1
|
Nimmerjahn F. Role of Antibody Glycosylation in Health, Disease, and Therapy. Handb Exp Pharmacol 2025. [PMID: 40119204 DOI: 10.1007/164_2025_744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Immunoglobulin G (IgG) antibodies are an essential component of humoral immunity protecting the host from recurrent infections. Among all antibody isotypes, IgG antibodies have a uniquely long half-life, can basically reach any tissue in the body, and have the ability to kill opsonized target cells, which has made them the molecule of choice for therapeutic interventions in cancer and autoimmunity. Moreover, IgG antibodies in the form of pooled serum IgG preparations from healthy donors are used to treat chronic inflammatory and autoimmune diseases, providing evidence that serum IgG antibodies can have an active immunomodulatory activity. Research over the last two decades has established that the single sugar moiety attached to each IgG heavy chain plays a very important role in modulating the pro- and anti-inflammatory activities of IgG. Moreover, specific sugar moieties such as sialic acid and galactose residues can serve as highly specific biomarkers for ongoing inflammatory processes. This chapter will summarize how different sugar residues in the IgG sugar moiety change upon inflammation and how such changes may translate to altered IgG function and hence maybe useful for optimizing or modulating the function of therapeutic antibodies.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
2
|
Inamo J, Keegan J, Griffith A, Ghosh T, Horisberger A, Howard K, Pulford JF, Murzin E, Hancock B, Dominguez ST, Gurra MG, Gurajala S, Jonsson AH, Seifert JA, Feser ML, Norris JM, Cao Y, Apruzzese W, Bridges SL, Bykerk VP, Goodman S, Donlin LT, Firestein GS, Bathon JM, Hughes LB, Filer A, Pitzalis C, Anolik JH, Moreland L, Hacohen N, Guthridge JM, James JA, Cuda CM, Perlman H, Brenner MB, Raychaudhuri S, Sparks JA, Holers VM, Deane KD, Lederer J, Rao DA, Zhang F. Deep immunophenotyping reveals circulating activated lymphocytes in individuals at risk for rheumatoid arthritis. J Clin Invest 2025; 135:e185217. [PMID: 40091833 PMCID: PMC11910230 DOI: 10.1172/jci185217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease currently with no universally highly effective prevention strategies. Identifying pathogenic immune phenotypes in at-risk populations prior to clinical onset is crucial to establishing effective prevention strategies. Here, we applied multimodal single-cell technologies (mass cytometry and CITE-Seq) to characterize the immunophenotypes in blood from at-risk individuals (ARIs) identified through the presence of serum antibodies against citrullinated protein antigens (ACPAs) and/or first-degree relative (FDR) status, as compared with patients with established RA and people in a healthy control group. We identified significant cell expansions in ARIs compared with controls, including CCR2+CD4+ T cells, T peripheral helper (Tph) cells, type 1 T helper cells, and CXCR5+CD8+ T cells. We also found that CD15+ classical monocytes were specifically expanded in ACPA-negative FDRs, and an activated PAX5lo naive B cell population was expanded in ACPA-positive FDRs. Further, we uncovered the molecular phenotype of the CCR2+CD4+ T cells, expressing high levels of Th17- and Th22-related signature transcripts including CCR6, IL23R, KLRB1, CD96, and IL22. Our integrated study provides a promising approach to identify targets to improve prevention strategy development for RA.
Collapse
Affiliation(s)
- Jun Inamo
- Division of Rheumatology and
- Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joshua Keegan
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alec Griffith
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tusharkanti Ghosh
- Department of Biostatistics & Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alice Horisberger
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Kaitlyn Howard
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John F. Pulford
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ekaterina Murzin
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon Hancock
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Miranda G. Gurra
- Department of Preventive Medicine, Division of Biostatistics and Informatics, Northwestern University, Chicago, Illinois, USA
| | | | - Anna Helena Jonsson
- Division of Rheumatology and
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Ye Cao
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - William Apruzzese
- The list of the Accelerating Medicines Partnership: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Program members is provided in Supplemental Acknowledgments
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Vivian P. Bykerk
- Department of Medicine, Hospital for Special Surgery, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Susan Goodman
- Department of Medicine, Hospital for Special Surgery, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Laura T. Donlin
- Department of Medicine, Hospital for Special Surgery, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Gary S. Firestein
- Division of Rheumatology, Allergy, and Immunology, UCSD, La Jolla, California, USA
| | - Joan M. Bathon
- Department of Medicine, Division of Rheumatology, Columbia University, New York, New York, USA
| | - Laura B. Hughes
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham Medicine, Birmingham, Alabama, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre and Clinical Research Facility, University of Birmingham and University Hospitals Birmingham Foundation Trust, Birmingham, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, United Kingdom
- Department of Biomedical Sciences, Humanitas University, and Humanitas Research Hospital, Milan, Italy
| | - Jennifer H. Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Joel M. Guthridge
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Judith A. James
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Carla M. Cuda
- Department of Medicine, Division of Rheumatology and
| | | | - Michael B. Brenner
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Soumya Raychaudhuri
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Data Sciences
- Department of Medicine, Division of Genetics, and
- Department of Biomedical Informatics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A. Sparks
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - James Lederer
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak A. Rao
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Zhang
- Division of Rheumatology and
- Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Kaltsonoudis E, Karagianni P, Memi T, Pelechas E. State-of-the-Art Review on the Treatment of Axial Spondyloarthritis. Med Sci (Basel) 2025; 13:32. [PMID: 40137452 PMCID: PMC11944150 DOI: 10.3390/medsci13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
The term axial spondyloarthritis (axSpA) encompasses patients with both radiographic (r-axSpA) and non-radiographic (nr-axSpA) forms of the disease. These are two entities within the same family that share many genetic and pathogenic factors, but they also have significant differences. For example, the male-to-female ratio is 2:1 in r-axSpA and 1:1 in nr-axSpA. Additionally, the prevalence of the HLA-B27 gene is notably higher in r-axSpA. Early diagnosis remains an unmet need, with magnetic resonance imaging (MRI) being the most important tool for diagnosis and disease monitoring. Early detection is crucial, as it allows for timely treatment, increasing the chances of preventing new bone formation and long-term structural bone damage. Various cytokines, such as tumor necrosis factor (TNF)-α and interleukin-17, play active roles in the disease's pathogenesis, although the exact mechanisms of interaction are not yet fully understood. Clarifying these mechanisms will be key to developing new classification criteria, screening methods, and more personalized, targeted therapies. Non-steroidal anti-inflammatory drugs (NSAIDs), TNF inhibitors, interleukin-17 blockers, and, more recently, Janus kinase (JAK) inhibitors, are the most effective treatments for both radiographic and non-radiographic axial spondyloarthritis.
Collapse
Affiliation(s)
| | - Panagiota Karagianni
- Medical School, Department of Microbiology, University of Ioannina, 451 10 Ioannina, Greece;
| | - Tereza Memi
- Medical School, Department of Rheumatology, University of Ioannina, 451 10 Ioannina, Greece;
| | - Eleftherios Pelechas
- Department of Rheumatology, Chatzikosta General Hospital, 454 45 Ioannina, Greece;
| |
Collapse
|
4
|
Achten H, Meuris L, Deroo L, Jarlborg M, Decruy T, Deprez J, Dumas E, De Boeck K, Genbrugge E, Bauters W, Dochy F, Creytens D, Roels D, Callewaert N, Elewaut D, Peene I. Impact of IgG Fc Glycosylation on Disease Dynamics in Patients With Primary Sjögren Disease. Arthritis Rheumatol 2025; 77:311-321. [PMID: 39344178 DOI: 10.1002/art.43018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE Glycans attached to the Fc region of IgG antibodies influence their pro- or anti-inflammatory effector function. We aimed to explore the interrelation of the Fc glycosylation profile and disease transition, disease activity, and outcome in patients with suspected and confirmed primary Sjögren disease (SjD). METHODS IgG Fc sialylation and IgG Fc galactosylation serum levels were determined in 300 patients from the Belgian Sjögren's Syndrome Transition Trial. This cohort includes both suspected and confirmed patients with SjD meeting the 2016 American College of Rheumatology/EULAR criteria. Salivary gland involvement was evaluated through ultrasonography (Hocevar score 0-48) and histopathology (focus score). The relative amount of sialylated and galactosylated IgG was determined by capillary electrophoresis after using the endoglycosidase S-based assay. RESULTS Patients with SjD exhibited significantly lower sialylation and galactosylation levels versus asymptomatic carriers of anti-SSA and patients with sicca. Lower sialylation and galactosylation levels were significantly associated with an increase in B cell activation markers and distinct autoantibody profiles, particularly with multiple autoantibody reactivities. They were also linked to histopathological salivary gland alterations, higher Hocevar scores, and, importantly, risk factors for non-Hodgkin lymphoma (NHL) development. In contrast, patients with SjD who were mono-anti-Ro60 positive and those who were anti-SSA negative had normal IgG Fc glycosylation. CONCLUSION This study points to a novel role of IgG Fc glycosylation in patients with SjD in predicting disease transition, monitoring disease activity, and stratifying risk of NHL development.
Collapse
Affiliation(s)
- Helena Achten
- Ghent University Hospital and Gent University, Ghent, Belgium, and VIB-UGent Inflammation Research Center, Zwijnaarde, Belgium
| | - Leander Meuris
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Liselotte Deroo
- Ghent University Hospital and Gent University, Ghent, Belgium
| | | | - Tine Decruy
- VIB-UGent Inflammation Research Center, Zwijnaarde, Belgium
| | - Joke Deprez
- VIB-UGent Inflammation Research Center, Zwijnaarde, Belgium
| | - Emilie Dumas
- VIB-UGent Inflammation Research Center, Zwijnaarde, Belgium
| | | | | | | | | | - David Creytens
- Ghent University Hospital and Gent University, Ghent, Belgium
| | | | | | - Dirk Elewaut
- Ghent University Hospital and Gent University, Ghent, Belgium, and VIB-UGent Inflammation Research Center, Zwijnaarde, Belgium
| | - Isabelle Peene
- Ghent University Hospital and Gent University, Ghent, Belgium, VIB-UGent Inflammation Research Center, Zwijnaarde, Belgium, and AZ Sint-Jan Brugge AV, Bruges, Belgium
| |
Collapse
|
5
|
Ehlers M, Jönsson F. Pathogenic and Nonpathogenic Antibody Responses in Allergic Diseases. Eur J Immunol 2025; 55:e202249978. [PMID: 40071673 PMCID: PMC11898564 DOI: 10.1002/eji.202249978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 03/15/2025]
Abstract
Allergen-specific antibodies, particularly of the IgE class, are a hallmark of many allergic diseases. Yet paradoxically, (1) a proportion of healthy individuals possess allergen-specific IgE without clinical signs of allergy; (2) some, but not all, allergic individuals develop a more severe disease over time or fail to respond to allergen-specific immunotherapy; and (3) allergen-specific IgG antibodies can inhibit IgE-mediated responses but they can also induce allergic reactions. In this review, we discuss the occurrence of and transition between nonpathogenic and pathogenic allergen-specific antibody responses in the light of a two-stage model. We recapitulate different factors and scenarios that may induce different inflammatory conditions and qualitatively distinct allergen-specific T- and B-cell responses, influencing IgE origins and affinities, IgE/IgG(4) ratios, IgG effector functions, antibody glycosylation patterns, Fc and glycan-binding receptor expression and involvement, and ultimately their propensity to elicit allergic responses. Differences in these antibody characteristics may determine the onset of symptomatic allergy and the severity or remission of the disease.
Collapse
Affiliation(s)
- Marc Ehlers
- Laboratories of Immunology and Antibody Glycan AnalysisInstitute of Nutritional MedicineUniversity of Lübeck and University Medical Center of Schleswig‐HolsteinLübeckGermany
- Airway Research Center NorthGerman Center for Lung Research (DZL)University of LübeckLübeckGermany
| | - Friederike Jönsson
- Institut PasteurUniversité de Paris Cité, Unit of Antibodies in Therapy and PathologyParisFrance
- CNRSParisFrance
| |
Collapse
|
6
|
Jantz-Naeem N, Guvencli N, Böttcher-Loschinski R, Böttcher M, Mougiakakos D, Kahlfuss S. Metabolic T-cell phenotypes: from bioenergetics to function. Am J Physiol Cell Physiol 2025; 328:C1062-C1075. [PMID: 39946684 DOI: 10.1152/ajpcell.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
It is well known that T-cell metabolism and function are intimately linked. Metabolic reprogramming is a dynamic process that provides the necessary energy and biosynthetic precursors while actively regulating the immune response of T cells. As such, aberrations and dysfunctions in metabolic (re)programming, resulting in altered metabolic endotypes, may have an impact on disease pathology in various contexts. With the increasing demand for personalized and highly specialized medicine and immunotherapy, understanding metabolic profiles and T-cell subset dependence on specific metabolites will be crucial to harness the therapeutic potential of immunometabolism and T cell bioenergetics. In this review, we dissect metabolic alterations in different T-cell subsets in autoimmune and viral inflammation, T cell and non-T-cell malignancies, highlighting potential anchor points for future treatment and therapeutic exploitation.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nese Guvencli
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Böttcher
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Xu X, Chen Z, Song M, Hou Z, Balmer L, Zhou C, Huang Y, Hou H, Wang W, Lin L. Profiling of IgG N-glycosylation for axial spondyloarthritis and other rheumatic diseases. Arthritis Res Ther 2025; 27:37. [PMID: 39987207 PMCID: PMC11846342 DOI: 10.1186/s13075-025-03505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Axial spondyloarthritis (axSpA) is an inflammatory rheumatic disease with challenges in diagnosis and disease activity assessment. While alterations in immunoglobulin G (IgG) N-glycosylation have been observed in varied rheumatic diseases, those in axSpA remains unclear. This study aims to explore the role of IgG N-glycan profiles in diagnosis and disease activity of axSpA. METHODS A clinical case-control study was conducted involving patients with axSpA (n = 138), systemic lupus erythematosus (n = 102), rheumatoid arthritis (n = 106), osteoarthritis (n = 33), gout (n = 41) and healthy controls (n = 117). Ultra-performance liquid chromatography was employed to analyze the composition of the serum IgG N-glycome. Associations between IgG N-glycans and axSpA were investigated and compared to healthy controls and other four rheumatic diseases. The relationship among IgG N-glycosylation, disease activity, and inflammatory cytokines of axSpA patients were analyzed. The receiver operating characteristic (ROC) curve analysis was applied to evaluate the diagnostic/classification performance of IgG N-glycans to distinguish axSpA and its disease activity. RESULTS In patients with axSpA, the abundances of IgG galactosylation and sialylation were significantly lower than healthy controls, while the abundance of fucosylation was higher than the other four studied rheumatic diseases. Additionally, two asialylated IgG N-glycans (FA2 and FA2 [3]G1) were associated with axSpA, with adjusted odds ratios (AORs) of 5.62 (95% CI: 3.41-9.24) and 0.33 (95% CI: 0.22-0.50), respectively. Notably, decreased FA2 [3]G1 emerged as a characteristic IgG N-glycan associated with all five studied rheumatic diseases, while decreased FA2BG2S2 was a unique IgG N-glycan differentiating axSpA from the other four rheumatic diseases. Furthermore, FA2 displayed positive association with disease activity indicators (ASDAS-CRP, SPARCC-SIJ and SPARCC-spine) in axSpA. IgG N-glycans, particularly FA2 [3]G1, FA2BG2S2 and FA2, demonstrated canonical correlation with inflammatory cytokines, including interleukin-23 and tumor necrosis factor α, in axSpA (r = 0.519, P = 0.017). CONCLUSIONS Specific IgG N-glycans hold potential as novel biomarkers to enhance diagnosis and disease activity assessment in axSpA management.
Collapse
Affiliation(s)
- Xiaojia Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Zhixian Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Manshu Song
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Zhiduo Hou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Chunbin Zhou
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yayi Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Haifeng Hou
- Department of Epidemiology, School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- Department of Epidemiology, School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Institute of Glycome Study, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China.
| | - Ling Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Rheumatology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
8
|
Gronke K, Nguyen M, Fuhrmann H, Santamaria de Souza N, Schumacher J, Pereira MS, Löschberger U, Brinkhege A, Becker NJ, Yang Y, Sonnert N, Leopold S, Martin AL, von Münchow-Klein L, Pessoa Rodrigues C, Cansever D, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Schwinge D, Schramm C, Redanz S, Lassen KG, Manfredo Vieira S, Piali L, Palm NW, Bieniossek C, Kriegel MA. Translocating gut pathobiont Enterococcus gallinarum induces T H17 and IgG3 anti-RNA-directed autoimmunity in mouse and human. Sci Transl Med 2025; 17:eadj6294. [PMID: 39908347 DOI: 10.1126/scitranslmed.adj6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Chronic autoimmune diseases often lead to long-term sequelae and require lifelong immunosuppression because of an incomplete understanding of the triggers and drivers in genetically predisposed patients. Gut bacteria that escape the gut barrier, known as translocating gut pathobionts, have been implicated as instigators and perpetuators of extraintestinal autoimmune diseases in mice. The gut microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. Here, we show that the translocating pathobiont Enterococcus gallinarum can induce both human and mouse interferon-γ+ T helper 17 (TH17) differentiation and immunoglobulin G3 (IgG3) subclass switch of anti-E. gallinarum RNA antibodies, which correlated with anti-human RNA autoantibody responses in patients with systemic lupus erythematosus (SLE) and autoimmune hepatitis, two extraintestinal autoimmune diseases. E. gallinarum RNA, but not human RNA, triggered Toll-like receptor 8 (TLR8), and TLR8-mediated human monocyte activation promoted human TH17 induction by E. gallinarum. Translocation of the pathobiont triggered increased anti-RNA autoantibody titers that correlated with renal autoimmune pathophysiology in murine gnotobiotic lupus models and with disease activity in patients with SLE. These studies elucidate cellular mechanisms of how a translocating gut pathobiont induces systemic human T cell- and B cell-dependent autoimmune responses and provide a framework for developing host- and microbiota-derived biomarkers and targeted therapies in autoimmune diseases.
Collapse
Affiliation(s)
- Konrad Gronke
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Mytien Nguyen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Helen Fuhrmann
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Noemi Santamaria de Souza
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Julia Schumacher
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Márcia S Pereira
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Ulrike Löschberger
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Anna Brinkhege
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Nathalie J Becker
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
- Section of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital Münster, 48149 Münster, Germany
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Sonnert
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Shana Leopold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Anjelica L Martin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Lilly von Münchow-Klein
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Cecilia Pessoa Rodrigues
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Dilay Cansever
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Remy Hallet
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Kirsten Richter
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - David A Schubert
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Guillaume M Daniel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - David Dylus
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Marianne Forkel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Dorothee Schwinge
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christoph Schramm
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Martin Zeitz Centre for Rare Diseases and Hamburg Centre for Translational Immunology (HCTI), University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sylvio Redanz
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
| | - Kara G Lassen
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Silvio Manfredo Vieira
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luca Piali
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
| | - Martin A Kriegel
- Roche Pharma Research and Early Development, Cardiovascular & Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel 4070, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Translational Rheumatology and Immunology, Institute of Musculoskeletal Medicine, University of Münster, 48149 Münster, Germany
- Section of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital Münster, 48149 Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Kuhn KA. Microbial pathways contributing to the pathogenesis of rheumatoid arthritis. Semin Arthritis Rheum 2025; 70S:152587. [PMID: 39542790 PMCID: PMC11761355 DOI: 10.1016/j.semarthrit.2024.152587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Tsai CM, Hajam IA, Caldera JR, Chiang AW, Gonzalez C, Du X, Choudhruy B, Li H, Suzuki E, Askarian F, Clark T, Lin B, Wierzbicki IH, Riestra AM, Conrad DJ, Gonzalez DJ, Nizet V, Lewis NE, Liu GY. Pathobiont-driven antibody sialylation through IL-10 undermines vaccination. J Clin Invest 2024; 134:e179563. [PMID: 39680460 DOI: 10.1172/jci179563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024] Open
Abstract
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Austin Wt Chiang
- Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA
| | - Cesia Gonzalez
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Xin Du
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Biswa Choudhruy
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Haining Li
- Department of Bioengineering, University of California, La Jolla, California, USA
| | - Emi Suzuki
- Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA
- Division of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Ty'Tianna Clark
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brian Lin
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Igor H Wierzbicki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Angelica M Riestra
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
11
|
Radovani B, Nimmerjahn F. IgG Glycosylation: Biomarker, Functional Modulator, and Structural Component. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1573-1584. [PMID: 39556784 DOI: 10.4049/jimmunol.2400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
The family of IgG Abs is a crucial component of adaptive immunity. Glycosylation of IgG maintains its structural integrity and modulates its effector functions. In this review, we discuss IgG glycosylation covering cell biological as well as therapeutic and disease-related aspects, focusing on the glycan structures in distinct IgG regions (Fab versus Fc). We also cover the impact of IgG glycosylation on disease modulation and therapeutic outcomes, alongside the potential for development of vaccines designed to induce Ag-specific IgG with glycoforms for optimal immune responses. Overall, we emphasize the significance of studying glycosylation to enhance our understanding of the dynamics and functional impacts of IgG glycosylation. These insights could be beneficial for advancing future research and clinical applications.
Collapse
Affiliation(s)
- Barbara Radovani
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Profile Center Immunomedicine, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
12
|
Shen Y, Voigt A, Bhattacharyya I, Nguyen CQ. Single-Cell Transcriptomics Reveals a Pivotal Role of DOCK2 in Sjögren Disease. ACR Open Rheumatol 2024; 6:927-943. [PMID: 39382155 PMCID: PMC11638132 DOI: 10.1002/acr2.11738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Sjögren disease (SjD) is an autoimmune condition characterized by the dysfunction of the salivary and lacrimal glands. The study aimed to decipher the pathogenic cell populations and their immunologic pathways in the salivary glands. We further determined the therapeutic effect of inhibiting dedicator of cytokinesis 2 (DOCK2) shared by novel clusters of CD8+ T cells in an SjD mouse model. METHODS This study employed single-cell RNA sequencing to examine the composition and dynamics of immune cells in the salivary glands of SjD mice. By analyzing the transcriptomic data and employing clustering analysis, a specific target was identified, leading to the treatment of mice with a targeted inhibitor. RESULTS The results showed diverse immune cell types, including B cells, CD4+ T cells, CD8+ T cells, macrophages, and natural killer cells. We identified specific clusters possessing phenotypic characteristics of immune cell subpopulations, thereby showing specific genes/pathways associated with the disease. The most striking finding was the elevated expression of DOCK2 in CD8+ T cells in the SjD model. This discovery is significant because subsequent treatment with a DOCK2 inhibitor 4-[3-(2-Chlorophenyl)-2-propen-1-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) led to a marked amelioration of SjD signs. CONCLUSION The effectiveness of DOCK2 inhibition in alleviating SjD signs highlights the potential of DOCK2 as a therapeutic target, opening new avenues for treatment strategies that could modulate the immune response more effectively in SjD.
Collapse
Affiliation(s)
- Yiran Shen
- University of Florida College of Veterinary MedicineGainesville
| | | | | | - Cuong Q. Nguyen
- University of Florida College of Veterinary Medicine and University of Florida College of Dentistry and University of Florida Center for Orphaned Autoimmune DiseasesGainesville
| |
Collapse
|
13
|
Chen Z, Xu X, Song M, Lin L. Crosstalk Between Cytokines and IgG N-Glycosylation: Bidirectional Effects and Relevance to Clinical Innovation for Inflammatory Diseases. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:608-619. [PMID: 39585210 DOI: 10.1089/omi.2024.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The crosstalk between cytokines and immunoglobulin G (IgG) N-glycosylation forms a bidirectional regulatory network that significantly impacts inflammation and immune function. This review examines how various cytokines, both pro- and anti-inflammatory, modulate IgG N-glycosylation, shaping antibody activity and influencing inflammatory responses. In addition, we explore how altered IgG N-glycosylation patterns affect cytokine production and immune signaling, either promoting or reducing inflammation. Through a comprehensive analysis of current studies, this review underscores the dynamic relationship between cytokines and IgG N-glycosylation. These insights enhance our understanding of the mechanisms underlying inflammatory diseases and contribute to improved strategies for disease prevention, diagnosis, monitoring, prognosis, and the exploration of novel treatment options. By focusing on this crosstalk, we identify new avenues for developing innovative diagnostic tools and therapies to improve patient outcomes in inflammatory diseases.
Collapse
Affiliation(s)
- Zhixian Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Xiaojia Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Ling Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, Shantou University Medical College, Shantou, China
| |
Collapse
|
14
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Zhang X, Yin M, Zhang D, Cao D, Hou X, Xu Z, Wen C, Zhou J. Metabolomics Reveals Disturbed Amino Acid Metabolism During Different Stages of RA in Collagen-Induced Arthritis Mice. Inflammation 2024; 47:1853-1867. [PMID: 39212888 DOI: 10.1007/s10753-024-02123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease featured by chronic synovitis and progressive joint damage. Early treatment before the onset of clinical symptoms (also known as the pre-RA stage) may slow or stop the progression of the disease. We sought to discover the dynamic metabolic changes during the evolution of collagen-induced arthritis (CIA) to better characterize the disease stages. Untargeted metabolomics analysis using gas chromatography-mass spectrometry revealed that the metabolic profiles of CIA mice gradually differed from that of the control group with the progression of the disease. During the induction phase, the CIA group showed some metabolic alterations in galactose metabolism, arginine biosynthesis, tricarboxylic acid cycle (TCA cycle), pyruvate metabolism, and starch/sucrose metabolism. During the early inflammatory phase, no joint swelling was observed in CIA mice, and metabolites changed mainly involving amino acid metabolism (arginine biosynthesis, arginine/proline metabolism, phenylalanine/tyrosine/tryptophan biosynthesis), and glutathione metabolism. During the peak inflammatory phase, severe arthritis symptoms were observed in CIA mice, and there were more extensive metabolic alterations in valine/leucine/isoleucine biosynthesis, phenylalanine/tyrosine/tryptophan biosynthesis, TCA cycle, galactose metabolism, and arginine biosynthesis. Moreover, the reduction of specific amino acids, such as glycine, serine, and proline, during the early stages may result in an imbalance in macrophage polarization and enhance the inflammatory response in CIA mice. Our study confirmed that specific perturbations in amino acid metabolism have occurred in CIA mice prior to the onset of joint symptoms, which may be related to autoimmune disorders. The findings could provide insights into the metabolic mechanism and the diagnosis of pre-RA.
Collapse
Affiliation(s)
- Xiafeng Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengdi Yin
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dingyi Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dandan Cao
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoxiao Hou
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhenghao Xu
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Science, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jia Zhou
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Science, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
16
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Holers VM, Demoruelle KM, Buckner JH, James EA, Firestein GS, Robinson WH, Steere AC, Zhang F, Norris JM, Kuhn KA, Deane KD. Distinct mucosal endotypes as initiators and drivers of rheumatoid arthritis. Nat Rev Rheumatol 2024; 20:601-613. [PMID: 39251771 DOI: 10.1038/s41584-024-01154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Rheumatoid arthritis (RA) is a potentially devastating autoimmune disease. The great majority of patients with RA are seropositive for anti-citrullinated protein antibodies (ACPAs), rheumatoid factors, or other autoantibodies. The onset of clinically apparent inflammatory arthritis meeting classification criteria (clinical RA) is preceded by ACPA seropositivity for an average of 3-5 years, a period that is designated as 'at-risk' of RA for ACPA-positive individuals who do not display signs of arthritis, or 'pre-RA' for individuals who are known to have progressed to developing clinical RA. Prior studies of individuals at-risk of RA have associated pulmonary mucosal inflammation with local production of ACPAs and rheumatoid factors, leading to development of the 'mucosal origins hypothesis'. Recent work now suggests the presence of multiple distinct mucosal site-specific mechanisms that drive RA evolution. Indicatively, subsets of individuals at-risk of RA and patients with RA harbour a faecal bacterial strain that has exhibited arthritogenic activity in animal models and that favours T helper 17 (TH17) cell responses in patients. Periodontal inflammation and oral microbiota have also been suggested to promote the development of arthritis through breaches in the mucosal barrier. Herein, we argue that mucosal sites and their associated microbial strains can contribute to RA evolution via distinct pathogenic mechanisms, which can be considered causal mucosal endotypes. Future therapies instituted for prevention in the at-risk period, or, perhaps, during clinical RA as therapeutics for active arthritis, will possibly have to address these individual mechanisms as part of precision medicine approaches.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA.
| | | | | | | | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
18
|
Wu Y, Zhang Z, Chen L, Sun S. Immunoglobulin G glycosylation and its alterations in aging-related diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1221-1233. [PMID: 39126246 PMCID: PMC11399422 DOI: 10.3724/abbs.2024137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Immunoglobulin G (IgG) is an important serum glycoprotein and a major component of antibodies. Glycans on IgG affect the binding of IgG to the Fc receptor or complement C1q, which in turn affects the biological activity and biological function of IgG. Altered glycosylation patterns on IgG emerge as important biomarkers in the aging process and age-related diseases. Key aging-related alterations observed in IgG glycosylation include reductions in galactosylation and sialylation, alongside increases in agalactosylation, and bisecting GlcNAc. Understanding the role of IgG glycosylation in aging-related diseases offers insights into disease mechanisms and provides opportunities for the development of diagnostic and therapeutic strategies. This review summarizes five aspects of IgG: an overview of IgG, IgG glycosylation, IgG glycosylation with inflammation mediation, IgG glycan changes with normal aging, as well as the relevance of IgG glycan changes to aging-related diseases. This review provides a reference for further investigation of the regulatory mechanisms of IgG glycosylation in aging-related diseases, as well as for evaluating the potential of IgG glycosylation changes as markers of aging and aging-related diseases.
Collapse
Affiliation(s)
- Yongqi Wu
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Zhida Zhang
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Lin Chen
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| | - Shisheng Sun
- />Laboratory for Disease GlycoproteomicsCollege of Life SciencesNorthwest UniversityXi’an710069China
| |
Collapse
|
19
|
El-Gabalawy H. The Impact of Rheumatoid Arthritis on First Nations and How We Can Work With Communities to Prevent It. J Rheumatol 2024; 51:3-9. [PMID: 38950968 DOI: 10.3899/jrheum.2024-0369_dunlop-dottridge] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 07/03/2024]
Abstract
Rheumatoid arthritis (RA) is prevalent in many Indigenous North American First Nations (FN) and tends to be seropositive, familial, and disabling, as well as associated with highly unfavorable outcomes such as early mortality. The risk of developing RA is based on a perfect storm of gene-environment interactions underpinning this risk. The gene-environment interactions include a high frequency of shared epitope encoding HLA alleles, particularly HLA-DRB1*1402, in the background population, and prevalent predisposing environmental factors such as smoking and periodontal disease. Together, these provide a compelling rationale for an RA prevention agenda in FN communities. Our research team has worked in partnership with several FN communities to prospectively follow the first-degree relatives of FN patients with RA, with the aim of better understanding the preclinical stages of RA in this population. We have focused on specific features of the anticitrullinated protein antibodies (ACPA) and other proteomic biomarkers as predictors of future development of RA. These studies have now led us to consider interventions having a favorable risk-benefit ratio if applied at a stage prior to a hypothetical "point of no return," when the autoimmunity potentially becomes irreversible. Based on a supportive mouse model and available human studies of curcumin, omega-3, and vitamin D supplements, we are undertaking studies where we screen communities using dried blood spot technology adapted for the detection of ACPA, and then enrolling ACPA-positive individuals in studies that use a combination of these supplements. These studies are guided by shared decision-making principles.
Collapse
Affiliation(s)
- Hani El-Gabalawy
- H. El-Gabalawy, MD, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
20
|
Okamoto K. Crosstalk between bone and the immune system. J Bone Miner Metab 2024; 42:470-480. [PMID: 39060500 DOI: 10.1007/s00774-024-01539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Bone functions not only as a critical element of the musculoskeletal system but also serves as the primary lymphoid organ harboring hematopoietic stem cells (HSCs) and immune progenitor cells. The interdisciplinary field of osteoimmunology has illuminated the dynamic interactions between the skeletal and immune systems, vital for the maintenance of skeletal tissue homeostasis and the pathogenesis of immune and skeletal diseases. Aberrant immune activation stimulates bone cells such as osteoclasts and osteoblasts, disturbing the bone remodeling and leading to skeletal disorders as seen in autoimmune diseases like rheumatoid arthritis. On the other hand, intricate multicellular network within the bone marrow creates a specialized microenvironment essential for the maintenance and differentiation of HSCs and the progeny. Dysregulation of immune-bone crosstalk in the bone marrow environment can trigger tumorigenesis and exacerbated inflammation. A comprehensive deciphering of the complex "immune-bone crosstalk" leads to a deeper understanding of the pathogenesis of immune diseases as well as skeletal diseases, and might provide insight into potential therapeutic approaches.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
21
|
Laniak OT, Winans T, Patel A, Park J, Perl A. Redox Pathogenesis in Rheumatic Diseases. ACR Open Rheumatol 2024; 6:334-346. [PMID: 38664977 PMCID: PMC11168917 DOI: 10.1002/acr2.11668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 06/14/2024] Open
Abstract
Despite being some of the most anecdotally well-known roads to pathogenesis, the mechanisms governing autoimmune rheumatic diseases are not yet fully understood. The overactivation of the cellular immune system and the characteristic development of autoantibodies have been linked to oxidative stress. Typical clinical manifestations, such as joint swelling and deformities and inflammation of the skin and internal organs, have also been connected directly or indirectly to redox mechanisms. The differences in generation and restraint of oxidative stress provide compelling evidence for the broad variety in pathology among rheumatic diseases and explain some of the common triggers and discordant manifestations in these diseases. Growing evidence of redox mechanisms in pathogenesis has provided a broad array of new potential therapeutic targets. Here, we explore the mechanisms by which oxidative stress is generated, explore its roles in autoimmunity and end-organ damage, and discuss how individual rheumatic diseases exhibit unique features that offer targets for therapeutic interventions.
Collapse
Affiliation(s)
- Olivia T. Laniak
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Thomas Winans
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Akshay Patel
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Joy Park
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| | - Andras Perl
- Norton College of MedicineState University of New York Upstate Medical UniversitySyracuse
| |
Collapse
|
22
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
23
|
Krueger JG, Eyerich K, Kuchroo VK, Ritchlin CT, Abreu MT, Elloso MM, Fourie A, Fakharzadeh S, Sherlock JP, Yang YW, Cua DJ, McInnes IB. IL-23 past, present, and future: a roadmap to advancing IL-23 science and therapy. Front Immunol 2024; 15:1331217. [PMID: 38686385 PMCID: PMC11056518 DOI: 10.3389/fimmu.2024.1331217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.
Collapse
Affiliation(s)
- James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Kilian Eyerich
- Department of Medicine, Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher T. Ritchlin
- Allergy, Immunology & Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical School, Rochester, NY, United States
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL, United States
| | | | - Anne Fourie
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Steven Fakharzadeh
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Jonathan P. Sherlock
- Janssen Research & Development, LLC, Spring House, PA, United States
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ya-Wen Yang
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Iain B. McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. Hormones and B-cell development in health and autoimmunity. Front Immunol 2024; 15:1385501. [PMID: 38680484 PMCID: PMC11045971 DOI: 10.3389/fimmu.2024.1385501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The development of B cells into antibody-secreting plasma cells is central to the adaptive immune system as they induce protective and specific antibody responses against invading pathogens. Various studies have shown that, during this process, hormones can play important roles in the lymphopoiesis, activation, proliferation, and differentiation of B cells, and depending on the signal given by the receptor of each hormone, they can have a positive or negative effect. In autoimmune diseases, hormonal deregulation has been reported to be related to the survival, activation and/or differentiation of autoreactive clones of B cells, thus promoting the development of autoimmunity. Clinical manifestations of autoimmune diseases have been associated with estrogens, prolactin (PRL), and growth hormone (GH) levels. However, androgens, such as testosterone and progesterone (P4), could have a protective effect. The objective of this review is to highlight the links between different hormones and the immune response mediated by B cells in the etiopathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The data collected provide insights into the role of hormones in the cellular, molecular and/or epigenetic mechanisms that modulate the B-cell response in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico
| |
Collapse
|
25
|
Wu G, Cao B, Zhai H, Liu B, Huang Y, Chen X, Ling H, Ling S, Jin S, Yang X, Wang J. EPO promotes the progression of rheumatoid arthritis by inducing desialylation via increasing the expression of neuraminidase 3. Ann Rheum Dis 2024; 83:564-575. [PMID: 38272667 PMCID: PMC11041559 DOI: 10.1136/ard-2023-224852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.
Collapse
Affiliation(s)
- Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ben Cao
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haige Zhai
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Liu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Huang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaowei Chen
- Department of Immunology and Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hanzhi Ling
- Department of Immunology and Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Di Matteo A, Mankia K, Garcia-Montoya L, Sharrack S, Duquenne L, Nam JL, Mahler M, Emery P. Utility of testing for third-generation anticyclic citrullinated peptide (anti-CCP3) antibodies in individuals who present with new musculoskeletal symptoms but have a negative second-generation anticyclic citrullinated peptide (anti-CCP2) antibody test. RMD Open 2024; 10:e003927. [PMID: 38599655 PMCID: PMC11015229 DOI: 10.1136/rmdopen-2023-003927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES To investigate the role of third-generation anticyclic citrullinated peptide (anti-CCP3) antibodies in predicting progression to inflammatory arthritis (IA) in individuals with new musculoskeletal (MSK) symptoms and a negative second-generation anti-CCP antibody test (anti-CCP2-). METHODS 469 anti-CCP2- individuals underwent baseline anti-CCP3 testing (QUANTA Lite CCP3; Inova Diagnostics) and received a post enrolment 12-month questionnaire. A rheumatologist confirmed or excluded diagnosis of IA. Univariable/multivariable analyses were performed to assess the value of anti-CCP3 in predicting IA development in these anti-CCP2- individuals. RESULTS Only 16/469 (3.4%) anti-CCP2- individuals had a positive anti-CCP3 test. Of these 16 individuals, 4 developed IA. In addition, 61/469 (13.0%) anti-CCP2- individuals self-reported, to have developed, IA. Progression was confirmed in 43/61 of them (70.5%); of whom 30/43 (69.8%) and 13/43 (30.2%) were given a diagnosis of IA and rheumatoid arthritis (RA), respectively. In qualitative univariable analysis, anti-CCP3 positivity was associated with self-reported progression (p<0.01) and IA (p=0.03), but not with RA. Anti-CCP3 levels differed significantly between progressors and non-progressors (p<0.01) for all three categories. At the manufacturer's cut-off, OR for progression ranged from 2.4 (95% CI 0.5 to 18.6; RA) to 7.5 (95% CI 2.3 to 24.0; self-reported progression). Interestingly, when cut-offs for anti-CCP3 were optimised, lower values (≥5 units) significantly increased the OR for progression in all three categories. In multivariable analysis, anti-CCP3 positivity at the manufacturer's cut-off did not remain associated with IA progression, while this lower cut-off value (≥5 units) was associated with diagnosis of RA (p=0.02). CONCLUSIONS Anti-CCP3 testing could improve the prediction of IA development in anti-CCP2- individuals with new MSK symptoms.
Collapse
Affiliation(s)
- Andrea Di Matteo
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Leticia Garcia-Montoya
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sana Sharrack
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laurence Duquenne
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Michael Mahler
- Werfen Autoimmunity Technology Center, San Diego, California, USA
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
27
|
Nishida Y, Shirakashi M, Hashii N, Nakashima R, Nakayama Y, Katsushima M, Watanabe R, Onizawa H, Hiwa R, Tsuji H, Kitagori K, Akizuki S, Onishi A, Murakami K, Yoshifuji H, Tanaka M, Tsuruyama T, Morinobu A, Hashimoto M. Pathogenicity of IgG-Fc desialylation and its association with Th17 cells in an animal model of systemic lupus erythematosus. Mod Rheumatol 2024; 34:523-529. [PMID: 37300805 DOI: 10.1093/mr/road054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Decreased sialylation of IgG-Fc glycans has been reported in autoimmune diseases, but its role in systemic lupus erythematosus (SLE) is not fully understood. In this study, we examined the pathogenicity of IgG desialylation and its association with Th17 in SLE using an animal model. METHODS B6SKG mice, which develop lupus-like systemic autoimmunity due to the ZAP70 mutation, were used to investigate the pathogenicity of IgG desialylation. The proportion of sialylated IgG was compared between B6SKG and wild-type mice with or without β-glucan treatment-induced Th17 expansion. Anti-interleukin (IL)-23 and anti-IL-17 antibodies were used to examine the role of Th17 cells in IgG glycosylation. Activation-induced cytidine deaminase-specific St6gal1 conditionally knockout (cKO) mice were generated to examine the direct effect of IgG desialylation. RESULTS The proportions of sialylated IgG were similar between B6SKG and wild-type mice in the steady state. However, IgG desialylation was observed after β-glucan-induced Th17 expansion, and nephropathy also worsened in B6SKG mice. Anti-IL-23/17 treatment suppressed IgG desialylation and nephropathy. Glomerular atrophy was observed in the cKO mice, suggesting that IgG desialylation is directly involved in disease exacerbation. CONCLUSIONS IgG desialylation contributes to the progression of nephropathy, which is ameliorated by blocking IL-17A or IL-23 in an SLE mouse model.
Collapse
Affiliation(s)
- Yuri Nishida
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mirei Shirakashi
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoichi Nakayama
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Katsushima
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryu Watanabe
- Department of Clinical Immunology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Hiwa
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Tsuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
28
|
Gao S, Jiao X, Guo R, Song X, Li B, Guo L. Reduced serum IgG galactosylation is associated with increased inflammation during relapses of neuromyelitis optica spectrum disorders. Front Immunol 2024; 15:1357475. [PMID: 38576616 PMCID: PMC10991735 DOI: 10.3389/fimmu.2024.1357475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Background and Objective Post-translational modifications of antibodies, with a specific focus on galactosylation, have garnered increasing attention in the context of understanding the pathogenesis and therapeutic implications of autoimmune diseases. However, the comprehensive scope and the clinical significance of antibody galactosylation in the context of Neuromyelitis Optica Spectrum Disorder (NMOSD) remain enigmatic.The primary aim of this research was to discern disparities in serum IgG galactosylation levels between individuals in the acute stage of NMOSD relapse and their age- and sex-matched healthy counterparts. Methods A total of fourteen untreated NMOSD patients experiencing an acute relapse phase, along with thirteen patients under medication, were enrolled, and an additional twelve healthy controls of the same age and gender were recruited for this investigation. Western blot and lectin enzyme techniques were used to determine the level of IgG galactosylation in the serum samples from these subjects. The expression of CD45+, CD3+, CD3+CD4+, CD3+CD8+, CD19+, and CD16+CD56+ in peripheral blood leukocytes was measured by flow cytometry. The enzyme-linked immunosorbent assay (ELISA) was also used to quantify the amounts of IgG. Magnetic particle luminescence assays are used to detect cytokines. Robust statistical analysis was executed to ascertain the potential associations between IgG galactosylation and the aforementioned immune indices. Results In the context of NMOSD relapses, serum IgG galactosylation exhibited a notable decrease in untreated patients (0.2482 ± 0.0261), while it remained comparatively stable in medicated patients when contrasted with healthy controls (0.3625 ± 0.0259) (p=0.0159). Furthermore, a noteworthy inverse correlation between serum IgG galactosylation levels and the Expanded Disability Status Scale (EDSS) score during NMOSD relapse was observed (r=-0.4142; p=0.0317). Notably, IgG galactosylation displayed an inverse correlation with NMOSD relapse among peripheral blood CD45+, CD3+, CD3+CD8+, CD19+ cells, as well as with IL-6 and IL-8. Nevertheless, it was not determined whether IgG galactosylation and CD3+CD4+ T cells or other cytokines are statistically significantly correlated. Conclusion Our research identified reduced IgG galactosylation in the serum of NMOSD patients during relapses, significantly correlated with disease severity, thereby providing a novel target for the diagnosis and treatment of NMOSD in the realm of medical research.
Collapse
Affiliation(s)
- Shiyu Gao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Xin Jiao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Xiujuan Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
29
|
Rech J, Tascilar K, Hagen M, Kleyer A, Manger B, Schoenau V, Hueber AJ, Kleinert S, Baraliakos X, Braun J, Kiltz U, Fleck M, Rubbert-Roth A, Kofler DM, Behrens F, Feuchtenberger M, Zaenker M, Voll R, Venhoff N, Thiel J, Glaser C, Feist E, Burmester GR, Karberg K, Strunk J, Cañete JD, Senolt L, Filkova M, Naredo E, Largo R, Krönke G, D'Agostino MA, Østergaard M, Schett G. Abatacept inhibits inflammation and onset of rheumatoid arthritis in individuals at high risk (ARIAA): a randomised, international, multicentre, double-blind, placebo-controlled trial. Lancet 2024; 403:850-859. [PMID: 38364841 DOI: 10.1016/s0140-6736(23)02650-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Individuals with anti-citrullinated protein antibodies (ACPAs) and subclinical inflammatory changes in joints are at high risk of developing rheumatoid arthritis. Treatment strategies to intercept this pre-stage clinical disease remain to be developed. We aimed to assess whether 6-month treatment with abatacept improves inflammation in preclinical rheumatoid arthritis. METHODS The abatacept reversing subclinical inflammation as measured by MRI in ACPA positive arthralgia (ARIAA) study is a randomised, international, multicentre, double-blind, placebo-controlled trial done in 14 hospitals and community centres across Europe (11 in Germany, two in Spain, and one in the Czech Republic). Adults (aged ≥18 years) with ACPA positivity, joint pain (but no swelling), and signs of osteitis, synovitis, or tenosynovitis in hand MRI were randomly assigned (1:1) to weekly subcutaneous abatacept 125 mg or placebo for 6 months followed by a double-blind, drug-free, observation phase for 12 months. The primary outcome was the proportion of participants with any reduction in inflammatory MRI lesions at 6 months. The primary efficacy analysis was done in the modified intention-to-treat population, which included participants who were randomly assigned and received study medication. Safety analyses were conducted in participants who received the study medication and had at least one post-baseline observation. The study was registered with the EUDRA-CT (2014-000555-93). FINDINGS Between Nov 6, 2014, and June 15, 2021, 139 participants were screened. Of 100 participants, 50 were randomly assigned to abatacept 125 mg and 50 to placebo. Two participants (one from each group) were excluded due to administration failure or refusing treatment; thus, 98 were included in the modified intention-to-treat population. 70 (71%) of 98 participants were female and 28 (29%) of 98 were male. At 6 months, 28 (57%) of 49 participants in the abatacept group and 15 (31%) of 49 participants in the placebo group showed improvement in MRI subclinical inflammation (absolute difference 26·5%, 95% CI 5·9-45·6; p=0·014). Four (8%) of 49 participants in the abatacept group and 17 (35%) of 49 participants in the placebo group developed rheumatoid arthritis (hazard ratio [HR] 0·14 [0·04-0·47]; p=0·0016). Improvement of MRI inflammation (25 [51%] of 49 participants in the abatacept group, 12 [24%] of 49 in the placebo group; p=0·012) and progression to rheumatoid arthritis (17 [35%] of 49, 28 [57%] of 49; HR 0·14 [0·04-0·47]; p=0·018) remained significantly different between the two groups after 18 months, 12 months after the end of the intervention. There were 12 serious adverse events in 11 participants (four [8%] of 48 in the abatacept group and 7 [14%] of 49 in the placebo group). No deaths occurred during the study. INTERPRETATION 6-month treatment with abatacept decreases MRI inflammation, clinical symptoms, and risk of rheumatoid arthritis development in participants at high risk. The effects of the intervention persist through a 1-year drug-free observation phase. FUNDING Innovative Medicine Initiative.
Collapse
Affiliation(s)
- Juergen Rech
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Koray Tascilar
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melanie Hagen
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernhard Manger
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Schoenau
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Axel J Hueber
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Division of Rheumatology, Paracelsus Medical University, Klinikum Nürnberg, Nürnberg, Germany
| | | | - Xenofon Baraliakos
- Department of Rheumatology, Ruhr University Bochum, Bochum, Germany; Rheumazentrum Ruhrgebiet, Herne, Germany
| | - Jürgen Braun
- Department of Rheumatology, Ruhr University Bochum, Bochum, Germany; Rheumazentrum Ruhrgebiet, Herne, Germany
| | - Uta Kiltz
- Department of Rheumatology, Ruhr University Bochum, Bochum, Germany; Rheumazentrum Ruhrgebiet, Herne, Germany
| | - Martin Fleck
- Division of Rheumatology, Asklepios Klinikum Bad Abbach, Bad Abbach, Germany
| | | | - David M Kofler
- Division of Rheumatology and Clinical Immunology, Department 1 of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne and Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Frank Behrens
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | | | - Michael Zaenker
- Division of Internal Medicine, Immanuel Klinikum Bernau, Bernau, Germany
| | - Reinhard Voll
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Internal Medicine, Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Cornelia Glaser
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eugen Feist
- Division of Rheumatology, Helios Clinic Vogelsang-Gommern, Vogelsang, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Johannes Strunk
- Division of Rheumatology, Porz am Rhein Hospital, Cologne, Germany
| | - Juan D Cañete
- Servicio de Reumatología, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ladislav Senolt
- Institute of Rheumatology, Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Maria Filkova
- Institute of Rheumatology, Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Esperanza Naredo
- Department of Rheumatology and Bone and Joint Research Unit, Hospital Fundación Jiménez Díaz and IIS-FJD, Madrid, Spain
| | - Raquel Largo
- Department of Rheumatology and Bone and Joint Research Unit, Hospital Fundación Jiménez Díaz and IIS-FJD, Madrid, Spain
| | - Gerhard Krönke
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria-Antonietta D'Agostino
- Unitá Operativa Complessa of Rheumatology, Agostino Gemelli University Polyclinic Foundation IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Mikkel Østergaard
- University Hospital Rigshospitalet, Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Copenhagen, Glostrup, Denmark
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
30
|
Zhao H, Wang H, Qin Y, Ling S, Zhai H, Jin J, Fang L, Cao Z, Jin S, Yang X, Wang J. CCCTC-binding factor: the specific transcription factor of β-galactoside α-2,6-sialyltransferase 1 that upregulates the sialylation of anti-citrullinated protein antibodies in rheumatoid arthritis. Rheumatology (Oxford) 2024; 63:826-836. [PMID: 37326830 DOI: 10.1093/rheumatology/kead282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION CCCTC-binding factor is the specific transcription factor of β-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.
Collapse
Affiliation(s)
- Heping Zhao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Qin
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haige Zhai
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayi Jin
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ling Fang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zelin Cao
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xinyu Yang
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Autoimmune Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
31
|
Haslund-Gourley BS, Hou J, Woloszczuk K, Horn EJ, Dempsey G, Haddad EK, Wigdahl B, Comunale MA. Host glycosylation of immunoglobulins impairs the immune response to acute Lyme disease. EBioMedicine 2024; 100:104979. [PMID: 38266555 PMCID: PMC10818078 DOI: 10.1016/j.ebiom.2024.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Lyme disease is caused by the bacteria Borreliella burgdorferi sensu lato (Bb) transmitted to humans from the bite of an infected Ixodes tick. Current diagnostics for Lyme disease are insensitive at the early disease stage and they cannot differentiate between active infections and people with a recent history of antibiotic-treated Lyme disease. METHODS Machine learning technology was utilized to improve the prediction of acute Lyme disease and identify sialic acid and galactose sugar structures (N-glycans) on immunoglobulins associated specifically at time points during acute Lyme disease time. A plate-based approach was developed to analyze sialylated N-glycans associated with anti-Bb immunoglobulins. This multiplexed approach quantitates the abundance of Bb-specific IgG and the associated sialic acid, yielding an accuracy of 90% in a powered study. FINDINGS It was demonstrated that immunoglobulin sialic acid levels increase during acute Lyme disease and following antibiotic therapy and a 3-month convalescence, the sialic acid level returned to that found in healthy control subjects (p < 0.001). Furthermore, the abundance of sialic acid on Bb-specific IgG during acute Lyme disease impaired the host's ability to combat Lyme disease via lymphocytic receptor FcγRIIIa signaling. After enzymatically removing the sialic acid present on Bb-specific antibodies, the induction of cytotoxicity from acute Lyme disease patient antigen-specific IgG was significantly improved. INTERPRETATION Taken together, Bb-specific immunoglobulins contain increased sialylation which impairs the host immune response during acute Lyme disease. Furthermore, this Bb-specific immunoglobulin sialyation found in acute Lyme disease begins to resolve following antibiotic therapy and convalescence. FUNDING Funding for this study was provided by the Coulter-Drexel Translational Research Partnership Program as well as from a Faculty Development Award from the Drexel University College of Medicine Institute for Molecular Medicine and Infectious Disease and the Department of Microbiology and Immunology.
Collapse
Affiliation(s)
- Benjamin S Haslund-Gourley
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jintong Hou
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyra Woloszczuk
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - George Dempsey
- East Hampton Family Medicine, East Hampton North, New York, USA
| | - Elias K Haddad
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
32
|
Seymour BJ, Trent B, Allen BE, Berlinberg AJ, Tangchittsumran J, Jubair WK, Chriswell ME, Liu S, Ornelas A, Stahly A, Alexeev EE, Dowdell AS, Sneed SL, Fechtner S, Kofonow JM, Robertson CE, Dillon SM, Wilson CC, Anthony RM, Frank DN, Colgan SP, Kuhn KA. Microbiota-dependent indole production stimulates the development of collagen-induced arthritis in mice. J Clin Invest 2023; 134:e167671. [PMID: 38113112 PMCID: PMC10866668 DOI: 10.1172/jci167671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model, we identified alterations in tryptophan metabolism, and specifically indole, that correlated with disease. We demonstrated that both bacteria and dietary tryptophan were required for disease and that indole supplementation was sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1β; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colonic lymphocytes to indole increased the expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a unique therapeutic pathway for RA and SpA.
Collapse
Affiliation(s)
| | - Brandon Trent
- Division of Rheumatology, Department of Medicine, and
| | | | | | | | | | | | - Sucai Liu
- Division of Rheumatology, Department of Medicine, and
| | - Alfredo Ornelas
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew Stahly
- Division of Rheumatology, Department of Medicine, and
| | - Erica E. Alexeev
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexander S. Dowdell
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sunny L. Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jennifer M. Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charles E. Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert M. Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program and Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
33
|
Udoye CC, Ehlers M, Manz RA. The B Cell Response and Formation of Allergenic and Anti-Allergenic Antibodies in Food Allergy. BIOLOGY 2023; 12:1501. [PMID: 38132327 PMCID: PMC10740584 DOI: 10.3390/biology12121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Food allergies are a growing public health concern worldwide, especially in children and young adults. Allergen-specific IgE plays a central role in the pathogenesis of food allergies, but their titers poorly correlate with allergy development. Host immune systems yield allergen-specific immunoglobulin (Ig)A, IgE and IgG subclasses with low or high affinities and differential Fc N-glycosylation patterns that can affect the allergic reaction to food in multiple ways. High-affinity IgE is required to induce strong mast cell activation eventually leading to allergic anaphylaxis, while low-affinity IgE can even inhibit the development of clinically relevant allergic symptoms. IgA and IgG antibodies can inhibit IgE-mediated mast cell activation through various mechanisms, thereby protecting IgE-positive individuals from allergy development. The production of IgE and IgG with differential allergenic potential seems to be affected by the signaling strength of individual B cell receptors, and by cytokines from T cells. This review provides an overview of the diversity of the B cell response and the diverse roles of antibodies in food allergy.
Collapse
Affiliation(s)
- Christopher C. Udoye
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
34
|
Nandakumar KS, Fang Q, Wingbro Ågren I, Bejmo ZF. Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15883. [PMID: 37958864 PMCID: PMC10648236 DOI: 10.3390/ijms242115883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Abnormal activation of multiple immune and non-immune cells and proinflammatory factors mediate the development of joint inflammation in genetically susceptible individuals. Although specific environmental factors like smoking and infections are associated with disease pathogenesis, until now, we did not know the autoantigens and arthritogenic factors that trigger the initiation of the clinical disease. Autoantibodies recognizing specific post-translationally modified and unmodified antigens are generated and in circulation before the onset of the joint disease, and could serve as diagnostic and prognostic markers. The characteristic features of autoantibodies change regarding sub-class, affinity, glycosylation pattern, and epitope spreading before the disease onset. Some of these antibodies were proven to be pathogenic using animal and cell-culture models. However, not all of them can induce disease in animals. This review discusses the aberrant activation of major immune and non-immune cells contributing to joint inflammation. Recent studies explored the protective effects of extracellular vesicles from mesenchymal stem cells and bacteria on joints by targeting specific cells and pathways. Current therapeutics in clinics target cells and inflammatory pathways to attenuate joint inflammation and protect the cartilage and bones from degradation, but none cure the disease. Hence, more basic research is needed to investigate the triggers and mechanisms involved in initiating the disease and relapses to prevent chronic inflammation from damaging joint architecture.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Isabella Wingbro Ågren
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Zoe Fuwen Bejmo
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| |
Collapse
|
35
|
Acencio ML, Ostaszewski M, Mazein A, Rosenstiel P, Aden K, Mishra N, Andersen V, Sidiropoulos P, Banos A, Filia A, Rahmouni S, Finckh A, Gu W, Schneider R, Satagopam V. The SYSCID map: a graphical and computational resource of molecular mechanisms across rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. Front Immunol 2023; 14:1257321. [PMID: 38022524 PMCID: PMC10646502 DOI: 10.3389/fimmu.2023.1257321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular pathways. The translation of the research findings on CIDs molecular mechanisms into effective treatments is challenging and may explain the low remission rates despite modern targeted therapies. Modelling CID-related causal interactions as networks allows us to tackle the complexity at a systems level and improve our understanding of the interplay of key pathways. Here we report the construction, description, and initial applications of the SYSCID map (https://syscid.elixir-luxembourg.org/), a mechanistic causal interaction network covering the molecular crosstalk between IBD, RA and SLE. We demonstrate that the map serves as an interactive, graphical review of IBD, RA and SLE molecular mechanisms, and helps to understand the complexity of omics data. Examples of such application are illustrated using transcriptome data from time-series gene expression profiles following anti-TNF treatment and data from genome-wide associations studies that enable us to suggest potential effects to altered pathways and propose possible mechanistic biomarkers of treatment response.
Collapse
Affiliation(s)
- Marcio Luis Acencio
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Vibeke Andersen
- Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Prodromos Sidiropoulos
- Rheumatology and Clinical Immunology, Medical School, University of Crete, Heraklion, Greece
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB-FORTH), Heraklion, Greece
| | - Aggelos Banos
- Autoimmunity and Inflammation Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Anastasia Filia
- Autoimmunity and Inflammation Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens and Laboratory of Molecular Hematology, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Souad Rahmouni
- Unit of Animal Genomics, GIGA-Institute, University of Liège, Liège, Belgium
| | - Axel Finckh
- Rheumatology Division, Geneva University Hospital (HUG), Geneva, Switzerland
- Geneva Center for Inflammation Research (GCIR), University of Geneva (UNIGE), Geneva, Switzerland
| | - Wei Gu
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- ELIXIR Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
36
|
Seymour BJ, Trent B, Allen B, Berlinberg AJ, Tangchittsumran J, Jubair WK, Chriswell ME, Liu S, Ornelas A, Stahly A, Alexeev EE, Dowdell AS, Sneed SL, Fechtner S, Kofonow JM, Robertson CE, Dillon SM, Wilson CC, Anthony RM, Frank DN, Colgan SP, Kuhn KA. Microbiota-dependent indole production is required for the development of collagen-induced arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.561693. [PMID: 37873395 PMCID: PMC10592798 DOI: 10.1101/2023.10.13.561693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1β; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colon lymphocytes to indole increased expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a novel therapeutic pathway for RA and SpA.
Collapse
Affiliation(s)
- Brenda J. Seymour
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandon Trent
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan Allen
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adam J. Berlinberg
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jimmy Tangchittsumran
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Widian K. Jubair
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Stahly
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica E. Alexeev
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sunny L. Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Fechtner
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer M. Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles E. Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert M. Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
37
|
Orsini F, Crotti C, Cincinelli G, Di Taranto R, Amati A, Ferrito M, Varenna M, Caporali R. Bone Involvement in Rheumatoid Arthritis and Spondyloartritis: An Updated Review. BIOLOGY 2023; 12:1320. [PMID: 37887030 PMCID: PMC10604370 DOI: 10.3390/biology12101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Several rheumatologic diseases are primarily distinguished by their involvement of bone tissue, which not only serves as a mere target of the condition but often plays a pivotal role in its pathogenesis. This scenario is particularly prominent in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Given the immunological and systemic nature of these diseases, in this review, we report an overview of the pathogenic mechanisms underlying specific bone involvement, focusing on the complex interactions that occur between bone tissue's own cells and the molecular and cellular actors of the immune system, a recent and fascinating field of interest defined as osteoimmunology. Specifically, we comprehensively elaborate on the distinct pathogenic mechanisms of bone erosion seen in both rheumatoid arthritis and spondyloarthritis, as well as the characteristic process of aberrant bone formation observed in spondyloarthritis. Lastly, chronic inflammatory arthritis leads to systemic bone involvement, resulting in systemic bone loss and consequent osteoporosis, along with increased skeletal fragility.
Collapse
Affiliation(s)
- Francesco Orsini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Chiara Crotti
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Gilberto Cincinelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Raffaele Di Taranto
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Andrea Amati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Matteo Ferrito
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| |
Collapse
|
38
|
Nimmerjahn F, Vidarsson G, Cragg MS. Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy. Nat Immunol 2023; 24:1244-1255. [PMID: 37414906 DOI: 10.1038/s41590-023-01544-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023]
Abstract
Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Division of Genetics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
39
|
Wu CY, Yang HY, Lai JH. Potential therapeutic targets beyond cytokines and Janus kinases for autoimmune arthritis. Biochem Pharmacol 2023; 213:115622. [PMID: 37230194 DOI: 10.1016/j.bcp.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Synovial inflammation and destruction of articular cartilage and bone are hallmarks of autoimmune arthritis. Although current efforts to inhibit proinflammatory cytokines (biologics) or block Janus kinases (JAK) appear to be promising in many patients with autoimmune arthritis, adequate disease control is still lacking in a significant proportion of autoimmune arthritis patients. The possible adverse events from taking biologics and JAK inhibitors, such as infection, remain a major concern. Recent advances showing the effects of a loss of balance between regulatory T cells and T helper-17 cells as well as how the imbalance between osteoblastic and osteoclastic activities of bone cells exaggerates joint inflammation, bony destruction and systemic osteoporosis highlight an interesting area to explore in the search for better therapeutics. The recognition of the heterogenicity of synovial fibroblasts in osteoclastogenesis and their crosstalk with immune and bone cells provides an opportunity for identifying novel therapeutic targets for autoimmune arthritis. In this commentary, we comprehensively review the current knowledge regarding the interactions among heterogenic synovial fibroblasts, bone cells and immune cells and how they contribute to the immunopathogenesis of autoimmune arthritis, as well as the search for novel therapeutic targets not targeted by current biologics and JAK inhibitors.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
40
|
Gronke K, Nguyen M, Santamaria N, Schumacher J, Yang Y, Sonnert N, Leopold S, Martin AL, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Vieira SM, Schwinge D, Schramm C, Lassen KG, Piali L, Palm NW, Bieniossek C, Kriegel MA. Human Th17- and IgG3-associated autoimmunity induced by a translocating gut pathobiont. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546430. [PMID: 37425769 PMCID: PMC10327010 DOI: 10.1101/2023.06.29.546430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont Enterococcus gallinarum induces human IFNγ + Th17 differentiation and IgG3 subclass switch of anti- E. gallinarum RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis. Human Th17 induction by E. gallinarum is cell-contact dependent and involves TLR8-mediated human monocyte activation. In murine gnotobiotic lupus models, E. gallinarum translocation triggers IgG3 anti-RNA autoantibody titers that correlate with renal autoimmune pathophysiology and with disease activity in patients. Overall, we define cellular mechanisms of how a translocating pathobiont induces human T- and B-cell-dependent autoimmune responses, providing a framework for developing host- and microbiota-derived biomarkers and targeted therapies in extraintestinal autoimmune diseases. One Sentence Summary Translocating pathobiont Enterococcus gallinarum promotes human Th17 and IgG3 autoantibody responses linked to disease activity in autoimmune patients.
Collapse
|
41
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Gupta A, Kao KS, Yamin R, Oren DA, Goldgur Y, Du J, Lollar P, Sundberg EJ, Ravetch JV. Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody. Nat Commun 2023; 14:2853. [PMID: 37202422 PMCID: PMC10195009 DOI: 10.1038/s41467-023-38453-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies contain a complex N-glycan embedded in the hydrophobic pocket between its heavy chain protomers. This glycan contributes to the structural organization of the Fc domain and determines its specificity for Fcγ receptors, thereby dictating distinct cellular responses. The variable construction of this glycan structure leads to highly-related, but non-equivalent glycoproteins known as glycoforms. We previously reported synthetic nanobodies that distinguish IgG glycoforms. Here, we present the structure of one such nanobody, X0, in complex with the Fc fragment of afucosylated IgG1. Upon binding, the elongated CDR3 loop of X0 undergoes a conformational shift to access the buried N-glycan and acts as a 'glycan sensor', forming hydrogen bonds with the afucosylated IgG N-glycan that would otherwise be sterically hindered by the presence of a core fucose residue. Based on this structure, we designed X0 fusion constructs that disrupt pathogenic afucosylated IgG1-FcγRIIIa interactions and rescue mice in a model of dengue virus infection.
Collapse
Affiliation(s)
- Aaron Gupta
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Rachel Yamin
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
43
|
Petrić M, Radić M. Is Th17-Targeted Therapy Effective in Systemic Lupus Erythematosus? Curr Issues Mol Biol 2023; 45:4331-4343. [PMID: 37232744 DOI: 10.3390/cimb45050275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a broad spectrum of clinical manifestations. The proposed pathophysiological hypotheses of SLE are numerous, involving both innate and adaptive abnormal immune responses. SLE is characterized by the overproduction of different autoantibodies that form immune complexes, which cause damage in different organs. Current therapeutic modalities are anti-inflammatory and immunosuppressive. In the last decade, we have witnessed the development of many biologicals targeting different cytokines and other molecules. One of them is interleukin-17 (IL-17), a central cytokine of a proinflammatory process that is mediated by a group of helper T cells called Th17. Direct inhibitors of IL-17 are used in psoriatic arthritis, spondyloarthritis, and other diseases. Evidence about the therapeutic potential of Th17-targeted therapies in SLE is scarce, and probably the most promising is related to lupus nephritis. As SLE is a complex heterogeneous disease with different cytokines involved in its pathogenesis, it is highly unlikely that inhibition of only one molecule, such as IL-17, will be effective in the treatment of all clinical manifestations. Future studies should identify SLE patients that are eligible for Th17-targeted therapy.
Collapse
Affiliation(s)
- Marin Petrić
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital of Split, Center of Excellence for Systemic Sclerosis Ministry of Health Republic of Croatia, Šoltanska 1, 21000 Split, Croatia
| | - Mislav Radić
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, University Hospital of Split, Center of Excellence for Systemic Sclerosis Ministry of Health Republic of Croatia, Šoltanska 1, 21000 Split, Croatia
- Department of Internal Medicine, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| |
Collapse
|
44
|
Hu N, Wang J, Ju B, Li Y, Fan P, Jin X, Kang X, Wu S. Recent advances of osteoimmunology research in rheumatoid arthritis: From single-cell omics approach. Chin Med J (Engl) 2023:00029330-990000000-00608. [PMID: 37166215 DOI: 10.1097/cm9.0000000000002678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 05/12/2023] Open
Abstract
ABSTRACT Cellular immune responses as well as generalized and periarticular bone loss are the key pathogenic features of rheumatoid arthritis (RA). Under the pathological conditions of RA, dysregulated inflammation and immune processes tightly interact with skeletal system, resulting in pathological bone damage via inhibition of bone formation or induction of bone resorption. Single-cell omics technologies are revolutionary tools in the field of modern biological research.They enable the display of the state and function of cells in various environments from a single-cell resolution, thus making it conducive to identify the dysregulated molecular mechanisms of bone destruction in RA as well as the discovery of potential therapeutic targets and biomarkers. Here, we summarize the latest findings of single-cell omics technologies in osteoimmunology research in RA. These results suggest that single-cell omics have made significant contributions to transcriptomics and dynamics of specific cells involved in bone remodeling, providing a new direction for our understanding of cellular heterogeneity in the study of osteoimmunology in RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bomiao Ju
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Fan
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
45
|
A new face among our Associate Editors. Hypertens Res 2023; 46:1207-1209. [PMID: 36890268 DOI: 10.1038/s41440-023-01247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
|
46
|
Matsuda K, Shiba N, Hiraoka K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24065173. [PMID: 36982247 PMCID: PMC10049180 DOI: 10.3390/ijms24065173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by multiple-joint synovitis with subsequent destruction of bone and cartilage. The excessive autoimmune responses cause an imbalance in bone metabolism, promoting bone resorption and inhibiting bone formation. Preliminary studies have revealed that receptor activator of NF-κB ligand (RANKL)-mediated osteoclast induction is an important component of bone destruction in RA. Synovial fibroblasts are the crucial producers of RANKL in the RA synovium; novel analytical techniques, primarily, single-cell RNA sequencing, have confirmed that synovial fibroblasts include heterogeneous subsets of both pro-inflammatory and tissue-destructive cell types. The heterogeneity of immune cells in the RA synovium and the interaction of synovial fibroblasts with immune cells have recently received considerable attention. The current review focused on the latest findings regarding the crosstalk between synovial fibroblasts and immune cells, and the pivotal role played by synovial fibroblasts in joint destruction in RA.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
47
|
Haslund-Gourley BS, Wigdahl B, Comunale MA. IgG N-glycan Signatures as Potential Diagnostic and Prognostic Biomarkers. Diagnostics (Basel) 2023; 13:1016. [PMID: 36980324 PMCID: PMC10047871 DOI: 10.3390/diagnostics13061016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
IgG N-glycans are an emerging source of disease-specific biomarkers. Over the last decade, the continued development of glycomic databases and the evolution of glyco-analytic methods have resulted in increased throughput, resolution, and sensitivity. IgG N-glycans promote adaptive immune responses through antibody-dependent cellular cytotoxicity (ADCC) and complement activation to combat infection or cancer and promote autoimmunity. In addition to the functional assays, researchers are examining the ability of protein-specific glycosylation to serve as biomarkers of disease. This literature review demonstrates that IgG N-glycans can discriminate between healthy controls, autoimmune disease, infectious disease, and cancer with high sensitivity. The literature also indicates that the IgG glycosylation patterns vary across disease state, thereby supporting their role as specific biomarkers. In addition, IgG N-glycans can be collected longitudinally from patients to track treatment responses or predict disease reoccurrence. This review focuses on IgG N-glycan profiles applied as diagnostics, cohort discriminators, and prognostics. Recent successes, remaining challenges, and upcoming approaches are critically discussed.
Collapse
Affiliation(s)
- Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
48
|
Abstract
Bone and immune systems mutually influence each other by sharing a variety of regulatory molecules and the tissue microenvironment. The interdisciplinary research field "osteoimmunology" has illuminated the complex and dynamic interactions between the two systems in the maintenance of tissue homeostasis as well as in the development of immune and skeletal disorders. T cells play a central role in the immune response by secreting various immune factors and stimulating other immune cells and structural cells such as fibroblasts and epithelial cells, thereby contributing to pathogen elimination and pathogenesis of immune diseases. The finding on regulation of osteoclastic bone resorption by activated CD4+ T cells in rheumatoid arthritis was one of the driving forces for the development of osteoimmunology. With advances in research on helper T cell subsets and rare lymphoid cells such as γδ T cells in the immunology field, it is becoming clear that various types of T cells exert multiple effects on bone metabolism depending on immune context. Understanding the diverse effects of T cells on bone is essential for deciphering the osteoimmune regulatory network in various biological settings.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Kirvan CA, Canini H, Swedo SE, Hill H, Veasy G, Jankelow D, Kosanke S, Ward K, Zhao YD, Alvarez K, Hedrick A, Cunningham MW. IgG2 rules: N-acetyl-β-D-glucosamine-specific IgG2 and Th17/Th1 cooperation may promote the pathogenesis of acute rheumatic heart disease and be a biomarker of the autoimmune sequelae of Streptococcus pyogenes. Front Cardiovasc Med 2023; 9:919700. [PMID: 36815140 PMCID: PMC9939767 DOI: 10.3389/fcvm.2022.919700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Antecedent group A streptococcal pharyngitis is a well-established cause of acute rheumatic fever (ARF) where rheumatic valvular heart disease (RHD) and Sydenham chorea (SC) are major manifestations. In ARF, crossreactive antibodies and T cells respond to streptococcal antigens, group A carbohydrate, N-acetyl-β-D-glucosamine (GlcNAc), and M protein, respectively, and through molecular mimicry target heart and brain tissues. In this translational human study, we further address our hypothesis regarding specific pathogenic humoral and cellular immune mechanisms leading to streptococcal sequelae in a small pilot study. The aims of the study were to (1) better understand specific mechanisms of pathogenesis in ARF, (2) identify a potential early biomarker of ARF, (3) determine immunoglobulin G (IgG) subclasses directed against GlcNAc, the immunodominant epitope of the group A carbohydrate, by reaction of ARF serum IgG with GlcNAc, M protein, and human neuronal cells (SK-N-SH), and (4) determine IgG subclasses deposited on heart tissues from RHD. In 10 pediatric patients with RHD and 6 pediatric patients with SC, the serum IgG2 subclass reacted significantly with GlcNAc, and distinguished ARF from 7 pediatric patients with uncomplicated pharyngitis. Three pediatric patients who demonstrated only polymigrating arthritis, a major manifestation of ARF and part of the Jones criteria for diagnosis, lacked the elevated IgG2 subclass GlcNAc-specific reactivity. In SC, the GlcNAc-specific IgG2 subclass in cerebrospinal fluid (CSF) selectively targeted human neuronal cells as well as GlcNAc in the ELISA. In rheumatic carditis, the IgG2 subclass preferentially and strongly deposited in valve tissues (n = 4) despite elevated concentrations of IgG1 and IgG3 in RHD sera as detected by ELISA to group A streptococcal M protein. Although our human study of ARF includes a very small limited sample set, our novel research findings suggest a strong IgG2 autoantibody response against GlcNAc in RHD and SC, which targeted heart valves and neuronal cells. Cardiac IgG2 deposition was identified with an associated IL-17A/IFN-γ cooperative signature in RHD tissue which displayed both IgG2 deposition and cellular infiltrates demonstrating these cytokines simultaneously. GlcNAc-specific IgG2 may be an important autoantibody in initial stages of the pathogenesis of group A streptococcal sequelae, and future studies will determine if it can serve as a biomarker for risk of RHD and SC or early diagnosis of ARF.
Collapse
Affiliation(s)
- Christine A. Kirvan
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Heather Canini
- Department of Biological Sciences, California State University, Sacramento, CA, United States
| | - Susan E. Swedo
- Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Harry Hill
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - George Veasy
- Departments of Pediatrics, Infectious Diseases, Cardiology, and Pathology, University of Utah College of Medicine, Salt Lake City, UT, United States
| | - David Jankelow
- Division of Cardiology, University of Witwatersrand, Johannesburg, South Africa
| | - Stanley Kosanke
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kent Ward
- Department of Pediatrics, Division of Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andria Hedrick
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
50
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|