1
|
Mahmood M, Little E, Girard N, Wu F, Samuels T, Heinemann IU, Reynolds NM. Yeast models for Charcot-Marie-Tooth disease-causing aminoacyl-tRNA synthetase alleles reveal the cellular basis of disease. IUBMB Life 2025; 77:e70017. [PMID: 40156251 PMCID: PMC11953622 DOI: 10.1002/iub.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically diverse hereditary disorder that affects the motor and sensory nerves, impacting about 1 in 2500 people. It can be inherited through autosomal dominant (AD), autosomal recessive (AR), or X-linked genetic patterns. CMT2, one of the primary subtypes, is characterized by axonal degeneration and commonly presents with muscle weakness, atrophy, foot deformities, and sensory loss. Aminoacyl-tRNA synthetases (aaRSs) play an important role in the genetic underpinnings of CMT2, with more than 60 disease-causing alleles identified across eight different aaRSs, including alanyl-, asparaginyl-, histidyl-, glycyl-, methionyl-, tryptophanyl-, seryl-, and tyrosyl-tRNA synthetases. Mutations in aaRS genes can lead to destabilization of the enzyme, reduced aminoacylation, and aberrant protein complex formation. Yeast as a simple organism provides a robust model system to study the pathogenic effects of aaRS CMT mutations. In this review, we discuss the advantages and limitations of the yeast model systems for CMT2-causative mutations in aaRS.
Collapse
Affiliation(s)
- Maria Mahmood
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Emma Little
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| | - Nicole Girard
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| | - Fanqi Wu
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Tristan Samuels
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Ilka U. Heinemann
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Noah M. Reynolds
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| |
Collapse
|
2
|
Baymiller M, Helton NS, Dodd B, Moon SL. tRNA synthetase activity is required for stress granule and P-body assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642431. [PMID: 40161773 PMCID: PMC11952412 DOI: 10.1101/2025.03.10.642431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In response to stress, translation initiation is suppressed and ribosome runoff via translation elongation drives mRNA assembly into ribonucleoprotein (RNP) granules including stress granules and P-bodies. Defects in translation elongation activate the integrated stress response. If and how stalled ribosomes are removed from mRNAs during translation elongation stress to drive RNP granule assembly is not clear. We demonstrate the integrated stress response is induced upon tRNA synthetase inhibition in part via ribosome collision sensing. However, saturating levels of tRNA synthetase inhibitors do not induce stress granules or P-bodies and prevent RNP granule assembly upon exogenous stress. The loss of tRNA synthetase activity causes persistent ribosome stalls that can be released with puromycin but are not rescued by ribosome-associated quality control pathways. Therefore, tRNA synthetase activity is required for ribosomes to run off mRNAs during stress to scaffold cytoplasmic RNP granules. Our findings suggest ribosome stalls can persist in human cells and uniquely uncouple ribonucleoprotein condensate assembly from the integrated stress response.
Collapse
Affiliation(s)
- Max Baymiller
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noah S. Helton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin Dodd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie L. Moon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Thapa BV, Das M, Held JP, Patel MR. Loss of an uncharacterized mitochondrial methionine tRNA-synthetase induces mitochondrial unfolded protein response in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636310. [PMID: 39975410 PMCID: PMC11838591 DOI: 10.1101/2025.02.03.636310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential for translation, as they charge tRNA molecules with their corresponding amino acids. Alterations in aaRSs can significantly disrupt both cytosolic and mitochondrial translation. Through a forward genetic screen for mitochondrial unfolded protein response (UPRmt) activators in C. elegans, we identified a missense mutation (P447V) in the previously uncharacterized gene Y105E8A.20, which encodes a dually localized methionine tRNA synthetase (MetRS). Here, we characterize the UPRmt induction by Y105E8A.20, which we call mars-2, and demonstrate that the P447V allele is a loss-of-function mutation. Furthermore, we show impaired mars-2 activity in the mitochondria triggers UPRmt. This strain provides a valuable tool for studying mitochondrial translation and understanding how aaRSs are involved in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Bharat Vivan Thapa
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Mohit Das
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
4
|
Scherrer C, Loret C, Védrenne N, Buckley C, Lia AS, Kermene V, Sturtz F, Favreau F, Rovini A, Faye PA. From in vivo models to in vitro bioengineered neuromuscular junctions for the study of Charcot-Marie-Tooth disease. J Tissue Eng 2025; 16:20417314241310508. [PMID: 40078221 PMCID: PMC11898049 DOI: 10.1177/20417314241310508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/14/2024] [Indexed: 03/14/2025] Open
Abstract
Peripheral neuropathies are disorders affecting the peripheral nervous system. Among them, Charcot-Marie-Tooth disease is an inherited sensorimotor neuropathy for which no effective treatment exists yet. Research on Charcot-Marie-Tooth disease has been hampered by difficulties in accessing relevant cells, such as sensory and motor neurons, Schwann cells, and myocytes, which interact at the neuromuscular junction, the specialized synapses formed between nerves and skeletal muscles. This review first outlines the various in vivo models and methods used to study neuromuscular junction deficiencies in Charcot-Marie-Tooth disease. We then explore novel in vitro techniques and models, including complex hiPSC-derived cultures, which offer promising isogenic and reproducible neuromuscular junction models. The adaptability of in vitro culture methods, including cell origin, cell-type combinations, and choice of culture format, adds complexity and excitement to this rapidly evolving field. This review aims to recapitulate available tools for studying Charcot-Marie-Tooth disease to understand its pathophysiological mechanisms and test potential therapies.
Collapse
Affiliation(s)
- Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Nicolas Védrenne
- University of Limoges, Inserm U1248 Pharmacology & Transplantation, Limoges, France
| | - Colman Buckley
- University of Limoges, XLIM, CNRS UMR 7252, Limoges, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
- Department of Bioinformatics, CHU Limoges, Limoges, France
| | | | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| |
Collapse
|
5
|
Samuels TN, Wu F, Mahmood M, Abuzaid WA, Sun N, Moresco A, Siu VM, O'Donoghue P, Heinemann IU. Transfer RNA and small molecule therapeutics for aminoacyl-tRNA synthetase diseases. FEBS J 2024. [PMID: 39702998 DOI: 10.1111/febs.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Aminoacyl-tRNA synthetases catalyze the ligation of a specific amino acid to its cognate tRNA. The resulting aminoacyl-tRNAs are indispensable intermediates in protein biosynthesis, facilitating the precise decoding of the genetic code. Pathogenic alleles in the aminoacyl-tRNA synthetases can lead to several dominant and recessive disorders. To date, disease-specific treatments for these conditions are largely unavailable. We review pathogenic human synthetase alleles, the molecular and cellular mechanisms of tRNA synthetase diseases, and emerging approaches to allele-specific treatments, including small molecules and nucleic acid-based therapeutics. Current treatment approaches to rescue defective or dysfunctional tRNA synthetase mutants include supplementation with cognate amino acids and delivery of cognate tRNAs to alleviate bottlenecks in translation. Complementary approaches use inhibitors to target the integrated stress response, which can be dysregulated in tRNA synthetase diseases.
Collapse
Affiliation(s)
- Tristan N Samuels
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Fanqi Wu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Maria Mahmood
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Wajd A Abuzaid
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Nancy Sun
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Angelica Moresco
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Victoria M Siu
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Chemistry, Western University, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| |
Collapse
|
6
|
Mendes MI, Wolf NI, Rudinger-Thirion J, Lenz D, Frugier M, Verloo P, Mandel H, Manor J, Kassel R, Corpeleijn WE, van der Rijt S, Schroor EM, van Dooren SJM, Staufner C, Salomons GS, Smith DEC. Simultaneous determination of cytosolic aminoacyl-tRNA synthetase activities by LC-MS/MS. Nucleic Acids Res 2024; 52:e107. [PMID: 39574415 DOI: 10.1093/nar/gkae1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 12/22/2024] Open
Abstract
In recent years, pathogenic variants in ARS genes, encoding aminoacyl-tRNA synthetases (aaRSs), have been associated with human disease. Patients harbouring pathogenic variants in ARS genes have clinical signs partly unique to certain aaRSs defects, partly overlapping between the different aaRSs defects. Diagnosis relies mostly on genetics and remains challenging, often requiring functional validation of new ARS variants. In this study, we present the development and validation of a method to simultaneously determine aminoacylation activities of all cytosolic aaRSs (encoded by ARS1 genes) in one single cell lysate, improving diagnosis in suspected ARS1 disorders and facilitating functional characterization of ARS1 variants of unknown significance. As proof of concept, we show enzyme activities of five individuals with variants in different ARS1 genes, demonstrating the usability and convenience of the presented method.
Collapse
Affiliation(s)
- Marisa I Mendes
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, VU University Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, the Netherlands
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN UPR 9002, Institut de Biologie Moléculaire et Cellulaire, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Dominic Lenz
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN UPR 9002, Institut de Biologie Moléculaire et Cellulaire, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Patrick Verloo
- Department of Pediatric Neurology, Center for Inherited Metabolic Disorders and metabERN, University Hospital Ghent, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Hanna Mandel
- Department of Genetic and Metabolic Disorders, Ziv Medical Center, Derech HaRambam 1, Safed, Israel
| | - Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital Sheba Medical Center Tel-Hashomer, Derech Sheba 2, Ramat Gan, Israel
| | - Rachel Kassel
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1670 University Blvd, Birmingham, AL 35233, USA
| | - Willemijn E Corpeleijn
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Diabetes and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Sanne van der Rijt
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Elsbeth M Schroor
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Silvy J M van Dooren
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Christian Staufner
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Gajja S Salomons
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Desirée E C Smith
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| |
Collapse
|
7
|
Wilhelm SDP, Kakadia JH, Beharry A, Kenana R, Hoffman KS, O'Donoghue P, Heinemann IU. Transfer RNA supplementation rescues HARS deficiency in a humanized yeast model of Charcot-Marie-Tooth disease. Nucleic Acids Res 2024; 52:14043-14060. [PMID: 39530218 DOI: 10.1093/nar/gkae996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aminoacyl-tRNA synthetases are indispensable enzymes in all cells, ensuring the correct pairing of amino acids to their cognate tRNAs to maintain translation fidelity. Autosomal dominant mutations V133F and Y330C in histidyl-tRNA synthetase (HARS) cause the genetic disorder Charcot-Marie-Tooth type 2W (CMT2W). Treatments are currently restricted to symptom relief, with no therapeutic available that targets the cause of disease. We previously found that histidine supplementation alleviated phenotypic defects in a humanized yeast model of CMT2W caused by HARS V155G and S356N that also unexpectedly exacerbated the phenotype of the two HARS mutants V133F and Y330C. Here, we show that V133F destabilizes recombinant HARS protein, which is rescued in the presence of tRNAHis. HARS V133F and Y330C cause mistranslation and cause changes to the proteome without activating the integrated stress response as validated by mass spectrometry and growth defects that persist with histidine supplementation. The growth defects and reduced translation fidelity caused by V133F and Y330C mutants were rescued by supplementation with human tRNAHis in a humanized yeast model. Our results demonstrate the feasibility of cognate tRNA as a therapeutic that rescues HARS deficiency and ameliorates toxic mistranslation generated by causative alleles for CMT.
Collapse
Affiliation(s)
- Sarah D P Wilhelm
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jenica H Kakadia
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rosan Kenana
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kyle S Hoffman
- Bioinformatics Solutions Inc, Waterloo, Ontario, N2L 3K8 Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Children's Health Research Institute, London, ON, N6C 4V3 Canada
| |
Collapse
|
8
|
Wilhelm SDP, Moresco AA, Rivero AD, Siu VM, Heinemann IU. Characterization of a novel heterozygous variant in the histidyl-tRNA synthetase gene associated with Charcot-Marie-Tooth disease type 2W. IUBMB Life 2024; 76:1125-1138. [PMID: 39352000 PMCID: PMC11580374 DOI: 10.1002/iub.2918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Heterozygous pathogenic variants in the histidyl-tRNA synthetase (HARS) gene are associated with Charcot-Marie-Tooth (CMT) type 2W disease, classified as an axonal peripheral neuropathy. To date, at least 60 variants causing CMT symptoms have been identified in seven different aminoacyl-tRNA synthetases, with eight being found in the catalytic domain of HARS. The genetic data clearly show a causative role of aminoacyl-tRNA synthetases in CMT; however, the cellular mechanisms leading to pathology can vary widely and are unknown in the case of most identified variants. Here we describe a novel HARS variant, c.412T>C; p.Y138H, identified through a CMT gene panel in a patient with peripheral neuropathy. To determine the effect of p.Y138H we employed a humanized HARS yeast model and recombinant protein biochemistry, which identified a deficiency in protein dimerization and a growth defect which shows mild but significant improvement with histidine supplementation. This raises the potential for a clinical trial of histidine.
Collapse
Affiliation(s)
- Sarah D. P. Wilhelm
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Angelica A. Moresco
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
| | | | - Victoria Mok Siu
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Ilka U. Heinemann
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| |
Collapse
|
9
|
Jiménez‐Jiménez J, Navarrete I, Azorín I, Martí P, Vílchez R, Muelas N, Cabello‐Murgui J, Millet E, Vázquez‐Costa JF, Vílchez JJ, Sevilla T, Sivera R. Insights into phenotypic variability caused by GARS1 pathogenic variants. Eur J Neurol 2024; 31:e16416. [PMID: 39051710 PMCID: PMC11414817 DOI: 10.1111/ene.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND PURPOSE Pathogenic variants of the glycyl-tRNA synthetase 1 (GARS1) gene have been described as a cause of Charcot-Marie-Tooth disease type 2D, motor axonal neuropathy with upper limb predominance (distal hereditary motor neuropathy [dHMN] type V), and infantile spinal muscular atrophy. METHODS This cross-sectional, retrospective, observational study was carried out on 12 patients harboring the c.794C>T (p.Ser265Phe) missense pathogenic variant in GARS1. The patients' clinical data, nerve conduction studies, magnetic resonance imaging (MRI), and intraepidermal nerve fiber density in skin biopsies were reviewed. RESULTS The mean age at onset was 9.5 years; the intrinsic hand muscles were affected before or at the same time as the distal leg musculature. The clinical examination revealed greater weakness of the distal muscles, with a more pronounced involvement of the thenar complex and the first dorsal interosseous in upper limbs. Electrophysiological studies were concordant with an exclusively motor axonal neuropathy. A pathologic split hand index was found in six patients. Muscle MRI showed predominant fatty infiltration and atrophy of the anterolateral and superficial posterior compartment of the legs. Most patients reported distal pinprick sensory loss. A reduced intraepidermal nerve fiber density was evident in skin biopsies from proximal and distal sites in nine patients. CONCLUSIONS GARS1 variants may produce a dHMN phenotype with "split hand" and sensory disturbances, even when sensory nerve conduction studies are normal. This could be explained by a dysfunction of sensory neurons in the dorsal ganglion that is reflected as a reduction of dermal nerve endings in skin biopsies without a distal gradient.
Collapse
Affiliation(s)
- Jesús Jiménez‐Jiménez
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
| | - Irene Navarrete
- Department of Digestive DiseasesHospital Universitari i Politècnic La FeValenciaSpain
| | - Inmaculada Azorín
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
| | - Pilar Martí
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
| | - Roger Vílchez
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Javier Cabello‐Murgui
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
| | - Elvira Millet
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Department of NeurophysiologyHospital Universitari i Politècnic La FeValenciaSpain
| | - Juan Francisco Vázquez‐Costa
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Juan J. Vílchez
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
- Department of MedicineUniversitat de ValènciaValenciaSpain
| | - Rafael Sivera
- Neuromuscular Diseases Unit, Department of NeurologyHospital Universitari i Politècnic La FeValenciaSpain
- Neuromuscular and Ataxias Research GroupInstituto de Investigación Sanitaria La FeValenciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
Jones JA, Zhou J, Dong J, Huitron-Resendiz S, Boussaty E, Chavez E, Wei N, Dumitru CD, Morodomi Y, Kanaji T, Ryan AF, Friedman R, Zhou T, Kanaji S, Wortham M, Schenk S, Roberts AJ, Yang XL. Murine nuclear tyrosyl-tRNA synthetase deficiency leads to fat storage deficiency and hearing loss. J Biol Chem 2024; 300:107756. [PMID: 39260699 PMCID: PMC11470617 DOI: 10.1016/j.jbc.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
Collapse
Affiliation(s)
- Julia A Jones
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jianjie Dong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Ely Boussaty
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Eduardo Chavez
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Calin Dan Dumitru
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Allen F Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Rick Friedman
- Department of Otolaryngology - Head and Neck Surgery, University of California San Diego, La Jolla, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew Wortham
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
11
|
van Eyll J, Prior R, Celanire S, Van Den Bosch L, Rombouts F. Therapeutic indications for HDAC6 inhibitors in the peripheral and central nervous disorders. Expert Opin Ther Targets 2024; 28:719-737. [PMID: 39305025 DOI: 10.1080/14728222.2024.2404571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.
Collapse
Affiliation(s)
| | | | - Sylvain Celanire
- Augustine Therapeutics, Research and Development, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | | |
Collapse
|
12
|
Tadenev ALD, Hatton CL, Burgess RW. Lack of effect from genetic deletion of Hdac6 in a humanized mouse model of CMT2D. J Peripher Nerv Syst 2024; 29:213-220. [PMID: 38551018 PMCID: PMC11209801 DOI: 10.1111/jns.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.
Collapse
|
13
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. Neurobiol Dis 2024; 195:106501. [PMID: 38583640 PMCID: PMC11998923 DOI: 10.1016/j.nbd.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK.
| |
Collapse
|
14
|
Wang Y, Wang J, Zhang L, He J, Ji B, Wang J, Ding B, Ren M. Unveiling the role of YARS1 in bladder cancer: A prognostic biomarker and therapeutic target. J Cell Mol Med 2024; 28:1-20. [PMID: 38506098 PMCID: PMC10951887 DOI: 10.1111/jcmm.18213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
YARS is responsible for catalysing the binding of tyrosine to its cognate tRNA and plays a crucial role in basic biosynthesis. However, its biological functions in bladder cancer remains to be proven. We analysed variations in YARS1 expression and survival in bladder cancer using multiple data sets, including TCGA-BLCA, GSE13507 and bladder cancer-specific tissue microarrays. Furthermore, we explored the biological functions of YARS1 using transcriptome data. Our findings revealed a noteworthy correlation between YARS1 and immune infiltration in bladder cancer, as determined using the XCELL algorithm and single-cell analysis. In addition, we employed the TIDE algorithm to evaluate the responsiveness of different cohorts to immune checkpoint therapy. We investigated the regulatory associations between YARS1 and various aspects of bladder cancer, including senescence, ferroptosis and stemness. Finally, we established a ceRNA network that is directly linked to the overall prognosis, YARS1 can serve as a prognostic biomarker for bladder cancer; its interaction with MYC has implications for bladder cancer cell senescence, ferroptosis and stemness. Moreover, the identified ceRNA network has potential as a therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- YaXuan Wang
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jinfeng Wang
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Lu Zhang
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - JiaXing He
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Bo Ji
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - JianShe Wang
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - BeiChen Ding
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - MingHua Ren
- Department of UrologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
15
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536152. [PMID: 38559020 PMCID: PMC10979848 DOI: 10.1101/2023.04.09.536152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| |
Collapse
|
16
|
Beijer D, Marte S, Li JC, De Ridder W, Chen JZ, Tadenev ALD, Miers KE, Deconinck T, Macdonell R, Marques W, De Jonghe P, Pratt SL, Meyer-Schuman R, Züchner S, Antonellis A, Burgess RW, Baets J. Dominant NARS1 mutations causing axonal Charcot-Marie-Tooth disease expand NARS1-associated diseases. Brain Commun 2024; 6:fcae070. [PMID: 38495304 PMCID: PMC10943570 DOI: 10.1093/braincomms/fcae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase (NARS1) cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy. NARS1 has not yet been linked to axonal Charcot-Marie-Tooth disease. Exome sequencing of patients with inherited peripheral neuropathies revealed three previously unreported heterozygous NARS1 variants in three families. Clinical and electrophysiological details were assessed. We further characterized all three variants in a yeast complementation model and used a knock-in mouse model to study variant p.Ser461Phe. All three variants (p.Met236del, p.Cys342Tyr and p.Ser461Phe) co-segregate with the sensorimotor axonal neuropathy phenotype. Yeast complementation assays show that none of the three NARS1 variants support wild-type yeast growth when tested in isolation (i.e. in the absence of a wild-type copy of NARS1), consistent with a loss-of-function effect. Similarly, the homozygous knock-in mouse model (p.Ser461Phe/Ser472Phe in mouse) also demonstrated loss-of-function characteristics. We present three previously unreported NARS1 variants segregating with a sensorimotor neuropathy phenotype in three families. Functional studies in yeast and mouse support variant pathogenicity. Thus, NARS1 is the seventh ARS implicated in dominant axonal Charcot-Marie-Tooth disease, further stressing that all dimeric ARSs should be evaluated for Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Department for Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jiaxin C Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Willem De Ridder
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, B-2610, Belgium
| | - Jessie Z Chen
- Department of Neurology, Austin Health, Melbourne, VIC 3084, Australia
| | | | | | - Tine Deconinck
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, B-2650, Belgium
| | - Richard Macdonell
- Department of Neurology, Austin Health, Melbourne, VIC 3084, Australia
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, SP, 14051-140, Brazil
| | - Peter De Jonghe
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, B-2610, Belgium
| | - Samia L Pratt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | | | - Stephan Züchner
- Department for Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, B-2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, B-2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, B-2610, Belgium
| |
Collapse
|
17
|
Kuan J, Hansen A, Wang H. Case Report: A new case of YARS1-associated autosomal recessive disorder with compound heterozygous and concurrent 47, XXY. Front Pediatr 2023; 11:1282253. [PMID: 38125821 PMCID: PMC10731953 DOI: 10.3389/fped.2023.1282253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Aminoacyl-tRNA synthetases play a pivotal role in catalyzing the precise coupling of amino acids with their corresponding tRNAs. Among them, Tyrosyl tRNA synthetase, encoded by the YARS1 gene, facilitates the aminoacylation of tyrosine to its designated tRNA. Heterozygous variants in the YARS1 gene have been linked to autosomal dominant Charcot-Marie-Tooth type C, while recent findings have unveiled biallelic YARS1 variants leading to an autosomal recessive multisystemic disorder in several cases. In this report, we present a novel case characterized by dysmorphic facies, and multisystemic symptoms, prominently encompassing neurological issues and a microarray conducted shortly after birth revealed 47, XXY. Utilizing whole exome sequencing, we uncovered a paternally inherited likely pathogenic variant (c.1099C > T, p.Arg367Trp), previously reported, coinciding with the father's history of hearing loss and neurological symptoms. Additionally, a maternally inherited variant of uncertain significance (c.782T > G, p.Leu261Arg), previously unreported, was identified within the YARS1 gene. The observed phenotypes and the presence of compound heterozygous results align with the diagnosis of an autosomal recessive disorder associated with YARS1. Through our cases, the boundaries of this emerging clinical entity are broadened. This instance underscores the significance of comprehensive genetic testing in patients exhibiting intricate phenotypes.
Collapse
Affiliation(s)
- Janene Kuan
- Department of Pediatrics, University of California, San Francisco, CA, United States
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Ashleigh Hansen
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Neurosciences Department, Cedars-Sinai, Los Angeles, CA, United States
| | - Hua Wang
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
18
|
Record CJ, Skorupinksa M, Zuchner S, Blake J, Reilly MM. SARS1 (SerRS) Causing De Novo Dominant Charcot-Marie-Tooth Disease with Slow Conduction. Ann Neurol 2023; 94:1187-1188. [PMID: 37706277 DOI: 10.1002/ana.26792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mariola Skorupinksa
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julian Blake
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
19
|
Morant L, Petrovic-Erfurth ML, Jordanova A. An Adapted GeneSwitch Toolkit for Comparable Cellular and Animal Models: A Proof of Concept in Modeling Charcot-Marie-Tooth Neuropathy. Int J Mol Sci 2023; 24:16138. [PMID: 38003325 PMCID: PMC10670994 DOI: 10.3390/ijms242216138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Investigating the impact of disease-causing mutations, their affected pathways, and/or potential therapeutic strategies using disease modeling often requires the generation of different in vivo and in cellulo models. To date, several approaches have been established to induce transgene expression in a controlled manner in different model systems. Several rounds of subcloning are, however, required, depending on the model organism used, thus bringing labor-intensive experiments into the technical approach and analysis comparison. The GeneSwitch™ technology is an adapted version of the classical UAS-GAL4 inducible system, allowing the spatial and temporal modulation of transgene expression. It consists of three components: a plasmid encoding for the chimeric regulatory pSwitch protein, Mifepristone as an inducer, and an inducible plasmid. While the pSwitch-containing first plasmid can be used both in vivo and in cellulo, the inducible second plasmid can only be used in cellulo. This requires a specific subcloning strategy of the inducible plasmid tailored to the model organism used. To avoid this step and unify gene expression in the transgenic models generated, we replaced the backbone vector with standard pUAS-attB plasmid for both plasmids containing either the chimeric GeneSwitch™ cDNA sequence or the transgene cDNA sequence. We optimized this adapted system to regulate transgene expression in several mammalian cell lines. Moreover, we took advantage of this new system to generate unified cellular and fruit fly models for YARS1-induced Charco-Marie-Tooth neuropathy (CMT). These new models displayed the expected CMT-like phenotypes. In the N2a neuroblastoma cells expressing YARS1 transgenes, we observed the typical "teardrop" distribution of the synthetase that was perturbed when expressing the YARS1CMT mutation. In flies, the ubiquitous expression of YARS1CMT induced dose-dependent developmental lethality and pan-neuronal expression caused locomotor deficit, while expression of the wild-type allele was harmless. Our proof-of-concept disease modeling studies support the efficacy of the adapted transgenesis system as a powerful tool allowing the design of studies with optimal data comparability.
Collapse
Affiliation(s)
- Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
20
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
21
|
Rochín-Hernández LJ, Jiménez-Acosta MA, Ramírez-Reyes L, Figueroa-Corona MDP, Sánchez-González VJ, Orozco-Barajas M, Meraz-Ríos MA. The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study. Int J Mol Sci 2023; 24:12606. [PMID: 37628788 PMCID: PMC10454072 DOI: 10.3390/ijms241612606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico;
| | - María del Pilar Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Víctor J. Sánchez-González
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Maribel Orozco-Barajas
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| |
Collapse
|
22
|
Meyer-Schuman R, Marte S, Smith TJ, Feely SME, Kennerson M, Nicholson G, Shy ME, Koutmou KS, Antonellis A. A humanized yeast model reveals dominant-negative properties of neuropathy-associated alanyl-tRNA synthetase mutations. Hum Mol Genet 2023; 32:2177-2191. [PMID: 37010095 PMCID: PMC10281750 DOI: 10.1093/hmg/ddad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Mike E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Llauradó A, Gratacòs-Viñola M, Rovira-Moreno E, Codina-Solà M, Salvadó M, Sanchez-Tejerina D, Sotoca J, Raguer N, Garcia-Arumi E, Juntas-Morales R. Distal hereditary motor neuropathy due to a novel YARS1 gene pathogenic variant. Muscle Nerve 2023; 67:E22-E24. [PMID: 36631979 DOI: 10.1002/mus.27788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Affiliation(s)
- Arnau Llauradó
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarida Gratacòs-Viñola
- Department of Clinical Neurophysiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eulàlia Rovira-Moreno
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Codina-Solà
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Salvadó
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Raguer
- Department of Clinical Neurophysiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Garcia-Arumi
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
26
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
27
|
Arnold FJ, Burns M, Chiu Y, Carvalho J, Nguyen AD, Ralph PC, La Spada AR, Bennett CL. Chronic BMAA exposure combined with TDP-43 mutation elicits motor neuron dysfunction phenotypes in mice. Neurobiol Aging 2023; 126:44-57. [PMID: 36931113 DOI: 10.1016/j.neurobiolaging.2023.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an average age-of-onset of ∼60 years and is usually fatal within 2-5 years of diagnosis. Mouse models based upon single gene mutations do not recapitulate all ALS pathological features. Environmental insults may also contribute to ALS, and β-N-methylamino-L-alanine (BMAA) is an environmental toxin linked with an increased risk of developing ALS. BMAA, along with cycasin, are hypothesized to be the cause of the Guam-ALS epicenter of the 1950s. We developed a multihit model based on low expression of a dominant familial ALS TDP-43 mutation (Q331K) and chronic low-dose BMAA exposure. Our two-hit mouse model displayed a motor phenotype absent from either lesion alone. By LC/MS analysis, free BMAA was confirmed at trace levels in brain, and were as high as 405 ng/mL (free) and 208 ng/mL (protein-bound) in liver. Elevated BMAA levels in liver were associated with dysregulation of the unfolded protein response (UPR) pathway. Our data represent initial steps towards an ALS mouse model resulting from combined genetic and environmental insult.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - M Burns
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Y Chiu
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC, USA
| | - J Carvalho
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - P C Ralph
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA.
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
28
|
Towards a Cure for HARS Disease. Genes (Basel) 2023; 14:genes14020254. [PMID: 36833180 PMCID: PMC9956352 DOI: 10.3390/genes14020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.
Collapse
|
29
|
Forrest ME, Meyer AP, Laureano Figueroa SM, Antonellis A. A missense, loss-of-function YARS1 variant in a patient with proximal-predominant motor neuropathy. Cold Spring Harb Mol Case Stud 2022; 8:a006246. [PMID: 36307205 PMCID: PMC9808560 DOI: 10.1101/mcs.a006246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes with a critical role in protein synthesis: charging tRNA molecules with cognate amino acids. Heterozygosity for variants in five genes (AARS1, GARS1, HARS1, WARS1, and YARS1) encoding cytoplasmic, dimeric ARSs have been associated with autosomal dominant neurological phenotypes, including axonal Charcot-Marie-Tooth disease (CMT). Missense variants in the catalytic domain of YARS1 were previously linked to dominant intermediate CMT type C (DI-CMTC). Here, we report a patient with a missense variant of unknown significance predicted to modify residue 308 in the anticodon binding domain of YARS1 (p.Asp308Tyr). Interestingly, p.Asp308Tyr is associated with proximal-predominant motor neuropathy, which has not been reported in patients with pathogenic YARS1 variants. We demonstrate that this allele causes a loss-of-function effect in yeast complementation assays when modeled in YARS1 and the yeast ortholog TYS1; structural modeling of this variant further supports a loss-of-function effect. Taken together, this study raises the possibility that certain YARS1 variants cause proximal-prominent motor neuropathy and indicates that patients with this phenotype should be screened for genetic lesions in YARS1.
Collapse
Affiliation(s)
- Megan E Forrest
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
30
|
Jennings MJ, Kagiava A, Vendredy L, Spaulding EL, Stavrou M, Hathazi D, Grüneboom A, De Winter V, Gess B, Schara U, Pogoryelova O, Lochmüller H, Borchers CH, Roos A, Burgess RW, Timmerman V, Kleopa KA, Horvath R. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain 2022; 145:3999-4015. [PMID: 35148379 PMCID: PMC9679171 DOI: 10.1093/brain/awac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular markers scalable for clinical use are critical for the development of effective treatments and the design of clinical trials. Here, we identify proteins in sera of patients and mouse models with Charcot-Marie-Tooth disease (CMT) with characteristics that make them suitable as biomarkers in clinical practice and therapeutic trials. We collected serum from mouse models of CMT1A (C61 het), CMT2D (GarsC201R, GarsP278KY), CMT1X (Gjb1-null), CMT2L (Hspb8K141N) and from CMT patients with genotypes including CMT1A (PMP22d), CMT2D (GARS), CMT2N (AARS) and other rare genetic forms of CMT. The severity of neuropathy in the patients was assessed by the CMT Neuropathy Examination Score (CMTES). We performed multitargeted proteomics on both sample sets to identify proteins elevated across multiple mouse models and CMT patients. Selected proteins and additional potential biomarkers, such as growth differentiation factor 15 (GDF15) and cell free mitochondrial DNA, were validated by ELISA and quantitative PCR, respectively. We propose that neural cell adhesion molecule 1 (NCAM1) is a candidate biomarker for CMT, as it was elevated in Gjb1-null, Hspb8K141N, GarsC201R and GarsP278KY mice as well as in patients with both demyelinating (CMT1A) and axonal (CMT2D, CMT2N) forms of CMT. We show that NCAM1 may reflect disease severity, demonstrated by a progressive increase in mouse models with time and a significant positive correlation with CMTES neuropathy severity in patients. The increase in NCAM1 may reflect muscle regeneration triggered by denervation, which could potentially track disease progression or the effect of treatments. We found that member proteins of the complement system were elevated in Gjb1-null and Hspb8K141N mouse models as well as in patients with both demyelinating and axonal CMT, indicating possible complement activation at the impaired nerve terminals. However, complement proteins did not correlate with the severity of neuropathy measured on the CMTES scale. Although the complement system does not seem to be a prognostic biomarker, we do show complement elevation to be a common disease feature of CMT, which may be of interest as a therapeutic target. We also identify serum GDF15 as a highly sensitive diagnostic biomarker, which was elevated in all CMT genotypes as well as in Hspb8K141N, Gjb1-null, GarsC201R and GarsP278KY mouse models. Although we cannot fully explain its origin, it may reflect increased stress response or metabolic disturbances in CMT. Further large and longitudinal patient studies should be performed to establish the value of these proteins as diagnostic and prognostic molecular biomarkers for CMT.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexia Kagiava
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Marina Stavrou
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Dortmund, Germany
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Burkhard Gess
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Ulrike Schara
- Centre for Neuromuscular Disorders in Children, University of Duisburg-Essen, Essen, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andreas Roos
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute and Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Kleopas A Kleopa
- Department of Neuroscience and Neuromuscular Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Zheng T, Luo Q, Han C, Zhou J, Gong J, Chun L, Xu XZS, Liu J. Cytoplasmic and mitochondrial aminoacyl-tRNA synthetases differentially regulate lifespan in Caenorhabditis elegans. iScience 2022; 25:105266. [PMID: 36304099 PMCID: PMC9593246 DOI: 10.1016/j.isci.2022.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
Reducing the rate of translation promotes longevity in multiple organisms, representing a conserved mechanism for lifespan extension. Aminoacyl-tRNA synthetases (ARSs) catalyze the loading of amino acids to their cognate tRNAs, thereby playing an essential role in translation. Mutations in ARS genes are associated with various human diseases. However, little is known about the role of ARSs in aging, particularly whether and how these genes regulate lifespan. Here, using Caenorhabditis elegans as a model, we systematically characterized the role of all three types of ARS genes in lifespan regulation, including mitochondrial, cytoplasmic, and cyto-mito bifunctional ARS genes. We found that, as expected, RNAi knockdown of mitochondrial ARS genes extended lifespan. Surprisingly, knocking down cytoplasmic or cyto-mito bifunctional ARS genes shortened lifespan, though such treatment reduced the rate of translation. These results reveal opposing roles of mitochondrial and cytoplasmic ARSs in lifespan regulation, demonstrating that inhibiting translation may not always extend lifespan. RNAi knockdown of mitochondrial ARS genes extends lifespan via UPRmt RNAi knockdown of cytoplasmic or cyto-mito bifunctional ARS genes shortens lifespan Inhibiting translation may not always extend lifespan
Collapse
Affiliation(s)
- Tianlin Zheng
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qiang Luo
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chengxuan Han
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiejun Zhou
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Chun
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
32
|
Hines TJ, Tadenev ALD, Lone MA, Hatton CL, Bagasrawala I, Stum MG, Miers KE, Hornemann T, Burgess RW. Precision mouse models of Yars/dominant intermediate Charcot-Marie-Tooth disease type C and Sptlc1/hereditary sensory and autonomic neuropathy type 1. J Anat 2022; 241:1169-1185. [PMID: 34875719 PMCID: PMC9170831 DOI: 10.1111/joa.13605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/25/2023] Open
Abstract
Animal models of neurodegenerative diseases such as inherited peripheral neuropathies sometimes accurately recreate the pathophysiology of the human disease, and sometimes accurately recreate the genetic perturbations found in patients. Ideally, models achieve both, but this is not always possible; nonetheless, such models are informative. Here we describe two animal models of inherited peripheral neuropathy: mice with a mutation in tyrosyl tRNA-synthetase, YarsE196K , modeling dominant intermediate Charcot-Marie-Tooth disease type C (diCMTC), and mice with a mutation in serine palmitoyltransferase long chain 1, Sptlc1C133W , modeling hereditary sensory and autonomic neuropathy type 1 (HSAN1). YarsE196K mice develop disease-relevant phenotypes including reduced motor performance and reduced nerve conduction velocities by 4 months of age. Peripheral motor axons are reduced in size, but there is no reduction in axon number and plasma neurofilament light chain levels are not increased. Unlike the dominant human mutations, the YarsE196K mice only show these phenotypes as homozygotes, or as compound heterozygotes with a null allele, and no phenotype is observed in E196K or null heterozygotes. The Sptlc1C133W mice carry a knockin allele and show the anticipated increase in 1-deoxysphingolipids in circulation and in a variety of tissues. They also have mild behavioral defects consistent with HSAN1, but do not show neurophysiological defects or axon loss in peripheral nerves or in the epidermis of the hind paw or tail. Thus, despite the biochemical phenotype, the Sptlc1C133W mice do not show a strong neuropathy phenotype. Surprisingly, these mice were lethal as homozygotes, but the heterozygous genotype studied corresponds to the dominant genetics seen in humans. Thus, YarsE196K homozygous mice have a relevant phenotype, but imprecisely reproduce the human genetics, whereas the Sptlc1C133W mice precisely reproduce the human genetics, but do not recreate the disease phenotype. Despite these shortcomings, both models are informative and will be useful for future research.
Collapse
Affiliation(s)
| | | | - Museer A. Lone
- Institute for Clinical ChemistryUniversity of ZurichZurichSwitzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Sleigh JN. Editorial: Peripheral nerve anatomy in health and disease. J Anat 2022; 241:1083-1088. [PMID: 36226698 PMCID: PMC9558158 DOI: 10.1111/joa.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research InstituteUniversity College LondonLondonUK
| |
Collapse
|
34
|
Turvey AK, Horvath GA, Cavalcanti ARO. Aminoacyl-tRNA synthetases in human health and disease. Front Physiol 2022; 13:1029218. [PMID: 36330207 PMCID: PMC9623071 DOI: 10.3389/fphys.2022.1029218] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Aminoacyl-tRNA Synthetases (aaRSs) are an evolutionarily ancient family of enzymes that catalyze the esterification reaction linking a transfer RNA (tRNA) with its cognate amino acid matching the anticodon triplet of the tRNA. Proper functioning of the aaRSs to create aminoacylated (or “charged”) tRNAs is required for efficient and accurate protein synthesis. Beyond their basic canonical function in protein biosynthesis, aaRSs have a surprisingly diverse array of non-canonical functions that are actively being defined. The human genome contains 37 genes that encode unique aaRS proteins. To date, 56 human genetic diseases caused by damaging variants in aaRS genes have been described: 46 are autosomal recessive biallelic disorders and 10 are autosomal dominant monoallelic disorders. Our appreciation of human diseases caused by damaging genetic variants in the aaRSs has been greatly accelerated by the advent of next-generation sequencing, with 89% of these gene discoveries made since 2010. In addition to these genetic disorders of the aaRSs, anti-synthetase syndrome (ASSD) is a rare autoimmune inflammatory myopathy that involves the production of autoantibodies that disrupt aaRS proteins. This review provides an overview of the basic biology of aaRS proteins and describes the rapidly growing list of human diseases known to be caused by genetic variants or autoimmune targeting that affect both the canonical and non-canonical functions of these essential proteins.
Collapse
Affiliation(s)
- Alexandra K. Turvey
- Department of Biology, Pomona College, Claremont, CA, United States
- *Correspondence: Alexandra K. Turvey,
| | - Gabriella A. Horvath
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children’s Hospital, Vancouver, BC, Canada
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
35
|
Høyer H, Busk ØL, Esbensen QY, Røsby O, Hilmarsen HT, Russell MB, Nyman TA, Braathen GJ, Nilsen HL. Clinical characteristics and proteome modifications in two Charcot-Marie-Tooth families with the AARS1 Arg326Trp mutation. BMC Neurol 2022; 22:299. [PMID: 35971119 PMCID: PMC9377087 DOI: 10.1186/s12883-022-02828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aminoacyl tRNA-synthetases are ubiquitously-expressed enzymes that attach amino acids to their cognate tRNA molecules. Mutations in several genes encoding aminoacyl tRNA-synthetases, have been associated with peripheral neuropathy, i.e. AARS1, GARS1, HARS1, YARS1 and WARS1. The pathogenic mechanism underlying AARS1-related neuropathy is not known. METHODS From 2012 onward, all probands presenting at Telemark Hospital (Skien, Norway) with peripheral neuropathy were screened for variants in AARS1 using an "in-house" next-generation sequencing panel. DNA from patient's family members was examined by Sanger sequencing. Blood from affected family members and healthy controls were used for quantification of AARS1 mRNA and alanine. Proteomic analyses were conducted in peripheral blood mononuclear cells (PBMC) from four affected family members and five healthy controls. RESULTS Seventeen individuals in two Norwegian families affected by Charcot-Marie-Tooth disease (CMT) were characterized in this study. The heterozygous NM_001605.2:c.976C > T p.(Arg326Trp) AARS1 mutation was identified in ten affected family members. All living carriers had a mild to severe length-dependent sensorimotor neuropathy. Three deceased obligate carriers aged 74-98 were reported to be unaffected, but were not examined in the clinic. Proteomic studies in PBMC from four affected individuals suggest an effect on the immune system mediated by components of a systemic response to chronic injury and inflammation. Furthermore, altered expression of proteins linked to mitochondrial function/dysfunction was observed. Proteomic data are available via ProteomeXchange using identifier PXD023842. CONCLUSION This study describes clinical and neurophysiological features linked to the p.(Arg326Trp) variant of AARS1 in CMT-affected members of two Norwegian families. Proteomic analyses based on of PBMC from four CMT-affected individuals suggest that involvement of inflammation and mitochondrial dysfunction might contribute to AARS1 variant-associated peripheral neuropathy.
Collapse
Affiliation(s)
- Helle Høyer
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Q Ying Esbensen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Oddveig Røsby
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.,Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
| | - Hilde T Hilmarsen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Michael B Russell
- Head and Neck Research Group, Division for Research and Innovation, Akershus University Hospital, 1478, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Akershus University Hospital, University of Oslo, 1474, Norbyhagen, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet, 0372, Oslo, Norway
| | - Geir J Braathen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Hilde L Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| |
Collapse
|
36
|
Wusiman W, Zhang Z, Ding Q, Liu M. The pathophyiological role of aminoacyl-tRNA synthetases in digestive system diseases. Front Physiol 2022; 13:935576. [PMID: 36017335 PMCID: PMC9396140 DOI: 10.3389/fphys.2022.935576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs and are indispensable enzymes for protein biosynthesis in all the cells. Previously, ARSs were considered simply as housekeeping enzymes, however, they are now known to be involved in a variety of physiological and pathological processes, such as tumorigenesis, angiogenesis, and immune response. In this review, we summarize the role of ARSs in the digestive system, including the esophagus, stomach, small intestine, colon, as well as the auxiliary organs such as the pancreas, liver, and the gallbladder. Furthermore, we specifically focus on the diagnostic and prognostic value of ARSs in cancers, aiming to provide new insights into the pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Wugelanmu Wusiman
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Mei Liu,
| |
Collapse
|
37
|
Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration. Nat Commun 2022; 13:3244. [PMID: 35688816 PMCID: PMC9187644 DOI: 10.1038/s41467-022-30785-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
Serum tyrosine levels increase during aging, neurocognitive, metabolic, and cardiovascular disorders. However, calorie restriction (CR) and sleep lower serum tyrosine levels. We previously showed that tyrosine inhibits tyrosyl-tRNA synthetase (TyrRS)-mediated activation of poly-ADP-ribose polymerase 1 (PARP1). Here, we show that histone serine-ADP-ribosylation is decreased in Alzheimer's Disease (AD) brains, and increased tyrosine levels deplete TyrRS and cause neuronal DNA damage. However, dopamine and brain-derived neurotrophic factor (BDNF) increase TyrRS and histone serine-ADP-ribosylation. Furthermore, cis-resveratrol (cis-RSV) that binds to TyrRS mimicking a 'tyrosine-free' conformation increases TyrRS, facilitates histone serine-ADP-ribosylation-dependent DNA repair, and provides neuroprotection in a TyrRS-dependent manner. Conversely, trans-RSV that binds to TyrRS mimicking a 'tyrosine-like' conformation decreases TyrRS, inhibits serine-ADP-ribosylation-dependent DNA repair, and induces neurodegeneration in rat cortical neurons. Our findings suggest that age-associated increase in serum tyrosine levels may effect neurocognitive and metabolic disorders and offer a plausible explanation for divergent results obtained in clinical trials using resveratrol.
Collapse
|
38
|
Shcherbakov D, Nigri M, Akbergenov R, Brilkova M, Mantovani M, Petit PI, Grimm A, Karol AA, Teo Y, Sanchón AC, Kumar Y, Eckert A, Thiam K, Seebeck P, Wolfer DP, Böttger EC. Premature aging in mice with error-prone protein synthesis. SCIENCE ADVANCES 2022; 8:eabl9051. [PMID: 35235349 PMCID: PMC8890705 DOI: 10.1126/sciadv.abl9051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.
Collapse
Affiliation(s)
- Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Martina Nigri
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | | | - Amandine Grimm
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | - Agnieszka A. Karol
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Adrián Cortés Sanchón
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, D-78467 Konstanz, Germany
| | - Anne Eckert
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - David P. Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
- Corresponding author.
| |
Collapse
|
39
|
Hines TJ, Lutz C, Murray SA, Burgess RW. An Integrated Approach to Studying Rare Neuromuscular Diseases Using Animal and Human Cell-Based Models. Front Cell Dev Biol 2022; 9:801819. [PMID: 35047510 PMCID: PMC8762301 DOI: 10.3389/fcell.2021.801819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.
Collapse
|
40
|
Averdunk L, Sticht H, Surowy H, Lüdecke HJ, Koch-Hogrebe M, Alsaif HS, Kahrizi K, Alzaidan H, Alawam BS, Tohary M, Kraus C, Endele S, Wadman E, Kaplan JD, Efthymiou S, Najmabadi H, Reis A, Alkuraya FS, Wieczorek D. The recurrent missense mutation p.(Arg367Trp) in YARS1 causes a distinct neurodevelopmental phenotype. J Mol Med (Berl) 2021; 99:1755-1768. [PMID: 34536092 PMCID: PMC8599376 DOI: 10.1007/s00109-021-02124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022]
Abstract
Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) cause a diverse spectrum of autosomal recessive disorders. Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 (cytosolic, OMIM*603,623) and is responsible of coupling tyrosine to its specific tRNA. Next to the enzymatic domain, TyrRS has two additional functional domains (N-Terminal TyrRSMini and C-terminal EMAP-II-like domain) which confer cytokine-like functions. Mutations in YARS1 have been associated with autosomal-dominant Charcot-Marie-Tooth (CMT) neuropathy type C and a heterogenous group of autosomal recessive, multisystem diseases. We identified 12 individuals from 6 families with the recurrent homozygous missense variant c.1099C > T;p.(Arg367Trp) (NM_003680.3) in YARS1. This variant causes a multisystem disorder with developmental delay, microcephaly, failure to thrive, short stature, muscular hypotonia, ataxia, brain anomalies, microcytic anemia, hepatomegaly, and hypothyroidism. In silico analyses show that the p.(Arg367Trp) does not affect the catalytic domain responsible of enzymatic coupling, but destabilizes the cytokine-like C-terminal domain. The phenotype associated with p.(Arg367Trp) is distinct from the other biallelic pathogenic variants that reside in different functional domains of TyrRS which all show some common, but also divergent clinical signs [(e.g., p.(Phe269Ser)-retinal anomalies, p.(Pro213Leu)/p.(Gly525Arg)-mild ID, p.(Pro167Thr)-high fatality)]. The diverse clinical spectrum of ARS1-associated disorders is related to mutations affecting the various non-canonical domains of ARS1, and impaired protein translation is likely not the exclusive disease-causing mechanism of YARS1- and ARS1-associated neurodevelopmental disorders. KEY MESSAGES: The missense variant p.(Arg367Trp) in YARS1 causes a distinct multisystem disorder. p.(Arg367Trp) affects a non-canonical domain with cytokine-like functions. Phenotypic heterogeneity associates with the different affected YARS1 domains. Impaired protein translation is likely not the exclusive mechanism of ARS1-associated disorders.
Collapse
Affiliation(s)
- Luisa Averdunk
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hermann-Josef Lüdecke
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | | | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamad Alzaidan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bashayer S Alawam
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Tohary
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Cornelia Kraus
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Endele
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Erin Wadman
- Division of Medical Genetics, Department of Pediatrics, Nemours Alfred I, DuPont Hospital for Children, Wilmington, Delaware, DE, USA
| | - Julie D Kaplan
- Division of Medical Genetics, Department of Pediatrics, Nemours Alfred I, DuPont Hospital for Children, Wilmington, Delaware, DE, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Hossein Najmabadi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - André Reis
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
41
|
Nam DE, Park JH, Park CE, Jung NY, Nam SH, Kwon HM, Kim HS, Kim SB, Son WS, Choi BO, Chung KW. Variants of aminoacyl-tRNA synthetase genes in Charcot-Marie-Tooth disease: A Korean cohort study. J Peripher Nerv Syst 2021; 27:38-49. [PMID: 34813128 DOI: 10.1111/jns.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.
Collapse
Affiliation(s)
- Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Cho Eun Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Soo Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Gangdong Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Won Seok Son
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| |
Collapse
|
42
|
Park NY, Kwak G, Doo HM, Kim HJ, Jang SY, Lee YI, Choi BO, Hong YB. Farnesol Ameliorates Demyelinating Phenotype in a Cellular and Animal Model of Charcot-Marie-Tooth Disease Type 1A. Curr Issues Mol Biol 2021; 43:2011-2021. [PMID: 34889893 PMCID: PMC8928981 DOI: 10.3390/cimb43030138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea;
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - Hyun-Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - Hye-Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - So-Young Jang
- Departments of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (B.-O.C.); (Y.-B.H.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-51-240-2762 (Y.-B.H.); Fax: +82-3410-0052 (B.-O.C.); +82-51-240-2971 (Y.-B.H.)
| | - Young-Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea;
- Departments of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
- Correspondence: (B.-O.C.); (Y.-B.H.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-51-240-2762 (Y.-B.H.); Fax: +82-3410-0052 (B.-O.C.); +82-51-240-2971 (Y.-B.H.)
| |
Collapse
|
43
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
44
|
Okamoto N, Miya F, Tsunoda T, Kanemura Y, Saitoh S, Kato M, Yanagi K, Kaname T, Kosaki K. Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurol Sci 2021; 43:2765-2774. [PMID: 34585293 DOI: 10.1007/s10072-021-05626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan.
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Ravel JM, Dreumont N, Mosca P, Smith DEC, Mendes MI, Wiedemann A, Coelho D, Schmitt E, Rivière JB, Tran Mau-Them F, Thevenon J, Kuentz P, Polivka M, Fuchs SA, Kok G, Thauvin-Robinet C, Guéant JL, Salomons GS, Faivre L, Feillet F. A bi-allelic loss-of-function SARS1 variant in children with neurodevelopmental delay, deafness, cardiomyopathy, and decompensation during fever. Hum Mutat 2021; 42:1576-1583. [PMID: 34570399 DOI: 10.1002/humu.24285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl-tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl-tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNASer . SARS1 deficiency has already been associated with moderate intellectual disability, ataxia, muscle weakness, and seizure in one family. We describe here a new clinical presentation including developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death, in a consanguineous Turkish family, with biallelic variants (c.638G>T, p.(Arg213Leu)) in SARS1. This missense variant was shown to lead to protein instability, resulting in reduced protein level and enzymatic activity. Our results describe a new clinical entity and expand the clinical and mutational spectrum of SARS1 and aaRS deficiencies.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Pauline Mosca
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - David Coelho
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Jean-Baptiste Rivière
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Paul Kuentz
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Marc Polivka
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Regenerative Medicine Utrecht, Utrecht, The Netherlands.,On behalf of "United for Metabolic Diseases,", Amsterdam, the Netherlands
| | - Gautam Kok
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Jean-Louis Guéant
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laurence Faivre
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - François Feillet
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| |
Collapse
|
46
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
47
|
Zou Y, Yang Y, Fu X, He X, Liu M, Zong T, Li X, Htet Aung L, Wang Z, Yu T. The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:372-387. [PMID: 34484863 PMCID: PMC8399643 DOI: 10.1016/j.omtn.2021.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are widely found in organisms, which can activate amino acids and make them bind to tRNA through ester bond to form the corresponding aminoyl-tRNA. The classic function of ARS is to provide raw materials for protein biosynthesis. Recently, emerging evidence demonstrates that ARSs play critical roles in controlling inflammation, immune responses, and tumorigenesis as well as other important physiological and pathological processes. With the recent development of genome and exon sequencing technology, as well as the discovery of new clinical cases, ARSs have been reported to be closely associated with a variety of cardiovascular diseases (CVDs), particularly angiogenesis and cardiomyopathy. Intriguingly, aminoacylation was newly identified and reported to modify substrate proteins, thereby regulating protein activity and functions. Sensing the availability of intracellular amino acids is closely related to the regulation of a variety of cell physiology. In this review, we summarize the research progress on the mechanism of CVDs caused by abnormal ARS function and introduce the clinical phenotypes and characteristics of CVDs related to ARS dysfunction. We also highlight the potential roles of aminoacylation in CVDs. Finally, we discuss some of the limitations and challenges of present research. The current findings suggest the significant roles of ARSs involved in the progress of CVDs, which present the potential clinical values as novel diagnostic and therapeutic targets in CVD treatment.
Collapse
Affiliation(s)
- Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Lynn Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| |
Collapse
|
48
|
Spaulding EL, Hines TJ, Bais P, Tadenev ALD, Schneider R, Jewett D, Pattavina B, Pratt SL, Morelli KH, Stum MG, Hill DP, Gobet C, Pipis M, Reilly MM, Jennings MJ, Horvath R, Bai Y, Shy ME, Alvarez-Castelao B, Schuman EM, Bogdanik LP, Storkebaum E, Burgess RW. The integrated stress response contributes to tRNA synthetase-associated peripheral neuropathy. Science 2021; 373:1156-1161. [PMID: 34516839 PMCID: PMC8908546 DOI: 10.1126/science.abb3414] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dominant mutations in ubiquitously expressed transfer RNA (tRNA) synthetase genes cause axonal peripheral neuropathy, accounting for at least six forms of Charcot-Marie-Tooth (CMT) disease. Genetic evidence in mouse and Drosophila models suggests a gain-of-function mechanism. In this study, we used in vivo, cell type–specific transcriptional and translational profiling to show that mutant tRNA synthetases activate the integrated stress response (ISR) through the sensor kinase GCN2 (general control nonderepressible 2). The chronic activation of the ISR contributed to the pathophysiology, and genetic deletion or pharmacological inhibition of Gcn2 alleviated the peripheral neuropathy. The activation of GCN2 suggests that the aberrant activity of the mutant tRNA synthetases is still related to translation and that inhibiting GCN2 or the ISR may represent a therapeutic strategy in CMT.
Collapse
Affiliation(s)
- E. L. Spaulding
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - T. J. Hines
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - P. Bais
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - A. L. D. Tadenev
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - R. Schneider
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - D. Jewett
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - B. Pattavina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - S. L. Pratt
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111 USA
| | - K. H. Morelli
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - M. G. Stum
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - D. P. Hill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - C. Gobet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Pipis
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - M. M. Reilly
- MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - M. J. Jennings
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - R. Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Y. Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - M. E. Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - E. M. Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - L. P. Bogdanik
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - E. Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - R. W. Burgess
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111 USA
| |
Collapse
|
49
|
Zuko A, Mallik M, Thompson R, Spaulding EL, Wienand AR, Been M, Tadenev ALD, van Bakel N, Sijlmans C, Santos LA, Bussmann J, Catinozzi M, Das S, Kulshrestha D, Burgess RW, Ignatova Z, Storkebaum E. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 2021; 373:1161-1166. [PMID: 34516840 DOI: 10.1126/science.abb3356] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robin Thompson
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anne R Wienand
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | | | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarada Das
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
50
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|