confirmed the clinical utility of the NGS test in identifying clinically significant gene fusions such as gene fusions involving KMT2A that has a large number of partners. Notably, Ph-like ALL-associated gene fusions could be easily identified despite the wide variety of genes involved. The results from the present study may contribute toward a better understanding of the genomic landscape of acute leukemia as well as patient management.
Collapse
Affiliation(s)
- Borahm Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Esl Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Chuhl Joo Lyu
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Yin M, Baslan T, Walker RL, Zhu YJ, Freeland A, Matsukawa T, Sridharan S, Nussenzweig A, Pruitt SC, Lowe SW, Meltzer PS, Aplan PD. A unique mutator phenotype reveals complementary oncogenic lesions leading to acute leukemia. JCI Insight 2019; 4:131434. [PMID: 31622281 PMCID: PMC6962024 DOI: 10.1172/jci.insight.131434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022] Open
Abstract
Mice homozygous for a hypomorphic allele of DNA replication factor minichromosome maintenance protein 2 (designated Mcm2cre/cre) develop precursor T cell lymphoblastic leukemia/lymphoma (pre-T LBL) with 4-32 small interstitial deletions per tumor. Mice that express a NUP98-HOXD13 (NHD13) transgene develop multiple types of leukemia, including myeloid and T and B lymphocyte. All Mcm2cre/cre NHD13+ mice develop pre-T LBL, and 26% develop an unrelated, concurrent B cell precursor acute lymphoblastic leukemia (BCP-ALL). Copy number alteration (CNA) analysis demonstrated that pre-T LBLs were characterized by homozygous deletions of Pten and Tcf3 and partial deletions of Notch1 leading to Notch1 activation. In contrast, BCP-ALLs were characterized by recurrent deletions involving Pax5 and Ptpn1 and copy number gain of Abl1 and Nup214 resulting in a Nup214-Abl1 fusion. We present a model in which Mcm2 deficiency leads to replicative stress, DNA double strand breaks (DSBs), and resultant CNAs due to errors in DNA DSB repair. CNAs that involve critical oncogenic pathways are then selected in vivo as malignant lymphoblasts because of a fitness advantage. Some CNAs, such as those involving Abl1 and Notch1, represent attractive targets for therapy.
Collapse
Affiliation(s)
- Mianmian Yin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert L Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yuelin J Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sriram Sridharan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Steven C Pruitt
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
44
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
45
|
Huang T, Fu Y, Wang S, Xu M, Yin X, Zhou M, Wang X, Chen C. miR-96 acts as a tumor suppressor via targeting the BCR-ABL1 oncogene in chronic myeloid leukemia blastic transformation. Biomed Pharmacother 2019; 119:109413. [PMID: 31518872 DOI: 10.1016/j.biopha.2019.109413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNA-mediated posttranscriptional regulation is an important epigenetic regulatory mechanism of gene expression, and its dysregulation is involved in the development and progression of a variety of malignancies, including chronic myeloid leukemia (CML). The BCR-ABL1 fusion gene is not only the initiating factor of CML, but it is also an important driving factor for blastic transformation. Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 tyrosine kinase activity, represented by imatinib, are currently the first-line treatment for CML. However, due to primary resistance or secondary resistance caused by mutations in the BCR-ABL1 kinase domain, TKIs cannot completely prevent the progression of CML; thus, the study of BCR-ABL1 gene expression regulation is of great significance. In this study, bioinformatics analysis and our results showed that miR-96 could directly bind to the 3'UTR region of BCR-ABL1 to regulate fusion protein expression, thereby regulating its downstream signaling pathway activity. We also found that miR-96 was downregulated during the progression from the chronic phase (CML-CP) to the blast crisis (CML-BC). Downregulation of miR-96 could promote the proliferation and participate in the cell differentiation of CML-BC cells. Additionally, we found that the novel histone deacetylase drug chidamide and the DNA methyltransferase inhibitor decitabine could restore the low expression of miR-96 in CML cells, and there were two abnormal hypermethylated sites in the promoter region of miR-96 in CML, suggesting that its low expression might be at least partially regulated by epigenetic mechanisms. In addition, re-expression of miR-96 could increase the sensitivity of CML-BC cells to imatinib. Thus, miR-96 functions as a tumor suppressor, and re-expression of this microRNA might have therapeutic benefits in CML blastic transformation.
Collapse
Affiliation(s)
- Tao Huang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; School of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yue Fu
- School of Medicine, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Siqi Wang
- Liaocheng People's Hospital, Liaocheng, Shandong, PR China
| | - Man Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaolin Yin
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaoming Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
46
|
Thakral D, Kaur G, Gupta R, Benard-Slagter A, Savola S, Kumar I, Anand R, Rani L, Verma P, Joshi S, Kumar L, Sharma A, Bakhshi S, Seth R, Singh V. Rapid Identification of Key Copy Number Alterations in B- and T-Cell Acute Lymphoblastic Leukemia by Digital Multiplex Ligation-Dependent Probe Amplification. Front Oncol 2019; 9:871. [PMID: 31572674 PMCID: PMC6753626 DOI: 10.3389/fonc.2019.00871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Recurrent clonal genetic alterations are the hallmark of Acute Lymphoblastic Leukemia (ALL) and govern the risk stratification, response to treatment and clinical outcome. In this retrospective study conducted on ALL patient samples, the purpose was to estimate the copy number alterations (CNAs) in ALL by digitalMLPA (dMLPA), validation of the dMLPA data by conventional MLPA and RT-PCR, and correlation of CNAs with Minimal Residual Disease (MRD) status. The ALL patient samples (n = 151; B-ALL, n = 124 cases and T-ALL, n = 27 cases) were assessed for CNAs by dMLPA for detection of sub-microscopic CNAs and ploidy status. This assay allowed detection of ploidy changes and CNAs by multiplexing of karyotyping probes and probes covering 54 key gene targets implicated in ALL. Using the dMLPA assay, CNAs were detected in ~89% (n = 131) of the cases with 66% of the cases harboring ≥3 CNAs. Deletions in CDKN2A/B, IKZF1, and PAX5 genes were detectable in a quarter of these cases. Heterozygous and homozygous gene deletions, and duplications were observed in genes involved in cell cycle control, tumor suppression, lineage differentiation, lymphoid signaling, and transcriptional regulators with implications in treatment response and survival outcome. Distinct CNAs profiles were evident in B-ALL and T-ALL cases. Additionally, the dMLPA assay could reliably identify ploidy status and copy number-based gene fusions (SIL-TAL1, NUP214-ABL, EBF1-PDGFRB). Cases of B-ALL with no detectable recurrent genetic abnormalities could potentially be risk stratified based on the CNA profile. In addition to the commonly used gene deletions for risk assessment (IKZF1, EBF1, CDKN2A/B), we identified a broader spectrum of gene alterations (gains of- RUNX1, LEF1, NR3C2, PAR1, PHF6; deletions of- NF1, SUZ12, MTAP) that significantly correlated with the status of MRD clearance. The CNAs detected by dMLPA were validated by conventional MLPA and showed high concordance (r = 0.99). Our results demonstrated dMLPA to be a robust and reliable alternative for rapid detection of key CNAs in newly diagnosed ALL patients. Integration of ploidy status and CNAs detected by dMLPA with cytogenetic and clinical risk factors holds great potential in further refinement of patient risk stratification and response to treatment in ALL.
Collapse
Affiliation(s)
- Deepshi Thakral
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | | | - Suvi Savola
- MRC Holland, Department of Tumour Diagnostics, Amsterdam, Netherlands
| | - Indresh Kumar
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Anand
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lata Rani
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Verma
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sangeeta Joshi
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Sharma
- Department of Medical Oncology, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Singh
- Laboratory Oncology Unit, Dr. BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
47
|
Kindermann B, Valkova C, Krämer A, Perner B, Engelmann C, Behrendt L, Kritsch D, Jungnickel B, Kehlenbach RH, Oswald F, Englert C, Kaether C. The nuclear pore proteins Nup88/214 and T-cell acute lymphatic leukemia-associated NUP214 fusion proteins regulate Notch signaling. J Biol Chem 2019; 294:11741-11750. [PMID: 31186352 DOI: 10.1074/jbc.ra118.006357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
The Notch receptor is a key mediator of developmental programs and cell-fate decisions. Imbalanced Notch signaling leads to developmental disorders and cancer. To fully characterize the Notch signaling pathway and exploit it in novel therapeutic interventions, a comprehensive view on the regulation and requirements of Notch signaling is needed. Notch is regulated at different levels, ranging from ligand binding, stability to endocytosis. Using an array of different techniques, including reporter gene assays, immunocytochemistry, and ChIP-qPCR we show here, to the best of our knowledge for the first time, regulation of Notch signaling at the level of the nuclear pore. We found that the nuclear pore protein Nup214 (nucleoporin 214) and its interaction partner Nup88 negatively regulate Notch signaling in vitro and in vivo in zebrafish. In mammalian cells, loss of Nup88/214 inhibited nuclear export of recombination signal-binding protein for immunoglobulin κJ region (RBP-J), the DNA-binding component of the Notch pathway. This inhibition increased binding of RBP-J to its cognate promoter regions, resulting in increased downstream Notch signaling. Interestingly, we also found that NUP214 fusion proteins, causative for certain cases of T-cell acute lymphatic leukemia, potentially contribute to tumorigenesis via a Notch-dependent mechanism. In summary, the nuclear pore components Nup88/214 suppress Notch signaling in vitro, and in zebrafish, nuclear RBP-J levels are rate-limiting factors for Notch signaling in mammalian cells, and regulation of nucleocytoplasmic transport of RBP-J may contribute to fine-tuning Notch activity in cells.
Collapse
Affiliation(s)
- Bastian Kindermann
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Christina Valkova
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Birgit Perner
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Christian Engelmann
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Daniel Kritsch
- Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Berit Jungnickel
- Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Franz Oswald
- Universitätsklinikum Ulm, Zentrum für Innere Medizin, Abteilung für Innere Medizin I, 89081 Ulm, Germany
| | - Christoph Englert
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany.,Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| |
Collapse
|
48
|
Noronha EP, Marques LVC, Andrade FG, Thuler LCS, Terra-Granado E, Pombo-de-Oliveira MS. The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2019; 9:316. [PMID: 31338319 PMCID: PMC6503680 DOI: 10.3389/fonc.2019.00316] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous malignancy, which reflects distinctive stages of T-cell differentiation arrest. We have revisited a cohort of pediatric T-ALL, in order to test if immunophenotypes associated with molecular alterations would predict the patient's outcome. Genetic mutations, translocations and copy number alterations were identified through Sanger sequencing, RT-PCR, FISH and multiplex ligation-dependent probe amplification (MLPA). We defined 8 immunophenotypic T-ALL subtypes through multiparametric flow cytometry: early T-cell precursor (ETP, n = 27), immature (n = 38), early cortical (n = 15), cortical (n = 50), late cortical (n = 53), CD4/CD8 double negative mature (n = 31), double positive mature (n = 35) and simple positive mature (n = 31) T-ALL. Deletions (del) or amplifications (amp) in at least one gene were observed in 87% of cases. The most frequent gene alterations were CDKN2A/Bdel (71.4%), NOTCH1mut (47.6%) and FBXW7mut (17%). ETP-ALL had frequent FLT3mut (22.2%) and SUZ12del (16.7%) (p < 0.001), while CDKN2A/Bdel were rarely found in this subtype (p < 0.001). The early cortical T-ALL subtype had high frequencies of NOTCH1mut and IL7Rmut (71%, 28.6%, respectively), whereas, mature T-ALL with double positive CD4/CD8 had the highest frequencies of STIL-TAL1 (36.7%), LEF1del (27.3%) and CASP8AP2del (22.7%). The co-existence of two groups of T-ALL with NOTCH1mut/IL7Rmut, and with TLX3/SUZ12del/NF1del/IL7Rmut, were characterized with statistical significance (p < 0.05) but only STIL-TAL1 (pOS 47.5%) and NOTCH1WT/FBXW7WT (pOS 55.3%) are predictors of poor T-ALL outcomes. In conclusion, we have observed that 8 T-ALL subgroups are characterized by distinct molecular profiles. The mutations in NOTCH1/FBXW7 and STIL-TAL1 rearrangement had a prognostic impact, independent of immunophenotype.
Collapse
Affiliation(s)
- Elda Pereira Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luísa Vieira Codeço Marques
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
49
|
Aldoss I, Pullarkat V. Response to single agent dasatinib post allogeneic transplant in B-cell acute lymphoblastic leukemia with NUP214-ABL1. Leuk Lymphoma 2019; 60:2832-2834. [PMID: 31014138 DOI: 10.1080/10428194.2019.1605510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
50
|
Peterson JF, Pitel BA, Smoley SA, Smadbeck JB, Johnson SH, Vasmatzis G, Koon SJ, Webley MR, McGrath M, Bayerl MG, Baughn LB, Rowsey RA, Ketterling RP, Greipp PT, Hoppman NL. Detection of a cryptic NUP214/ABL1 gene fusion by mate-pair sequencing (MPseq) in a newly diagnosed case of pediatric T-lymphoblastic leukemia. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003533. [PMID: 30936193 PMCID: PMC6549564 DOI: 10.1101/mcs.a003533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm involving the bone marrow and blood that accounts for ∼15% of childhood and 25% of adult ALL. Whereas multiple, recurrent genetic abnormalities have been described in T-ALL, their clinical significance is unclear or controversial. Importantly, ABL1 rearrangements, most commonly described in BCR/ABL1-positive B-ALL and BCR-ABL1-like B-ALL, have been observed in T-ALL and may respond to tyrosine kinase inhibitor (TKI) therapy. We describe a newly diagnosed case of pediatric T-ALL with a fluorescence in situ hybridization abnormality suggesting a partial ABL1 deletion by a BCR/ABL1 dual-color dual-fusion probe but that demonstrated a normal result using an ABL1 break-apart probe. Mate-pair sequencing (MPseq), a next-generation sequencing (NGS)-based technology utilized to detect copy number and structural abnormalities with high resolution and precision throughout the genome, was performed and revealed a NUP214/ABL1 gene fusion that has been demonstrated to be sensitive to TKI therapy. This case demonstrates the power of MPseq to resolve chromosomal abnormalities unappreciable by traditional cytogenetic methodologies and highlights the clinical value of this novel NGS-based technology.
Collapse
Affiliation(s)
- Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Beth A Pitel
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Stephanie A Smoley
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sarah H Johnson
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Sarah J Koon
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Matthew R Webley
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Mary McGrath
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Children's Hospital, Hershey, Pennsylvania 17033, USA
| | - Michael G Bayerl
- Department of Pathology and Laboratory Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Ross A Rowsey
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology
| |
Collapse
|