1
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Lilly K, Wang M, Orr AA, Bondos SE, Phillips TD, Tamamis P. β-Lactoglobulin Enhances Clay and Activated Carbon Binding and Protection Properties for Cadmium and Lead. Ind Eng Chem Res 2024; 63:16124-16140. [PMID: 39319074 PMCID: PMC11417999 DOI: 10.1021/acs.iecr.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
The removal of heavy metals from wastewater remains a challenge due to the limitations of current remediation methods. This study aims to develop multicomponent composites as inexpensive and environmentally friendly sorbents with enhanced capture of cadmium (Cd) and lead (Pb). The composites are based on calcium montmorillonite (CM) and activated carbon (AC) because of their proven effectiveness as sorbents for diverse toxins in environmental settings. In this study, we used a combination of computational and experimental methods to delineate that β-lactoglobulin enhances CM and AC binding and protection properties for Cd and Pb. Modeling and molecular dynamics simulations investigated the formation of material systems formed by CM and AC in complex with β-lactoglobulin and predicted their capacity to bind heavy metal ions at neutral pH conditions. Our simulations suggest that the enhanced binding properties of the material systems are attributed to the presence of several binding pockets formed by β-lactoglobulin for the two heavy metal ions. At neutral pH conditions, divalent Cd and Pb shared comparable binding propensities in all material systems, with the former being consistently higher than the latter. To validate the interactions depicted in simulations, two ecotoxicological models (L. minor and H. vulgaris) were exposed to Cd, Pb, and a mixture of the two. The inclusion of CM-lactoglobulin (β-lactoglobulin amended CM) and AC-lactoglobulin (β-lactoglobulin amended AC) at 0.05-0.2% efficiently and dose-dependently reduced the severe toxicity of metals and increased the growth parameters. This high efficacy of protection shown in the ecotoxicological models may result from the numerous possible interaction pockets of the β-lactoglobulin-amended materials depicted in simulations. The ecotoxicological models support the agreement with computations. This study serves as a proof of concept on how computations in tandem with experiments can be used in the design of multicomponent clay- and carbon-based sorbent amended systems with augmented functionalities for particular toxins.
Collapse
Affiliation(s)
- Kendall Lilly
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Meichen Wang
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Environmental Health Sciences, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Asuka A. Orr
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah E. Bondos
- Department
of Medical Physiology Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843, United States
| | - Timothy D. Phillips
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Phanourios Tamamis
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Andersen JF, Lei H, Strayer EC, Pham V, Ribeiro JMC. Mechanism of complement inhibition by a mosquito protein revealed through cryo-EM. Commun Biol 2024; 7:649. [PMID: 38802531 PMCID: PMC11130238 DOI: 10.1038/s42003-024-06351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Salivary complement inhibitors occur in many of the blood feeding arthropod species responsible for transmission of pathogens. During feeding, these inhibitors prevent the production of proinflammatory anaphylatoxins, which may interfere with feeding, and limit formation of the membrane attack complex which could damage arthropod gut tissues. Salivary inhibitors are, in many cases, novel proteins which may be pharmaceutically useful or display unusual mechanisms that could be exploited pharmaceutically. Albicin is a potent inhibitor of the alternative pathway of complement from the saliva of the malaria transmitting mosquito, Anopheles albimanus. Here we describe the cryo-EM structure of albicin bound to C3bBb, the alternative C3 convertase, a proteolytic complex that is responsible for cleavage of C3 and amplification of the complement response. Albicin is shown to induce dimerization of C3bBb, in a manner similar to the bacterial inhibitor SCIN, to form an inactive complex unable to bind the substrate C3. Size exclusion chromatography and structures determined after 30 minutes of incubation of C3b, factor B (FB), factor D (FD) and albicin indicate that FBb dissociates from the inhibited dimeric complex leaving a C3b-albicin dimeric complex which apparently decays more slowly.
Collapse
Affiliation(s)
- John F Andersen
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA.
| | - Haotian Lei
- NIH-NIAID, Research Technologies Branch, Bethesda, MD, USA
| | - Ethan C Strayer
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
- Biological and Biomedical Sciences Program, Yale University, New Haven, CT, USA
| | - Van Pham
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
| | - José M C Ribeiro
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
| |
Collapse
|
4
|
Schanzenbacher J, Hendrika Kähler K, Mesler E, Kleingarn M, Marcel Karsten C, Leonard Seiler D. The role of C5a receptors in autoimmunity. Immunobiology 2023; 228:152413. [PMID: 37598588 DOI: 10.1016/j.imbio.2023.152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 08/22/2023]
Abstract
The complement system is an essential component of the innate immune response and plays a vital role in host defense and inflammation. Dysregulation of the complement system, particularly involving the anaphylatoxin C5a and its receptors (C5aR1 and C5aR2), has been linked to several autoimmune diseases, indicating the potential for targeted therapies. C5aR1 and C5aR2 are seven-transmembrane receptors with distinct signaling mechanisms that play both partially overlapping and opposing roles in immunity. Both receptors are expressed on a broad spectrum of immune and non-immune cells and are involved in cellular functions and physiological processes during homeostasis and inflammation. Dysregulated C5a-mediated inflammation contributes to autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, epidermolysis bullosa acquisita, antiphospholipid syndrome, and others. Therefore, targeting C5a or its receptors may yield therapeutic innovations in these autoimmune diseases by reducing the recruitment and activation of immune cells that lead to tissue inflammation and injury, thereby exacerbating the autoimmune response. Clinical trials focused on the inhibition of C5 cleavage or the C5a/C5aR1-axis using small molecules or monoclonal antibodies hold promise for bringing novel treatments for autoimmune diseases into practice. However, given the heterogeneous nature of (systemic) autoimmune diseases, there are still several challenges, such as patient selection, optimal dosing, and treatment duration, that require further investigation and development to realize the full therapeutic potential of C5a receptor inhibition, ideally in the context of a personalized medicine approach. Here, we aim to provide a brief overview of the current knowledge on the function of C5a receptors, the involvement of C5a receptors in autoimmune disorders, the molecular mechanisms underlying C5a receptor-mediated autoimmunity, and the potential for targeted therapies to modulate their activity.
Collapse
Affiliation(s)
- Jovan Schanzenbacher
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja Hendrika Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Evelyn Mesler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | | | - Daniel Leonard Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
5
|
Struijf EM, De la O Becerra KI, Ruyken M, de Haas CJC, van Oosterom F, Siere DY, van Keulen JE, Heesterbeek DAC, Dolk E, Heukers R, Bardoel BW, Gros P, Rooijakkers SHM. Inhibition of cleavage of human complement component C5 and the R885H C5 variant by two distinct high affinity anti-C5 nanobodies. J Biol Chem 2023; 299:104956. [PMID: 37356719 PMCID: PMC10374974 DOI: 10.1016/j.jbc.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.
Collapse
Affiliation(s)
- Eva M Struijf
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karla I De la O Becerra
- Structural Biochemistry Group, Faculty of Science, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Maartje Ruyken
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fleur van Oosterom
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danique Y Siere
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joanne E van Keulen
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dani A C Heesterbeek
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Bart W Bardoel
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Structural Biochemistry Group, Faculty of Science, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Askarian F, Tsai CM, Cordara G, Zurich RH, Bjånes E, Golten O, Vinther Sørensen H, Kousha A, Meier A, Chikwati E, Bruun JA, Ludviksen JA, Choudhury B, Trieu D, Davis S, Edvardsen PKT, Mollnes TE, Liu GY, Krengel U, Conrad DJ, Vaaje-Kolstad G, Nizet V. Immunization with lytic polysaccharide monooxygenase CbpD induces protective immunity against Pseudomonas aeruginosa pneumonia. Proc Natl Acad Sci U S A 2023; 120:e2301538120. [PMID: 37459522 PMCID: PMC10372616 DOI: 10.1073/pnas.2301538120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) CbpD belongs to the lytic polysaccharide monooxygenases (LPMOs), a family of enzymes that cleave chitin or related polysaccharides. Here, we demonstrate a virulence role of CbpD in PA pneumonia linked to impairment of host complement function and opsonophagocytic clearance. Following intratracheal challenge, a PA ΔCbpD mutant was more easily cleared and produced less mortality than the wild-type parent strain. The x-ray crystal structure of the CbpD LPMO domain was solved to subatomic resolution (0.75Å) and its two additional domains modeled by small-angle X-ray scattering and Alphafold2 machine-learning algorithms, allowing structure-based immune epitope mapping. Immunization of naive mice with recombinant CbpD generated high IgG antibody titers that promoted human neutrophil opsonophagocytic killing, neutralized enzymatic activity, and protected against lethal PA pneumonia and sepsis. IgG antibodies generated against full-length CbpD or its noncatalytic M2+CBM73 domains were opsonic and protective, even in previously PA-exposed mice, while antibodies targeting the AA10 domain were not. Preexisting antibodies in PA-colonized cystic fibrosis patients primarily target the CbpD AA10 catalytic domain. Further exploration of LPMO family proteins, present across many clinically important and antibiotic-resistant human pathogens, may yield novel and effective vaccine antigens.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Chih-Ming Tsai
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Raymond H. Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Elisabet Bjånes
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | | | - Armin Kousha
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Angela Meier
- Division of Critical Care, Department of Anesthesiology, University of California San Diego, La Jolla, CA92037
| | - Elvis Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Jack-Ansgar Bruun
- Proteomics and Metabolomics Core Facility, Department of Medical Biology, The Arctic University of Norway, N-9037Tromsø, Norway
| | | | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
| | - Desmond Trieu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- School of Pharmacy, University of California San Francisco, San Francisco, CA94143
| | - Stanley Davis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | | | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, N-8005Bodø, Norway
- Department of Immunology, University of Oslo Hospital, N-0424Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, N-7491Trondheim, Norway
| | - George Y. Liu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Ute Krengel
- Department of Chemistry, University of Oslo, N-0315Oslo, Norway
| | - Douglas J. Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA92037
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432Ås, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
8
|
Cone J, Kimmel L, Zhang Y, Johnson K, Sheridan D, Tamburini P. Characterization of multivalent complexes formed in the presence of more than one conventional antibody to terminal complement component C5. PLoS One 2023; 18:e0284502. [PMID: 37079521 PMCID: PMC10118082 DOI: 10.1371/journal.pone.0284502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/02/2023] [Indexed: 04/21/2023] Open
Abstract
This study sought to understand the nature of the immune complexes that could be formed when a patient is exposed simultaneously to two different anti-complement component 5 (C5) antibodies, such as in patients converting from one bivalent, noncompetitive, C5-binding monoclonal antibody to another. Size exclusion chromatography (SEC) in combination with multiangle light scattering was used to assess the potential formation of multivalent complexes among eculizumab, C5, and each of two other anti-C5 bivalent antibodies, TPP-2799 or TP-3544, respectively having the same sequence as either crovalimab or pozelimab currently undergoing clinical trials. Each of these two antibodies bound C5 noncompetitively with eculizumab. In phosphate-buffered saline (PBS), C5-eculizumab in the absence of other antibodies measured <500 kDa; however, inclusion of other antibodies at levels ranging from equimolar and up to a fivefold excess over eculizumab and C5 yielded a series of complexes with some >1500 kDa in size, consistent with incorporation of multiple antibodies and C5 molecules. A similar pattern of complexes was also observed when fluorescently labeled eculizumab and either of the other two antibodies were spiked into human plasma, based on SEC monitored by fluorescence detection. A detailed characterization of the pharmacodynamic and pharmacokinetic properties of such complexes is warranted, as is the incorporation of mitigation processes to avoid their formation in patients converting from one bivalent, noncompetitive, C5-binding monoclonal antibody to another.
Collapse
Affiliation(s)
- Josh Cone
- Alexion, AstraZeneca Rare Disease, New Haven, CT, United States of America
| | - Lida Kimmel
- Alexion Pharmaceuticals, Inc., New Haven, CT, United States of America
| | - Yuchun Zhang
- Alexion, AstraZeneca Rare Disease, New Haven, CT, United States of America
| | - Krista Johnson
- Alexion, AstraZeneca Rare Disease, New Haven, CT, United States of America
| | - Douglas Sheridan
- Alexion Pharmaceuticals, Inc., New Haven, CT, United States of America
| | - Paul Tamburini
- Alexion, AstraZeneca Rare Disease, New Haven, CT, United States of America
| |
Collapse
|
9
|
Stennett A, Friston K, Harris CL, Wollman AJM, Bronowska AK, Madden KS. The case for complement component 5 as a target in neurodegenerative disease. Expert Opin Ther Targets 2023; 27:97-109. [PMID: 36786123 DOI: 10.1080/14728222.2023.2177532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Complement-based drug discovery is undergoing a renaissance, empowered by new advances in structural biology, complement biology and drug development. Certain components of the complement pathway, particularly C1q and C3, have been extensively studied in the context of neurodegenerative disease, and established as key therapeutic targets. C5 also has huge therapeutic potential in this arena, with its druggability clearly demonstrated by the success of C5-inhibitor eculizumab. AREAS COVERED We will discuss the evidence supporting C5 as a target in neurodegenerative disease, along with the current progress in developing different classes of C5 inhibitors and the gaps in knowledge that will help progress in the field. EXPERT OPINION Validation of C5 as a therapeutic target for neurodegenerative disease would represent a major step forward for complement therapeutics research and has the potential to furnish disease-modifying drugs for millions of patients suffering worldwide. Key hurdles that need to be overcome for this to be achieved are understanding how C5a and C5b should be targeted to bring therapeutic benefit and demonstrating the ability to target C5 without creating vulnerability to infection in patients. This requires greater biological elucidation of its precise role in disease pathogenesis, supported by better chemical/biological tools.
Collapse
Affiliation(s)
- Amelia Stennett
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Kallie Friston
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Claire L Harris
- Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| | - Adam J M Wollman
- Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| | - Agnieszka K Bronowska
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Katrina S Madden
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK.,Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| |
Collapse
|
10
|
Raballah E, Wilding K, Anyona SB, Munde EO, Hurwitz I, Onyango CO, Ayieko C, Lambert CG, Schneider KA, Seidenberg PD, Ouma C, McMahon BH, Cheng Q, Perkins DJ. Nonsynonymous amino acid changes in the α-chain of complement component 5 influence longitudinal susceptibility to Plasmodium falciparum infections and severe malarial anemia in kenyan children. Front Genet 2022; 13:977810. [PMID: 36186473 PMCID: PMC9515573 DOI: 10.3389/fgene.2022.977810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Severe malarial anemia (SMA; Hb < 5.0 g/dl) is a leading cause of childhood morbidity and mortality in holoendemic Plasmodium falciparum transmission regions such as western Kenya. Methods: We investigated the relationship between two novel complement component 5 (C5) missense mutations [rs17216529:C>T, p(Val145Ile) and rs17610:C>T, p(Ser1310Asn)] and longitudinal outcomes of malaria in a cohort of Kenyan children (under 60 mos, n = 1,546). Molecular modeling was used to investigate the impact of the amino acid transitions on the C5 protein structure. Results: Prediction of the wild-type and mutant C5 protein structures did not reveal major changes to the overall structure. However, based on the position of the variants, subtle differences could impact on the stability of C5b. The influence of the C5 genotypes/haplotypes on the number of malaria and SMA episodes over 36 months was determined by Poisson regression modeling. Genotypic analyses revealed that inheritance of the homozygous mutant (TT) for rs17216529:C>T enhanced the risk for both malaria (incidence rate ratio, IRR = 1.144, 95%CI: 1.059-1.236, p = 0.001) and SMA (IRR = 1.627, 95%CI: 1.201-2.204, p = 0.002). In the haplotypic model, carriers of TC had increased risk of malaria (IRR = 1.068, 95%CI: 1.017-1.122, p = 0.009), while carriers of both wild-type alleles (CC) were protected against SMA (IRR = 0.679, 95%CI: 0.542-0.850, p = 0.001). Conclusion: Collectively, these findings show that the selected C5 missense mutations influence the longitudinal risk of malaria and SMA in immune-naïve children exposed to holoendemic P. falciparum transmission through a mechanism that remains to be defined.
Collapse
Affiliation(s)
- Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Medical Laboratory Sciences, School of Public Health Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Kristen Wilding
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Samuel B. Anyona
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Elly O. Munde
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Clinical Medicine, School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Ivy Hurwitz
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| | - Clinton O. Onyango
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Cyrus Ayieko
- Department of Zoology, Maseno University, Maseno, Kenya
| | - Christophe G. Lambert
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| | - Kristan A. Schneider
- Department of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Philip D. Seidenberg
- University of New Mexico, Department of Emergency Medicine, Albuquerque, NM, United States
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Benjamin H. McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Qiuying Cheng
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| | - Douglas J. Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu, Kenya
- University of New Mexico, Center for Global Health, Department of Internal Medicine, Albuquerque, NM, United States
| |
Collapse
|
11
|
Spera MC, Cesta MC, Zippoli M, Varrassi G, Allegretti M. Emerging Approaches for the Management of Chemotherapy-Induced Peripheral Neuropathy (CIPN): Therapeutic Potential of the C5a/C5aR Axis. Pain Ther 2022; 11:1113-1136. [PMID: 36098939 PMCID: PMC9469051 DOI: 10.1007/s40122-022-00431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurologic complication of chemotherapy, resulting in symptoms like pain, sensory loss, and numbness in the hands and feet that cause lots of uneasiness in patients with cancer. They often suffer from pain so severe that it interrupts the treatment, thus invalidating the entire chemotherapy-based healing process, and significantly reducing their quality of life. In this paper, we underline the role of the complement system in CIPN, highlighting the relevance of the C5a fragment and its receptor C5aR1, whose activation is thought to be involved in triggering a cascade of events that can lead to CIPN onset. Recent experimental data showed the ability of docetaxel and paclitaxel to specifically bind and activate C5aR1, thus shining light on one of the molecular mechanisms by which taxanes may activate a cascade of events leading to neuropathy. According to these new evidence, it was possible to suggest new mechanisms underlying the pathophysiology of CIPN. Hence, the C5a/C5aR1 axis may represent a new target for CIPN treatment, and the use of C5aR1 inhibitors can be proposed as a potential new therapeutic option to manage this high unmet medical need.
Collapse
Affiliation(s)
- Maria C Spera
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy
| | - Maria C Cesta
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy.
| | - Mara Zippoli
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, Naples, Italy
| | | | | |
Collapse
|
12
|
Harwood SL, Diep K, Nielsen NS, Jensen KT, Enghild JJ. The conformational change of the protease inhibitor α 2-macroglobulin is triggered by the retraction of the cleaved bait region from a central channel. J Biol Chem 2022; 298:102230. [PMID: 35787371 PMCID: PMC9352918 DOI: 10.1016/j.jbc.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/04/2022] Open
Abstract
The protease inhibitor α2-macroglobulin (A2M) is a member of the ancient α2-macroglobulin superfamily (A2MF), which also includes structurally related proteins, such as complement factor C3. A2M and other A2MF proteins undergo an extensive conformational change upon cleavage of their bait region by proteases. However, the mechanism whereby cleavage triggers the change has not yet been determined. We have previously shown that A2M remains functional after completely replacing its bait region with glycine and serine residues. Here, we use this tabula rasa bait region to investigate several hypotheses for the triggering mechanism. When tabula rasa bait regions containing disulfide loops were elongated by reducing the disulfides, we found that A2M remained in its native conformation. In addition, cleavage within a disulfide loop did not trigger the conformational change until after the disulfide was reduced, indicating that the introduction of discontinuity into the bait region is essential to the trigger. Previously, A2MF structures have shown that the C-terminal end of the bait region (a.k.a. the N-terminal region of the truncated α chain) threads through a central channel in native A2MF proteins. Bait region cleavage abolishes this plug-in-channel arrangement, as the bait region retracts from the channel and the channel itself collapses. We found that mutagenesis of conserved plug-in-channel residues disrupted the formation of native A2M. These results provide experimental evidence for a structural hypothesis in which retraction of the bait region from this channel following cleavage and the channel’s subsequent collapse triggers the conformational change of A2M and other A2MF proteins.
Collapse
Affiliation(s)
| | - Khang Diep
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
13
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
14
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
15
|
Nielsen NS, Zarantonello A, Harwood SL, Jensen KT, Kjøge K, Thøgersen IB, Schauser L, Karlsen JL, Andersen GR, Enghild JJ. Cryo-EM structures of human A2ML1 elucidate the protease-inhibitory mechanism of the A2M family. Nat Commun 2022; 13:3033. [PMID: 35641520 PMCID: PMC9156758 DOI: 10.1038/s41467-022-30758-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
A2ML1 is a monomeric protease inhibitor belonging to the A2M superfamily of protease inhibitors and complement factors. Here, we investigate the protease-inhibitory mechanism of human A2ML1 and determine the structures of its native and protease-cleaved conformations. The functional inhibitory unit of A2ML1 is a monomer that depends on covalent binding of the protease (mediated by A2ML1’s thioester) to achieve inhibition. In contrast to the A2M tetramer which traps proteases in two internal chambers formed by four subunits, in protease-cleaved monomeric A2ML1 disordered regions surround the trapped protease and may prevent substrate access. In native A2ML1, the bait region is threaded through a hydrophobic channel, suggesting that disruption of this arrangement by bait region cleavage triggers the extensive conformational changes that result in protease inhibition. Structural comparisons with complement C3/C4 suggest that the A2M superfamily of proteins share this mechanism for the triggering of conformational change occurring upon proteolytic activation. A2ML1 is a human protease inhibitor belonging to the A2M protein family. In this study, the authors determine structures of A2ML1 before and after protease inhibition and investigate its mechanism of action.
Collapse
Affiliation(s)
- Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alessandra Zarantonello
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Cordeliers Research Center, Sorbonne University, Paris, France
| | | | | | - Katarzyna Kjøge
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Abbas MN, Chlastáková A, Jmel MA, Iliaki-Giannakoudaki E, Chmelař J, Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front Cell Infect Microbiol 2022; 12:892770. [PMID: 35711658 PMCID: PMC9195624 DOI: 10.3389/fcimb.2022.892770] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| |
Collapse
|
17
|
Haroun M, Elsewedy HS, Shehata TM, Tratrat C, Al Dhubiab BE, Venugopala KN, Almostafa MM, Kochkar H, Elnahas HM. Significant of injectable brucine PEGylated niosomes in treatment of MDA cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Peng M, Li Z, Cardoso JCR, Niu D, Liu X, Dong Z, Li J, Power DM. Domain-Dependent Evolution Explains Functional Homology of Protostome and Deuterostome Complement C3-Like Proteins. Front Immunol 2022; 13:840861. [PMID: 35359984 PMCID: PMC8960428 DOI: 10.3389/fimmu.2022.840861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Complement proteins emerged early in evolution but outside the vertebrate clade they are poorly characterized. An evolutionary model of C3 family members revealed that in contrast to vertebrates the evolutionary trajectory of C3-like genes in cnidarian, protostomes and invertebrate deuterostomes was highly divergent due to independent lineage and species-specific duplications. The deduced C3-like and vertebrate C3, C4 and C5 proteins had low sequence conservation, but extraordinarily high structural conservation and 2-chain and 3-chain protein isoforms repeatedly emerged. Functional characterization of three C3-like isoforms in a bivalve representative revealed that in common with vertebrates complement proteins they were cleaved into two subunits, b and a, and the latter regulated inflammation-related genes, chemotaxis and phagocytosis. Changes within the thioester bond cleavage sites and the a-subunit protein (ANATO domain) explained the functional differentiation of bivalve C3-like. The emergence of domain-related functions early during evolution explains the overlapping functions of bivalve C3-like and vertebrate C3, C4 and C5, despite low sequence conservation and indicates that evolutionary pressure acted to conserve protein domain organization rather than the primary sequence.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University (SHOU), Shanghai, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University (SHOU), Shanghai, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal.,Shanghai Ocean University International Center for Marine Studies, Shanghai, China
| |
Collapse
|
19
|
Vu O, Bender BJ, Pankewitz L, Huster D, Beck-Sickinger AG, Meiler J. The Structural Basis of Peptide Binding at Class A G Protein-Coupled Receptors. Molecules 2021; 27:molecules27010210. [PMID: 35011444 PMCID: PMC8746363 DOI: 10.3390/molecules27010210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest membrane protein family and a significant target class for therapeutics. Receptors from GPCRs’ largest class, class A, influence virtually every aspect of human physiology. About 45% of the members of this family endogenously bind flexible peptides or peptides segments within larger protein ligands. While many of these peptides have been structurally characterized in their solution state, the few studies of peptides in their receptor-bound state suggest that these peptides interact with a shared set of residues and undergo significant conformational changes. For the purpose of understanding binding dynamics and the development of peptidomimetic drug compounds, further studies should investigate the peptide ligands that are complexed to their cognate receptor.
Collapse
Affiliation(s)
- Oanh Vu
- Deparment of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; (B.J.B.); (L.P.)
| | - Brian Joseph Bender
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; (B.J.B.); (L.P.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Lisa Pankewitz
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; (B.J.B.); (L.P.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Medical Department, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany;
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany;
| | - Jens Meiler
- Deparment of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; (B.J.B.); (L.P.)
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Leipzig University Medical Center, Institute for Drug Discovery, Departments of Chemistry and Computer Science, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
20
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
21
|
Lukassen MV, Franc V, Hevler JF, Heck AJR. Similarities and differences in the structures and proteoform profiles of the complement proteins C6 and C7. Proteomics 2021; 21:e2000310. [PMID: 34241972 DOI: 10.1002/pmic.202000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022]
Abstract
The human complement system provides a first line of defence against pathogens. It requires a well-orchestrated sequential assembly of an array of terminal complement components (C5, C6, C7, C8, and C9), ultimately forming the membrane attack complex (MAC). Although much information about MAC assembly is available, the structure of the soluble C7 has remained elusive. The complement proteins C7 and C6 share very high sequence homology and exhibit several conserved domains, disulphide bridges, and C-mannosylation sites. Here, we used an integrative structural MS-based approach combining native MS, glycopeptide-centric MS, in-gel cross-linking MS (IGX-MS) and structural modelling to describe structural features, including glycosylation, of human serum soluble C7. We compare this data with structural and glycosylation data for human serum C6. The new structural model for C7 shows that it adopts a compact conformation in solution. Although C6 and C7 share many similarities, our data reveals distinct O-, and N-linked glycosylation patterns in terms of location and glycan composition. Cumulatively, our data provide valuable new insight into the structure and proteoforms of C7, solving an essential piece of the puzzle in our understanding of MAC assembly.
Collapse
Affiliation(s)
- Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, The Netherlands.,Netherlands Proteomics Center, The Netherlands
| |
Collapse
|
22
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Harwood SL, Nielsen NS, Diep K, Jensen KT, Nielsen PK, Yamamoto K, Enghild JJ. Development of selective protease inhibitors via engineering of the bait region of human α 2-macroglobulin. J Biol Chem 2021; 297:100879. [PMID: 34139236 PMCID: PMC8267569 DOI: 10.1016/j.jbc.2021.100879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/15/2023] Open
Abstract
Human α2-macroglobulin (A2M) is an abundant protease inhibitor in plasma, which regulates many proteolytic processes and is involved in innate immunity. A2M’s unique protease-trapping mechanism of inhibition is initiated when a protease cleaves within the exposed and highly susceptible “bait region.” As the wild-type bait region is permissive to cleavage by most human proteases, A2M is accordingly a broad-spectrum protease inhibitor. In this study, we extensively modified the bait region in order to identify any potential functionally important elements in the bait region sequence and to engineer A2M proteins with restrictive bait regions, which more selectively inhibit a target protease. A2M in which the bait region was entirely replaced by glycine-serine repeats remained fully functional and was not cleaved by any tested protease. Therefore, this bait region was designated as the “tabula rasa” bait region and used as the starting point for further bait region engineering. Cleavage of the tabula rasa bait region by specific proteases was conveyed by the insertion of appropriate substrate sequences, e.g., basic residues for trypsin. Screening and optimization of tabula rasa bait regions incorporating matrix metalloprotease 2 (MMP2) substrate sequences produced an A2M that was specifically cleaved by MMPs and inhibited MMP2 cleavage activity as efficiently as wild-type A2M. We propose that this approach can be used to develop A2M-based protease inhibitors, which selectively inhibit target proteases, which might be applied toward the clinical inhibition of dysregulated proteolysis as occurs in arthritis and many types of cancer.
Collapse
Affiliation(s)
- Seandean Lykke Harwood
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Nadia Sukusu Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Khang Diep
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Sánchez-Tabernero S, Fajardo-Sanchez J, Weston-Davies W, Parekh M, Kriman J, Kaye S, Ahmad S. Dual inhibition of complement component 5 and leukotriene B4 by topical rVA576 in atopic keratoconjunctivis: TRACKER phase 1 clinical trial results. Orphanet J Rare Dis 2021; 16:270. [PMID: 34116700 PMCID: PMC8196439 DOI: 10.1186/s13023-021-01890-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose To evaluate the safety and preliminary efficacy of topical rVA576, a dual inhibitor of complement component 5 (C5) and leukotriene B4 (LTB4), in patients with recalcitrant atopic keratoconjunctivitis (AKC) in the open label phase 1 TRACKER clinical trial. Methods Three patients diagnosed with moderate or severe AKC who had been on maximal topical treatment (antihistamines and ciclosporin) for at least three months prior to entry, and showed persistent symptoms and signs of inflammation, were recruited into the trial. Patients received rVA576 eye drops twice a day for 8 weeks. Patients were seen at baseline and weeks 1, 2, 4, 6 and 8. Safety data was recorded and a composite sum score of symptoms and signs was obtained. This score comprised symptoms such as itching, mucous discharge and photophobia, and conjunctival and corneal signs such as hyperemia, tarsal papillae, punctate keratitis and corneal neovascularization, all rated individually from 0 to 3 for a maximum score of 33. Results Two of the three patients completed the initial open label phase of the trial. The third patient was unable to attend appointments and terminated the study early at day 14. Topical rVA576 was well tolerated with no serious adverse events reported. There was an average improvement in overall clinical score of 53%, composed of an improvement in symptoms of 65% [63.64–66.67%] and signs of 40% [40–40.12%] by day 56. Conclusions In this open label phase 1 TRACKER trial, rVA576 eye drops were well tolerated and showed a response across signs and symptoms of active inflammation. This study is exploratory but supports topical rVA576 safety and shows promising efficacy for recalcitrant AKC. A phase 2 randomised control trial is currently underway. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01890-6.
Collapse
Affiliation(s)
| | | | | | | | - Jaime Kriman
- Moorfields Eye Hospital, 51 North Block, 5 Chicheley Street, London, SE1 7PJ, UK
| | - Stephen Kaye
- St Paul's Eye Unit, Royal Liverpool Hospitals, Liverpool, UK
| | - Sajjad Ahmad
- Moorfields Eye Hospital, 51 North Block, 5 Chicheley Street, London, SE1 7PJ, UK.,UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
25
|
Date Palm Extract ( Phoenix dactylifera) PEGylated Nanoemulsion: Development, Optimization and Cytotoxicity Evaluation. PLANTS 2021; 10:plants10040735. [PMID: 33918742 PMCID: PMC8069845 DOI: 10.3390/plants10040735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023]
Abstract
Date palm fruit (Phoenix dactylifera) is reputed to have numerous biological activities, including anticancer properties. To utilize the great fortune of this fruit, the current study aimed to maximize its pharmacological activity. Date palm extract (DPE) of Khalas cultivar was obtained in powder form and then was formulated into nanoemulsion (NE). The optimized DPE-NE was formulated along with its naked counterpart followed by studying their physical and chemical properties. A qualitative assessment of total serum protein associated with the surface of formulations was implemented. Studies for the in vitro release of DPE from developed NE before and after incubation with serum were investigated. Eventually, an MTT assay was conducted. Total phenolic and flavonoid contents were 22.89 ± 0.013 mg GAE/g of dry DPE and 9.90 ± 0.03 mg QE/g of dry DPE, respectively. Homogenous NE formulations were attained with appropriate particle size and viscosity that could be administered intravenously. The optimized PEGylated NE exhibited a proper particle size, PDI, and zeta potential. Total serum protein adsorbed on PEG-NE surface was significantly low. The release of the drug through in vitro study was effectively extended for 24 h. Ultimately; PEGylated NE of DPE attained significant inhibition for cancer cell viability with IC50 values of 18.6 ± 2.4 and 13.5 ± 1.8 µg/mL for MCF-7 and HepG2 cell lines, respectively. PEGylated NE of DPE of Khalas cultivar will open the gate for future adjuvants for cancer therapy.
Collapse
|
26
|
Emerging Role of C5 Complement Pathway in Peripheral Neuropathies: Current Treatments and Future Perspectives. Biomedicines 2021; 9:biomedicines9040399. [PMID: 33917266 PMCID: PMC8067968 DOI: 10.3390/biomedicines9040399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The complement system is a key component of innate immunity since it plays a critical role in inflammation and defense against common pathogens. However, an inappropriate activation of the complement system is involved in numerous disorders, including peripheral neuropathies. Current strategies for neuropathy-related pain fail to achieve adequate pain relief, and although several therapies are used to alleviate symptoms, approved disease-modifying treatments are unavailable. This urgent medical need is driving the development of therapeutic agents for this condition, and special emphasis is given to complement-targeting approaches. Recent evidence has underscored the importance of complement component C5a and its receptor C5aR1 in inflammatory and neuropathic pain, indicating that C5a/C5aR1 axis activation triggers a cascade of events involved in pathophysiology of peripheral neuropathy and painful neuro-inflammatory states. However, the underlying pathophysiological mechanisms of this signaling in peripheral neuropathy are not fully known. Here, we provide an overview of complement pathways and major components associated with dysregulated complement activation in peripheral neuropathy, and of drugs under development targeting the C5 system. C5/C5aR1 axis modulators could represent a new strategy to treat complement-related peripheral neuropathies. Specifically, we describe novel C5aR allosteric modulators, which may potentially become new tools in the therapeutic armory against neuropathic pain.
Collapse
|
27
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
28
|
Spicer BA, Dunstone MA. Going full circle: Determining the structures of complement component 9. Methods Enzymol 2021; 649:103-123. [PMID: 33712184 DOI: 10.1016/bs.mie.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pore forming proteins (PFPs) undergo dramatic conformational changes to punch holes in the target membrane. These PFPs have the ability to self-assemble, by way of oligomerization, and have the capacity to transform from a water soluble state (commonly referred to as fluid phase) to a membrane adhered form. Accordingly, PFPs are metastable, that is they are inert until the right conditions cause the release of potential energy stored in the conformational fold leading to a vast structural rearrangement into a membrane-inserted oligomeric form. However, the metastable state of PFPs poses a problem of leading to aggregation and precipitation in conditions typically required for structural biology techniques. Here, we discuss the protein chemistry of the MACPF protein complement component 9 (C9). C9 is part of a larger complex assembly known as the membrane attack complex (MAC) that has been studied extensively for its ability to form pores in bacteria. An unusual artifact of human C9 is the ability to form a soluble oligomeric state of the channel portion of the MAC, called polyC9. PolyC9 formation does not require the presence of membranes or other complement factors. It is only in recent years that structural studies of the MAC have become successful owing to improved recombinant DNA expression systems and the improvement of high-resolution techniques (both X-ray crystallography and single particle cryo-EM). We discuss the expression and purification of recombinant C9, crystallization of the soluble monomeric form of C9 and the preparation of the oligomeric polyC9.
Collapse
Affiliation(s)
- Bradley A Spicer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
29
|
Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, Arntzen MØ, Schmidt B, Zurich RH, van Sorge NM, Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun 2021; 12:1230. [PMID: 33623002 PMCID: PMC7902821 DOI: 10.1038/s41467-021-21473-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Satoshi Uchiyama
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Helen Masson
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | | | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Cathrine Bunæs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Benjamin Schmidt
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Raymond H Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan E Lewis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
30
|
Zarantonello A, Pedersen H, Laursen NS, Andersen GR. Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies. Biomolecules 2021; 11:biom11020298. [PMID: 33671302 PMCID: PMC7922070 DOI: 10.3390/biom11020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
The complement system is part of the innate immune response, where it provides immediate protection from infectious agents and plays a fundamental role in homeostasis. Complement dysregulation occurs in several diseases, where the tightly regulated proteolytic cascade turns offensive. Prominent examples are atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria and Alzheimer’s disease. Therapeutic intervention targeting complement activation may allow treatment of such debilitating diseases. In this review, we describe a panel of complement targeting nanobodies that allow modulation at different steps of the proteolytic cascade, from the activation of the C1 complex in the classical pathway to formation of the C5 convertase in the terminal pathway. Thorough structural and functional characterization has provided a deep mechanistic understanding of the mode of inhibition for each of the nanobodies. These complement specific nanobodies are novel powerful probes for basic research and offer new opportunities for in vivo complement modulation.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Nick S. Laursen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
- Correspondence: ; Tel.: +45-30256646
| |
Collapse
|
31
|
Macpherson A, Laabei M, Ahdash Z, Graewert MA, Birtley JR, Schulze MSE, Crennell S, Robinson SA, Holmes B, Oleinikovas V, Nilsson PH, Snowden J, Ellis V, Mollnes TE, Deane CM, Svergun D, Lawson AD, van den Elsen JM. The allosteric modulation of complement C5 by knob domain peptides. eLife 2021; 10:63586. [PMID: 33570492 PMCID: PMC7972453 DOI: 10.7554/elife.63586] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3–6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential. Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows’ antibodies contain an ultra-long loop region that contains a ‘knob domain’ which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows’ antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.
Collapse
Affiliation(s)
- Alex Macpherson
- UCB, Slough, United Kingdom.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | | | | - Susan Crennell
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sarah A Robinson
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | | | - Per H Nilsson
- UCB, Slough, United Kingdom.,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden.,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Research Laboratory, Bodø Hospital, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | - Jean Mh van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.,Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| |
Collapse
|
32
|
Hevler JF, Lukassen MV, Cabrera-Orefice A, Arnold S, Pronker MF, Franc V, Heck AJR. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. EMBO J 2021; 40:e106174. [PMID: 33459420 PMCID: PMC7883291 DOI: 10.15252/embj.2020106174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
33
|
Sajiki Y, Konnai S, Ikenaka Y, Gulay KCM, Kobayashi A, Parizi LF, João BC, Watari K, Fujisawa S, Okagawa T, Maekawa N, Logullo C, da Silva Vaz I, Murata S, Ohashi K. Tick saliva-induced programmed death-1 and PD-ligand 1 and its related host immunosuppression. Sci Rep 2021; 11:1063. [PMID: 33441793 PMCID: PMC7806669 DOI: 10.1038/s41598-020-80251-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
The tick Rhipicephalus microplus is a harmful parasite of cattle that causes considerable economic losses to the cattle breeding industry. Although R. microplus saliva (Rm-saliva) contains several immunosuppressants, any association between Rm-saliva and the expression of immunoinhibitory molecules, such as programmed death (PD)-1 and PD-ligand 1 (PD-L1), has not been described. In this study, flow cytometric analyses revealed that Rm-saliva upregulated PD-1 expression in T cells and PD-L1 expression in CD14+ and CD11c+ cells in cattle. Additionally, Rm-saliva decreased CD69 expression in T cells and Th1 cytokine production from peripheral blood mononuclear cells. Furthermore, PD-L1 blockade increased IFN-γ production in the presence of Rm-saliva, suggesting that Rm-saliva suppresses Th1 responses via the PD-1/PD-L1 pathway. To reveal the upregulation mechanism of PD-1/PD-L1 by Rm-saliva, we analyzed the function of prostaglandin E2 (PGE2), which is known as an inducer of PD-L1 expression, in Rm-saliva. We found that Rm-saliva contained a high concentration of PGE2, and PGE2 treatment induced PD-L1 expression in CD14+ cells in vitro. Immunohistochemical analyses revealed that PGE2 and PD-L1 expression was upregulated in tick-attached skin in cattle. These data suggest that PGE2 in Rm-saliva has the potential to induce the expression of immunoinhibitory molecules in host immune cells.
Collapse
Affiliation(s)
- Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan. .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Yoshinori Ikenaka
- Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | | | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Benvindo Capela João
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
34
|
Elsewedy HS, Aldhubiab BE, Mahdy MA, Elnahas HM. Brucine PEGylated nanoemulsion: In vitro and in vivo evaluation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125618] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Considering the multifaceted protective and homeostatic roles of the complement system, many consequences arise when drug carriers, and particulate pharmaceutical formulations clash with complement proteins, and trigger complement cascade. Complement activation may induce formulation destabilization, promote opsonization, and affect biological and therapeutic performance of pharmaceutical nano- and micro-particles. In some cases, complement activation is beneficial, where complement may play a role in prophylactic protection, whereas uncontrolled complement activation is deleterious, and contributes to disease progression. Accordingly, design initiatives with particulate medicines should consider complement activation properties of the end formulation within the context of administration route, dosing, systems biology, and therapeutic perspective. Here we examine current progress in mechanistic processes underlying complement activation by pre-clinical and clinical particles, identify opportunities and challenges ahead, and suggest future directions in nanomedicine-complement interface research.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy; CRIBI Biotechnology Center, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Denver, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| |
Collapse
|
36
|
A soft tick Ornithodoros moubata salivary protein OmCI is a potent inhibitor to prevent avian complement activation. Ticks Tick Borne Dis 2019; 11:101354. [PMID: 31866440 DOI: 10.1016/j.ttbdis.2019.101354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 01/15/2023]
Abstract
Complement is a key first line innate host defense system in the blood of vertebrates. Upon activation, this powerful defense mechanism can elicit inflammatory responses, lyse non-self-cells, or mark them for opsonophagocytic removal. Blood-feeding arthropods thus require the ability to block host complement activation in the bloodmeal to prevent undesired cell or tissue damage during feeding. The soft tick Ornithodoros moubata produces a complement inhibitory protein, OmCI. This protein binds to a mammalian complement protein C5 and blocks further activation of complement cascades, which results in the prevention of complement-mediated bacterial killing through membrane attack complex. Interestingly, the amino acids involved in OmCI binding are highly conserved among mammalian and avian C5, but the ability of this protein to inhibit the complement from birds remains unclear. Here we demonstrated that OmCI is capable of preventing quail complement-mediated erythrocyte lysis, inhibiting the capability of this animal's complement to eliminate a serum-sensitive Lyme disease bacterial strain. We also found that the ability of OmCI to inhibit quail complement-mediated killing of Lyme disease bacteria can be extended to different domestic and wild birds. Our results illustrate the utility of OmCI to block bird complement. These results provide the foundation for further use of this protein as a tool to study the molecular basis of avian complement and pathogen evasion to such a defense mechanism.
Collapse
|
37
|
Štibrániová I, Bartíková P, Holíková V, Kazimírová M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front Physiol 2019; 10:830. [PMID: 31333488 PMCID: PMC6617849 DOI: 10.3389/fphys.2019.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks are obligatory blood-feeding ectoparasites, causing blood loss and skin damage in their hosts. In addition, ticks also transmit a number of various pathogenic microorganisms that cause serious diseases in humans and animals. Ticks evolved a wide array of salivary bioactive compounds that, upon injection into the host skin, inhibit or modulate host reactions such as hemostasis, inflammation and wound healing. Modulation of the tick attachment site in the host skin involves mainly molecules which affect physiological processes orchestrated by cytokines, chemokines and growth factors. Suppressing host defense reactions is crucial for tick survival and reproduction. Furthermore, pharmacologically active compounds in tick saliva have a promising therapeutic potential for treatment of some human diseases connected with disorders in hemostasis and immune system. These disorders are often associated to alterations in signaling pathways and dysregulation or overexpression of specific cytokines which, in turn, affect mechanisms of angiogenesis, cell motility and cytoskeletal regulation. Moreover, tick salivary molecules were found to exert cytotoxic and cytolytic effects on various tumor cells and have anti-angiogenic properties. Elucidation of the mode of action of tick bioactive molecules on the regulation of cell processes in their mammalian hosts could provide new tools for understanding the complex changes leading to immune disorders and cancer. Tick bioactive molecules may also be exploited as new pharmacological inhibitors of the signaling pathways of cytokines and thus help alleviate patient discomfort and increase patient survival. We review the current knowledge about tick salivary peptides and proteins that have been identified and functionally characterized in in vitro and/or in vivo models and their therapeutic perspective.
Collapse
Affiliation(s)
- Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
38
|
Chmelař J, Kotál J, Kovaříková A, Kotsyfakis M. The Use of Tick Salivary Proteins as Novel Therapeutics. Front Physiol 2019; 10:812. [PMID: 31297067 PMCID: PMC6607933 DOI: 10.3389/fphys.2019.00812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or “anti-tick” vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| | - Anna Kovaříková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| |
Collapse
|
39
|
A small-molecule inhibitor of C5 complement protein. Nat Chem Biol 2019; 15:666-668. [PMID: 31209353 DOI: 10.1038/s41589-019-0303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 05/03/2019] [Indexed: 11/08/2022]
Abstract
The complement pathway is an important part of the immune system, and uncontrolled activation is implicated in many diseases. The human complement component 5 protein (C5) is a validated drug target within the complement pathway, as an anti-C5 antibody (Soliris) is an approved therapy for paroxysmal nocturnal hemoglobinuria. Here, we report the identification, optimization and mechanism of action for the first small-molecule inhibitor of C5 complement protein.
Collapse
|
40
|
Dobó J, Kocsis A, Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front Immunol 2018; 9:1851. [PMID: 30135690 PMCID: PMC6092519 DOI: 10.3389/fimmu.2018.01851] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various complement proteins with special emphasis on the components of the lectin (LP) and the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), which are responsible for the activation of the cascade, are straightforward targets of inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also subjects of drug development. Recent discoveries about cross-talks between the LP and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated serine proteases (MASPs) are not just responsible for LP activation, but they are also indispensable for efficient AP activation. Activated MASP-3 has recently been shown to be the enzyme that continuously supplies factor D (FD) for the AP by cleaving pro-factor D (pro-FD). In this aspect, MASP-3 emerges as a novel feasible target for the regulation of AP activity. MASP-1 was shown to be required for AP activity on various surfaces, first of all on LPS of Gram-negative bacteria.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Kocsis
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
41
|
Zwarthoff SA, Berends ETM, Mol S, Ruyken M, Aerts PC, Józsi M, de Haas CJC, Rooijakkers SHM, Gorham RD. Functional Characterization of Alternative and Classical Pathway C3/C5 Convertase Activity and Inhibition Using Purified Models. Front Immunol 2018; 9:1691. [PMID: 30083158 PMCID: PMC6064732 DOI: 10.3389/fimmu.2018.01691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022] Open
Abstract
Complement is essential for the protection against infections; however, dysregulation of complement activation can cause onset and progression of numerous inflammatory diseases. Convertase enzymes play a central role in complement activation and produce the key mediators of complement: C3 convertases cleave C3 to generate chemoattractant C3a and label target cells with C3b, which promotes phagocytosis; C5 convertases cleave C5 into chemoattractant C5a, and C5b, which drives formation of the membrane attack complex. Since convertases mediate nearly all complement effector functions, they are ideal targets for therapeutic complement inhibition. A unique feature of convertases is their covalent attachment to target cells, which effectively confines complement activation to the cell surface. However, surface localization precludes detailed analysis of convertase activation and inhibition. In our previous work, we developed a model system to form purified alternative pathway (AP) C5 convertases on C3b-coated beads and quantify C5 conversion via functional analysis of released C5a. Here, we developed a C3aR cell reporter system that enables functional discrimination between C3 and C5 convertases. By regulating the C3b density on the bead surface, we observe that high C3b densities are important for conversion of C5, but not C3, by AP convertases. Screening of well-characterized complement-binding molecules revealed that differential inhibition of AP C3 convertases (C3bBb) and C5 convertases [C3bBb(C3b)n] is possible. Although both convertases contain C3b, the C3b-binding molecules Efb-C/Ecb and FHR5 specifically inhibit C5 conversion. Furthermore, using a new classical pathway convertase model, we show that these C3b-binding proteins not only block AP C3/C5 convertases but also inhibit formation of a functional classical pathway C5 convertase under well-defined conditions. Our models enable functional characterization of purified convertase enzymes and provide a platform for the identification and development of specific convertase inhibitors for treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Seline A Zwarthoff
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien T M Berends
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne Mol
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Macpherson A, Liu X, Dedi N, Kennedy J, Carrington B, Durrant O, Heywood S, van den Elsen J, Lawson ADG. The rational design of affinity-attenuated OmCI for the purification of complement C5. J Biol Chem 2018; 293:14112-14121. [PMID: 30030376 PMCID: PMC6130949 DOI: 10.1074/jbc.ra118.004043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/03/2018] [Indexed: 12/04/2022] Open
Abstract
Complement component C5 is the target of the mAb eculizumab and is the focus of a sustained drug discovery effort to prevent complement-induced inflammation in a range of autoimmune diseases. The immune evasion protein OmCI binds to and potently inactivates C5; this tight-binding interaction can be exploited to affinity-purify C5 protein from serum, offering a vastly simplified protocol compared with existing methods. However, breaking the high-affinity interaction requires conditions that risk denaturing or activating C5. We performed structure-guided in silico mutagenesis to identify prospective OmCI residues that contribute significantly to the binding affinity. We tested our predictions in vitro, using site-directed mutagenesis, and characterized mutants using a range of biophysical techniques, as well as functional assays. Our biophysical analyses suggest that the C5–OmCI interaction is complex with potential for multiple binding modes. We present single mutations that lower the affinity of OmCI for C5 and combinations of mutations that significantly decrease or entirely abrogate formation of the complex. The affinity-attenuated forms of OmCI are suitable for affinity purification and allow elution under mild conditions that are nondenaturing or activating to C5. We present the rational design, biophysical characterization, and experimental validation of affinity-reduced forms of OmCI as tool reagents to enable the affinity purification of C5.
Collapse
Affiliation(s)
- Alex Macpherson
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and .,the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AX, United Kingdom
| | - Xiaofeng Liu
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | - Neesha Dedi
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | | | | | - Oliver Durrant
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | - Sam Heywood
- From the UCB-Celltech, Slough SL1 3WE, United Kingdom and
| | - Jean van den Elsen
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AX, United Kingdom
| | | |
Collapse
|
43
|
Wang S, Breskovska I, Gandhy S, Punga AR, Guptill JT, Kaminski HJ. Advances in autoimmune myasthenia gravis management. Expert Rev Neurother 2018; 18:573-588. [PMID: 29932785 PMCID: PMC6289049 DOI: 10.1080/14737175.2018.1491310] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune neuromuscular disorder with no cure and conventional treatments limited by significant adverse effects and variable benefit. In the last decade, therapeutic development has expanded based on improved understanding of autoimmunity and financial incentives for drug development in rare disease. Clinical subtypes exist based on age, gender, thymic pathology, autoantibody profile, and other poorly defined factors, such as genetics, complicate development of specific therapies. Areas covered: Clinical presentation and pathology vary considerably among patients with some having weakness limited to the ocular muscles and others having profound generalized weakness leading to respiratory insufficiency. MG is an antibody-mediated disorder dependent on autoreactive B cells which require T-cell support. Treatments focus on elimination of circulating autoantibodies or inhibition of effector mechanisms by a broad spectrum of approaches from plasmapheresis to B-cell elimination to complement inhibition. Expert commentary: Standard therapies and those under development are disease modifying and not curative. As a rare disease, clinical trials are challenged in patient recruitment. The great interest in development of treatments specific for MG is welcome, but decisions will need to be made to focus on those that offer significant benefits to patients.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Neurology, George Washington University, Washington DC 20008
| | - Iva Breskovska
- Department of Neurology, George Washington University, Washington DC 20008
| | - Shreya Gandhy
- Department of Neurology, George Washington University, Washington DC 20008
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jeffery T. Guptill
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington DC 20008
| |
Collapse
|
44
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Magnetic bead based assays for complement component C5. J Immunol Methods 2017; 450:50-57. [DOI: 10.1016/j.jim.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/29/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
|
46
|
Auxiliary activation of the complement system and its importance for the pathophysiology of clinical conditions. Semin Immunopathol 2017; 40:87-102. [PMID: 28900700 PMCID: PMC5794838 DOI: 10.1007/s00281-017-0646-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological conditions, the activity of the generated proteases is controlled by endogenous protease inhibitors. Consequently, there is remarkable little crosstalk between the different systems in the fluid phase. This concept review article aims at identifying and describing conditions where the strict system-related control is circumvented. These include clinical settings where massive amounts of proteolytic enzymes are released from tissues, e.g., during pancreatitis or post-traumatic tissue damage, resulting in consumption of the natural substrates of the specific proteases and the available protease inhibitor. Another example of cascade system dysregulation is disseminated intravascular coagulation, with canonical activation of all cascade systems of the blood, also leading to specific substrate and protease inhibitor elimination. The present review explains basic concepts in protease biochemistry of importance to understand clinical conditions with extensive protease activation.
Collapse
|
47
|
Bayly-Jones C, Bubeck D, Dunstone MA. The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160221. [PMID: 28630159 PMCID: PMC5483522 DOI: 10.1098/rstb.2016.0221] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The membrane attack complex (MAC) is an important innate immune effector of the complement terminal pathway that forms cytotoxic pores on the surface of microbes. Despite many years of research, MAC structure and mechanism of action have remained elusive, relying heavily on modelling and inference from biochemical experiments. Recent advances in structural biology, specifically cryo-electron microscopy, have provided new insights into the molecular mechanism of MAC assembly. Its unique 'split-washer' shape, coupled with an irregular giant β-barrel architecture, enable an atypical mechanism of hole punching and represent a novel system for which to study pore formation. This review will introduce the complement terminal pathway that leads to formation of the MAC. Moreover, it will discuss how structures of the pore and component proteins underpin a mechanism for MAC function, modulation and inhibition.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW2 7AZ, UK
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| |
Collapse
|
48
|
Schatz-Jakobsen JA, Pedersen DV, Andersen GR. Structural insight into proteolytic activation and regulation of the complement system. Immunol Rev 2017; 274:59-73. [PMID: 27782336 DOI: 10.1111/imr.12465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement system is a highly complex and carefully regulated proteolytic cascade activated through three different pathways depending on the activator recognized. The structural knowledge regarding the intricate proteolytic enzymes that activate and control complement has increased dramatically over the last decade. This development has been pivotal for understanding how mutations within complement proteins might contribute to pathogenesis and has spurred new strategies for development of complement therapeutics. Here we describe and discuss the complement system from a structural perspective and integrate the most recent findings obtained by crystallography, small-angle X-ray scattering, and electron microscopy. In particular, we focus on the proteolytic enzymes governing activation and their products carrying the biological effector functions. Additionally, we present the structural basis for some of the best known complement inhibitors. The large number of accumulated molecular structures enables us to visualize the relative size, position, and overall orientation of many of the most interesting complement proteins and assembled complexes on activator surfaces and in membranes.
Collapse
Affiliation(s)
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
49
|
Use of the complement inhibitor Coversin to treat HSCT-associated TMA. Blood Adv 2017; 1:1254-1258. [PMID: 29296765 DOI: 10.1182/bloodadvances.2016002832] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
Finding an inherited complement abnormality in HSCT-associated TMA provides a rationale for the use of a complement inhibitor.Alternative complement inhibitors such as Coversin should be considered in patients who are resistant to eculizumab.
Collapse
|
50
|
Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:199. [PMID: 28589099 PMCID: PMC5438962 DOI: 10.3389/fcimb.2017.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.
Collapse
Affiliation(s)
| | - Thierry Foulon
- Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Biogenèse des Signaux Peptidiques, Sorbonne Universités, UPMC Univ. Paris 06Paris, France
| | | |
Collapse
|