1
|
Latchney SE, Raheja AC, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Glial changes in the dentate gyrus of neuronal-specific PTEN knockout mice correlate with changes in cell proliferation. J Neuroimmunol 2025; 404:578604. [PMID: 40188528 PMCID: PMC12097938 DOI: 10.1016/j.jneuroim.2025.578604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
Dysregulated hippocampal neurogenesis is a feature of temporal lobe epilepsy (TLE), marked by increased neuronal proliferation. The tumor suppressor gene phosphatase and tensin homolog (PTEN) regulates neuronal proliferation, and its deletion is implicated in TLE. We have previously shown that deletion of neuronal subset-specific (NS)-PTEN in mice increases the number of proliferating cells throughout the dentate gyrus, including subregions that are typically devoid of neurons but rich in glial cells, most notably the Hilus and Molecular Layer. In this study, we hypothesized that NS-PTEN knockout mice would exhibit increased numbers of microglia and astrocytes in these same dentate gyrus subregions. We performed immunohistochemistry for Iba1 (microglia) and GFAP (reactive astrocytes) on wild-type and NS-PTEN knockout mice at 4 and 10 weeks of age. Our data reveal that NS-PTEN knockout mice exhibit increased Iba1+ cell density at both ages, with some male-specific effects. Subregional analysis of the dentate gyrus showed that at 4 weeks, NS-PTEN knockout mice had greater Iba1+ cell density in the Granule Cell Layer (GCL) and Hilus, and at 10 weeks, increases were observed in the GCL, Hilus, and Molecular Layer. Additionally, we observed an increased number of microglia with an amoeboid morphology and fewer with thin, ramified processes. Contrast to Iba1+ microglia, GFAP+ reactive astrocytes were localized to the neurogenic GCL. Importantly, increases in both glial types strongly correlated with heightened cell proliferation (Ki67+ cells), as reported in our previous study, underscoring the role of glial cells in the spatial dysregulation of neurogenesis in NS-PTEN knockout mice.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.
| | - Anjali C Raheja
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Brayan R Ruiz Lopez
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| |
Collapse
|
2
|
Chan CK, Lim KS, Chan CY, Kumar TS, Audrey C, Narayanan V, Fong SL, Ng CC. A review of epilepsy syndromes and epileptogenic mechanism affiliated with brain tumor related genes. Gene 2025; 962:149531. [PMID: 40294709 DOI: 10.1016/j.gene.2025.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is one of the comorbidities often manifested by patients with brain tumors. While there are reviews commenting on the epileptogenicity of brain-tumor-related genes, the reviews are commonly restricted to BRAF, IDH and PIK3CA. According to World Health Organization (WHO), at least 50 genes have been proposed as brain-tumor-related genes. Hence, we aimed to provide a more comprehensive review of the epileptogenicity of the brain-tumor-related genes. We performed an extensive literature search on PubMed, classified the studies, and provided an overview of the associated epilepsy phenotype and epileptogenic mechanism of the brain-tumor-related genes advocated by WHO. Through our analysis, we found a minor overlap between brain-tumor-related genes and epilepsy-associated genes, as some brain-tumor-related genes have been classified as epilepsy-associated genes in earlier studies. Besides reviewing the well-studied genes like TSC1 and TSC2, we identified several under-discovered brain-tumor-related genes, including TP53, CIC, IDH1 and NOTCH1, that warrant future exploration due to the existence of clinical or in vivo evidence substantiating their pathogenic role in epileptogenesis. We also propounded some methodologies that can be applied in future research to enhance the study of the epileptogenic mechanism of brain-tumor-related genes. To date, this article covers the greatest number of brain-tumor-related genes.
Collapse
Affiliation(s)
- Chung-Kin Chan
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thinisha Sathis Kumar
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ching-Ching Ng
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Hanna J, Touahri Y, Pak A, David LA, van Oosten E, Dixit R, Vecchio LM, Mehta DN, Minamisono R, Aubert I, Schuurmans C. Pten Loss Triggers Progressive Photoreceptor Degeneration in an mTORC1-Independent Manner. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 40116678 PMCID: PMC11935561 DOI: 10.1167/iovs.66.3.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose Silencing Phosphatase and tensin homolog (Pten) is a proposed therapeutic strategy for tissue regeneration to treat neurological disorders. However, Pten is pleiotropic, inhibiting several signaling and metabolic pathways, including mTORC1 and glycolysis, both pro-regenerative in certain contexts. This study aims to assess the long-term impact of inactivating Pten on photoreceptor survival in the retina and to identify downstream pathway(s). Methods We assessed retinal integrity in Pten conditional knock-outs (cKOs) that were retinal progenitor cell (RPC)-specific (Pten RPC-cKO), a congenital model, or rod-specific (Pten Rho-cKO). We examined early changes in photoreceptor gene expression and used immunostaining to assess photoreceptors, reactive astrocytes, microglia, angiogenesis, and subretinal deposit formation from postnatal day (P) 21 to 1 year of age. Pten RPC-cKO retinal explants were treated with rapamycin, an mTOR inhibitor, or 2-deoxy-D-glucose (2DG), a glycolysis inhibitor. Results In both Pten-cKO models, retinas display signs of early pathogenesis as photoreceptor-specific gene expression is downregulated at P0, before photoreceptor loss. Pten loss triggers progressive rod and cone degeneration beginning at P21 in Pten RPC-cKOs and at 6 months of age in Pten Rho-cKOs. Activated microglia and astrocytes, and increased angiogenesis, are observed in both Pten-cKO models, while subretinal amyloid-β deposits develop in Pten RPC-cKOs. Rapamycin accelerates photoreceptor degeneration in Pten RPC-cKOs, whereas 2DG has no effect. Conclusions Our findings suggest that Pten loss, either in RPCs as a congenital model, or solely in mature rod photoreceptors, leads to progressive retinal degeneration that is exacerbated by mTORC1 suppression, drawing into question the therapeutic value of Pten-mTORC1 manipulations.
Collapse
Affiliation(s)
- Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Edwin van Oosten
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Laura M. Vecchio
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ren Minamisono
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Li Q, Xu Z, Qin J, Yang Z. Epilepsy and Developmental Delay in Pediatric Patients With PTEN Variants and a Literature Review. Pediatr Neurol 2025; 163:35-44. [PMID: 39644587 DOI: 10.1016/j.pediatrneurol.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Epilepsy is not common in pediatric patients with phosphatase and tensin homolog (PTEN) variants. The characteristics of epilepsy, reactions to antiseizure medications, and prognosis in these patients are not fully understood. The aim of this study was to elucidate the characteristics of epilepsy and developmental outcomes in pediatric patients with PTEN variants. METHODS We collected data from pediatric patients followed in Peking University People's Hospital from July 2018 to April 2024. RESULTS Thirteen children harboring PTEN variants were identified (mean age, 4.1 years). All the children (100%) with PTEN variants exhibited macrocephaly, 92.3% (12 of 13) had developmental delays, and 38.5% (five of 13) were diagnosed with autism spectrum disorder. Among the 13 children, 15.4% (two of 13) had epilepsy, and both responded well to antiseizure medications. Furthermore, we reviewed published articles on PTEN variants and epilepsy. We found seven studies of 665 pediatric patients with PTEN variants, including 26 patients with epilepsy. Among the 26 epileptic patients, information about the number and response to antiseizure medications was available for only 14 patients, and 15 patients had information about seizure types. Focal seizures were the most common seizure type (10 of 15, 66.7%). Only 28.6% (four of 14) of patients were diagnosed with drug-resistant epilepsy, and all patients (four of four) had abnormal brain magnetic resonance imaging findings. CONCLUSIONS In summary, a high proportion of pediatric patients with PTEN variants have developmental delay. Among epileptic patients, the most common seizure type is focal seizures, and these patients are more likely to respond to antiseizure medications if their brain imaging results are normal. Further large-scale studies are necessary to characterize the clinical characteristics of pediatric patients with epilepsy harboring PTEN variants and establish standard treatments.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
5
|
Fernandez A, Sarn N, Eng C, Wright KM. Altered primary somatosensory neuron development in a Pten heterozygous model for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.04.552039. [PMID: 37781577 PMCID: PMC10541114 DOI: 10.1101/2023.08.04.552039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social interactions, repetitive behaviors, and hyper- or hyposensitivity to sensory stimuli. The mechanisms underlying the emergence of sensory features in ASD are not fully understood, but recent studies in rodent models highlight that these may result from differences in primary sensory neurons themselves. We examined sensory behaviors in a Pten haploinsufficient mouse model ( Pten Het ) for syndromic ASD and identified elevated responses to mechanical stimuli and a higher threshold to thermal responses. Transcriptomic and in vivo anatomical analysis identified alterations in subtype-specific markers of primary somatosensory neurons in Pten Het dorsal root ganglia (DRG). These defects emerge early during DRG development and involve dysregulation of multiple signaling pathways downstream of Pten . Finally, we show that mice harboring an ASD-associated mutation ( Pten Y69H ) also show altered expression of somatosensory neuron subtype-specific markers. Together, these results show that precise levels of Pten are required for proper somatosensory development and provide insight into the molecular and cellular basis of sensory abnormalities in a model for syndromic ASD.
Collapse
|
6
|
Hauptman JS, Antonios J, Mathern GW, Levine MS, Cepeda C. Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex. Cells 2025; 14:79. [PMID: 39851507 PMCID: PMC11764219 DOI: 10.3390/cells14020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten-/-, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs). Whole-cell patch clamp recordings in ex vivo slices examined the intrinsic and synaptic membrane properties of layer II/III CPNs in normal mice treated with rapamycin for four weeks, and Pten-/- mice with and without chronic treatment with rapamycin. Compared with control mice, CPNs from Pten-/- mice demonstrated increased membrane capacitance and time constant in association with increased neuronal somatic size, reduced neuronal firing, and decreased frequency of spontaneous and miniature inhibitory postsynaptic currents, consistent with decreased pre-synaptic GABA release. Rapamycin treatment for four weeks prevented these changes in Pten-/- mice. CPNs from normal mice chronically treated with rapamycin, compared with CPNs from naïve mice, showed reduced capacitance and time constant, increased input resistance, and changes in inhibitory synaptic inputs, consistent with increased pre-synaptic GABA release. These results support the concept that Pten deletion results in significant changes in inhibitory inputs onto CPNs, and these alterations can be prevented with chronic rapamycin treatment. In addition, normal mice treated with rapamycin also display altered membrane and synaptic properties. These findings have potential implications for the treatment of neurological disorders associated with mTOR pathway dysfunction, such as epilepsy and autism.
Collapse
Affiliation(s)
- Jason S. Hauptman
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Joseph Antonios
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Gary W. Mathern
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S. Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| |
Collapse
|
7
|
Yonan JM, Chen KD, Baram TZ, Steward O. PTEN deletion in the adult dentate gyrus induces epilepsy. Neurobiol Dis 2024; 203:106736. [PMID: 39547478 PMCID: PMC11756830 DOI: 10.1016/j.nbd.2024.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Embryonic and early postnatal promotor-driven deletion of the phosphatase and tensin homolog (PTEN) gene results in neuronal hypertrophy, hyperexcitable circuitry and development of spontaneous seizures in adulthood. We previously documented that focal, vector-mediated PTEN deletion in mature granule cells of the adult dentate gyrus triggers dramatic growth of cell bodies, dendrites, and axons, similar to that seen with early postnatal PTEN deletion. Here, we assess the functional consequences of focal, adult PTEN deletion, focusing on its pro-epileptogenic potential. PTEN deletion was accomplished by injecting AAV-Cre either bilaterally or unilaterally into the dentate gyrus of double transgenic PTEN-floxed, ROSA-reporter mice. Hippocampal recording electrodes were implanted for continuous digital EEG with concurrent video recordings in the home cage. Electrographic seizures and epileptiform spikes were assessed manually by two investigators, and correlated with concurrent videos. Spontaneous electrographic and behavioral seizures appeared after focal PTEN deletion in adult dentate granule cells, commencing around 2 months post-AAV-Cre injection. Seizures occurred in the majority of mice with unilateral or bilateral PTEN deletion and led to death in several cases. PTEN-deletion provoked epilepsy was not associated with apparent hippocampal neuron death; supra-granular mossy fiber sprouting was observed in a few mice. In summary, focal, unilateral deletion of PTEN in the adult dentate gyrus suffices to provoke time-dependent emergence of a hyperexcitable circuit generating hippocampus-origin, generalizing spontaneous seizures, providing a novel model for studies of adult-onset epileptogenesis.
Collapse
Affiliation(s)
- Jennifer M Yonan
- Reeve-Irvine Research Center, Gillespie Neuroscience Research Facility, 837 Health Sciences Road, University of California at Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA 92697, USA; University of California at Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Kevin D Chen
- Department of Neurology, University of California at Irvine, Irvine, CA 92697, USA
| | - Tallie Z Baram
- Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA 92697, USA; Department of Pediatrics, University of California at Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California at Irvine, Irvine, CA 92697, USA; University of California at Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, Gillespie Neuroscience Research Facility, 837 Health Sciences Road, University of California at Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior, University of California at Irvine, Irvine, CA 92697, USA; Department of Neurosurgery, University of California at Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92697, USA; University of California at Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
9
|
Narvaiz DA, Blandin KJ, Sullens DG, Womble PD, Pilcher JB, O'Neill G, Wiley TA, Kwok EM, Chilukuri SV, Lugo JN. NS-Pten knockout mice exhibit sex and hippocampal subregion-specific increases in microglia/macrophage density. Epilepsy Res 2024; 206:107440. [PMID: 39213710 DOI: 10.1016/j.eplepsyres.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, USA; Department of Biology, USA; Institute of Biomedical Studies, USA; Baylor University, Baylor Center for Developmental Disabilities, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
10
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
11
|
Yonan JM, Chen KD, Baram TZ, Steward O. PTEN DELETION IN THE ADULT DENTATE GYRUS INDUCES EPILEPSY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.606938. [PMID: 39149280 PMCID: PMC11326251 DOI: 10.1101/2024.08.07.606938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Embryonic and early postnatal promotor-driven deletion of the phosphatase and tensin homolog (PTEN) gene results in neuronal hypertrophy, hyperexcitable circuitry and development of spontaneous seizures in adulthood. We previously documented that focal, vector-mediated PTEN deletion in mature granule cells of adult dentate gyrus triggers dramatic growth of cell bodies, dendrites, and axons, similar to that seen with early postnatal PTEN deletion. Here, we assess the functional consequences of focal, adult PTEN deletion, focusing on its pro-epileptogenic potential. PTEN deletion was accomplished by injecting AAV-Cre either bilaterally or unilaterally into the dentate gyrus of double transgenic PTEN-floxed, ROSA-reporter mice. Hippocampal recording electrodes were implanted for continuous digital EEG with concurrent video recordings in the home cage. Electrographic seizures and epileptiform spikes were assessed manually by two investigators, and corelated with concurrent videos. Spontaneous electrographic and behavioral seizures appeared after focal PTEN deletion in adult dentate granule cells, commencing around 2 months post-AAV-Cre injection. Seizures occurred in the majority of mice with unilateral or bilateral PTEN deletion and led to death in several cases. PTEN-deletion provoked epilepsy was not associated with apparent hippocampal neuron death; supra-granular mossy fiber sprouting was observed in a few mice. In summary, focal, unilateral deletion of PTEN in the adult dentate gyrus suffices to provoke time-dependent emergence of a hyperexcitable circuit generating hippocampus-origin, generalizing spontaneous seizures, providing a novel model for studies of adult-onset epileptogenesis.
Collapse
Affiliation(s)
- Jennifer M Yonan
- Reeve-Irvine Research Center, Departments of Anatomy & Neurobiology, Neurobiology & Behavior, Neurosurgery, Pediatrics and Neurology, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92697
| | - Kevin D Chen
- Reeve-Irvine Research Center, Departments of Anatomy & Neurobiology, Neurobiology & Behavior, Neurosurgery, Pediatrics and Neurology, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92697
| | - Tallie Z Baram
- Reeve-Irvine Research Center, Departments of Anatomy & Neurobiology, Neurobiology & Behavior, Neurosurgery, Pediatrics and Neurology, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, Departments of Anatomy & Neurobiology, Neurobiology & Behavior, Neurosurgery, Pediatrics and Neurology, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92697
| |
Collapse
|
12
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
13
|
Li K, Cao JF, Gong Y, Xiong L, Wu M, Qi Y, Ying X, Liu D, Ma X, Zhang X. Rapamycin improves the survival of epilepsy model cells by blocking phosphorylation of mTOR base on computer simulations and cellular experiments. Neurochem Int 2024; 176:105746. [PMID: 38641027 DOI: 10.1016/j.neuint.2024.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.
Collapse
Affiliation(s)
- Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu, China; Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun-Feng Cao
- Chengdu Medical College, Chengdu, China; College of Medicine, Southwest Jiaotong University, Chengdu, China
| | | | - Li Xiong
- Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Chengdu Medical College, Chengdu, China
| | - Yue Qi
- Chengdu Medical College, Chengdu, China
| | | | | | - Xuntai Ma
- Chengdu Medical College, Chengdu, China; The First Affiliated Hospital of Clinical Medical College of Chengdu Medical College, Chengdu, China.
| | - Xiao Zhang
- Chengdu Medical College, Chengdu, China.
| |
Collapse
|
14
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
15
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
16
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
17
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
18
|
Metcalfe M, Steward O. PTEN deletion in spinal pathways via retrograde transduction with AAV-RG enhances forelimb motor recovery after cervical spinal cord injury; Sex differences and late-onset pathophysiologies. Exp Neurol 2023; 370:114551. [PMID: 37778650 DOI: 10.1016/j.expneurol.2023.114551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Spinal cord injuries (SCI) cause permanent functional impairments due to interruption of motor and sensory pathways. Regeneration of axons does not occur due to lack of intrinsic growth capacity of adult neurons and extrinsic inhibitory factors, especially at the injury site. However, some regeneration can be achieved via deletion of the phosphatase and tensin homolog (PTEN) in cells of origin of spinal pathways. Here, we deployed an AAV variant that is retrogradely transported (AAV-rg) to deliver gene modifying cargos to the cells of origin of multiple pathways interrupted by SCI, testing whether this promoted recovery of motor function. PTENf/f;RosatdTomato mice and control RosatdTomato mice received injections of different doses (number of genome copies, GCs) of AAV-rg/Cre into the cervical spinal cord at the time of a C5 dorsal hemisection injury. Forelimb grip strength was tested over time using a grip strength meter. PTENf/f;RosatdTomato mice with AAV-rg/Cre (PTEN-deleted) exhibited substantial improvements in forelimb gripping ability in comparison to controls. Of note, there were major sex differences in the extent of recovery, with male mice exhibiting greater recovery than females. However, at around 5-7 weeks post-injury/injection, many mice with SCI and AAV-rg-mediated PTEN deletion began to exhibit pathophysiologies involving excessive scratching of the ears and back of the neck and rigid forward extension of the hindlimbs. These pathophysiologies increased in incidence and severity over time. Our results reveal that although intra-spinal injections of AAV-rg/Cre in PTENf/f;RosatdTomato mice can enhance forelimb motor recovery after SCI, late-developing functional abnormalities occur with the experimental conditions used here. Mechanisms underlying late-developing pathophysiologies remain to be defined.
Collapse
Affiliation(s)
- Mariajose Metcalfe
- Reeve-Irvine Research Center University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA
| | - Oswald Steward
- Reeve-Irvine Research Center University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA; Department of Neurobiology & Behavior, University of California Irvine, USA; Department of Neurosurgery, University of California Irvine School of Medicine, USA.
| |
Collapse
|
19
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
20
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
21
|
Yonan JM, Steward O. Vector-mediated PTEN deletion in the adult dentate gyrus initiates new growth of granule cell bodies and dendrites and expansion of mossy fiber terminal fields that continues for months. Neurobiol Dis 2023; 184:106190. [PMID: 37290578 DOI: 10.1016/j.nbd.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Embryonic and early postnatal deletion of the gene phosphatase and tensin homolog (PTEN) results in neuronal hypertrophy, formation of aberrant neural networks and spontaneous seizures. Our previous studies document that deletion of PTEN in mature neurons also causes growth of cortical neuron cell bodies and dendrites, but it is unknown how this growth alters connectivity in mature circuits. Here, we explore consequences of deleting PTEN in a focal area of the dentate gyrus in adult male and female mice. PTEN deletion was accomplished by injecting AAV-Cre unilaterally into the dentate gyrus of double transgenic mice with lox-P sites flanking exon 5 of the PTEN gene and stop/flox tdTomato in the Rosa locus (PTENf/f/RosatdTomato). Focal deletion led to progressive increases in the size of the dentate gyrus at the injection site, enlargement of granule cell bodies, and increases in dendritic length and caliber. Quantitative analysis of dendrites by Golgi staining revealed dramatic increases in spine numbers throughout the proximo-distal extent of the dendritic tree, suggesting that dendritic growth is sufficient to induce new synapse formation by input neurons with intact PTEN expression. Tract tracing of input pathways to the dentate gyrus from the ipsilateral entorhinal cortex and commissural/associational system revealed that laminar specificity of termination of inputs is maintained. Mossy fiber axons from PTEN-deleted granule cells expanded their terminal field in CA3 where PTEN expression was intact and supra-granular mossy fibers developed in some mice. These findings document that persistent activation of mTOR via PTEN deletion in fully mature neurons re-initiates a state of robust cell-intrinsic growth, upending connectional homeostasis in fully mature hippocampal circuits.
Collapse
Affiliation(s)
- Jennifer M Yonan
- Reeve-Irvine Research Center, University of California at Irvine, 837 Health Sciences Rd., Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA 92697, USA; University of California at Irvine School of Medicine, Irvine, CA 92697, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California at Irvine, 837 Health Sciences Rd., Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California at Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior, University of California at Irvine, Irvine, CA 92697, USA; Department of Neurosurgery, University of California at Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA 92697, USA; University of California at Irvine School of Medicine, Irvine, CA 92697, USA.
| |
Collapse
|
22
|
Narvaiz DA, Nolan SO, Smith GD, Holley AJ, Reynolds CD, Blandin KJ, Nguyen PH, Tran DLK, Lugo JN. Rapamycin improves social and stereotypic behavior abnormalities induced by pre-mitotic neuronal subset specific Pten deletion. GENES, BRAIN, AND BEHAVIOR 2023:e12854. [PMID: 37376966 PMCID: PMC10393422 DOI: 10.1111/gbb.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is a signaling system integral to neural growth and migration. In both patients and rodent models, mutations to the phosphatase and tensin homolog gene (PTEN) on chromosome 10 results in hyperactivation of the mTOR pathway, as well as seizures, intellectual disabilities and autistic behaviors. Rapamycin, an inhibitor of mTOR, can reverse the epileptic phenotype of neural subset specific Pten knockout (NS-Pten KO) mice, but its impact on behavior is not known. To determine the behavioral effects of rapamycin, male and female NS-Pten KO and wildtype (WT) mice were assigned as controls or administered 10 mg/kg of rapamycin for 2 weeks followed by behavioral testing. Rapamycin improved social behavior in both genotypes and stereotypic behaviors in NS-Pten KO mice. Rapamycin treatment resulted in a reduction of several measures of activity in the open field test in both genotypes. Rapamycin did not reverse the reduced anxiety behavior in KO mice. These data show the potential clinical use of mTOR inhibitors by showing its administration can reduce the production of autistic-like behaviors in NS-Pten KO mice.
Collapse
Affiliation(s)
- David A Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Gregory D Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - Andrew J Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Conner D Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Katherine J Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Phuoc H Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Doan L K Tran
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
23
|
Zhu J, Guo S, Hu S, Chen Q. The 2210408F21Rik/miR-1968-5p/Hras axis regulates synapse-related proteins in a mouse model of depressive-like behaviors through a ceRNA mechanism. Behav Brain Res 2023; 447:114440. [PMID: 37075955 DOI: 10.1016/j.bbr.2023.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) has been correlated with depressive disorders, but limited data are available on the lncRNA-microRNA (miRNA/miR)-messenger RNA (mRNA) competitive endogenous RNA (ceRNA) mechanism in depression. Herein, we address this issue based on transcriptome sequencing and in vitro experiments. Mouse hippocampus tissues were obtained from chronic unpredictable mild stress (CUMS)-induced mice to screen out differentially expressed mRNAs and lncRNAs based on the transcriptome sequencing. Next, the depression-related differentially expressed genes (DEGs) were obtained, followed by Gene Ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) enrichment analysis. A total of 1018 differentially expressed mRNAs, 239 differentially expressed lncRNAs, and 58 DEGs related to depression were acquired. The miRNAs targeting Harvey rat sarcoma virus oncogene (Hras) and miRNAs sponged by Hras-related lncRNA were intersected to identify the ceRNA regulatory network. In addition, the synapse-related genes related to depression were acquired by bioinformatics analysis. Hras was identified as the core gene related to depression, mainly related to neuronal excitation. We also found that 2210408F21Rik competitively bound to miR-1968-5p that targeted Hras. The effects of 2210408F21Rik/miR-1968-5p/Hras axis on neuronal excitation were verified in primary hippocampal neurons. The experimental data indicated that the downregulation of 2210408F21Rik increased the level of miR-1968-5p to diminish Hras expression, thereby affecting neuronal excitation in CUMS mice. In conclusion, the 2210408F21Rik/miR-1968-5p/Hras ceRNA network can potentially affect the expression of synapsia-related proteins and is a promising target for preventing and treating depression.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China.
| | - Sen Guo
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical College, Chengde 067000, China; Department of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde 067000, China
| | - Shaofu Hu
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Qihang Chen
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| |
Collapse
|
24
|
Cheung SKK, Kwok J, Or PMY, Wong CW, Feng B, Choy KW, Chang RCC, Burbach JPH, Cheng ASL, Chan AM. Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci Rep 2023; 13:6763. [PMID: 37185447 PMCID: PMC10130134 DOI: 10.1038/s41598-023-33869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
PTEN hamartoma tumour syndrome is characterised by mutations in the human PTEN gene. We performed transcriptomic and proteomic analyses of neural tissues and primary cultures from heterozygous and homozygous Pten-knockout mice. The somatosensory cortex of heterozygous Pten-knockout mice was enriched in immune response and oligodendrocyte development Gene Ontology (GO) terms. Parallel proteomic analysis revealed differentially expressed proteins (DEPs) related to dendritic spine development, keratinisation and hamartoma signatures. However, primary astrocytes (ASTs) from heterozygous Pten-knockout mice were enriched in the extracellular matrix GO term, while primary cortical neurons (PCNs) were enriched in immediate-early genes. In ASTs from homozygous Pten-knockout mice, cilium-related activity was enriched, while PCNs exhibited downregulation of forebrain neuron generation and differentiation, implying an altered excitatory/inhibitory balance. By integrating DEPs with pre-filtered differentially expressed genes, we identified the enrichment of traits of intelligence, cognitive function and schizophrenia, while DEPs in ASTs were significantly associated with intelligence and depression.
Collapse
Affiliation(s)
- Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jacinda Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Raymond C C Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - J Peter H Burbach
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, 4/F, Hui Yeung Shing Building, Hong Kong, SAR, China.
| |
Collapse
|
25
|
Cullen ER, Tariq K, Shore AN, Luikart BW, Weston MC. mTORC2 Inhibition Improves Morphological Effects of PTEN Loss, But Does Not Correct Synaptic Dysfunction or Prevent Seizures. J Neurosci 2023; 43:827-845. [PMID: 36526374 PMCID: PMC9899090 DOI: 10.1523/jneurosci.1354-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperactivation of PI3K/PTEN-mTOR signaling during neural development is associated with focal cortical dysplasia (FCD), autism, and epilepsy. mTOR can signal through two major hubs, mTORC1 and mTORC2, both of which are hyperactive following PTEN loss of function (LOF). Here, we tested the hypothesis that genetic inactivation of the mTORC2 complex via deletion of Rictor is sufficient to rescue morphologic and electrophysiological abnormalities in the dentate gyrus caused by PTEN loss, as well as generalized seizures. An established, early postnatal mouse model of PTEN loss in male and female mice showed spontaneous seizures that were not prevented by mTORC2 inactivation. This lack of rescue occurred despite the normalization or amelioration of many morphologic and electrophysiological phenotypes. However, increased excitatory connectivity proximal to dentate gyrus granule neuron somas was not normalized by mTORC2 inactivation. Further studies demonstrated that, although mTORC2 inactivation largely rescued the dendritic arbor overgrowth caused by PTEN LOF, it increased synaptic strength and caused additional impairments of presynaptic function. These results suggest that a constrained increase in excitatory connectivity and co-occurring synaptic dysfunction is sufficient to generate seizures downstream of PTEN LOF, even in the absence of characteristic changes in morphologic properties.SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand the physiological mechanisms downstream of Pten loss that cause epilepsy, as well as the therapeutic potential of targeted gene therapies, we tested whether genetic inactivation of the mTORC2 complex could improve the cellular, synaptic, and in vivo effects of Pten loss in the dentate gyrus. We found that mTORC2 inhibition improved or rescued all morphologic effects of Pten loss in the dentate gyrus, but synaptic changes and seizures persisted. These data suggest that synaptic dysfunction can drive epilepsy caused by hyperactivation of PI3K/PTEN-mTOR, and that future therapies should focus on this mechanistic link.
Collapse
Affiliation(s)
- Erin R Cullen
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | - Amy N Shore
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | - Matthew C Weston
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia 24061
| |
Collapse
|
26
|
Wang Z, Miu KK, Chan SW, Ou F, Wai-Nok Law P, Chan WY. Genome-wide 5-hydroxymethylcytosine (5hmC) reassigned in Pten-depleted mESCs along neural differentiation. Front Cell Dev Biol 2022; 10:956604. [PMID: 36619862 PMCID: PMC9814970 DOI: 10.3389/fcell.2022.956604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
DNA methylation and hydroxymethylation have been implicated in the regulatory dynamics of gene expression in normal development and differentiation. 5-Hydroxymethylcytosine (5hmC), created by the ten-eleven translocation (TET) protein-catalyzed oxidation of 5-methylcytosine (5mC), is abundant in the brain, but the genome-wide distribution and impact of 5hmC during diverse neuronal differentiation remain unknown. Here, we used an in vitro model to differentiate mouse embryonic stem cells (mESCs) into ventral midbrain and hindbrain neural progenitors, followed by characterizing global 5hmC distribution using a nano-5hmC-seal approach. The 5hmC pattern was dynamic in promoter, exon, and enhancer regions, associated with gene activation and repression. For example, ventral midbrain markers (Lmx1a, Otx2, and Th) and hindbrain markers (Hoxa1, Zic1, and Tph1) acquire 5hmC and are upregulated during differentiation. Among the differentially expressed genes involved in both midbrain and hindbrain lineage commitment, phosphatase and tensin homolog (Pten) was identified as a key regulator for neuronal development. We confirmed that Pten knockout disrupted the normal differentiation of midbrain/hindbrain neural progenitors, resulting in immature neurons. In addition, 5421 and 4624 differentially hydroxymethylated regions (DhMRs) were identified in the differentiation of Pten-/- mESC into ventral midbrain and hindbrain progenitors, respectively. Gene ontology analysis showed that the majority of these DhMRs were associated with neurogenesis, ectoderm development, and signal transduction. Moreover, further combinational analysis of the 5hmC pattern and transcriptomic profile in the midbrain progenitor cells demonstrated Pten as a toggle to modulate mitochondrial associated pathways. Therefore, our findings elucidated the molecular mechanisms underlying lineage-specific differentiation of pluripotent stem cells to the midbrain/hindbrain progenitors, where Pten participates as one key regulator.
Collapse
Affiliation(s)
- Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China,*Correspondence: Kai-Kei Miu, ; Wai-Yee Chan,
| | - See-Wing Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fanghong Ou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Wai-Nok Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China,Key Laboratory for Regenerative Medicine, Jinan University-The Chinese University of Hong Kong, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China,*Correspondence: Kai-Kei Miu, ; Wai-Yee Chan,
| |
Collapse
|
27
|
Narvaiz DA, Sullens DG, Santana-Coelho D, Lugo JN. Neuronal subset-specific phosphatase and tensin homolog knockout mice exhibit age and brain region-associated alterations in microglia/macrophage activation. Neuroreport 2022; 33:476-480. [PMID: 35775322 PMCID: PMC9479702 DOI: 10.1097/wnr.0000000000001808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Seizures induce brain region-dependent enhancements in microglia/macrophage activation. Neuronal subset-specific phosphatase and tensin homolog (PTEN) knockout (KO) mice display hyperactive mammalian target of rapamycin (mTOR) signaling in the hippocampus, cerebellum, and cortex followed by seizures that increase in severity with age. To determine if KO mice also exhibit alterations in the spatiotemporal activation pattern of microglia, we used flow cytometry to compare the percentage of major histocompatibility complex-II activated microglia/macrophages between KO and wildtype (WT) mice at 5, 10, and 15 weeks of age. At 5 weeks, microglia/macrophage activation was greater in the cortex, P < 0.001, cerebellum, P < 0.001, and hippocampus, P < 0.001, of KO compared to WT mice. At 10 weeks, activation was greatest in the cortex of KO mice, P < 0.001, in the cerebellum of WT mice, P < 0.001, but similar in the hippocampus, P > 0.05. By 15 weeks, activation in the hippocampus was more than 25 times greater in KO mice compared to WT mice, P < 0.001. We show that hyperactive mTOR signaling is associated with an altered spatiotemporal pattern of microglia/macrophage activation in the brain and induces an enhanced neuroimmune response in the hippocampus.
Collapse
Affiliation(s)
- David A. Narvaiz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
| | - D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
| | | | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798 USA
- Department of Biology, Baylor University, Waco, TX, 76798 USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798 USA
| |
Collapse
|
28
|
Hills KE, Kostarelos K, Wykes RC. Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma. Front Mol Neurosci 2022; 15:903115. [PMID: 35832394 PMCID: PMC9271928 DOI: 10.3389/fnmol.2022.903115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and advanced form of primary malignant tumor occurring in the adult central nervous system, and it is frequently associated with epilepsy, a debilitating comorbidity. Seizures are observed both pre- and post-surgical resection, indicating that several pathophysiological mechanisms are shared but also prompting questions about how the process of epileptogenesis evolves throughout GBM progression. Molecular mutations commonly seen in primary GBM, i.e., in PTEN and p53, and their associated downstream effects are known to influence seizure likelihood. Similarly, various intratumoral mechanisms, such as GBM-induced blood-brain barrier breakdown and glioma-immune cell interactions within the tumor microenvironment are also cited as contributing to network hyperexcitability. Substantial alterations to peri-tumoral glutamate and chloride transporter expressions, as well as widespread dysregulation of GABAergic signaling are known to confer increased epileptogenicity and excitotoxicity. The abnormal characteristics of GBM alter neuronal network function to result in metabolically vulnerable and hyperexcitable peri-tumoral tissue, properties the tumor then exploits to favor its own growth even post-resection. It is evident that there is a complex, dynamic interplay between GBM and epilepsy that promotes the progression of both pathologies. This interaction is only more complicated by the concomitant presence of spreading depolarization (SD). The spontaneous, high-frequency nature of GBM-associated epileptiform activity and SD-associated direct current (DC) shifts require technologies capable of recording brain signals over a wide bandwidth, presenting major challenges for comprehensive electrophysiological investigations. This review will initially provide a detailed examination of the underlying mechanisms that promote network hyperexcitability in GBM. We will then discuss how an investigation of these pathologies from a network level, and utilization of novel electrophysiological tools, will yield a more-effective, clinically-relevant understanding of GBM-related epileptogenesis. Further to this, we will evaluate the clinical relevance of current preclinical research and consider how future therapeutic advancements may impact the bidirectional relationship between GBM, SDs, and seizures.
Collapse
Affiliation(s)
- Kate E. Hills
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Catalan Institute for Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, Barcelona, Spain
| | - Robert C. Wykes
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Robert C. Wykes
| |
Collapse
|
29
|
Lalonde R, Strazielle C. The Hole-Board Test in Mutant Mice. Behav Genet 2022; 52:158-169. [PMID: 35482162 DOI: 10.1007/s10519-022-10102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
First described by Boissier and Simon in (Ther Recreat J 17:1225-1232, 1962), the hole-board has become a recognized test of anxiety and spatial memory. Benzodiazepines acting at the GABAA-BZD site increase hole-pokes in rats and mice, indicating a loss in behavioral inhibition concordant with the behavior of mutant mice deficient in the GABA transporter. Hole-poking also depends on arousal mechanisms dependent on dopaminergic transmission, as indicated by drug and null mutant studies. In addition, the behavior is modified in natural and null mutants affecting the cerebellum as well as null mutants affecting neuropeptides, growth factors, cell adhesion, and inflammation. Further research is required to determine convergences between genetic and pharmacological effects.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France. .,CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
30
|
Sathyanarayana SH, Saunders JA, Slaughter J, Tariq K, Chakrabarti R, Sadanandappa MK, Luikart BW, Bosco G. Pten heterozygosity restores neuronal morphology in fragile X syndrome mice. Proc Natl Acad Sci U S A 2022; 119:e2109448119. [PMID: 35394871 PMCID: PMC9169627 DOI: 10.1073/pnas.2109448119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Genetic studies of hippocampal granule neuron development have been used to elucidate cellular functions of Pten and Fmr1. While mutations in each gene cause neurodevelopmental disorders such as autism and fragile X syndrome, how Pten and Fmr1 function alone or together during normal development is not known. Moreover, Pten mRNA is bound by the fragile X mental retardation protein (FMRP) RNA binding protein, but how this physical interaction impinges on phosphatase and tensin homolog protein (PTEN) expression is not known. To understand the interaction of PTEN and FMRP, we investigated the dentate gyrus granule neuron development in Pten and Fmr1 knockout (KO) mice. Interestingly, heterozygosity of Pten restored Fmr1 KO cellular phenotypes, including dendritic arborization, and spine density, while PTEN protein expression was significantly increased in Fmr1 KO animals. However, complete deletion of both Pten and Fmr1 resulted in a dramatic increase in dendritic length, spine density, and spine length. In addition, overexpression of PTEN in Fmr1 KO Pten heterozygous background reduced dendritic length, arborization, spine density, and spine length including pS6 levels. Our findings suggest that PTEN levels are negatively regulated by FMRP, and some Fmr1 KO phenotypes are caused by dysregulation of PTEN protein. These observations provide evidence for the genetic interaction of PTEN and FMRP and a possible mechanistic basis for the pathogenesis of Fmr1-related fragile X neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Jasmine A. Saunders
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jacob Slaughter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Madhumala K. Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
31
|
Li MX, Weng JW, Ho ES, Chow SF, Tsang CK. Brain delivering RNA-based therapeutic strategies by targeting mTOR pathway for axon regeneration after central nervous system injury. Neural Regen Res 2022; 17:2157-2165. [PMID: 35259823 PMCID: PMC9083176 DOI: 10.4103/1673-5374.335830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the central nervous system (CNS) such as stroke, brain, and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration. The brain has a surprising intrinsic capability of recovering itself after injury. However, the hostile extrinsic microenvironment significantly hinders axon regeneration. Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration. Particularly, substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin (mTOR) signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries. In this review, we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury. Importantly, we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog (PTEN). Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway, we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose, and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination. To specifically tackle the blood-brain barrier issue, we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology. We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.
Collapse
Affiliation(s)
- Ming-Xi Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Wen Weng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric S Ho
- Department of Biology and Department of Computer Science, Lafayette College, Easton, PA, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
32
|
Campion TJ, Sheikh IS, Smit RD, Iffland PH, Chen J, Junker IP, Krynska B, Crino PB, Smith GM. Viral expression of constitutively active AKT3 induces CST axonal sprouting and regeneration, but also promotes seizures. Exp Neurol 2021; 349:113961. [PMID: 34953897 DOI: 10.1016/j.expneurol.2021.113961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
Increasing the intrinsic growth potential of neurons after injury has repeatedly been shown to promote some level of axonal regeneration in rodent models. One of the most studied pathways involves the activation of the PI3K/AKT/mTOR pathways, primarily by reducing the levels of PTEN, a negative regulator of PI3K. Likewise, activation of signal transducer and activator of transcription 3 (STAT3) has previously been shown to boost axonal regeneration and sprouting within the injured nervous system. Here, we examined the regeneration of the corticospinal tract (CST) after cortical expression of constitutively active (ca) Akt3 and STAT3, both separately and in combination. Overexpression of caAkt3 induced regeneration of CST axons past the injury site independent of caSTAT3 overexpression. STAT3 demonstrated improved axon sprouting compared to controls and contributed to a synergistic improvement in effects when combined with Akt3 but failed to promote axonal regeneration as an individual therapy. Despite showing impressive axonal regeneration, animals expressing Akt3 failed to show any functional improvement and deteriorated with time. During this period, we observed progressive Akt3 dose-dependent increase in behavioral seizures. Histology revealed increased phosphorylation of ribosomal S6 protein within the unilateral cortex, increased neuronal size, microglia activation and hemispheric enlargement (hemimegalencephaly).
Collapse
Affiliation(s)
- Thomas J Campion
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Imran S Sheikh
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Rupert D Smit
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jie Chen
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Ian P Junker
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Barbara Krynska
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George M Smith
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America.
| |
Collapse
|
33
|
Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021; 12:genes12111746. [PMID: 34828352 PMCID: PMC8624393 DOI: 10.3390/genes12111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.
Collapse
Affiliation(s)
- Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
| | - Mattson S. O. Jones
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Lisa S. Knaus
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Andreas G. Chiocchetti
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-80658
| |
Collapse
|
34
|
Kato T, Igarashi A, Sesaki H, Iijima M. Generating a new mouse model for nuclear PTEN deficiency by a single K13R mutation. Genes Cells 2021; 26:1014-1022. [PMID: 34661323 DOI: 10.1111/gtc.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022]
Abstract
Many human diseases, including cancer and neurological abnormalities, are linked to deficiencies of phosphatase and tensin homolog deleted on chromosome ten (PTEN), a dual phosphatase that dephosphorylates both lipids and proteins. PTEN functions in multiple intracellular locations, including the plasma membrane and nucleus. Therefore, a critical challenge to understand the pathogenesis of PTEN-associated diseases is to determine the specific role of PTEN at different locations. Toward this goal, the current study generated a mouse line in which lysine 13, which is critical for the nuclear localization of PTEN, is changed to arginine in the lipid-binding domain using the CRISPR-Ca9 gene-editing system. We found that PTENK13R mice show a strong decrease in the localization of PTEN in the nucleus without affecting the protein stability, phosphatase activity, and phosphorylation in the C-terminal tail region. PTENK13R mice are viable but produce smaller neurons and develop microcephaly. These data demonstrate that PTENK13R mice provide a useful animal model to study the role of PTEN in the nucleus in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
PTEN mutations in autism spectrum disorder and congenital hydrocephalus: developmental pleiotropy and therapeutic targets. Trends Neurosci 2021; 44:961-976. [PMID: 34625286 DOI: 10.1016/j.tins.2021.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
The lack of effective treatments for autism spectrum disorder (ASD) and congenital hydrocephalus (CH) reflects the limited understanding of the biology underlying these common neurodevelopmental disorders. Although ASD and CH have been extensively studied as independent entities, recent human genomic and preclinical animal studies have uncovered shared molecular pathophysiology. Here, we review and discuss phenotypic, genomic, and molecular similarities between ASD and CH, and identify the PTEN-PI3K-mTOR (phosphatase and tensin homolog-phosphoinositide 3-kinase-mammalian target of rapamycin) pathway as a common underlying mechanism that holds diagnostic, prognostic, and therapeutic promise for individuals with ASD and CH.
Collapse
|
36
|
Womble PD, Hodges SL, Nolan SO, Binder MS, Holley AJ, Herrera R, Senger S, Kwok E, Narviaz DA, Faust A, Hernandez-Zegada CJ, Kwon RY, Lugo JN. A vitamin D enriched diet attenuates sex-specific behavioral deficits, increases the lifespan, but does not rescue bone abnormalities in a mouse model of cortical dysplasia. Epilepsy Behav 2021; 124:108297. [PMID: 34509882 DOI: 10.1016/j.yebeh.2021.108297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Individuals who experience recurrent spontaneous seizures often show behavioral and physiological comorbidities. Those with epilepsy are at a high risk of bone fractures (independent of seizure-related falls) and show a higher rate of a diagnosis of Autism Spectrum Disorder. The neural subset-specific (NS) Pten knockout (KO) mouse has an epilepsy phenotype, has been characterized to show autistic-like deficits, and has an osteoporosis phenotype. The current study examined the effect of a vitamin D enriched diet (20,000 IU VD) in the NS-Pten KO and wildtype mice. Mice were placed onto a vitamin D enriched diet at 4 weeks of age and maintained on that diet throughout testing. Behavioral testing began at 6 weeks of age and included tests for general activity, anxiety, repetitive behaviors, social behaviors, and memory. Results indicated that a vitamin D diet attenuated hypoactivity levels in male KO mice (p < 0.05). In a social partition task, vitamin D increased sociability in male wildtype mice, (p < 0.05). Most significantly, vitamin D fortified diet increased percent survival in KO animals and decreased the level of microglia marker IBA-1 and mTOR (mammalian target of rapamycin) downstream targets pS6 and pAKT. A high vitamin D diet did not reverse bone deficits in male or female KO mice. Overall, these findings suggest that a vitamin D enriched diet had a significant impact on the behavioral phenotype of NS-Pten KO mice, suggesting that dietary manipulations could be a potential therapeutic option for autistic-like behavior.
Collapse
Affiliation(s)
- Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Andrew J Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Rebecca Herrera
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Savannah Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Eliesse Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - David A Narviaz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Amanda Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | | | - Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98104, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
37
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
38
|
Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:25. [PMID: 34337686 PMCID: PMC8326232 DOI: 10.1186/s13619-021-00087-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
Collapse
Affiliation(s)
- Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
39
|
Chai AP, Chen XF, Xu XS, Zhang N, Li M, Li JN, Zhang L, Zhang D, Zhang X, Mao RR, Ding YQ, Xu L, Zhou QX. A Temporal Activity of CA1 Neurons Underlying Short-Term Memory for Social Recognition Altered in PTEN Mouse Models of Autism Spectrum Disorder. Front Cell Neurosci 2021; 15:699315. [PMID: 34335191 PMCID: PMC8319669 DOI: 10.3389/fncel.2021.699315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Memory-guided social recognition identifies someone from previous encounters or experiences, but the mechanisms of social memory remain unclear. Here, we find that a short-term memory from experiencing a stranger mouse lasting under 30 min interval is essential for subsequent social recognition in mice, but that interval prolonged to hours by replacing the stranger mouse with a familiar littermate. Optogenetic silencing of dorsal CA1 neuronal activity during trials or inter-trial intervals disrupted short-term memory-guided social recognition, without affecting the ability of being sociable or long-term memory-guided social recognition. Postnatal knockdown or knockout of autism spectrum disorder (ASD)-associated phosphatase and tensin homolog (PTEN) gene in dorsal hippocampal CA1 similarly impaired neuronal firing rate in vitro and altered firing pattern during social recognition. These PTEN mice showed deficits in social recognition with stranger mouse rather than littermate and exhibited impairment in T-maze spontaneous alternation task for testing short-term spatial memory. Thus, we suggest that a temporal activity of dorsal CA1 neurons may underlie formation of short-term memory to be critical for organizing subsequent social recognition but that is possibly disrupted in ASD.
Collapse
Affiliation(s)
- An-Ping Chai
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xue-Feng Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Shan Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Meng Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Lei Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital of Peking University, Beijing, China
| | - Xia Zhang
- Department of Cellular and Molecular Medicine, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
| | - Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
40
|
Longo F, Klann E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep 2021; 22:e52110. [PMID: 33977633 PMCID: PMC8183409 DOI: 10.15252/embr.202052110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted patterns of interest and repetitive behaviors. ASD is genetically heterogeneous and is believed to be caused by both inheritable and de novo gene variations. Studies have revealed an extremely complex genetic landscape of ASD, favoring the idea that mutations in different clusters of genes interfere with interconnected downstream signaling pathways and circuitry, resulting in aberrant behavior. In this review, we describe a select group of candidate genes that represent both syndromic and non-syndromic forms of ASD and encode proteins that are important in transcriptional and translational regulation. We focus on the interplay between dysregulated translation and transcription in ASD with the hypothesis that dysregulation of each synthetic process triggers a feedback loop to act on the other, which ultimately exacerbates ASD pathophysiology. Finally, we summarize findings from interdisciplinary studies that pave the way for the investigation of the cooperative impact of different genes and pathways underlying the development of ASD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkNYUSA
| |
Collapse
|
41
|
Igarashi A, Kato T, Sesaki H, Iijima M. Nuclear PTEN deficiency and heterozygous PTEN loss have distinct impacts on brain and lymph node size. Biochem Biophys Res Commun 2021; 555:81-88. [PMID: 33813280 PMCID: PMC8085137 DOI: 10.1016/j.bbrc.2021.03.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Defects in PTEN, a critical tumor suppressor, are associated with tumorigenesis and aberrant organ sizes. It has been shown that heterozygous PTEN loss increases brains and neuron size, while the specific loss of nuclear PTEN has the opposite effect. Here, we investigate the impact of a combination of heterozygous PTEN loss and nuclear PTEN loss on the size of various organs, including the brain, liver, thymus, spleen, and inguinal lymph node. We found that the effect of the combination varies among organs. Notably, the combination of heterozygous PTEN loss and nuclear PTEN loss restored the normal size of brains and neurons. In contrast, the liver's size was unaffected by either single PTEN defects or their combination. Strikingly, the size of the inguinal lymph node was greatly increased due to lymphoma by the combination of the two PTEN defects. These data suggest that nuclear PTEN and non-nuclear PTEN function in an antagonistic manner in the brain while acting synergistically in the inguinal lymph node.
Collapse
Affiliation(s)
- Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
42
|
Hayata Y, Nakagawa H, Kurosaki S, Kawamura S, Matsushita Y, Hayakawa Y, Suzuki N, Hata M, Tsuboi M, Kinoshita H, Miyabayashi K, Mizutani H, Nakagomi R, Ikenoue T, Hirata Y, Arita J, Hasegawa K, Tateishi K, Koike K. Axin2 + Peribiliary Glands in the Periampullary Region Generate Biliary Epithelial Stem Cells That Give Rise to Ampullary Carcinoma. Gastroenterology 2021; 160:2133-2148.e6. [PMID: 33465373 DOI: 10.1053/j.gastro.2021.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Peribiliary glands (PBGs), clusters of epithelial cells residing in the submucosal compartment of extrahepatic bile ducts, have been suggested as biliary epithelial stem/progenitor cell niche; however, evidence to support this claim is limited because of a lack of PBG-specific markers. We therefore sought to identify PBG-specific markers to investigate the potential role of PBGs as stem/progenitor cell niches, as well as an origin of cancer. METHODS We examined the expression pattern of the Wnt target gene Axin2 in extrahepatic bile ducts. We then applied lineage tracing to investigate whether Axin2-expressing cells from PBGs contribute to biliary regeneration and carcinogenesis using Axin2-CreERT mice. RESULTS Wnt signaling activation, marked by Axin2, was limited to PBGs located in the periampullary region. Lineage tracing showed that Axin2-expressing periampullary PBG cells are capable of self-renewal and supplying new biliary epithelial cells (BECs) to the luminal surface. Additionally, the expression pattern of Axin2 and the mature ductal cell marker CK19 were mutually exclusive in periampullary region, and fate tracing of CK19+ luminal surface BECs showed gradual replacement by CK19- cells, further supporting the continuous replenishment of new BECs from PBGs to the luminal surface. We also found that Wnt signal enhancer R-spondin3 secreted from Myh11-expressing stromal cells, corresponding to human sphincter of Oddi, maintained the periampullary Wnt signal-activating niche. Notably, introduction of PTEN deletion into Axin2+ PBG cells, but not CK19+ luminal surface BECs, induced ampullary carcinoma whose development was suppressed by Wnt inhibitor. CONCLUSION A specific cell population receiving Wnt-activating signal in periampullary PBGs functions as biliary epithelial stem/progenitor cells and also the cellular origin of ampullary carcinoma.
Collapse
Affiliation(s)
- Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan.
| | | | - Satoshi Kawamura
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Hiroto Kinoshita
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan; Division of Gastroenterology, Institute for Adult Diseases, Asahi Life Foundation, Chuo-ku, Tokyo, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Hiroya Mizutani
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagomi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Glial cell type-specific gene expression in the mouse cerebrum using the piggyBac system and in utero electroporation. Sci Rep 2021; 11:4864. [PMID: 33649472 PMCID: PMC7921133 DOI: 10.1038/s41598-021-84210-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glial cells such as astrocytes and oligodendrocytes play crucial roles in the central nervous system. To investigate the molecular mechanisms underlying the development and the biological functions of glial cells, simple and rapid techniques for glial cell-specific genetic manipulation in the mouse cerebrum would be valuable. Here we uncovered that the Gfa2 promoter is suitable for selective gene expression in astrocytes when used with the piggyBac system and in utero electroporation. In contrast, the Blbp promoter, which has been used to induce astrocyte-specific gene expression in transgenic mice, did not result in astrocyte-specific gene expression. We also identified the Plp1 and Mbp promoters could be used with the piggyBac system and in utero electroporation to induce selective gene expression in oligodendrocytes. Furthermore, using our technique, neuron-astrocyte or neuron-oligodendrocyte interactions can be visualized by labeling neurons, astrocytes and oligodendrocytes differentially. Our study provides a fundamental basis for specific transgene expression in astrocytes and/or oligodendrocytes in the mouse cerebrum.
Collapse
|
44
|
Bae M, Roh JD, Kim Y, Kim SS, Han HM, Yang E, Kang H, Lee S, Kim JY, Kang R, Jung H, Yoo T, Kim H, Kim D, Oh H, Han S, Kim D, Han J, Bae YC, Kim H, Ahn S, Chan AM, Lee D, Kim JW, Kim E. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med 2021; 13:e12632. [PMID: 33428810 PMCID: PMC7863395 DOI: 10.15252/emmm.202012632] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/22/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced β-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.
Collapse
Affiliation(s)
- Mihyun Bae
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Junyeop Daniel Roh
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Youjoung Kim
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Seong Soon Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea
| | - Hye Min Han
- Department of Anatomy and NeurobiologySchool of DentistryKyungpook National UniversityDaeguKorea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
| | - Hyojin Kang
- Division of National SupercomputingKISTIDaejeonKorea
| | - Suho Lee
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
| | - Ryeonghwa Kang
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Hwajin Jung
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Taesun Yoo
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Hyosang Kim
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Doyoun Kim
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
| | - Heejeong Oh
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Sungwook Han
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Dayeon Kim
- Graduate School of Medical Science and EngineeringKAISTDaejeonKorea
| | - Jinju Han
- Graduate School of Medical Science and EngineeringKAISTDaejeonKorea
| | - Yong Chul Bae
- Department of Anatomy and NeurobiologySchool of DentistryKyungpook National UniversityDaeguKorea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21Biomedical ScienceCollege of MedicineKorea UniversitySeoulKorea
| | - Sunjoo Ahn
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea
| | - Andrew M Chan
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong SARChina
| | - Daeyoup Lee
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Jin Woo Kim
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| | - Eunjoon Kim
- Center for Synaptic Brain DysfunctionsInstitute for Basic Science (IBS)DaejeonKorea
- Department of Biological SciencesKorea Advanced Institute for Science and Technology (KAIST)DaejeonKorea
| |
Collapse
|
45
|
Kim JE, Lee DS, Park H, Kang TC. Src/CK2/PTEN-Mediated GluN2B and CREB Dephosphorylations Regulate the Responsiveness to AMPA Receptor Antagonists in Chronic Epilepsy Rats. Int J Mol Sci 2020; 21:E9633. [PMID: 33348808 PMCID: PMC7766850 DOI: 10.3390/ijms21249633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022] Open
Abstract
Both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) have been reported as targets for treatment of epilepsy. To investigate the roles and interactions of AMPAR and NMDAR in ictogenesis of epileptic hippocampus, we analyzed AMPAR antagonists (perampanel and GYKI 52466)-mediated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulation and glutamate ionotropic receptor NMDA type subunit 2B (GluN2B) tyrosine (Y) 1472 phosphorylation in epilepsy rats. Both perampanel and GYKI 52466 increased PTEN expression and its activity (reduced phosphorylation), concomitant with decreased activities (phosphorylations) of Src family-casein kinase 2 (CK2) signaling pathway. Compatible with these, they also restored the upregulated GluN2B Y1472 and Ca2+/cAMP response element-binding protein (CREB) serine (S) 133 phosphorylations and surface expression of glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) to basal level in the epileptic hippocampus. These effects of perampanel and GYKI 52466 are observed in responders (whose seizure activities are responsive to AMPAR antagonists), but not non-responders (whose seizure activities were uncontrolled by AMPAR antagonists). Therefore, our findings suggest that Src/CK2/PTEN-mediated GluN2B Y1472 and CREB S133 regulations may be one of the responsible signaling pathways for the generation of refractory seizures in non-responders to AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (H.P.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
46
|
Trovato F, Parra R, Pracucci E, Landi S, Cozzolino O, Nardi G, Cruciani F, Pillai V, Mosti L, Cwetsch AW, Cancedda L, Gritti L, Sala C, Verpelli C, Maset A, Lodovichi C, Ratto GM. Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter. Nat Commun 2020; 11:6194. [PMID: 33273479 PMCID: PMC7713426 DOI: 10.1038/s41467-020-19864-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mosaicism, a condition in which an organ includes cells with different genotypes, is frequently present in monogenic diseases of the central nervous system caused by the random inactivation of the X-chromosome, in the case of X-linked pathologies, or by somatic mutations affecting a subset of neurons. The comprehension of the mechanisms of these diseases and of the cell-autonomous effects of specific mutations requires the generation of sparse mosaic models, in which the genotype of each neuron is univocally identified by the expression of a fluorescent protein in vivo. Here, we show a dual-color reporter system that, when expressed in a floxed mouse line for a target gene, leads to the creation of mosaics with tunable degree. We demonstrate the generation of a knockout mosaic of the autism/epilepsy related gene PTEN in which the genotype of each neuron is reliably identified, and the neuronal phenotype is accurately characterized by two-photon microscopy.
Collapse
Affiliation(s)
- Francesco Trovato
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
| | - Riccardo Parra
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Enrico Pracucci
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Silvia Landi
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
- Institute of Neuroscience CNR, Pisa, Italy
| | - Olga Cozzolino
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Gabriele Nardi
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Federica Cruciani
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Laura Mosti
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Andrzej W Cwetsch
- Istituto Italiano di Tecnologia, Genoa, Italy
- Università degli studi di Genova, Genoa, Italy
| | - Laura Cancedda
- Istituto Italiano di Tecnologia, Genoa, Italy
- Istituto Telethon Dulbecco, Rome, Italy
| | | | - Carlo Sala
- Institute of Neuroscience CNR, Milan, Italy
| | | | - Andrea Maset
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padova Università di Padova, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padova Università di Padova, Padua, Italy
- Institute of Neuroscience CNR, Padua, Italy
| | - Gian Michele Ratto
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
| |
Collapse
|
47
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|
48
|
Kato T, Yamada T, Nakamura H, Igarashi A, Anders RA, Sesaki H, Iijima M. The Loss of Nuclear PTEN Increases Tumorigenesis in a Preclinical Mouse Model for Hepatocellular Carcinoma. iScience 2020; 23:101548. [PMID: 33083717 PMCID: PMC7516300 DOI: 10.1016/j.isci.2020.101548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The PTEN gene is highly mutated in many cancers, including hepatocellular carcinoma. The PTEN protein is located at different subcellular regions-PTEN at the plasma membrane suppresses PI3-kinase signaling in cell growth, whereas PTEN in the nucleus maintains genome integrity. Here, using nuclear PTEN-deficient mice, we analyzed the role of PTEN in the nucleus in hepatocellular carcinoma that is induced by carcinogen and oxidative stress-producing hepatotoxin. Upon oxidative stress, PTEN was accumulated in the nucleus of the liver, and this accumulation promoted repair of DNA damage in wild-type mice. In contrast, nuclear PTEN-deficient mice had increased DNA damage and accelerated hepatocellular carcinoma formation. Both basal and oxidative stress-induced localization of PTEN in the nucleus require ubiquitination of lysine 13 in PTEN. Taken together, these data suggest the critical role of nuclear PTEN in the protection from DNA damage and tumorigenesis in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideki Nakamura
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|
49
|
Clipperton-Allen AE, Page DT. Connecting Genotype with Behavioral Phenotype in Mouse Models of Autism Associated with PTEN Mutations. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037010. [PMID: 31871231 DOI: 10.1101/cshperspect.a037010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A subset of individuals with autism spectrum disorder (ASD) and macrocephaly carry mutations in the gene PTEN. Animal models, particularly mice, have been helpful in establishing a causal role for Pten mutations in autism-relevant behavioral deficits. These models are a useful tool for investigating neurobiological mechanisms of these behavioral phenotypes and developing potential therapeutic interventions. Here we provide an overview of various genetic mouse models that have been used to characterize behavioral phenotypes caused by perturbation of Pten We discuss convergent and divergent phenotypes across models with the aim of highlighting a set of behavioral domains that are sensitive to the effects of Pten mutation and that may provide useful readouts for translational and basic neuroscience research.
Collapse
Affiliation(s)
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
50
|
Zhou D, Liu J, Hang Y, Li T, Li P, Guo S, Liu T, Xia Z, Wang Y. TMT-based proteomics analysis reveals the protective effects of Xuefu Zhuyu decoction in a rat model of traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112826. [PMID: 32298754 DOI: 10.1016/j.jep.2020.112826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal prescription. It is effective in treating traumatic brain injury (TBI). However, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY This study aimed to reveal the possible mechanisms of XFZYD in treating acute TBI through proteomics clues. MATERIALS AND METHODS Controlled Cortical Impact (CCI) rats were given gavage administration of XFZYD (9 g/kg/d) or distilled water (equal volume) for three days. The Modified Neurological Severity Score (mNSS), brain water content, HE staining, Nissl staining and immunohistochemistry were performed to assess the effects of XFZYD for TBI treatment. Additionally, tandem mass tag-based (TMT) quantitative proteomics technology was applied to detect proteins of brain cortex. Bioinformatics analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Protein-protein interaction (PPI) networks were used to analyze differentially expressed proteins (DEPs). Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was conducted to anchor diseases and pathways. Besides, western blotting and immunofluorescence were exerted to verify related proteins. RESULTS XFZYD improved neurologic functions, reduced encephaledema and ameliorated cell morphology around the injured area in CCI rats. A total of 6099 proteins were identified with false discovery rate (FDR) < 1%. Overlapping DEPs (105 DEPs) were identified (295 DEPs and 804 DEPs in CCI/Sham or XFZYD/CCI group, respectively). Of these DEPs, 17 were regulated by XFZYD. Bioinformatics analysis showed that the 17 DEPs were predominantly related to platelet activation and PI3K-Akt signaling pathway. Next, PLG and CD34 were verified with molecular biotechnology. CONCLUSIONS XFZYD exerts therapeutic effects through multi-pathways regulation in the treatment of TBI. This work may provide proteomics clues for the continuation of research on TBI treatment with XFZYD.
Collapse
Affiliation(s)
- Dan Zhou
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Jiamiao Liu
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Yang Hang
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Shichao Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University. Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, 450052, Zhengzhou, China
| | - Tao Liu
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000, Urumqi, China
| | - Zian Xia
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China.
| |
Collapse
|