1
|
Bartholomay KL, Jordan TL, Foland-Ross LC, Kendall N, Lightbody AA, Reiss AL. Alterations in cortical and subcortical neuroanatomy and associations with behavior in females with fragile X syndrome. Dev Med Child Neurol 2025; 67:519-528. [PMID: 39279261 DOI: 10.1111/dmcn.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/18/2024]
Abstract
AIM To address substantial gaps in the literature on neuroanatomical variations in females with fragile X syndrome (FXS). METHOD Surface-based modeling techniques were applied to the magnetic resonance imaging of 45 females with FXS (mean age = 10 years 9 months, range 6 years-16 years 4 months, SD = 2 years 9 months) and 33 age-matched and developmentally matched females without FXS to elucidate differences in cortical gray matter volume, surface area, and thickness. Gray matter volumes in subcortical regions were examined to ascertain differences in subcortical volume. RESULTS In females with FXS, cortical volume was greater bilaterally in the occipital pole and smaller in the right postcentral gyrus. Seven regions demonstrated lower surface area in participants with FXS, while cortical thickness was significantly greater over the posterior and medial surfaces in the group with FXS. Subcortical region of interest analyses demonstrated greater volume in the caudate nucleus, globus pallidus, and nucleus accumbens in the group with FXS. Global gray matter volume, pial thickness, and surface area were associated with behavioral outcomes in the group with FXS but not in the comparison group. INTERPRETATION Females with FXS demonstrated unique cortical and subcortical gray matter anatomy relative to a matched comparison group. These findings may be relevant to the pathogenesis of the FXS behavioral phenotype and provide insights into behavioral interventions targeted to this population.
Collapse
Affiliation(s)
- Kristi L Bartholomay
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Tracy L Jordan
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara C Foland-Ross
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas Kendall
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy A Lightbody
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025:10.1038/s41380-025-02943-z. [PMID: 40033044 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
3
|
Zhang R, Yang M, Schreiber J, O'Day DR, Turner JMA, Shendure J, Noble WS, Disteche CM, Deng X. Cross-species imputation and comparison of single-cell transcriptomic profiles. Genome Biol 2025; 26:40. [PMID: 40012008 PMCID: PMC11863430 DOI: 10.1186/s13059-025-03493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Cross-species comparison and prediction of gene expression profiles are important to understand regulatory changes during evolution and to transfer knowledge learned from model organisms to humans. Single-cell RNA-seq (scRNA-seq) profiles enable us to capture gene expression profiles with respect to variations among individual cells; however, cross-species comparison of scRNA-seq profiles is challenging because of data sparsity, batch effects, and the lack of one-to-one cell matching across species. Moreover, single-cell profiles are challenging to obtain in certain biological contexts, limiting the scope of hypothesis generation. Here we developed Icebear, a neural network framework that decomposes single-cell measurements into factors representing cell identity, species, and batch factors. Icebear enables accurate prediction of single-cell gene expression profiles across species, thereby providing high-resolution cell type and disease profiles in under-characterized contexts. Icebear also facilitates direct cross-species comparison of single-cell expression profiles for conserved genes that are located on the X chromosome in eutherian mammals but on autosomes in chicken. This comparison, for the first time, revealed evolutionary and diverse adaptations of X-chromosome upregulation in mammals.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, USA
- eScience Institute, University of Washington, Seattle, USA
| | - Mu Yang
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, USA
| | | | - Diana R O'Day
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
- Howard Hughes Medical Institute, Chevy Chase, USA
- Allen Center for Cell Lineage Tracing, Seattle, USA
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA.
- Department of Medicine, University of Washington, Seattle, USA.
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA.
| |
Collapse
|
4
|
Reche-López D, Romero-González A, Álvarez-Córdoba M, Suárez-Carrillo A, Cilleros-Holgado P, Piñero-Pérez R, Gómez-Fernández D, Romero-Domínguez JM, López-Cabrera A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Biotin Induces Inactive Chromosome X Reactivation and Corrects Physiopathological Alterations in Beta-Propeller-Protein-Associated Neurodegeneration. Int J Mol Sci 2025; 26:1315. [PMID: 39941083 PMCID: PMC11818482 DOI: 10.3390/ijms26031315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) involves a group of rare neurogenetic disorders often linked with iron overload in the basal nuclei of the brain presenting with spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration. Among NBIA subtypes, beta-propeller-protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45 (WD repeat domain 45). Previously, we demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism, and cell bioenergetics. In addition, antioxidant supplementation partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected. In this work, we explored the possibility of expressing the normal WDR45 allele present in the inactive chromosome X (Xi) of BPAN cells through treatment with epigenetic modulators. The aim of this study was to demonstrate whether biotin, an epigenetic nutrient, was able to restore the expression levels of WDR45 by a mechanism involving Xi reactivation and, consequently, correct BPAN defects. Our study demonstrated that biotin supplementation increases histone biotinylation and allows for the transcription of the WDR45 allele in Xi. Consequently, all physiopathological alterations in BPAN cells were notably corrected. The reactivation of Xi by epigenetic modulators can be a promising approach for the treatment of BPAN and other X-linked diseases.
Collapse
Affiliation(s)
- Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
5
|
Chen J, Chen X. Human Single-Cell RNA-Sequencing Data Supports the Hypothesis of X Chromosome Insensitivity but Is Ineffective in Testing the Dosage Compensation Model. Mol Biol Evol 2025; 42:msaf004. [PMID: 39932018 PMCID: PMC11811734 DOI: 10.1093/molbev/msaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025] Open
Abstract
A controversy in evolutionary genetics is whether active dosage compensation is necessary to resolve the gene dosage imbalance between the X chromosome and autosomes. ScRNA-seq data could provide insight into this issue. However, it's crucial to carefully evaluate whether inherent characteristics of scRNA-seq, such as the sparsity of detected genes, might bias the X:AA expression ratio in mammals. This study evaluated two common strategies for selecting genes in the calculation of X:AA, namely, filter-by-expression and filter-by-fraction, with simulated scRNA-seq and bulk RNA-seq datasets. We found that both strategies produce an inflated X:AA, thus artifactually supporting dosage compensation. Analyzing empirical human Smart-seq2 data, results from the filter-by-expression strategy suggested that X-linked genes were more highly expressed than autosomal genes, a pattern that is neither predicted by dosage compensation nor explained by genes escaping X chromosome inactivation. However, the results of the filter-by-fraction strategy are consistent with the simulation. Furthermore, despite biasing for mean expression levels, we found that scRNA-seq data could be used to detect X-to-autosome expression noise differences as small as 10%, which enabled investigation into the distribution of genes that are more likely insensitive to gene dosage changes. Analysis of the empirical Smart-seq2 data revealed a 10% to 15% increase in expression noise for X chromosomes compared with autosomes and a significant depletion of dosage-sensitive genes on X chromosomes. Overall, these results highlight the need to be cautious when interpreting scRNA-seq data, particularly when comparing the expression of different genes, and provide additional evidence for the hypothesis of X chromosome insensitivity.
Collapse
Affiliation(s)
- Jiabi Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshu Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Abdulai-Saiku S, Gupta S, Wang D, Marino F, Moreno AJ, Huang Y, Srivastava D, Panning B, Dubal DB. The maternal X chromosome affects cognition and brain ageing in female mice. Nature 2025; 638:152-159. [PMID: 39843739 PMCID: PMC11798838 DOI: 10.1038/s41586-024-08457-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated1-4. This renders either the maternal X (Xm) chromosome or the paternal X (Xp) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active5-7. Parent-of-X origin can modify epigenetics through DNA methylation8,9 and possibly gene expression; thus, mosaicism could buffer dysregulated processes in ageing and disease. However, whether X skew or its mosaicism alters functions in female individuals is largely unknown. Here we tested whether skew towards an active Xm chromosome influences the brain and body-and then delineated unique features of Xm neurons and Xp neurons. An active Xm chromosome impaired cognition in female mice throughout the lifespan and led to worsened cognition with age. Cognitive deficits were accompanied by Xm-mediated acceleration of biological or epigenetic ageing of the hippocampus, a key centre for learning and memory, in female mice. Several genes were imprinted on the Xm chromosome of hippocampal neurons, suggesting silenced cognitive loci. CRISPR-mediated activation of Xm-imprinted genes improved cognition in ageing female mice. Thus, the Xm chromosome impaired cognition, accelerated brain ageing and silenced genes that contribute to cognition in ageing. Understanding how Xm impairs brain function could lead to an improved understanding of heterogeneity in cognitive health in female individuals and to X-chromosome-derived pathways that protect against cognitive deficits and brain ageing.
Collapse
Affiliation(s)
- Samira Abdulai-Saiku
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Shweta Gupta
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Jiang Z, Sullivan PF, Li T, Zhao B, Wang X, Luo T, Huang S, Guan PY, Chen J, Yang Y, Stein JL, Li Y, Liu D, Sun L, Zhu H. The X chromosome's influences on the human brain. SCIENCE ADVANCES 2025; 11:eadq5360. [PMID: 39854466 PMCID: PMC11759047 DOI: 10.1126/sciadv.adq5360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank. We unveiled potential autosome-X chromosome interactions while proposing an atlas outlining dosage compensation for brain imaging traits. Through extensive association studies, we identified 72 genome-wide significant trait-locus pairs (including 29 new associations) that share genetic architectures with brain-related disorders, notably schizophrenia. Furthermore, we found unique sex-specific associations and assessed variations in genetic effects between sexes. Our research offers critical insights into the X chromosome's role in the human brain, underscoring its contribution to the differences observed in brain structure and functionality between sexes.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuai Huang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Y. Guan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dajiang Liu
- Department of Public Health Sciences, Penn State University, Hershey, PA 17033, USA
- Department of Biochemistry and Molecular Biology, Penn State University, Hershey, PA 17033, USA
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5G 1Z5, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Canton APM, Macedo DB, Abreu AP, Latronico AC. Genetics and Epigenetics of Human Pubertal Timing: The Contribution of Genes Associated With Central Precocious Puberty. J Endocr Soc 2025; 9:bvae228. [PMID: 39839367 PMCID: PMC11746960 DOI: 10.1210/jendso/bvae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 01/23/2025] Open
Abstract
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH. In the past decade, the identification of genetic causes of CPP has largely expanded, revealing hypothalamic regulatory factors of pubertal timing. Among them, 3 genes associated with CPP are linked to mechanisms involving DNA methylation, reinforcing the strong role of epigenetics underlying this disorder. Loss-of-function mutations in Makorin Ring-Finger Protein 3 (MKRN3) and Delta-Like Non-Canonical Notch Ligand 1 (DLK1), 2 autosomal maternally imprinted genes, have been described as relevant monogenic causes of CPP with the phenotype exclusively associated with paternal transmission. MKRN3 has proven to be a key component of the hypothalamic inhibitory input on GnRH neurons through different mechanisms. Additionally, rare heterozygous variants in the Methyl-CpG-Binding Protein 2 (MECP2), an X-linked gene that is a key factor of DNA methylation machinery, were identified in girls with sporadic CPP with or without neurodevelopmental disorders. In this mini-review, we focus on how the identification of genetic causes of CPP has revealed epigenetic regulators of human pubertal timing, summarizing the latest knowledge on the associations of puberty with MKRN3, DLK1, and MECP2.
Collapse
Affiliation(s)
- Ana Pinheiro Machado Canton
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
| | - Delanie Bulcao Macedo
- Integrated Medical Care Center, Center for Health Sciences, University of Fortaleza (Unifor), Fortaleza 60811-905, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil
- Discipline of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Sao Paulo, 05403-000, Sao Paulo, Brazil
| |
Collapse
|
9
|
Banda N, Soe NC, Yabe J, Doya R, Yohannes YB, Ikenaka Y, Ishizuka M, Nakayama SMM. Sex dependent intergenerational effects of lead in mouse model. Sci Rep 2024; 14:30233. [PMID: 39633019 PMCID: PMC11618497 DOI: 10.1038/s41598-024-81839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Lead (Pb) exposure negatively impacts fertility in both males and females, pregnancy outcomes, and child brain development. We investigated the reproductive and neurological effects of Pb exposure on male and female mice via Pb-contaminated soil for 4 weeks. Breeding was conducted after completion of exposure, in four groups; group 1 consisted of exposed dams and unexposed sires, group 2 consisted of exposed sires and unexposed dams, group 3 consisted of exposed sires and exposed dams and group 4 was the control. Generally, Pb exposure reduced observed conception rates, with a cumulative decrement observed when both males and females are exposed. Gene expression of the testes revealed oxidative stress as the cause of reduced conception rates. Neurological tests: Morris water maze and rotarod were conducted on F1 generation offspring. Maternally and paternally exposed F1 mice performed poorly in the Morris water maze when compared to the control. The severity of the neurological effects was also parent-dependent and sex-dependent. Paternal Pb exposure effects were more pronounced in female offspring. A comparison of gene expression changes of the hippocampus and prefrontal cortex showed paternal Pb-exposure resulted in more prefrontal cortex changes than in the hippocampus, a trend also recorded in the exposed sires. The pronounced effects in female offspring of paternal Pb exposure may suggest that Pb neurological effects may be X-chromosome-linked.
Collapse
Affiliation(s)
- Nelly Banda
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Nyein Chan Soe
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - John Yabe
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
- School of Veterinary Medicine, University of Namibia, P/B. 13301, Windhoek, Namibia
| | - Rio Doya
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yared Beyene Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, 2531, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.
- School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia.
| |
Collapse
|
10
|
Naik HC, Chandel D, Majumdar S, Arava M, Baro R, Bv H, Hari K, Ayyamperumal P, Manhas A, Jolly MK, Gayen S. Lineage-specific dynamics of loss of X upregulation during inactive-X reactivation. Stem Cell Reports 2024; 19:1564-1582. [PMID: 39486405 PMCID: PMC11589478 DOI: 10.1016/j.stemcr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
In mammals, X chromosome dosage is balanced between sexes through the silencing of one X chromosome in females. Recent single-cell RNA sequencing analysis demonstrated that the inactivation of the X chromosome is accompanied by the upregulation of the active X chromosome (Xa) during mouse embryogenesis. Here, we have investigated if the reactivation of inactive-X (Xi) leads to the loss of Xa upregulation in different cellular or developmental contexts. We find that while Xi reactivation and loss of Xa upregulation are tightly coupled in mouse embryonic epiblast and induced pluripotent stem cells, that is not the case in germ cells. Moreover, we demonstrate that partial reactivation of Xi in mouse extra-embryonic endoderm stem cells and human B cells does not result in the loss of Xa upregulation. Finally, we have established a mathematical model for the transcriptional coordination of two X chromosomes. Together, we conclude that the reactivation of Xi is not always synchronized with the loss of Xa upregulation.
Collapse
Affiliation(s)
- Hemant Chandru Naik
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepshikha Chandel
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sudeshna Majumdar
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Maniteja Arava
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Runumi Baro
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Harshavardhan Bv
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India; Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; IISc Mathematics Initiative (IMI), Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Parichitran Ayyamperumal
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Avinchal Manhas
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Srimonta Gayen
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
Belloy ME, Le Guen Y, Stewart I, Williams K, Herz J, Sherva R, Zhang R, Merritt V, Panizzon MS, Hauger RL, Gaziano JM, Logue M, Napolioni V, Greicius MD. Role of the X Chromosome in Alzheimer Disease Genetics. JAMA Neurol 2024; 81:1032-1042. [PMID: 39250132 PMCID: PMC11385320 DOI: 10.1001/jamaneurol.2024.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Importance The X chromosome has remained enigmatic in Alzheimer disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives To perform the first large-scale X chromosome-wide association study (XWAS) of AD. Design, Setting, and Participants This was a meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium, the Alzheimer's Disease Sequencing Project, the UK Biobank, the Finnish health registry, and the US Million Veterans Program. Risk of AD was evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Genetic data available from high-density single-nucleotide variant microarrays and whole-genome sequencing and summary statistics for multitissue expression and protein quantitative trait loci available from published studies were included, enabling follow-up genetic colocalization analyses. A total of 1 629 863 eligible participants were selected from referred and volunteer samples, 477 596 of whom were excluded for analysis exclusion criteria. The number of participants who declined to participate in original studies was not available. Main Outcome and Measures Risk of AD, reported as odds ratios (ORs) with 95% CIs. Associations were considered at X chromosome-wide (P < 1 × 10-5) and genome-wide (P < 5 × 10-8) significance. Primary analyses are nonstratified, while secondary analyses evaluate sex-stratified effects. Results Analyses included 1 152 284 participants of non-Hispanic White, European ancestry (664 403 [57.7%] female and 487 881 [42.3%] male), including 138 558 individuals with AD. Six independent genetic loci passed X chromosome-wide significance, with 4 showing support for links between the genetic signal for AD and expression of nearby genes in brain and nonbrain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR, 1.03; 95% CI, 1.02-1.04) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Of these 6 loci, 4 displayed evidence for escape from X chromosome inactivation with regard to AD risk. Conclusion and Relevance This large-scale XWAS of AD identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid β accumulation. Overall, this study advances our knowledge of AD genetics and may provide novel biological drug targets. The results further provide initial insights into elucidating the role of the X chromosome in sex-based differences in AD.
Collapse
Affiliation(s)
- Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ilaria Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kennedy Williams
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Joachim Herz
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics University of Texas Southwestern Medical Center at Dallas, Dallas
| | - Richard Sherva
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Rui Zhang
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
| | - Victoria Merritt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - J. Michael Gaziano
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, Massachusetts
- Division of Aging, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Logue
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
12
|
Bartholomay KL, Lightbody AA, Ma Q, Jo B, Jordan TL, Reiss AL. Cognitive and Social-Emotional Development in Girls With Fragile X Syndrome. Pediatrics 2024; 154:e2023065145. [PMID: 39262346 PMCID: PMC11422195 DOI: 10.1542/peds.2023-065145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVES To evaluate the developmental trajectory of key cognitive, social, and emotional features in girls with fragile X syndrome (FXS). METHODS This longitudinal, parallel cohort study collected data between January 2018 and December 2022. Participants were evaluated 3 times with ∼12-18 months between visits. Participants included 65 girls with FXS, 6 to 16 years, and 52 age- and developmentally-matched girls without FXS. Participants' scores from direct assessment and caregiver report evaluated 3 cognitive domains (verbal abilities, nonverbal abilities, executive function) and 4 social-emotional domains (depression, general anxiety, social behavior, and social anxiety). RESULTS Participants included 117 girls (mean [M] [SD] age at study entry: FXS M = 10.59 [3.00]; comparison M = 10.45 [2.40])). Omnibus tests showed 4 domains with significant group differences: Verbal (P < .0001, eg, Differential Abilities Scale-II(DAS-II), Picture Vocabulary (-6.25 [1.87])), nonverbal (P < .0001, eg, Kaufman Test of Educational Achievement, Third Edition, Brief Form, Math (-8.56 [2.90])), executive function (P < .0001, eg, NIH Toolbox List Sorting (-6.26 [1.48])), and social anxiety (P < .03, eg, Anxiety, Depression, and Mood Scale (ADAMS) Social Avoidance (1.50 [0.65])). Three domains had significant group by age interaction: Verbal (P < .04, eg, DAS-II, Word Definitions (-1.33 [0.55])), social behavior (P < .01, eg, Social Responsiveness Scale-2 Social Communication (1.57 [0.51])), and social anxiety (P < .01, eg, ADAMS Social Avoidance (0.46 [0.19])). CONCLUSIONS These findings support the development of early, disorder specific interventions for girls with FXS targeting verbal and nonverbal skills, executive function, social behavior, and social anxiety.
Collapse
Affiliation(s)
- Kristi L. Bartholomay
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Amy A. Lightbody
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Qianheng Ma
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Tracy L. Jordan
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Departments of Psychiatry and Behavioral Sciences
- Radiology
- Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
13
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
14
|
Park S, Kim J, Lee J, Jung S, Pack SP, Lee JH, Yoon K, Woo SJ, Han JY, Seo M. RNA sequencing analysis of sexual dimorphism in Japanese quail. Front Vet Sci 2024; 11:1441021. [PMID: 39104546 PMCID: PMC11299063 DOI: 10.3389/fvets.2024.1441021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Japanese quail are of significant economic value, providing protein nutrition to humans through their reproductive activity; however, sexual dimorphism in this species remains relatively unexplored compared with other model species. Method A total of 114 RNA sequencing datasets (18 and 96 samples for quail and chicken, respectively) were collected from existing studies to gain a comprehensive understanding of sexual dimorphism in quail. Cross-species integrated analyses were performed with transcriptome data from evolutionarily close chickens to identify sex-biased genes in the embryonic, adult brain, and gonadal tissues. Results Our findings indicate that the expression patterns of genes involved in sex-determination mechanisms during embryonic development, as well as those of most sex-biased genes in the adult brain and gonads, are identical between quails and chickens. Similar to most birds with a ZW sex determination system, quails lacked global dosage compensation for the Z chromosome, resulting in directional outcomes that supported the hypothesis that sex is determined by the individual dosage of Z-chromosomal genes, including long non-coding RNAs located in the male hypermethylated region. Furthermore, genes, such as WNT4 and VIP, reversed their sex-biased patterns at different points in embryonic development and/or in different adult tissues, suggesting a potential hurdle in breeding and transgenic experiments involving avian sex-related traits. Discussion The findings of this study are expected to enhance our understanding of sexual dimorphism in birds and subsequently facilitate insights into the field of breeding and transgenesis of sex-related traits that economically benefit humans.
Collapse
Affiliation(s)
- Sinwoo Park
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jaeryeong Kim
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jinbaek Lee
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Sungyoon Jung
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-si, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong-si, Republic of Korea
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institue of Health, Cheongju-si, Republic of Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| |
Collapse
|
15
|
Yang F, Wang M. Effect of the OPHN1 novel variant c.1025+1 G>A on RNA splicing: insights from a minigene assay. BMC Med Genomics 2024; 17:175. [PMID: 38956616 PMCID: PMC11221095 DOI: 10.1186/s12920-024-01952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
This research analyzes the clinical data, whole-exome sequencing results, and in vitro minigene functional experiments of a child with developmental delay and intellectual disability. The male patient, aged 4, began experiencing epileptic seizures at 3 months post-birth and has shown developmental delay. Rehabilitation training was administered between the ages of one and two. There were no other significant family medical histories. Through comprehensive family exome genetic testing, a hemizygous variant in the 11th exon of the OPHN1 gene was identified in the affected child: c.1025 + 1G > A. Family segregation analysis confirmed the presence of this variant in the patient's mother, which had not been previously reported. According to the ACMG guidelines, this variant was classified as a likely pathogenic variant. In response to this variant, an in vitro minigene functional experiment was designed and conducted, confirming that the mutation affects the normal splicing of the gene's mRNA, resulting in a 56 bp retention on the left side of Intron 11. It was confirmed that OPHN1: c.1025 + 1G > A is the pathogenic cause of X-linked intellectual disabilities in the child, with clinical phenotypes including developmental delay and seizures.
Collapse
Affiliation(s)
- Fei Yang
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan, 415000, China
| | - Minghui Wang
- Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan, 415000, China.
| |
Collapse
|
16
|
Neale N, Lona-Durazo F, Ryten M, Gagliano Taliun SA. Leveraging sex-genetic interactions to understand brain disorders: recent advances and current gaps. Brain Commun 2024; 6:fcae192. [PMID: 38894947 PMCID: PMC11184352 DOI: 10.1093/braincomms/fcae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
It is established that there are sex differences in terms of prevalence, age of onset, clinical manifestations, and response to treatment for a variety of brain disorders, including neurodevelopmental, psychiatric, and neurodegenerative disorders. Cohorts of increasing sample sizes with diverse data types collected, including genetic, transcriptomic and/or phenotypic data, are providing the building blocks to permit analytical designs to test for sex-biased genetic variant-trait associations, and for sex-biased transcriptional regulation. Such molecular assessments can contribute to our understanding of the manifested phenotypic differences between the sexes for brain disorders, offering the future possibility of delivering personalized therapy for females and males. With the intention of raising the profile of this field as a research priority, this review aims to shed light on the importance of investigating sex-genetic interactions for brain disorders, focusing on two areas: (i) variant-trait associations and (ii) transcriptomics (i.e. gene expression, transcript usage and regulation). We specifically discuss recent advances in the field, current gaps and provide considerations for future studies.
Collapse
Affiliation(s)
- Nikita Neale
- Faculty of Medicine, Université de Montréal, Québec, H3C 3J7 Canada
| | - Frida Lona-Durazo
- Faculty of Medicine, Université de Montréal, Québec, H3C 3J7 Canada
- Research Centre, Montreal Heart Institute, Québec, H1T 1C8 Canada
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20815 MD, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, Bloomsbury, WC1N 1EH London, UK
| | - Sarah A Gagliano Taliun
- Research Centre, Montreal Heart Institute, Québec, H1T 1C8 Canada
- Department of Medicine & Department of Neurosciences, Faculty of Medicine, Université de Montréal, Québec, H3C 3J7 Canada
| |
Collapse
|
17
|
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J Dev Biol 2024; 12:14. [PMID: 38804434 PMCID: PMC11130827 DOI: 10.3390/jdb12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.
Collapse
Affiliation(s)
- Raiane Cristina Fratini de Castro
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Tiago William Buranello
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| |
Collapse
|
18
|
Szelenyi ER, Fisenne D, Knox JE, Harris JA, Gornet JA, Palaniswamy R, Kim Y, Venkataraju KU, Osten P. Distributed X chromosome inactivation in brain circuitry is associated with X-linked disease penetrance of behavior. Cell Rep 2024; 43:114068. [PMID: 38614085 PMCID: PMC11107803 DOI: 10.1016/j.celrep.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.
Collapse
Affiliation(s)
- Eric R Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Neurobiology and Behavior, Stony Brook, NY 11794, USA.
| | - Danielle Fisenne
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Hofstra University, Hempstead, NY 11549, USA; Certerra, Inc., Farmingdale, NY 11735, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James A Gornet
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Columbia University, New York, NY 10027, USA
| | | | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; College of Medicine, Penn State University, Hershey, PA 17033, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
19
|
Wei C, Kesner B, Yin H, Lee JT. Imprinted X chromosome inactivation at the gamete-to-embryo transition. Mol Cell 2024; 84:1442-1459.e7. [PMID: 38458200 PMCID: PMC11031340 DOI: 10.1016/j.molcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Wen X, Luo Z, Zhao W, Calandrelli R, Nguyen TC, Wan X, Charles Richard JL, Zhong S. Single-cell multiplex chromatin and RNA interactions in ageing human brain. Nature 2024; 628:648-656. [PMID: 38538789 PMCID: PMC11023937 DOI: 10.1038/s41586-024-07239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.
Collapse
Affiliation(s)
- Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Riccardo Calandrelli
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Xueyi Wan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Lafta MS, Mwinyi J, Affatato O, Rukh G, Dang J, Andersson G, Schiöth HB. Exploring sex differences: insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front Neurosci 2024; 18:1340108. [PMID: 38449735 PMCID: PMC10915038 DOI: 10.3389/fnins.2024.1340108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Increased knowledge about sex differences is important for development of individualized treatments against many diseases as well as understanding behavioral and pathological differences. This review summarizes sex chromosome effects on gene expression, epigenetics, and hormones in relation to the brain. We explore neuroanatomy, neurochemistry, cognition, and brain pathology aiming to explain the current state of the art. While some domains exhibit strong differences, others reveal subtle differences whose overall significance warrants clarification. We hope that the current review increases awareness and serves as a basis for the planning of future studies that consider both sexes equally regarding similarities and differences.
Collapse
Affiliation(s)
- Muataz S. Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Oreste Affatato
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Shirzadi S, Dadgostar M, Einalou Z, Erdoğan SB, Akin A. Sex based differences in functional connectivity during a working memory task: an fNIRS study. Front Psychol 2024; 15:1207202. [PMID: 38390414 PMCID: PMC10881810 DOI: 10.3389/fpsyg.2024.1207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Differences in corticocerebral structure and function between males and females and their effects on behavior and the prevalence of various neuropsychiatric disorders have been considered as a fundamental topic in various fields of neuroscience. Recent studies on working memory (WM) reported the impact of sex on brain connectivity patterns, which reflect the important role of functional connectivity in the sex topic. Working memory, one of the most important cognitive tasks performed by regions of the PFC, can provide evidence regarding the presence of a difference between males and females. The present study aimed to assess sex differences in brain functional connectivity during working memory-related tasks by using functional near-infrared spectroscopy (fNIRS). In this regard, nine males and nine females completed a dual n-back working memory task with two target inputs of color and location stimuli in three difficulty levels (n = 0, 1, 2). Functional connectivity matrices were extracted for each subject for each memory load level. Females made less errors than males while spending more time performing the task for all workload levels except in 0-back related to the color stimulus, where the reaction time of females was shorter than males. The results of functional connectivity reveal the inverse behavior of two hemispheres at different memory workload levels between males and females. In the left hemisphere, males exhibited stronger connectivity compared to the females, while stronger connectivity was observed in the females' right hemisphere. Furthermore, an inverse trend was detected in the channel pairs with significant connectivity in the right hemisphere of males (falling) and females (rising) by enhancing working memory load level. Considering both behavioral and functional results for two sexes demonstrated a better performance in females due to the more effective use of the brain. The results indicate that sex affects functional connectivity between different areas in both hemispheres of the brain during cognitive tasks of varying difficulty levels although the general impression is that spatial capabilities are considered as a performance of the brain's right hemisphere. These results reinforce the presence of a sex effect in the functional imaging studies of hemodynamic function and emphasize the importance of evaluating brain network connectivity for achieving a better scientific understanding of sex differences.
Collapse
Affiliation(s)
- Sima Shirzadi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Dadgostar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Zahra Einalou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Sinem Burcu Erdoğan
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ata Akin
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
23
|
Siqueiros-Sanchez M, Rai B, Chowdhury S, Reiss AL, Green T. Syndrome-Specific Neuroanatomical Phenotypes in Girls With Turner and Noonan Syndromes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:146-155. [PMID: 36084900 PMCID: PMC10305746 DOI: 10.1016/j.bpsc.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Turner syndrome (TS) and Noonan syndrome (NS) are distinct genetic conditions with highly similar physical and neurodevelopmental phenotypes. TS is caused by X chromosome absence, whereas NS results from genetic mutations activating the Ras-mitogen-activated protein kinase signaling pathway. Previous neuroimaging studies in individuals with TS and NS have shown neuroanatomical variations relative to typically developing individuals, a standard comparison group when initially examining a clinical group of interest. However, none of these studies included a second clinical comparison group, limiting their ability to identify syndrome-specific neuroanatomical phenotypes. METHODS In this study, we compared the behavioral and brain phenotypes of 37 girls with TS, 26 girls with NS, and 37 typically developing girls, all ages 5 to 12 years, using univariate and multivariate data-driven analyses. RESULTS We found divergent neuroanatomical phenotypes between groups, despite high behavioral similarities. Relative to the typically developing group, TS was associated with smaller whole-brain cortical surface area (p ≤ .0001), whereas NS was associated with smaller whole-brain cortical thickness (p = .013). TS was associated with larger subcortical volumes (left amygdala, p = .002; right hippocampus, p = .002), whereas NS was associated with smaller subcortical volumes (bilateral caudate, p ≤ .003; putamen, p < .001; pallidum, p < .001; right hippocampus, p = .015). Multivariate analyses also showed diverging brain phenotypes in terms of surface area and cortical thickness, with surface area outperforming cortical thickness at group separation. CONCLUSIONS TS and NS have syndrome-specific brain phenotypes, despite their behavioral similarities. Our observations suggest that neuroanatomical phenotypes better reflect the different genetic etiologies of TS and NS and may be superior biomarkers relative to behavioral phenotypes.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Bhavana Rai
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Samir Chowdhury
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Brain Dynamics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Radiology, Stanford University School of Medicine, Stanford University, Stanford, California; Department Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Tamar Green
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
24
|
Sullivan KA, Chapman C, Lu L, Ashbrook DG, Wang Y, Alduraibi FK, Lu C, Sun CW, Liu S, Williams RW, Mountz JD, Hsu HC. Increased development of T-bet +CD11c + B cells predisposes to lupus in females: Analysis in BXD2 mouse and genetic crosses. Clin Immunol 2023; 257:109842. [PMID: 37981105 PMCID: PMC10799694 DOI: 10.1016/j.clim.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-β was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.
Collapse
Affiliation(s)
- Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yong Wang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Changming Lu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Wang Sun
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shanrun Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
25
|
Rodríguez Doyágüez P, Furlano M, Ars Criach E, Arce Y, Guirado L, Torra Balcells R. Correlation of X chromosome inactivation with clinical presentation of Fabry disease in a case report. Nefrologia 2023; 43 Suppl 2:91-95. [PMID: 38278716 DOI: 10.1016/j.nefroe.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2024] Open
Abstract
Fabry disease or also called Anderson-Fabry disease (FD) is a rare disease caused by pathogenic variants in the GLA gene, located on the X chromosome. This gene is involved in the metabolism of glycosphingolipids and its pathogenic variants cause a deficit or absence of α-galactosidase A causing the deposition of globotriaosylceramide throughout the body. Females have a variable phenotypic expression and a better prognosis than males. This is due to the X chromosome inactivation phenomenon. We present a clinical case of Fabry disease in a female with predominantly renal involvement and demonstrate how the X chromosome inactivation phenomenon is tissue dependent, showing preferential inactivation of the mutated allele at the renal level.
Collapse
Affiliation(s)
- Pablo Rodríguez Doyágüez
- Sección de Nefrología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Mónica Furlano
- Enfermedades Renales Hereditarias, Servicio de Nefrologia, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universidad Autónoma Barcelona, Barcelona, Spain
| | - Elisabet Ars Criach
- Laboratorio de Biología Molecular, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Barcelona, Spain
| | - Yolanda Arce
- Sección de Anatomía Patológica, Fundació Puigvert, Barcelona, Spain
| | - Lluís Guirado
- Servicio de Nefrología, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universidad Autónoma Barcelona, Universitat Central de Catalunya (UVIC), Barcelona, Spain
| | - Roser Torra Balcells
- Enfermedades Renales Hereditarias, Servicio de Nefrologia, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universidad Autónoma Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
27
|
Zelco A, Wapeesittipan P, Joshi A. Insights into Sex and Gender Differences in Brain and Psychopathologies Using Big Data. Life (Basel) 2023; 13:1676. [PMID: 37629533 PMCID: PMC10455614 DOI: 10.3390/life13081676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/27/2023] Open
Abstract
The societal implication of sex and gender (SG) differences in brain are profound, as they influence brain development, behavior, and importantly, the presentation, prevalence, and therapeutic response to diseases. Technological advances have enabled speed up identification and characterization of SG differences during development and in psychopathologies. The main aim of this review is to elaborate on new technological advancements, such as genomics, imaging, and emerging biobanks, coupled with bioinformatics analyses of data generated from these technologies have facilitated the identification and characterization of SG differences in the human brain through development and psychopathologies. First, a brief explanation of SG concepts is provided, along with a developmental and evolutionary context. We then describe physiological SG differences in brain activity and function, and in psychopathologies identified through imaging techniques. We further provide an overview of insights into SG differences using genomics, specifically taking advantage of large cohorts and biobanks. We finally emphasize how bioinformatics analyses of big data generated by emerging technologies provides new opportunities to reduce SG disparities in health outcomes, including major challenges.
Collapse
Affiliation(s)
| | | | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, 5020 Bergen, Norway; (A.Z.); (P.W.)
| |
Collapse
|
28
|
Rücklé C, Körtel N, Basilicata MF, Busch A, Zhou Y, Hoch-Kraft P, Tretow K, Kielisch F, Bertin M, Pradhan M, Musheev M, Schweiger S, Niehrs C, Rausch O, Zarnack K, Keller Valsecchi CI, König J. RNA stability controlled by m 6A methylation contributes to X-to-autosome dosage compensation in mammals. Nat Struct Mol Biol 2023; 30:1207-1215. [PMID: 37202476 PMCID: PMC10442230 DOI: 10.1038/s41594-023-00997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.
Collapse
Affiliation(s)
| | - Nadine Körtel
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - M Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | | | - Marco Bertin
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Susann Schweiger
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
29
|
Canton APM, Tinano FR, Guasti L, Montenegro LR, Ryan F, Shears D, de Melo ME, Gomes LG, Piana MP, Brauner R, Espino-Aguilar R, Escribano-Muñoz A, Paganoni A, Read JE, Korbonits M, Seraphim CE, Costa SS, Krepischi AC, Jorge AAL, David A, Kaisinger LR, Ong KK, Perry JRB, Abreu AP, Kaiser UB, Argente J, Mendonca BB, Brito VN, Howard SR, Latronico AC. Rare variants in the MECP2 gene in girls with central precocious puberty: a translational cohort study. Lancet Diabetes Endocrinol 2023; 11:545-554. [PMID: 37385287 PMCID: PMC7615084 DOI: 10.1016/s2213-8587(23)00131-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.
Collapse
Affiliation(s)
- Ana P M Canton
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Flávia R Tinano
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luciana R Montenegro
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Fiona Ryan
- Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Larissa G Gomes
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université de Paris, Paris, France
| | | | - Arancha Escribano-Muñoz
- Endocrinology Unit, Department of Pediatrics, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Alyssa Paganoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jordan E Read
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos E Seraphim
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Silvia S Costa
- Discipline of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine and Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Cristina Krepischi
- Discipline of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine and Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexander A L Jorge
- Genetic Endocrinology Unit LIM/25, University of Sao Paulo, Sao Paulo, Brazil
| | - Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Lena R Kaisinger
- Medical Research Council Epidemiology Unit, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ken K Ong
- Medical Research Council Epidemiology Unit, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John R B Perry
- Medical Research Council Epidemiology Unit, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, IMDEA Food Institute, Madrid, Spain
| | - Berenice B Mendonca
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius N Brito
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Paediatric Endocrinology, Barts Health NHS Trust, London, UK
| | - Ana Claudia Latronico
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics LIM/42, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
30
|
Sanchez MP, Escouflaire C, Baur A, Bottin F, Hozé C, Boussaha M, Fritz S, Capitan A, Boichard D. X-linked genes influence various complex traits in dairy cattle. BMC Genomics 2023; 24:338. [PMID: 37337145 DOI: 10.1186/s12864-023-09438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The search for quantitative trait loci (QTL) affecting traits of interest in mammals is frequently limited to autosomes, with the X chromosome excluded because of its hemizygosity in males. This study aimed to assess the importance of the X chromosome in the genetic determinism of 11 complex traits related to milk production, milk composition, mastitis resistance, fertility, and stature in 236,496 cows from three major French dairy breeds (Holstein, Montbéliarde, and Normande) and three breeds of regional importance (Abondance, Tarentaise, and Vosgienne). RESULTS Estimates of the proportions of heritability due to autosomes and X chromosome (h²X) were consistent among breeds. On average over the 11 traits, h²X=0.008 and the X chromosome explained ~ 3.5% of total genetic variance. GWAS was performed within-breed at the sequence level (~ 200,000 genetic variants) and then combined in a meta-analysis. QTL were identified for most breeds and traits analyzed, with the exception of Tarentaise and Vosgienne and two fertility traits. Overall, 3, 74, 59, and 71 QTL were identified in Abondance, Montbéliarde, Normande, and Holstein, respectively, and most were associated with the most-heritable traits (milk traits and stature). The meta-analyses, which assessed a total of 157 QTL for the different traits, highlighted new QTL and refined the positions of some QTL found in the within-breed analyses. Altogether, our analyses identified a number of functional candidate genes, with the most notable being GPC3, MBNL3, HS6ST2, and DMD for dairy traits; TMEM164, ACSL4, ENOX2, HTR2C, AMOT, and IRAK1 for udder health; MAMLD1 and COL4A6 for fertility; and NRK, ESX1, GPR50, GPC3, and GPC4 for stature. CONCLUSIONS This study demonstrates the importance of the X chromosome in the genetic determinism of complex traits in dairy cattle and highlights new functional candidate genes and variants for these traits. These results could potentially be extended to other species as many X-linked genes are shared among mammals.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | | | | | - Fiona Bottin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| |
Collapse
|
31
|
Qian SH, Xiong YL, Chen L, Geng YJ, Tang XM, Chen ZX. Dynamic Spatial-temporal Expression Ratio of X Chromosome to Autosomes but Stable Dosage Compensation in Mammals. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:589-600. [PMID: 36031057 PMCID: PMC10787176 DOI: 10.1016/j.gpb.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the evolutionary model of dosage compensation, per-allele expression level of the X chromosome has been proposed to have twofold up-regulation to compensate its dose reduction in males (XY) compared to females (XX). However, the expression regulation of X-linked genes is still controversial, and comprehensive evaluations are still lacking. By integrating multi-omics datasets in mammals, we investigated the expression ratios including X to autosomes (X:AA ratio) and X to orthologs (X:XX ratio) at the transcriptome, translatome, and proteome levels. We revealed a dynamic spatial-temporal X:AA ratio during development in humans and mice. Meanwhile, by tracing the evolution of orthologous gene expression in chickens, platypuses, and opossums, we found a stable expression ratio of X-linked genes in humans to their autosomal orthologs in other species (X:XX ≈ 1) across tissues and developmental stages, demonstrating stable dosage compensation in mammals. We also found that different epigenetic regulations contributed to the high tissue specificity and stage specificity of X-linked gene expression, thus affecting X:AA ratios. It could be concluded that the dynamics of X:AA ratios were attributed to the different gene contents and expression preferences of the X chromosome, rather than the stable dosage compensation.
Collapse
Affiliation(s)
- Sheng Hu Qian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Li Xiong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying-Jie Geng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Man Tang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Xia Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Lentini A, Reinius B. Limitations of X:autosome ratio as a measurement of X-chromosome upregulation. Curr Biol 2023; 33:R395-R396. [PMID: 37220727 DOI: 10.1016/j.cub.2023.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/25/2023]
Abstract
Lentini and Reinius address issues in interpreting non-allelic gene expression measurements of dosage compensation during murine embryonic development.
Collapse
Affiliation(s)
- Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Tsompanidis A, Warrier V, Baron-Cohen S. The genetics of autism and steroid-related traits in prenatal and postnatal life. Front Endocrinol (Lausanne) 2023; 14:1126036. [PMID: 37223033 PMCID: PMC10200920 DOI: 10.3389/fendo.2023.1126036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Background Autism likelihood is a largely heritable trait. Autism prevalence has a skewed sex ratio, with males being diagnosed more often than females. Steroid hormones play a mediating role in this, as indicated by studies of both prenatal biology and postnatal medical conditions in autistic men and women. It is currently unclear if the genetics of steroid regulation or production interact with the genetic liability for autism. Methods To address this, two studies were conducted using publicly available datasets, which focused respectively on rare genetic variants linked to autism and neurodevelopmental conditions (study 1) and common genetic variants (study 2) for autism. In Study 1 an enrichment analysis was conducted, between autism-related genes (SFARI database) and genes that are differentially expressed (FDR<0.1) between male and female placentas, in 1st trimester chorionic villi samples of viable pregnancies (n=39). In Study 2 summary statistics of genome wide association studies (GWAS) were used to investigate the genetic correlation between autism and bioactive testosterone, estradiol and postnatal PlGF levels, as well as steroid-related conditions such as polycystic ovaries syndrome (PCOS), age of menarche, and androgenic alopecia. Genetic correlation was calculated based on LD Score regression and results were corrected for multiple testing with FDR. Results In Study 1, there was significant enrichment of X-linked autism genes in male-biased placental genes, independently of gene length (n=5 genes, p<0.001). In Study 2, common genetic variance associated with autism did not correlate to the genetics for the postnatal levels of testosterone, estradiol or PlGF, but was associated with the genotypes associated with early age of menarche in females (b=-0.109, FDR-q=0.004) and protection from androgenic alopecia for males (b=-0.135, FDR-q=0.007). Conclusion The rare genetic variants associated with autism appear to interact with placental sex differences, while the common genetic variants associated with autism appear to be involved in the regulation of steroid-related traits. These lines of evidence indicate that the likelihood for autism is partly linked to factors mediating physiological sex differences throughout development.
Collapse
Affiliation(s)
- Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
34
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
35
|
Wang L, Lin H, Zhao Z, Chen L, Wu L, Liu T, Li J, Huang CC, Peng Y, Lo CYZ, Gao X. Sex disparity of cerebral white matter hyperintensity in the hypertensive elderly: The Shanghai Changfeng study. Hum Brain Mapp 2023; 44:2099-2108. [PMID: 36583389 PMCID: PMC9980881 DOI: 10.1002/hbm.26196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
White matter hyperintensity (WMH) is associated with vascular hemodynamic alterations and reflects white matter injury. To date, the sex difference of tract-specific WMH and the relationship between high blood pressure (BP) and tract-specific WMH remain unclear. We recruited 515 subjects from the Shanghai Changfeng study (range 53-89 years, mean age 67.33 years). Systolic and diastolic blood pressure (SBP and DBP) were collected and used to calculate pulse pressure (PP). Magnetic resonance T1 and T2 FLAIR images were acquired to measure WMH and calculate WMH index. The ANCOVA test was performed to test the difference between sexes, and the linear regression model was used to examine the associations between BP and WMH index. Men showed higher WMH index than women in all white matter tracts (p < .001, respectively) except for the bilateral superior longitudinal fasciculus (SLF) and its left temporal part (tSLF). High SBP and PP was associated with a lower WMH index on the left corticospinal tract (CST), SLF, tSLF and right cingulum in hippocampus (p ≤ .001, respectively) in women, while high DBP was associated with a higher WMH index on the bilateral CST (left p < .001; right p = .001), left inferior longitudinal fasciculus (p < .001) and inferior fronto-occipital fasciculus (p = .002) in men. Men tend to have more WMH compared to women. A high SBP/PP relates to a lower WMH burden in women. This suggests that women could benefit from higher blood pressure in older age.
Collapse
Affiliation(s)
- Liangqi Wang
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Zehua Zhao
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Ting Liu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chu-Chung Huang
- School of Psychology and Cognitive Science, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Yifeng Peng
- Department of Radiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China.,Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Kaviani F, Gholizadeh M, Hafezian H. Autosomal and Z-linked genetic evaluation for body weight in Mazandaran native chicken using different models for dosage compensation on the Z chromosome. J Anim Breed Genet 2023; 140:198-206. [PMID: 36583446 DOI: 10.1111/jbg.12753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
The objectives of this study were to assess the autosomal and sex-linked genetic inheritance of growth traits and identify the effective dosage compensation on the Z chromosome in Mazandaran native chickens. The data included body weights at hatching (BW0), 8 weeks (BW8) and 12 weeks (BW12) of age, related to the first 21 generations of selection, were collected from Mazandaran native chicken breeding centre. The fixed effects included sex of birds in two classes, hatch in five classes and generation in 21 classes. The inverse of the sex-linked additive genetic relationship matrix was constructed using nadiv package in R considering different models for dosage compensation on the Z chromosome. The setup inversed matrix was then supplied externally to WOMBAT using the GIN option. Twelve univariate animal models separating participation of autosomal additive genetic, sex-linked additive genetic and maternal effects (both genetic and permanent environment effects) with considering the five different dosage compensation methods for models with sex-linked effects were analysed by WOMBAT software. BW0 was not affected by sex-linked additive genetic effects. For BW8 and BW12 the model which included autosomal, sex-linked direct additive and maternal effects with no global dosage compensation for the Z chromosome was the most appropriate model. Autosomal heritability estimates were 0.05 ± 0.02, 0.10 ± 0.01 and 0.11 ± 0.01, for BW0, BW8 and BW12, respectively. For BW8 and BW12, sex-linked heritability estimates were 0.07 and 0.27, respectively. Spearman rank correlation coefficient between autosomal and sex-linked breeding values were 0.45 and 0.12 for BW8 and BW12, respectively. Spearman rank correlation coefficient between autosomal and sex-linked breeding values were 0.45 and 0.12 for BW8 and BW12, respectively. The autosomal direct additive genetic correlations between all traits were positive. The estimate of direct sex-linked additive genetic correlation between BW8 and BW12 was high (0.88). Also, maternal genetic correlations were 0.53, 0.54 and 0.91 between BW0-BW8, BW0-BW12 and BW8-BW12, respectively. Given the importance of Z-linked genes for BW8 and BW12, it is recommended that Z-linked effects be separated from autosomal effects in order to increase the accuracy of genetic evaluation of birds for these traits.
Collapse
Affiliation(s)
- Fereshte Kaviani
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hasan Hafezian
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
37
|
Moruno-Manchon J, Noh B, McCullough L. Sex-biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome. Neural Regen Res 2023; 18:31-37. [PMID: 35799505 PMCID: PMC9241419 DOI: 10.4103/1673-5374.340406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke. Autophagy is a self-degrading cellular process orchestrated by multiple core proteins, which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes. The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults. Ischemic stroke activates autophagy, however, whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate. Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes. Furthermore, the effects of manipulating autophagy may also differ between the sexes. Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored. In this review, we summarize clinical and pre-clinical evidence for sex differences in stroke. We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy. Finally, we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.
Collapse
|
38
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
39
|
Colby AE, DeCasien AR, Cooper EB, Higham JP. Greater variability in rhesus macaque ( Macaca mulatta) endocranial volume among males than females. Proc Biol Sci 2022; 289:20220728. [PMID: 36350207 PMCID: PMC9653222 DOI: 10.1098/rspb.2022.0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2023] Open
Abstract
The greater male variability (GMV) hypothesis proposes that traits are more variable among males than females, and is supported by numerous empirical studies. Interestingly, GMV is also observed for human brain size and internal brain structure, a pattern which may have implications for sex-biased neurological and psychiatric conditions. A better understanding of neuroanatomical variability in non-human primates may illuminate whether certain species are appropriate models for these conditions. Here, we tested for sex differences in the variability of endocranial volume (ECV, a proxy for brain size) in a sample of 542 rhesus macaques (Macaca mulatta) from a large pedigreed free-ranging population. We also examined the components of phenotypic variance (additive genetic and residual variance) to tease apart the potential drivers of sex differences in variability. Our results suggest that males exhibit more variable ECVs, and that this pattern reflects either balancing/disruptive selection on male behaviour (associated with alternative male mating strategies) or sex chromosome effects (associated with mosaic patterns of X chromosome gene expression in females), rather than extended neurodevelopment among males. This represents evidence of GMV for brain size in a non-human primate species and highlights the potential of rhesus macaques as a model for sex-biased brain-based disorders.
Collapse
Affiliation(s)
- Abigail E. Colby
- Department of Anthropology, New York University, New York, NY, USA
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Section on Developmental Neurogenomics, National Institutes of Health, Bethesda, MD, USA
| | - Eve B. Cooper
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
40
|
Lyu Q, Yang Q, Hao J, Yue Y, Wang X, Tian J, An L. A small proportion of X-linked genes contribute to X chromosome upregulation in early embryos via BRD4-mediated transcriptional activation. Curr Biol 2022; 32:4397-4410.e5. [PMID: 36108637 DOI: 10.1016/j.cub.2022.08.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 02/08/2023]
Abstract
Females have two X chromosomes and males have only one in most mammals. X chromosome inactivation (XCI) occurs in females to equalize X-dosage between sexes. Besides, mammals also balance the dosage between X chromosomes and autosomes via X chromosome upregulation (XCU) to fine-tune X-linked expression and thus maintain genomic homeostasis. Despite some studies highlighting the importance of XCU in somatic cells, little is known about how XCU is achieved and its developmental role during early embryogenesis. Herein, using mouse preimplantation embryos as the model, we reported that XCU initially occurs upon major zygotic genome activation and co-regulates X-linked expression in cooperation with imprinted XCI during preimplantation development. An in-depth analysis further indicated, unexpectedly, only a small proportion of, but not X chromosome-wide, X-linked genes contribute greatly to XCU. Furthermore, we identified that bromodomain containing 4 (BRD4) plays a key role in the transcription activation of XCU during preimplantation development. BRD4 deficiency or inhibition caused an impaired XCU, thus leading to reduced developmental potential and mitochondrial dysfunctions of blastocysts. Our finding was also supported by the tight association of BRD4 dysregulation and XCU disruption in the pathology of cholangiocarcinoma. Thus, our results not only advanced the current knowledge of X-dosage compensation and provided a mechanism for understanding XCU initiation but also presented an important clue for understanding the developmental and pathological role of XCU.
Collapse
Affiliation(s)
- Qingji Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Jia Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
41
|
Cabrera Zapata LE, Garcia-Segura LM, Cambiasso MJ, Arevalo MA. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int J Mol Sci 2022; 23:ijms232012288. [PMID: 36293143 PMCID: PMC9603441 DOI: 10.3390/ijms232012288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
For many decades to date, neuroendocrinologists have delved into the key contribution of gonadal hormones to the generation of sex differences in the developing brain and the expression of sex-specific physiological and behavioral phenotypes in adulthood. However, it was not until recent years that the role of sex chromosomes in the matter started to be seriously explored and unveiled beyond gonadal determination. Now we know that the divergent evolutionary process suffered by X and Y chromosomes has determined that they now encode mostly dissimilar genetic information and are subject to different epigenetic regulations, characteristics that together contribute to generate sex differences between XX and XY cells/individuals from the zygote throughout life. Here we will review and discuss relevant data showing how particular X- and Y-linked genes and epigenetic mechanisms controlling their expression and inheritance are involved, along with or independently of gonadal hormones, in the generation of sex differences in the brain.
Collapse
Affiliation(s)
- Lucas E. Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | | | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Correspondence: (M.J.C.); (M.A.A.)
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.J.C.); (M.A.A.)
| |
Collapse
|
42
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|
43
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
44
|
Su J, Zhang Y, Su H, Wang C, Wang D, Yang Y, Li X, Qi W, Li H, Li X, Song Y, Cao G. Dosage Compensation of the X Chromosome during Sheep Testis Development Revealed by Single-Cell RNA Sequencing. Animals (Basel) 2022; 12:ani12172169. [PMID: 36077890 PMCID: PMC9454834 DOI: 10.3390/ani12172169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Male and female mammals carry the same complement of autosomes but differ with respect to their sex chromosomes: females carry XX chromosomes and males carry XY chromosomes. The evolutionary loss of genes from the Y chromosome led to a disparity in the dosage of X chromosomes versus autosomal genes, with males becoming monosomic for X-linked gene products. An imbalance in gene expression may have detrimental consequences. In males, X-linked genes need to be upregulated to levels equal to those of females, which is called dosage compensation. The existence of dosage compensation in germ cells is controversial. In testis, dosage compensation is thought to cease during meiosis. Some studies showed that the X chromosome is inactivated during meiosis and premature transcriptional inactivation of the X and Y chromosome during mid-spermatogenesis is essential for fertility. However, some studies failed to find support for male germline X inactivation. Using single-cell RNA seq data, in this study, we presented a comprehensive transcriptional map of sheep testes at different developmental stages and found that germ cell types in sheep testes show X-chromosome expression similar to that in the autosomes. The dosage compensation of germ cells at different stages was analyzed. MSL complex members are expressed in female flies and orthologs exist in many species, where dosage compensation mechanisms are absent or fundamentally different. This suggests that the MSL complex members also function outside of the dosage compensation machinery. Studies have shown that MSL complex can regulate mammalian X inactivation and activation. Abstract Dosage compensation is a mechanism first proposed by Susumu Ohno, whereby X inactivation balances X gene output between males (XY) and females (XX), while X upregulation balances X genes with autosomal gene output. These mechanisms have been actively studied in Drosophila and mice, but research regarding them lags behind in domestic species. It is unclear how the X chromosome is regulated in the sheep male germline. To address this, using single-cell RNA sequencing, we analyzed testes in three important developmental stages of sheep. We observed that the total RNA per cell from X and autosomes peaked in SSCs and spermatogonia and was then reduced in early spermatocytes. Furthermore, we counted the detected reads per gene in each cell type for X and autosomes. In cells experiencing dose compensation, close proximity to MSL (male-specific lethal), which is regulated the active X chromosome and was observed. Our results suggest that there is no dose compensation in the pre-meiotic germ cells of sheep testes and, in addition, MSL1 and MSL2 are expressed in early germ cells and involved in regulating mammalian X-chromosome inactivation and activation.
Collapse
Affiliation(s)
- Jie Su
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
- Department of Psychosomatic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Yue Zhang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Caiyun Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Daqing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agriculture & Animal Husbandry Sciences, Hohhot 010000, China
| | - Xiunan Li
- Inner Mongolia Academy of Agriculture & Animal Husbandry Sciences, Hohhot 010000, China
| | - Wangmei Qi
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Haijun Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Xihe Li
- Inner Mongolia Saikexing Institutes of Breeding and Reproductive Biotechnologies in Domestic Animal, Hohhot 011517, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (Y.S.); (G.C.); Tel.: +86-133-6601-7565 (Y.S.); +86-138-4812-0488 (G.C.)
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
- Correspondence: (Y.S.); (G.C.); Tel.: +86-133-6601-7565 (Y.S.); +86-138-4812-0488 (G.C.)
| |
Collapse
|
45
|
Yano S, Ishiuchi T, Abe S, Namekawa SH, Huang G, Ogawa Y, Sasaki H. Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes. Nat Commun 2022; 13:4440. [PMID: 35922445 PMCID: PMC9349174 DOI: 10.1038/s41467-022-32141-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Establishment of the DNA methylation landscape of mammalian oocytes, mediated by the DNMT3A-DNMT3L complex, is crucial for reproduction and development. In mouse oocytes, high levels of DNA methylation occur exclusively in the transcriptionally active regions, with moderate to low levels of methylation in other regions. Histone H3K36me3 mediates the high levels of methylation in the transcribed regions; however, it is unknown which histone mark guides the methylation in the other regions. Here, we show that, in mouse oocytes, H3K36me2 is highly enriched in the X chromosome and is broadly distributed across all autosomes. Upon H3K36me2 depletion, DNA methylation in moderately methylated regions is selectively affected, and a methylation pattern unique to the X chromosome is switched to an autosome-like pattern. Furthermore, we find that simultaneous depletion of H3K36me2 and H3K36me3 results in global hypomethylation, comparable to that of DNMT3A depletion. Therefore, the two histone marks jointly provide the chromatin platform essential for guiding DNMT3A-dependent DNA methylation in mouse oocytes.
Collapse
Affiliation(s)
- Seiichi Yano
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan. .,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan.
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Satoshi H Namekawa
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Gang Huang
- Department of Cell Systems & Anatomy and Department of Pathology & Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX, USA
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
46
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
47
|
Single-cell analysis reveals X upregulation is not global in pre-gastrulation embryos. iScience 2022; 25:104465. [PMID: 35707719 PMCID: PMC9189126 DOI: 10.1016/j.isci.2022.104465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
In mammals, transcriptional inactivation of one X chromosome in female compensates for the dosage of X-linked gene expression between the sexes. Additionally, it is believed that the upregulation of active X chromosome in male and female balances the dosage of X-linked gene expression relative to autosomal genes, as proposed by Ohno. However, the existence of X chromosome upregulation (XCU) remains controversial. Here, we have profiled gene-wise dynamics of XCU in pre-gastrulation mouse embryos at single-cell level and found that XCU is dynamically linked with X chromosome inactivation (XCI); however, XCU is not global like XCI. Moreover, we show that upregulated genes are enriched with activating marks and have enhanced burst frequency. Finally, our In-silico model predicts that recruitment probabilities of activating factors and a surge of these factors upon X-inactivation trigger XCU. Altogether, our study provides significant insight into the gene-wise dynamics and mechanistic basis of XCU during early development and extends support for Ohno’s hypothesis. X-upregulation coincides with X chromosome inactivation in pre-gastrulation embryos X-upregulation is not chromosome-wide like X-inactivation Upregulated genes have enhanced burst frequency and are enriched with activating marks A surge of activating factors on X-inactivation triggers X-upregulation
Collapse
|
48
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
49
|
Ren L, Zhang H, Luo M, Gao X, Cui J, Zhang X, Liu S. Heterosis of growth trait regulated by DNA methylation and miRNA in allotriploid fish. Epigenetics Chromatin 2022; 15:19. [PMID: 35597966 PMCID: PMC9123727 DOI: 10.1186/s13072-022-00455-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Heterosis of growth traits in allotriploid fish has benefited the production of aquaculture for many years, yet its genetic and molecular basis has remained obscure. Now, an allotriploid complex, including two triploids and their diploid inbred parents, has provided an excellent model for investigating the potential regulatory mechanisms of heterosis. Results Here, we performed a series of analyses on DNA methylation modification and miRNA expression in combination with gene expression in the allotriploid complex. We first established a model of cis- and trans-regulation related to DNA methylation and miRNA in allotriploids. Then, comparative analyses showed that DNA methylation contributed to the emergence of a dosage compensation effect, which reduced gene expression levels in the triploid to the diploid state. We detected 31 genes regulated by DNA methylation in the subgenomes of the allotriploids. Finally, the patterns of coevolution between small RNAs and their homoeologous targets were classified and used to predict the regulation of miRNA expression in the allotriploids. Conclusions Our results uncovered the regulatory network between DNA methylation and miRNAs in allotriploids, which not only helps us understand the regulatory mechanisms of heterosis of growth traits but also benefits the study and application of epigenetics in aquaculture. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00455-6.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Mengxue Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xueyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
50
|
Gerussi A, Paraboschi EM, Cappadona C, Caime C, Binatti E, Cristoferi L, Asselta R, Invernizzi P. The Role of Epigenetics in Primary Biliary Cholangitis. Int J Mol Sci 2022; 23:ijms23094873. [PMID: 35563266 PMCID: PMC9105933 DOI: 10.3390/ijms23094873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Primary Biliary Cholangitis (PBC) is a rare autoimmune disease of the liver, affecting mostly females. There is evidence that epigenetic changes have a pathogenic role in PBC. Epigenetic modifications are related to methylation of CpG DNA islands, post-translational modifications of histone proteins, and non-coding RNAs. In PBC, there are data showing a dysregulation of all these levels, especially in immune cells. In addition, epigenetics seems to be involved in complex phenomena such as X monosomy or abnormalities in the process of X chromosome inactivation, which have been reported in PBC and appear to influence its sex imbalance and pathogenesis. We review here historical data on epigenetic modifications in PBC, present new data, and discuss possible links among X-chromosome abnormalities at a genetic and epigenetic level, PBC pathogenesis, and PBC sex imbalance.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Chiara Caime
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
- Correspondence:
| |
Collapse
|