1
|
Parween F, Singh SP, Kathuria N, Zhang HH, Ashida S, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Riley DJ, Myers TG, Pittaluga S, Bielekova B, Farber JM. Migration arrest and transendothelial trafficking of human pathogenic-like Th17 cells are mediated by differentially positioned chemokines. Nat Commun 2025; 16:1978. [PMID: 40000641 PMCID: PMC11861662 DOI: 10.1038/s41467-025-57002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Human Th17/type 17 cells express the chemokine receptor CCR6, but the functions of CCR6 and other chemokine receptors in human type 17 Th cell extravasation have not been fully delineated. Here we show that human peripheral blood CD4+CCR6+ T cells co-expressing CCR2 have a pathogenic Th17 signature, can produce inflammatory cytokines without T cell receptor activation, and show enhanced expression of pathogenicity-associated and activation-associated genes in the cerebrospinal fluid of patients with multiple sclerosis as compared to controls. In flow chambers with activated endothelial cell (EC) monolayers, CD4+CCR6+CCR2+ T cells are efficient at transendothelial migration (TEM). Ligands for CCR5, CCR6 and CXCR3 localize to EC surfaces and mediate only arrest, whereas CCR2 ligands fail to bind well to ECs and mediate only TEM. Conversely, expressing a chimeric CCR2 ligand engineered to bind glycosaminoglycans on ECs results in CCR2-mediated arrest but blocks TEM induction. Our results from human pathogenic-like type 17 cells thus suggest that T cell migration arrest requires chemokine bound to EC surfaces, whereas TEM requires a transendothelial chemokine gradient.
Collapse
Affiliation(s)
- Farhat Parween
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nausheen Kathuria
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongwei H Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shinji Ashida
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco A Otaizo-Carrasquero
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amirhossein Shamsaddini
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul J Gardina
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hernan A Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna J Riley
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Yang Y, Schmidt EP. Alveolar glycocalyces during health and critical illness. PROTEOGLYCAN RESEARCH 2025; 3:e70022. [PMID: 40242042 PMCID: PMC11999102 DOI: 10.1002/pgr2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
The alveolus, the functional unit of the lung, is comprised of closely approximated alveolar epithelial and endothelial cells, across which gas exchange occurs. This alveolar septum also includes two substantial, intraluminal extracellular matrices: the alveolar epithelial and endothelial glycocalyces. This perspective investigates the distinct structures and homeostatic functions of these two glycocalyces, as well as their distinct fates and consequences during critical illnesses such as sepsis and the acute respiratory distress syndrome. We seek to identify key knowledge gaps, with the goal to inspire future mechanistic investigations that may substantially impact human health and disease.
Collapse
Affiliation(s)
- Yimu Yang
- Department of Medicine, Massachusetts General Hospital, Boston MA
| | - Eric P. Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston MA
| |
Collapse
|
3
|
Mu H, Yang B, Wang Y, Wang S, Yu W, Jia M, Dong W, Wang X, Xu X, Dong Z, Yang B, Li X, Wang J. Inhibition of fibulin-3 ameliorates periodontal inflammation through reducing M1 macrophage polarization via EGFR/PI3K/AKT pathway. J Periodontol 2024. [PMID: 39692480 DOI: 10.1002/jper.24-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND This study aimed to evaluate the role of fibulin-3 (FBLN3) in macrophage polarization, its mechanism, and its effect on periodontitis. METHODS We conducted studies on periodontitis using both clinical samples and ligature-induced mouse periodontitis model. The inflammatory state was assessed using microcomputed tomography, hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining. In vitro, bone marrow-derived macrophages, and RAW 264.7 macrophages were treated with lipopolysaccharide (LPS) and interleukin (IL)-4 to induce polarization. The role of FBLN3 in macrophage polarization was investigated using overexpression plasmids or siRNAs. Furthermore, local injection of adeno-associated virus was employed to suppress FBLN3 expression in periodontal tissues. RESULTS FBLN3 levels were greater in periodontitis tissues. FBLN3 promoted M1 polarization and suppressed M2 polarization in macrophages. The overexpression of FBLN3 promoted M1 polarization via the EGFR/PI3K/AKT signaling pathway, an effect that the epidermal growth factor receptor (EGFR) inhibitor PD153035 reversed. Suppressing FBLN3 expression improved periodontal inflammation and reduced alveolar bone loss in periodontitis. CONCLUSIONS FBLN3 suppression can mitigate periodontitis by decreasing the M1 macrophage ratio. FBLN3 regulates M1 macrophage polarization through the EGFR/PI3K/AKT signaling pathway. PLAIN LANGUAGE SUMMARY Disruption in the collaboration between extracellular matrix (ECM) and immune system is a significant pathology in periodontitis. Macrophages are a crucial part of the immune system and have unique functions, such as polarization. Fibulin-3, an ECM protein, may play a vital role in this dynamic interplay. Fibulin-3 expression is elevated in periodontitis and is closely related to immune cell function. Inhibiting fibulin-3 can alleviate periodontitis by reducing infiltration of immune cells and M1 macrophage ratio. Furthermore, fibulin-3 promoted macrophage M1 polarization by activating the PI3K/AKT signaling pathway through EGFR binding. Our findings offer a clinically relevant rationale for immune response modulation through fibulin-3.
Collapse
Affiliation(s)
- Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xuemei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhang W, Jiang L, Tong X, He H, Zheng Y, Xia Z. Sepsis-Induced Endothelial Dysfunction: Permeability and Regulated Cell Death. J Inflamm Res 2024; 17:9953-9973. [PMID: 39628705 PMCID: PMC11612565 DOI: 10.2147/jir.s479926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Endothelial cells (ECs) are an important cell type typically affected in sepsis, resulting in compromised barrier function and various forms of regulated cell death (RCD). However, the precise mechanisms underlying sepsis-induced EC damage remain unclear. This review summarizes the recent research progress on factors and mechanisms that may affect the permeability and RCD of ECs under septic conditions, including glycocalyx, damage-associated molecular patterns, and various forms of RCD in ECs, such as apoptosis, pyroptosis, ferroptosis, and autophagy. This review offers important insights into the underlying mechanisms of endothelial dysfunction in sepsis, aiming to contribute to developing small-molecule targeted clinical therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Xirui Tong
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Heng He
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
5
|
Hopkins J, Volety I, Qatanani F, Shukla D. Heparanase 2 Modulation Inhibits HSV-2 Replication by Regulating Heparan Sulfate. Viruses 2024; 16:1832. [PMID: 39772142 PMCID: PMC11680312 DOI: 10.3390/v16121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication. We show that higher HPSE 2 negatively affects HSV-2 replication which may be through the regulation of cell surface HS. By acting as a competitive inhibitor of HPSE, HPSE 2 may be interfering with HPSE's interactions with HS. We demonstrate that the enhanced expression of HPSE 2, either via viral infection or plasmid transfection, reduces HPSE's ability to cleave HS, thereby hindering viral egress. Conversely, low HPSE 2 levels achieved through siRNA transfection allow HPSE to cleave more HS, reducing viral entry. Altogether, we propose a hypothetical model in which the modulation of HPSE 2 impedes HSV-2 replication by regulating HS availability on the cell surface. This dual role of HPSE 2 in viral replication and potential tumor suppression underscores its significance in cellular processes and viral pathogenesis.
Collapse
Affiliation(s)
- James Hopkins
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
- Department of Pathology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Farreh Qatanani
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.H.); (I.V.); (F.Q.)
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
McMillan IO, Liang L, Su G, Song X, Drago K, Yang H, Alvarez C, Sood A, Gibson J, Woods RJ, Wang C, Liu J, Zhang F, Brett TJ, Wang L. TREM2 on microglia cell surface binds to and forms functional binary complexes with heparan sulfate modified with 6-O-sulfation and iduronic acid. J Biol Chem 2024; 300:107691. [PMID: 39159814 PMCID: PMC11416269 DOI: 10.1016/j.jbc.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM2), a pivotal innate immune receptor, orchestrates functions such as inflammatory responses, phagocytosis, cell survival, and neuroprotection. TREM2 variants R47H and R62H have been associated with Alzheimer's disease, yet the underlying mechanisms remain elusive. Our previous research established that TREM2 binds to heparan sulfate (HS) and variants R47H and R62H exhibit reduced affinity for HS. Building upon this groundwork, our current study delves into the interplay between TREM2 and HS and its impact on microglial function. We confirm TREM2's binding to cell surface HS and demonstrate that TREM2 interacts with HS, forming HS-TREM2 binary complexes on microglia cell surfaces. Employing various biochemical techniques, including surface plasmon resonance, low molecular weight HS microarray screening, and serial HS mutant cell surface binding assays, we demonstrate TREM2's robust affinity for HS, and the effective binding requires a minimum HS size of approximately 10 saccharide units. Notably, TREM2 selectively binds specific HS structures, with 6-O-sulfation and, to a lesser extent, the iduronic acid residue playing crucial roles. N-sulfation and 2-O-sulfation are dispensable for this interaction. Furthermore, we reveal that 6-O-sulfation is essential for HS-TREM2 ternary complex formation on the microglial cell surface, and HS and its 6-O-sulfation are necessary for TREM2-mediated ApoE3 uptake in microglia. By delineating the interaction between HS and TREM2 on the microglial cell surface and demonstrating its role in facilitating TREM2-mediated ApoE uptake by microglia, our findings provide valuable insights that can inform targeted interventions for modulating microglial functions in Alzheimer's disease.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Li Liang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guowei Su
- Glycan Therapeutics, Raleigh, North Carolina, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Kelly Drago
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Claudia Alvarez
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Amika Sood
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - James Gibson
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chunyu Wang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Tom J Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
7
|
Piszczatowski RT, Bülow HE, Steidl U. Heparan sulfates and heparan sulfate proteoglycans in hematopoiesis. Blood 2024; 143:2571-2587. [PMID: 38639475 PMCID: PMC11830984 DOI: 10.1182/blood.2023022736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.
Collapse
Affiliation(s)
- Richard T. Piszczatowski
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Departments of Oncology, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
8
|
Nguyen TK, Paone S, Baxter AA, Mayfosh AJ, Phan TK, Chan E, Peter K, Poon IKH, Thomas SR, Hulett MD. Heparanase promotes the onset and progression of atherosclerosis in apolipoprotein E gene knockout mice. Atherosclerosis 2024; 392:117519. [PMID: 38581737 DOI: 10.1016/j.atherosclerosis.2024.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.
Collapse
Affiliation(s)
- Tien K Nguyen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alyce J Mayfosh
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Enoch Chan
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Shane R Thomas
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
9
|
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris PC, Pearson MJ, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely MD, Zhang Y, Zhang JP, Ji L, Flies DB, Liu L, Langermann S, LaRochelle WJ, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper KA, Sanmamed MF, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Sci Immunol 2024; 9:eadh2334. [PMID: 38669316 DOI: 10.1126/sciimmunol.adh2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/19/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiwei Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoxiao Cheng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Viviana Ahumada
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Xuan Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Christina Halcovich
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ala Nassar
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D. Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-Ping Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Ji
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Qiuyu Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jindong Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
McMillan IO, Gearing M, Wang L. Vascular Heparan Sulfate and Amyloid-β in Alzheimer's Disease Patients. Int J Mol Sci 2024; 25:3964. [PMID: 38612775 PMCID: PMC11012074 DOI: 10.3390/ijms25073964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of extracellular amyloid-β peptides (Aβ) within the cerebral parenchyma and vasculature, which is known as cerebral amyloid angiopathy (CAA). This study utilized confocal imaging to investigate heparan sulfate (HS) expression within the cerebrovasculature and its associations with Aβ, gender, and ApoE4 genotype in AD. Our investigation revealed elevated levels of HS in the cerebrovasculature of AD patients with severe CAA. Additionally, these patients exhibited higher HS colocalization with Aβ in the cerebrovasculature, including both endothelial and vascular smooth muscle cell compartments. Intriguingly, a reversal in the polarized expression of HS within the cerebrovasculature was detected in AD patients with severe CAA. Furthermore, male patients exhibited lower levels of both parenchymal and cerebrovascular HS. Additionally, ApoE4 carriers displayed heightened cerebrovascular Aβ expression and a tendency of elevated cerebrovascular HS levels in AD patients with severe CAA. Overall, these findings reveal potential intricate interplay between HS, Aβ, ApoE, and vascular pathology in AD, thereby underscoring the potential roles of cerebrovascular HS in CAA development and AD pathology. Further study of the underlying mechanisms may present novel therapeutic avenues for AD treatment.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| | - Marla Gearing
- Department of Pathology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA;
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA;
| |
Collapse
|
11
|
Tan Z, Hall P, Costin A, Crawford SA, Ramm G, Wong CHY, Kitching AR, Hickey MJ. Removal of the endothelial surface layer via hyaluronidase does not modulate monocyte and neutrophil interactions with the glomerular endothelium. Microcirculation 2023; 30:e12823. [PMID: 37494581 PMCID: PMC10909409 DOI: 10.1111/micc.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The endothelial surface layer (ESL), a layer of macromolecules on the surface of endothelial cells, can both impede and facilitate leukocyte recruitment. However, its role in monocyte and neutrophil recruitment in glomerular capillaries is unknown. METHODS We used multiphoton intravital microscopy to examine monocyte and neutrophil behavior in the glomerulus following ESL disruption with hyaluronidase. RESULTS Constitutive retention and migration of monocytes and neutrophils within the glomerular microvasculature was unaltered by hyaluronidase. Consistent with this, inhibition of the hyaluronan-binding molecule CD44 also failed to modulate glomerular trafficking of these immune cells. To investigate the contribution of the ESL during acute inflammation, we induced glomerulonephritis via in situ immune complex deposition. This resulted in increases in glomerular retention of monocytes and neutrophils but did not induce marked reduction in the glomerular ESL. Furthermore, hyaluronidase treatment did not modify the prolonged retention of monocytes and neutrophils in the acutely inflamed glomerular microvasculature. CONCLUSIONS These observations indicate that, despite evidence that the ESL has the capacity to inhibit leukocyte-endothelial cell interactions while also containing adhesive ligands for immune cells, neither of these functions modulate trafficking of monocytes and neutrophils in steady-state or acutely-inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Simon A. Crawford
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Connie H. Y. Wong
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
- Department of NephrologyMonash Medical CentreClaytonVictoriaAustralia
- Department of Pediatric NephrologyMonash Medical CentreClaytonVictoriaAustralia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| |
Collapse
|
12
|
Kaffashi K, Dréau D, Nesmelova IV. Heterodimers Are an Integral Component of Chemokine Signaling Repertoire. Int J Mol Sci 2023; 24:11639. [PMID: 37511398 PMCID: PMC10380872 DOI: 10.3390/ijms241411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a family of signaling proteins that play a crucial role in cell-cell communication, cell migration, and cell trafficking, particularly leukocytes, under both normal and pathological conditions. The oligomerization state of chemokines influences their biological activity. The heterooligomerization occurs when multiple chemokines spatially and temporally co-localize, and it can significantly affect cellular responses. Recently, obligate heterodimers have emerged as tools to investigate the activities and molecular mechanisms of chemokine heterodimers, providing valuable insights into their functional roles. This review focuses on the latest progress in understanding the roles of chemokine heterodimers and their contribution to the functioning of the chemokine network.
Collapse
Affiliation(s)
- Kimia Kaffashi
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
13
|
Buijsers B, Maciej-Hulme M, Jacobs M, Bebber MBV, de Graaf M, Salmenov R, Parr N, Rabelink TJ, Nijenhuis T, van der Vlag J. Glycosaminoglycans and fucoidan have a protective effect on experimental glomerulonephritis. Front Mol Biosci 2023; 10:1223972. [PMID: 37475889 PMCID: PMC10354240 DOI: 10.3389/fmolb.2023.1223972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Background: The glomerular endothelial glycocalyx is degraded during inflammation. The glycocalyx plays a pivotal role in endothelial function and is involved in many processes including binding of chemokines and cytokines, leukocyte trafficking, and preventing proteinuria. HS-based therapeutics are a promising novel class of anti-inflammatory drugs to restore a compromised endothelial glycocalyx under inflammatory conditions. Recently, we demonstrated that treatment with HS extracted from unstimulated glomerular endothelial glycocalyx (unstimulated HSglx) reduced albuminuria during anti-GBM induced glomerulonephritis. Since endothelial HS domains are distinct in unstimulated versus inflammatory conditions, we hypothesized that 1) unstimulated HSglx, 2) LPS-stimulated HSglx, 3) the HS-mimetic fucoidan and 4) the glycosaminoglycan preparation sulodexide, which is a mixture of low molecular weight heparin and dermatan sulfate, might have different beneficial effects in experimental glomerulonephritis. Methods: The effect of unstimulated HSglx, LPS HSglx, Laminaria japonica fucoidan, or sulodexide on experimental glomerulonephritis was tested in LPS-induced glomerulonephritis in mice. Analyses included urinary albumin creatinine measurement, cytokine expression in plasma and renal cortex, and renal influx of immune cells determined by flow cytometry and immunofluorescence staining. Furthermore, the observed in vivo effects were evaluated in cultured glomerular endothelial cells and peripheral blood mononuclear cells by measuring cytokine and ICAM-1 expression levels. The ability of the compounds to inhibit heparanase activity was assessed in a heparanase activity assay. Results: Treatment of mice with LPS HSglx or sulodexide near-significantly attenuated LPS-induced proteinuria. All treatments reduced plasma MCP-1 levels, whereas only fucoidan reduced IL-6 and IL-10 plasma levels. Moreover, all treatments reversed cortical ICAM-1 mRNA expression and both fucoidan and sulodexide reversed cortical IL-6 and nephrin mRNA expression. Sulodexide decreased renal influx of CD45+ immune cells whereas renal influx of macrophages and granulocytes remained unaltered for all treatments. Although all compounds inhibited HPSE activity, fucoidan and sulodexide were the most potent inhibitors. Notably, fucoidan and sulodexide decreased LPS-induced mRNA expression of ICAM-1 and IL-6 by cultured glomerular endothelial cells. Conclusion: Our data show a potentially protective effect of glycosaminoglycans and fucoidan in experimental glomerulonephritis. Future research should be aimed at the further identification of defined HS structures that have therapeutic potential in the treatment of glomerular diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa Maciej-Hulme
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rustem Salmenov
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ton J. Rabelink
- Division of Nephrology, Department of Internal Medicine, The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Maciej-Hulme ML, Van Gemst JJ, Sanderson P, Rops ALWMM, Berden JH, Smeets B, Amster IJ, Rabelink TJ, Van Der Vlag J. Glomerular endothelial glycocalyx-derived heparan sulfate inhibits glomerular leukocyte influx and attenuates experimental glomerulonephritis. Front Mol Biosci 2023; 10:1177560. [PMID: 37325479 PMCID: PMC10267401 DOI: 10.3389/fmolb.2023.1177560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jasper J Van Gemst
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Patience Sanderson
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Angelique L W M M Rops
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jo H Berden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Ton J Rabelink
- Department of Nephrology, Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Johan Van Der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
15
|
Gholizadeh M, Khalili A, Roodi PB, Saeedy SAG, Najafi S, Keshavarz Mohammadian M, Djafarian K. Selenium supplementation decreases CRP and IL-6 and increases TNF-alpha: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 2023; 79:127199. [PMID: 37257335 DOI: 10.1016/j.jtemb.2023.127199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Inflammation is an initiating cause of infectious and non-infectious diseases. Studies have shown that selenium (Se) has anti-inflammatory effects. However, its' effects on serum c-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) plasma concentrations are equivocal. Therefore, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs), evaluating the effects of per oral (PO) and intravenous (IV) Se supplementation on CRP, TNF-α, and IL-6. A systematic search was conducted using four databases, including PubMed, Google Scholar, Cochrane Library, and Scopus to find randomized clinical trials, published up to April 2023. From 19476 papers, after screening and removing duplicate articles, 24 studies were analyzed in the present meta-analysis. In the pooled analysis, PO Se administration showed no significant effect on CRP (WMD: 0.12; 95 % CI -0.11, 0.38; P-value= 0.30). However, IV Se supplementation had a significant negative association with CRP concentration (-2.24; 95 % CI: -4.24, -0.24; p-value: 0.02). Se administration had no significant association with TNF-α plasma concentration (9.64, 95 % CI: -0.59, 19.88, p-value= 0.06; and heterogeneity: 98 %). However, a significant positive association was present between Se and plasma TNF-α concentrations (0.15, 95 % CI: 0.14, 0.17, P-value<0.0001). Moreover, Se supplementation had a significant negative correlation with IL-6 plasma concentration in PO (-0.54; 95 % CI: -1.61, 0.52; P-value = 0.31) and IV administrations (-4.77; 95 % CI: -7.61, -1.93; P-value<0.0001), respectively. This study demonstrated that IV Se administration reduced CRP and IL-6 plasma concentrations. Conversely, IV Se supplementation increased TNF-α plasma concentration. It is evident that further, well-controlled clinical trials are required.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Industries, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atefeh Khalili
- Department of Food Sciences and Technology, Branch, Islamic Azad University, Gonbad Kavoos, Golestan, Iran
| | - Poorya Basafa Roodi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Samaneh Najafi
- Department of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | | | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
16
|
Rafael D, Guerrero M, Marican A, Arango D, Sarmento B, Ferrer R, Durán-Lara EF, Clark SJ, Schwartz S. Delivery Systems in Ocular Retinopathies: The Promising Future of Intravitreal Hydrogels as Sustained-Release Scaffolds. Pharmaceutics 2023; 15:1484. [PMID: 37242726 PMCID: PMC10220769 DOI: 10.3390/pharmaceutics15051484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Slow-release delivery systems are needed to ensure long-term sustained treatments for retinal diseases such as age-related macular degeneration and diabetic retinopathy, which are currently treated with anti-angiogenic agents that require frequent intraocular injections. These can cause serious co-morbidities for the patients and are far from providing the adequate drug/protein release rates and required pharmacokinetics to sustain prolonged efficacy. This review focuses on the use of hydrogels, particularly on temperature-responsive hydrogels as delivery vehicles for the intravitreal injection of retinal therapies, their advantages and disadvantages for intraocular administration, and the current advances in their use to treat retinal diseases.
Collapse
Affiliation(s)
- Diana Rafael
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), 20 ICTS Nanbiosis, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Marcelo Guerrero
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Adolfo Marican
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, Vall d’Hebron University Hospital Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Group of Molecular Oncology, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação, Saúde Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Roser Ferrer
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| | - Esteban F. Durán-Lara
- Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (M.G.); (A.M.); (E.F.D.-L.)
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Simon J. Clark
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Simo Schwartz
- Drug Delivery & Targeting, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
- Clinical Biochemistry Group, Vall d’Hebron Hospital, 08035 Barcelona, Spain;
| |
Collapse
|
17
|
Ozsan McMillan I, Li JP, Wang L. Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. Am J Physiol Cell Physiol 2023; 324:C893-C909. [PMID: 36878848 PMCID: PMC10069967 DOI: 10.1152/ajpcell.00247.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, there is no effective treatment for AD, as its etiology remains poorly understood. Mounting evidence suggests that the accumulation and aggregation of amyloid-β peptides (Aβ), which constitute amyloid plaques in the brain, is critical for initiating and accelerating AD pathogenesis. Considerable efforts have been dedicated to shedding light on the molecular basis and fundamental origins of the impaired Aβ metabolism in AD. Heparan sulfate (HS), a linear polysaccharide of the glycosaminoglycan family, co-deposits with Aβ in plaques in the AD brain, directly binds and accelerates Aβ aggregation, and mediates Aβ internalization and cytotoxicity. Mouse model studies demonstrate that HS regulates Aβ clearance and neuroinflammation in vivo. Previous reviews have extensively explored these discoveries. Here, this review focuses on the recent advancements in understanding abnormal HS expression in the AD brain, the structural aspects of HS-Aβ interaction, and the molecules involved in modulating Aβ metabolism through HS interaction. Furthermore, this review presents a perspective on the potential effects of abnormal HS expression on Aβ metabolism and AD pathogenesis. In addition, the review highlights the importance of conducting further research to differentiate the spatiotemporal components of HS structure and function in the brain and AD pathogenesis.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology & The Biomedical Center, University of Uppsala, Uppsala, Sweden
- SciLifeLab Uppsala, University of Uppsala, Uppsala, Sweden
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
18
|
Arora G, Chuang YM, Sinnis P, Dimopoulos G, Fikrig E. Malaria: influence of Anopheles mosquito saliva on Plasmodium infection. Trends Immunol 2023; 44:256-265. [PMID: 36964020 PMCID: PMC10074230 DOI: 10.1016/j.it.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/26/2023]
Abstract
Malaria is caused by Plasmodium protozoa that are transmitted by anopheline mosquitoes. Plasmodium sporozoites are released with saliva when an infected female mosquito takes a blood meal on a vertebrate host. Sporozoites deposited into the skin must enter a blood vessel to start their journey towards the liver. After migration out of the mosquito, sporozoites are associated with, or in proximity to, many components of vector saliva in the skin. Recent work has elucidated how Anopheles saliva, and components of saliva, can influence host-pathogen interactions during the early stage of Plasmodium infection in the skin. Here, we discuss how components of Anopheles saliva can modulate local host responses and affect Plasmodium infectivity. We hypothesize that therapeutic strategies targeting mosquito salivary proteins can play a role in controlling malaria and other vector-borne diseases.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
19
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
20
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023; 379:eabp8964. [PMID: 36795835 DOI: 10.1126/science.abp8964] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/22/2022] [Indexed: 02/18/2023]
Abstract
For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.
Collapse
Affiliation(s)
- Tara E Sutherland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- School of Medicine, Medical Sciences and Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
22
|
Liao YE, Liu J, Arnold K. Heparan sulfates and heparan sulfate binding proteins in sepsis. Front Mol Biosci 2023; 10:1146685. [PMID: 36865384 PMCID: PMC9971734 DOI: 10.3389/fmolb.2023.1146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Collapse
Affiliation(s)
- Yi-En Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
23
|
Parween F, Singh SP, Zhang HH, Kathuria N, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Myers TG, Farber JM. Chemokine positioning determines mutually exclusive roles for their receptors in extravasation of pathogenic human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525561. [PMID: 36789428 PMCID: PMC9928044 DOI: 10.1101/2023.01.25.525561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.
Collapse
Affiliation(s)
- Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Nausheen Kathuria
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Francisco A. Otaizo-Carrasquero
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Paul J. Gardina
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hernan A. Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Timothy G. Myers
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
24
|
Ma Y, Chen H. Analysis of Chemokine-to-GAG Interactions in Model of Donor Renal Allograft Transplant. Methods Mol Biol 2023; 2597:25-38. [PMID: 36374412 DOI: 10.1007/978-1-0716-2835-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Binding of chemokines to glycosaminoglycans (GAGs) is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct immune cell responses initiating local leukocyte chemotaxis into damaged or transplanted tissues. The interaction between chemokines and GAGs is an important factor affecting transplant rejection, and blocking the interactions between chemokines and GAGs can significantly reduce acute rejection after transplantation. Here, we investigated the interaction between chemokines and GAGs by establishing a mouse model of acute rejection after kidney transplantation.
Collapse
Affiliation(s)
- Yanlin Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
25
|
de la Rosa A, Metzendorf NG, Morrison JI, Faresjö R, Rofo F, Petrovic A, O’Callaghan P, Syvänen S, Hultqvist G. Introducing or removing heparan sulfate binding sites does not alter brain uptake of the blood-brain barrier shuttle scFv8D3. Sci Rep 2022; 12:21479. [PMID: 36509864 PMCID: PMC9744743 DOI: 10.1038/s41598-022-25965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) greatly limits the delivery of protein-based drugs into the brain and is a major obstacle for the treatment of brain disorders. Targeting the transferrin receptor (TfR) is a strategy for transporting protein-based drugs into the brain, which can be utilized by using TfR-binding BBB transporters, such as the TfR-binding antibody 8D3. In this current study, we investigated if binding to heparan sulfate (HS) contributes to the brain uptake of a single chain fragment variable of 8D3 (scFv8D3). We designed and produced a scFv8D3 mutant, engineered with additional HS binding sites, HS(+)scFv8D3, to assess whether increased HS binding would improve brain uptake. Additionally, a mutant with a reduced number of HS binding sites, HS(-)scFv8D3, was also engineered to see if reducing the HS binding sites could also affect brain uptake. Heparin column chromatography showed that only the HS(+)scFv8D3 mutant bound HS in the experimental conditions. Ex vivo results showed that the brain uptake was unaffected by the introduction or removal of HS binding sites, which indicates that scFv8D3 is not dependent on the HS binding sites for brain uptake. Conversely, introducing HS binding sites to scFv8D3 decreased its renal excretion while removing them had the opposite effect.
Collapse
Affiliation(s)
- Andrés de la Rosa
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicole G. Metzendorf
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jamie I. Morrison
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Rebecca Faresjö
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Fadi Rofo
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alex Petrovic
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Paul O’Callaghan
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Otsuka T, Kan HM, Mason TD, Nair LS, Laurencin CT. Overexpression of NDST1 Attenuates Fibrotic Response in Murine Adipose-Derived Stem Cells. Stem Cells Dev 2022; 31:787-798. [PMID: 35920108 PMCID: PMC9836701 DOI: 10.1089/scd.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) hold tremendous potential for treating diseases and repairing damaged tissues. Heparan sulfate (HS) plays various roles in cellular signaling mechanisms. The importance of HS in stem cell function has been reported and well documented. However, there has been little progress in using HS for therapeutic purposes. We focused on one of the sulfotransferases, NDST1, which influences overall HS chain extent and sulfation pattern, with the expectation to enhance stem cell function by increasing the N-sulfation level. We herein performed transfections of a green fluorescent protein-vector control and NDST1-vector into mouse ADSCs to evaluate stem cell functions. Overexpression of NDST1 suppressed the osteogenic differentiation of ADSCs. There was no pronounced effect observed on the stemness, inflammatory gene expression, nor any noticeable effect in adipogenic and chondrogenic differentiation. Under the tumor necrosis factor-alpha stimulation, NDST1 overexpression induced several chemokine productions that attract neutrophils and macrophages. Finally, we identified an antifibrotic response in ADSCs overexpressing NDST1. This study provides a foundation for the evaluation of HS-related effects in ADSCs undergoing ex vivo gene manipulation.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Timothy D. Mason
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
27
|
Pretorius D, Richter RP, Anand T, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biol Plus 2022; 16:100121. [PMID: 36160687 PMCID: PMC9494232 DOI: 10.1016/j.mbplus.2022.100121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- CLP, cecal ligation and puncture
- COVID-19, Coronavirus disease 2019
- EXT, Exostosin
- EXTL, Exostosin-like glycosyltransferase
- FFP, Fresh frozen plasma
- FGF, Fibroblast growth factor
- FGFR1, Fibroblast growth factor receptor 1
- GAG, Glycosaminoglycan
- GPC, Glypican
- Gal, Galactose
- GlcA, Glucuronic acid
- GlcNAc, N-actetyl glucosamine
- Glycocalyx
- HLMVEC, Human lung microvascular endothelial cell
- HS, Heparan sulfate
- HS2ST, Heparan sulfate 2-O-sulfotransferase
- HS3ST, Heparan sulfate 3-O-sulfotransferase
- HS6ST, Heparan sulfate 6-O-sulfotransferase
- HSPG, Heparan sulfate proteoglycan
- HUVEC, Human umbilical vein endothelial cell
- Heparan sulfate proteoglycan
- LPS, lipopolysaccharide
- NDST, N-deacetylase/N-sulfotransferase
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SDC, Syndecan
- Sulf, Endosulfatase
- Sulfation
- Synthesis
- TNFα, Tumor necrosis factor alpha
- UA, Hexuronic acid
- VEGF, Vascular endothelial growth factor
- Vascular endothelium
- XYLT, Xylosyltransferase
- Xyl, Xylose
- eGCX, Endothelial glycocalyx
- eNOS, Endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Danielle Pretorius
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Jessica C. Cardenas
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
29
|
Oliveira THC, Vanheule V, Vandendriessche S, Poosti F, Teixeira MM, Proost P, Gouwy M, Marques PE. The GAG-Binding Peptide MIG30 Protects against Liver Ischemia-Reperfusion in Mice. Int J Mol Sci 2022; 23:ijms23179715. [PMID: 36077113 PMCID: PMC9456047 DOI: 10.3390/ijms23179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) drives graft rejection and is the main cause of mortality after liver transplantation. During IRI, an intense inflammatory response marked by chemokine production and neutrophil recruitment occurs. However, few strategies are available to restrain this excessive response. Here, we aimed to interfere with chemokine function during IRI in order to disrupt neutrophil recruitment to the injured liver. For this, we utilized a potent glycosaminoglycan (GAG)-binding peptide containing the 30 C-terminal amino acids of CXCL9 (MIG30) that is able to inhibit the binding of chemokines to GAGs in vitro. We observed that mice subjected to IRI and treated with MIG30 presented significantly lower liver injury and dysfunction as compared to vehicle-treated mice. Moreover, the levels of chemokines CXCL1, CXCL2 and CXCL6 and of proinflammatory cytokines TNF-α and IL-6 were significantly reduced in MIG30-treated mice. These events were associated with a marked inhibition of neutrophil recruitment to the liver during IRI. Lastly, we observed that MIG30 is unable to affect leukocytes directly nor to alter the stimulation by either CXCL8 or lipopolysaccharide (LPS), suggesting that its protective properties derive from its ability to inhibit chemokine activity in vivo. We conclude that MIG30 holds promise as a strategy to treat liver IRI and inflammation.
Collapse
Affiliation(s)
- Thiago Henrique Caldeira Oliveira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Fariba Poosti
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Rega Institute, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
30
|
Gil E, Venturini C, Stirling D, Turner C, Tezera LB, Ercoli G, Baker T, Best K, Brown JS, Noursadeghi M. Pericyte derived chemokines amplify neutrophil recruitment across the cerebrovascular endothelial barrier. Front Immunol 2022; 13:935798. [PMID: 35967327 PMCID: PMC9371542 DOI: 10.3389/fimmu.2022.935798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive neutrophil extravasation can drive immunopathology, exemplified in pyogenic meningitis caused by Streptococcus pneumoniae infection. Insufficient knowledge of the mechanisms that amplify neutrophil extravasation has limited innovation in therapeutic targeting of neutrophil mediated pathology. Attention has focussed on neutrophil interactions with endothelia, but data from mouse models also point to a role for the underlying pericyte layer, as well as perivascular macrophages, the only other cell type found within the perivascular space in the cerebral microvasculature. We tested the hypothesis that human brain vascular pericytes (HBVP) contribute to neutrophil extravasation in a transwell model of the cerebral post-capillary venule. We show that pericytes augment endothelial barrier formation. In response to inflammatory cues, they significantly enhance neutrophil transmigration across the endothelial barrier, without increasing the permeability to small molecules. In our model, neither pericytes nor endothelia responded directly to bacterial stimulation. Instead, we show that paracrine signalling by multiple cytokines from monocyte derived macrophages drives transcriptional upregulation of multiple neutrophil chemokines by pericytes. Pericyte mediated amplification of neutrophil transmigration was independent of transcriptional responses by endothelia, but could be mediated by direct chemokine translocation across the endothelial barrier. Our data support a model in which microbial sensing by perivascular macrophages generates an inflammatory cascade where pericytes serve to amplify production of neutrophil chemokines that are translocated across the endothelial barrier to act directly on circulating neutrophils. In view of the striking redundancy in inflammatory cytokines that stimulate pericytes and in the neutrophil chemokines they produce, we propose that the mechanism of chemokine translocation may offer the most effective therapeutic target to reduce neutrophil mediated pathology in pyogenic meningitis.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Cristina Venturini
- Infection, Immunity and Inflammation Department, Institute for Child Health, University College London, London, United Kingdom
| | - David Stirling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Carolin Turner
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Liku B. Tezera
- Division of Infection and Immunity, University College London, London, United Kingdom
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Tina Baker
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Katharine Best
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
31
|
Milusev A, Rieben R, Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front Cardiovasc Med 2022; 9:897087. [PMID: 35647072 PMCID: PMC9136230 DOI: 10.3389/fcvm.2022.897087] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
The physiological, anti-inflammatory, and anti-coagulant properties of endothelial cells (ECs) rely on a complex carbohydrate-rich layer covering the luminal surface of ECs, called the glycocalyx. In a range of cardiovascular disorders, glycocalyx shedding causes endothelial dysfunction and inflammation, underscoring the importance of glycocalyx preservation to avoid disease initiation and progression. In this review we discuss the physiological functions of the glycocalyx with particular focus on how loss of endothelial glycocalyx integrity is linked to cardiovascular risk factors, like hypertension, aging, diabetes and obesity, and contributes to the development of thrombo-inflammatory conditions. Finally, we consider the role of glycocalyx components in regulating inflammatory responses and discuss possible therapeutic interventions aiming at preserving or restoring the endothelial glycocalyx and therefore protecting against cardiovascular disease.
Collapse
Affiliation(s)
- Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Nicoletta Sorvillo
| |
Collapse
|
32
|
Fan C, Li C, Lu S, Lai X, Wang S, Liu X, Song Y, Deng Y. Polysialic Acid Self-assembled Nanocomplexes for Neutrophil-Based Immunotherapy to Suppress Lung Metastasis of Breast Cancer. AAPS PharmSciTech 2022; 23:109. [PMID: 35411426 DOI: 10.1208/s12249-022-02243-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The role of neutrophils in tumor metastasis has recently attracted widespread interest. Neutrophils are the most abundant immune cells in human peripheral blood, and large numbers can spontaneously migrate to metastatic sites, where they form an immunosuppressive microenvironment. Polysialic acid (PSA) can target peripheral blood neutrophils (PBNs) mediated by L-selectin, and abemaciclib (ABE) and mitoxantrone (MIT) can treat immunosuppressive microenvironments. Here, we aimed to inhibit lung metastasis of breast cancer and improve chemoimmunotherapy by designing a PSA-modified ABE and MIT co-delivery system (AM-polyion complex (PIC)) to target PBNs in mice with metastatic tumors. We found that through electrostatic interactions between the strong negative charge of PSA and the positive charge of the drug can form stable nanocomplexes and that spontaneous migration of neutrophils can mediate the aggregation of these complexes in the lungs, induce antimetastatic immune responses, enhance the effectiveness of cytotoxic T lymphocytes (CTLs), and inhibit regulatory T cell (Treg) proliferation in vivo and in vitro. Pharmacodynamic results suggested that neutrophil-mediated AM-PIC chemoimmunotherapy inhibited tumor metastasis in mice with lung metastasis of 4T1 breast cancer. Overall, PSA-modified nanocomplexes offer promising neutrophil-mediated, targeted drug delivery systems to treat lung metastasis of breast cancer.
Collapse
|
33
|
Gray AL, Pun N, Ridley AJL, Dyer DP. Role of extracellular matrix proteoglycans in immune cell recruitment. Int J Exp Pathol 2022; 103:34-43. [PMID: 35076142 PMCID: PMC8961502 DOI: 10.1111/iep.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
Leucocyte recruitment is a critical component of the immune response and is central to our ability to fight infection. Paradoxically, leucocyte recruitment is also a central component of inflammatory-based diseases such as rheumatoid arthritis, atherosclerosis and cancer. The role of the extracellular matrix, in particular proteoglycans, in this process has been largely overlooked. Proteoglycans consist of protein cores with glycosaminoglycan sugar side chains attached. Proteoglycans have been shown to bind and regulate the function of a number of proteins, for example chemokines, and also play a key structural role in the local tissue environment/niche. Whilst they have been implicated in leucocyte recruitment and inflammatory disease, their mechanistic function has yet to be fully understood, precluding therapeutic targeting. This review summarizes what is currently known about the role of proteoglycans in the different stages of leucocyte recruitment and proposes a number of areas where more research is needed. A better understanding of the mechanistic role of proteoglycans during inflammatory disease will inform the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Anna L. Gray
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Nabina Pun
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Amanda J. L. Ridley
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Douglas P. Dyer
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
34
|
Xiao W, Pinilla-Baquero A, Faulkner J, Song X, Prabhakar P, Qiu H, Moremen KW, Ludwig A, Dempsey PJ, Azadi P, Wang L. Robo4 is constitutively shed by ADAMs from endothelial cells and the shed Robo4 functions to inhibit Slit3-induced angiogenesis. Sci Rep 2022; 12:4352. [PMID: 35288626 PMCID: PMC8921330 DOI: 10.1038/s41598-022-08227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
Roundabout 4 (Robo4) is a transmembrane receptor that expresses specifically in endothelial cells. Soluble Robo4 was reported in the human plasma and mouse serum and is inhibitory towards FGF- and VEGF-induced angiogenesis. It remains unknown how soluble Robo4 is generated and if soluble Robo4 regulates additional angiogenic signaling. Here, we report soluble Robo4 is the product of constitutive ectodomain shedding of endothelial cell surface Robo4 by disintegrin metalloproteinases ADAM10 and ADAM17 and acts to inhibit angiogenic Slit3 signaling. Meanwhile, the ligand Slit3 induces cell surface receptor Robo4 endocytosis to shield Robo4 from shedding, showing Slit3 inhibits Robo4 shedding to enhance Robo4 signaling. Our study delineated ADAM10 and ADAM17 are Robo4 sheddases, and ectodomain shedding, including negative regulation by its ligand Slit3, represents a novel control mechanism of Robo4 signaling in angiogenesis.
Collapse
Affiliation(s)
- Wenyuan Xiao
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alejandro Pinilla-Baquero
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - John Faulkner
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Xuehong Song
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Pradeep Prabhakar
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Hong Qiu
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andreas Ludwig
- Institute for Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA.
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
35
|
Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, Lee J, Sullenger B, Leong KW. Design of therapeutic biomaterials to control inflammation. NATURE REVIEWS. MATERIALS 2022; 7:557-574. [PMID: 35251702 PMCID: PMC8884103 DOI: 10.1038/s41578-022-00426-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 05/03/2023]
Abstract
Inflammation plays an important role in the response to danger signals arising from damage to our body and in restoring homeostasis. Dysregulated inflammatory responses occur in many diseases, including cancer, sepsis and autoimmunity. The efficacy of anti-inflammatory drugs, developed for the treatment of dysregulated inflammation, can be potentiated using biomaterials, by improving the bioavailability of drugs and by reducing side effects. In this Review, we first outline key elements and stages of the inflammatory environment and then discuss the design of biomaterials for different anti-inflammatory therapeutic strategies. Biomaterials can be engineered to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, in the early stages of inflammation. Materials can also be designed to prevent adhesive interactions of leukocytes and endothelial cells that initiate inflammatory responses. Furthermore, nanoscale platforms can deliver anti-inflammatory agents to inflammation sites. We conclude by discussing the challenges and opportunities for biomaterial innovations in addressing inflammation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yiling Zhong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Michael Schirner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jaewoo Lee
- School of Medicine, Duke University, Durham, NC USA
| | | | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University, New York, NY USA
| |
Collapse
|
36
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
37
|
Mashima R, Okuyama T, Ohira M. Physiology and Pathophysiology of Heparan Sulfate in Animal Models: Its Biosynthesis and Degradation. Int J Mol Sci 2022; 23:1963. [PMID: 35216081 PMCID: PMC8876164 DOI: 10.3390/ijms23041963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Heparan sulfate (HS) is a type of glycosaminoglycan that plays a key role in a variety of biological functions in neurology, skeletal development, immunology, and tumor metastasis. Biosynthesis of HS is initiated by a link of xylose to Ser residue of HS proteoglycans, followed by the formation of a linker tetrasaccharide. Then, an extension reaction of HS disaccharide occurs through polymerization of many repetitive units consisting of iduronic acid and N-acetylglucosamine. Subsequently, several modification reactions take place to complete the maturation of HS. The sulfation positions of N-, 2-O-, 6-O-, and 3-O- are all mediated by specific enzymes that may have multiple isozymes. C5-epimerization is facilitated by the epimerase enzyme that converts glucuronic acid to iduronic acid. Once these enzymatic reactions have been completed, the desulfation reaction further modifies HS. Apart from HS biosynthesis, the degradation of HS is largely mediated by the lysosome, an intracellular organelle with acidic pH. Mucopolysaccharidosis is a genetic disorder characterized by an accumulation of glycosaminoglycans in the body associated with neuronal, skeletal, and visceral disorders. Genetically modified animal models have significantly contributed to the understanding of the in vivo role of these enzymes. Their role and potential link to diseases are also discussed.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; (T.O.); (M.O.)
| | | | | |
Collapse
|
38
|
Yin T, Becker LB, Choudhary RC, Takegawa R, Shoaib M, Shinozaki K, Endo Y, Homma K, Rolston DM, Eguchi S, Ariyoshi T, Matsumoto A, Oka K, Takahashi M, Aoki T, Miyara SJ, Nishikimi M, Sasaki J, Kim J, Molmenti EP, Hayashida K. Hydrogen gas with extracorporeal cardiopulmonary resuscitation improves survival after prolonged cardiac arrest in rats. J Transl Med 2021; 19:462. [PMID: 34781966 PMCID: PMC8594155 DOI: 10.1186/s12967-021-03129-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite the benefits of extracorporeal cardiopulmonary resuscitation (ECPR) in cohorts of selected patients with cardiac arrest (CA), extracorporeal membrane oxygenation (ECMO) includes an artificial oxygenation membrane and circuits that contact the circulating blood and induce excessive oxidative stress and inflammatory responses, resulting in coagulopathy and endothelial cell damage. There is currently no pharmacological treatment that has been proven to improve outcomes after CA/ECPR. We aimed to test the hypothesis that administration of hydrogen gas (H2) combined with ECPR could improve outcomes after CA/ECPR in rats. METHODS Rats were subjected to 20 min of asphyxial CA and were resuscitated by ECPR. Mechanical ventilation (MV) was initiated at the beginning of ECPR. Animals were randomly assigned to the placebo or H2 gas treatment groups. The supplement gas was administered with O2 through the ECMO membrane and MV. Survival time, electroencephalography (EEG), brain functional status, and brain tissue oxygenation were measured. Changes in the plasma levels of syndecan-1 (a marker of endothelial damage), multiple cytokines, chemokines, and metabolites were also evaluated. RESULTS The survival rate at 4 h was 77.8% (7 out of 9) in the H2 group and 22.2% (2 out of 9) in the placebo group. The Kaplan-Meier analysis showed that H2 significantly improved the 4 h-survival endpoint (log-rank P = 0.025 vs. placebo). All animals treated with H2 regained EEG activity, whereas no recovery was observed in animals treated with placebo. H2 therapy markedly improved intra-resuscitation brain tissue oxygenation and prevented an increase in central venous pressure after ECPR. H2 attenuated an increase in syndecan-1 levels and enhanced an increase in interleukin-10, vascular endothelial growth factor, and leptin levels after ECPR. Metabolomics analysis identified significant changes at 2 h after CA/ECPR between the two groups, particularly in D-glutamine and D-glutamate metabolism. CONCLUSIONS H2 therapy improved mortality in highly lethal CA rats rescued by ECPR and helped recover brain electrical activity. The underlying mechanism might be linked to protective effects against endothelial damage. Further studies are warranted to elucidate the mechanisms responsible for the beneficial effects of H2 on ischemia-reperfusion injury in critically ill patients who require ECMO support.
Collapse
Affiliation(s)
- Tai Yin
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA.,Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Rishabh C Choudhary
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Ryosuke Takegawa
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Muhammad Shoaib
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Koichiro Shinozaki
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA.,Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Yusuke Endo
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Daniel M Rolston
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA.,Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Shuhei Eguchi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Tadashi Ariyoshi
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Asami Matsumoto
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | | | - Tomoaki Aoki
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Santiago J Miyara
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Mitsuaki Nishikimi
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junhwan Kim
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA.,Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | | | - Kei Hayashida
- The Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, USA. .,Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Endothelial Heparan Sulfate Mediates Hepatic Neutrophil Trafficking and Injury during Staphylococcus aureus Sepsis. mBio 2021; 12:e0118121. [PMID: 34544271 PMCID: PMC8546592 DOI: 10.1128/mbio.01181-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic failure is an important risk factor for poor outcome in septic patients. Using a chemical tagging workflow and high-resolution mass spectrometry, we demonstrate that rapid proteome remodeling of the vascular surfaces precedes hepatic damage in a murine model of Staphylococcus aureus sepsis. These early changes include vascular deposition of neutrophil-derived proteins, shedding of vascular receptors, and altered levels of heparin/heparan sulfate-binding factors. Modification of endothelial heparan sulfate, a major component of the vascular glycocalyx, diminishes neutrophil trafficking to the liver and reduces hepatic coagulopathy and organ damage during the systemic inflammatory response to infection. Modifying endothelial heparan sulfate likewise reduces neutrophil trafficking in sterile hepatic injury, reflecting a more general role of heparan sulfate contribution to the modulation of leukocyte behavior during inflammation. IMPORTANCE Vascular glycocalyx remodeling is critical to sepsis pathology, but the glycocalyx components that contribute to this process remain poorly characterized. This article shows that during Staphylococcus aureus sepsis, the liver vascular glycocalyx undergoes dramatic changes in protein composition associated with neutrophilic activity and heparin/heparan sulfate binding, all before organ damage is detectable by standard circulating liver damage markers or histology. Targeted manipulation of endothelial heparan sulfate modulates S. aureus sepsis-induced hepatotoxicity by controlling the magnitude of neutrophilic infiltration into the liver in both nonsterile and sterile injury. These data identify an important vascular glycocalyx component that impacts hepatic failure during nonsterile and sterile injury.
Collapse
|
40
|
Role of HSPGs in Systemic Bacterial Infections. Methods Mol Biol 2021. [PMID: 34626410 DOI: 10.1007/978-1-0716-1398-6_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Cell surface HSPGs are thought to promote infection as attachment and internalization receptors for many bacterial pathogens and as soluble inhibitors of host immunity when released from the cell surface by ectodomain shedding. However, the importance of HSPG-pathogen interactions in vivo has yet to be clearly established. Here we describe several representative methods to study the role of HSPGs in systemic bacterial infections, such as bacteremia and sepsis. The overall experimental strategy is to use mouse models to establish the physiological significance of HSPGs, to determine the identity of HSPGs that specifically promote infection, and to define key structural features of HSPGs that enhance bacterial virulence in systemic infections.
Collapse
|
41
|
Lai X, Wang S, Hu M, Sun Y, Chen M, Liu M, Li G, Deng Y. Dual targeting single arrow: Neutrophil-targeted sialic acid-modified nanoplatform for treating comorbid tumors and rheumatoid arthritis. Int J Pharm 2021; 607:121022. [PMID: 34416328 DOI: 10.1016/j.ijpharm.2021.121022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Clinically, rheumatoid arthritis (RA) is frequently accompanied by multi-system diseases. Among them, the incidence of comorbid tumors in RA is relatively high, resulting in a gradual increase in mortality; this poses a considerable challenge to clinical treatment. To date, no effective treatment plan for simultaneous tumor and RA therapy is available. Accordingly, we reported a sialic acid-modified doxorubicin hydrochloride liposome (DOX-SAL) that targets peripheral blood neutrophils (PBNs), which play an important role in tumors and RA. Furthermore, the prepared liposome induced PBN apoptosis by binding to L-selectin, which is highly expressed on the surface of PBNs activated by inflammation. This liposome, in turn, reduced the accumulation of inflammatory neutrophils at the disease site. In the first successfully established mouse model of RA comorbidity, induced by employing S180 sarcoma cells and collagen, DOX-SAL effectively inhibited tumor growth while simultaneously alleviating systemic RA symptoms without side effects. Additionally, the animals demonstrated adequate growth during the 48 days of treatment. This treatment strategy encompasses the best of both worlds, breaking the deadlock that tumors and RA cannot be effectively treated in parallel, highlighting a new concept and reference for the clinical treatment of comorbid tumors and RA.
Collapse
Affiliation(s)
- Xiaoxue Lai
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Miao Hu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiming Sun
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Mengyang Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Gang Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
42
|
Rai S, Alsaidan OA, Yang H, Cai H, Wang L. Heparan sulfate inhibits transforming growth factor β signaling and functions in cis and in trans to regulate prostate stem/progenitor cell activities. Glycobiology 2021; 30:381-395. [PMID: 31829419 DOI: 10.1093/glycob/cwz103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate stem/progenitor cells (PrSCs) are responsible for adult prostate tissue homeostasis and regeneration. However, the related regulatory mechanisms are not completely understood. In this study, we examined the role of heparan sulfate (HS) in PrSC self-renewal and prostate regeneration. Using an in vitro prostate sphere formation assay, we found that deletion of the glycosyltransferase exostosin 1 (Ext1) abolished HS expression in PrSCs and disrupted their ability to self-renew. In associated studies, we observed that HS loss inhibited p63 and CK5 expression, reduced the number of p63+- or CK5+-expressing stem/progenitor cells, elevated CK8+ expression and the number of differentiated CK8+ luminal cells and arrested the spheroid cells in the G1/G0 phase of cell cycle. Mechanistically, HS expressed by PrSCs (in cis) or by neighboring cells (in trans) could maintain sphere formation. Furthermore, HS deficiency upregulated transforming growth factor β (TGFβ) signaling and inhibiting TGFβ signaling partially restored the sphere-formation activity of the HS-deficient PrSCs. In an in vivo prostate regeneration assay, simultaneous loss of HS in both epithelial cell and stromal cell compartments attenuated prostate tissue regeneration, whereas the retention of HS expression in either of the two cellular compartments was sufficient to sustain prostate tissue regeneration. We conclude that HS preserves self-renewal of adult PrSCs by inhibiting TGFβ signaling and functions both in cis and in trans to maintain prostate homeostasis and to support prostate regeneration.
Collapse
Affiliation(s)
- Sumit Rai
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.,Department of Molecular Pharmacology and Physiology, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
43
|
Wander R, Kaminski AM, Xu Y, Pagadala V, Krahn JM, Pham TQ, Liu J, Pedersen LC. Deciphering the substrate recognition mechanisms of the heparan sulfate 3- O-sulfotransferase-3. RSC Chem Biol 2021; 2:1239-1248. [PMID: 34458837 PMCID: PMC8341778 DOI: 10.1039/d1cb00079a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 02/01/2023] Open
Abstract
The sulfation at the 3-OH position of a glucosamine saccharide is a rare modification, but is critically important for the biological activities of heparan sulfate polysaccharides. Heparan sulfate 3-O-sulfotransferase (3-OST), the enzyme responsible for completing this modification, is present in seven different isoforms in humans. Individual isoforms display substrate selectivity to uniquely sulfated saccharide sequences present in heparan sulfate polysaccharides. Here, we report two ternary crystal structures of heparan sulfate 3-OST isoform 3 (3-OST-3) with PAP (3'-phosphoadenosine 5'-phosphate) and two octasaccharide substrates: non 6-O-sulfated octasaccharide (8-mer 1) and 6-O-sulfated octasaccharide (8-mer 3). The 8-mer 1 is a known favorable substrate for 3-OST-3, whereas the 8-mer 3 is an unfavorable one. Unlike the 8-mer 1, we discovered that the 8-mer 3 displays two binding orientations to the enzyme: productive binding and non-productive binding. Results from the enzyme activity studies demonstrate that 8-mer 3 can contribute to either substrate or product inhibition, possibly attributed to a non-productive binding mode. Our results suggest that heparan sulfate substrates interact with the 3-OST-3 enzyme in more than one orientation, which may regulate the activity of the enzyme. Our findings also suggest that different binding orientations between polysaccharides and their protein binding partners could influence biological outcomes.
Collapse
Affiliation(s)
- Rylee Wander
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Andrea M. Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | | | - Juno M. Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth CarolinaUSA
| | | | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
44
|
Kim HJ, Kim HS, Hong YH. Sulfatase 1 and sulfatase 2 as novel regulators of macrophage antigen presentation and phagocytosis. Yeungnam Univ J Med 2021; 38:326-336. [PMID: 34157797 PMCID: PMC8688788 DOI: 10.12701/yujm.2021.01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Background Sulfation of heparan sulfate proteoglycans (HSPGs) is critical for the binding and signaling of ligands that mediate inflammation. Extracellular 6-O-endosulfatases regulate posttranslational sulfation levels and patterns of HSPGs. In this study, extracellular 6-O-endosulfatases, sulfatase (Sulf)-1 and Sulf-2, were evaluated for their expression and function in inflammatory cells and tissues. Methods Harvested human peripheral blood mononuclear cells were treated with phytohemagglutinin and lipopolysaccharide, and murine peritoneal macrophages were stimulated with interleukin (IL)-1β for the evaluation of Sulf-1 and Sulf-2 expression. Sulf expression in inflammatory cells was examined in the human rheumatoid arthritis (RA) synovium by immunofluorescence staining. The antigen presentation and phagocytic activities of macrophages were compared according to the expression state of Sulfs. Sulfs-knockdown macrophages and Sulfs-overexpressing macrophages were generated using small interfering RNAs and pcDNA3.1 plasmids for Sulf-1 and Sulf-2, respectively. Results Lymphocytes and monocytes showed weak Sulf expression, which remained unaffected by IL-1β. However, peritoneal macrophages showed increased expression of Sulfs upon stimulation with IL-1β. In human RA synovium, two-colored double immunofluorescent staining of Sulfs and CD68 revealed active upregulation of Sulfs in macrophages of inflamed tissues, but not in lymphocytes of lymphoid follicles. Macrophages are professional antigen-presenting cells. The antigen presentation and phagocytic activities of macrophages were dependent on the level of Sulf expression, suppressed in Sulfs-knockdown macrophages, and enhanced in Sulfs-overexpressing macrophages. Conclusion The results demonstrate that upregulation of Sulfs in macrophages occurs in response to inflammation, and Sulfs actively regulate the antigen presentation and phagocytic activities of macrophages as novel immune regulators.
Collapse
Affiliation(s)
- Hyun-Je Kim
- Division of Rheumatology, Department of Internal Medicine, CHA University, CHA Gumi Medical Center, Gumi, Korea
| | - Hee-Sun Kim
- Department of Microbiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Young-Hoon Hong
- Division of Rheumatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
45
|
Yue J, Jin W, Yang H, Faulkner J, Song X, Qiu H, Teng M, Azadi P, Zhang F, Linhardt RJ, Wang L. Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Front Mol Biosci 2021; 8:649575. [PMID: 34179075 PMCID: PMC8231436 DOI: 10.3389/fmolb.2021.649575] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.
Collapse
Affiliation(s)
- Jingwen Yue
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Weihua Jin
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - John Faulkner
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Hong Qiu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Michael Teng
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| |
Collapse
|
46
|
Haymet AB, Bartnikowski N, Wood ES, Vallely MP, McBride A, Yacoub S, Biering SB, Harris E, Suen JY, Fraser JF. Studying the Endothelial Glycocalyx in vitro: What Is Missing? Front Cardiovasc Med 2021; 8:647086. [PMID: 33937360 PMCID: PMC8079726 DOI: 10.3389/fcvm.2021.647086] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
All human cells are coated by a surface layer of proteoglycans, glycosaminoglycans (GAGs) and plasma proteins, called the glycocalyx. The glycocalyx transmits shear stress to the cytoskeleton of endothelial cells, maintains a selective permeability barrier, and modulates adhesion of blood leukocytes and platelets. Major components of the glycocalyx, including syndecans, heparan sulfate, and hyaluronan, are shed from the endothelial surface layer during conditions including ischaemia and hypoxia, sepsis, atherosclerosis, diabetes, renal disease, and some viral infections. Studying mechanisms of glycocalyx damage in vivo can be challenging due to the complexity of immuno-inflammatory responses which are inextricably involved. Previously, both static as well as perfused in vitro models have studied the glycocalyx, and have reported either imaging data, assessment of barrier function, or interactions of blood components with the endothelial monolayer. To date, no model has simultaneously incorporated all these features at once, however such a model would arguably enhance the study of vasculopathic processes. This review compiles a series of current in vitro models described in the literature that have targeted the glycocalyx layer, their limitations, and potential opportunities for further developments in this field.
Collapse
Affiliation(s)
- Andrew B Haymet
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emily S Wood
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Michael P Vallely
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Angela McBride
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom.,Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
47
|
Oshima K, King SI, McMurtry SA, Schmidt EP. Endothelial Heparan Sulfate Proteoglycans in Sepsis: The Role of the Glycocalyx. Semin Thromb Hemost 2021; 47:274-282. [PMID: 33794552 DOI: 10.1055/s-0041-1725064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is increasing recognition of the importance of the endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer, in vascular homeostasis. Heparan sulfate proteoglycans (HSPGs) are a major structural constituent of the endothelial glycocalyx and serve to regulate vascular permeability, microcirculatory tone, leukocyte and platelet adhesion, and hemostasis. During sepsis, endothelial HSPGs are shed through the induction of "sheddases" such as heparanase and matrix metalloproteinases, leading to loss of glycocalyx integrity and consequent vascular dysfunction. Less well recognized is that glycocalyx degradation releases HSPG fragments into the circulation, which can shape the systemic consequences of sepsis. In this review, we will discuss (1) the normal, homeostatic functions of HSPGs within the endothelial glycocalyx, (2) the pathological changes in HSPGs during sepsis and their consequences on the local vascular bed, and (3) the systemic consequences of HSPG degradation. In doing so, we will identify potential therapeutic targets to improve vascular function during sepsis as well as highlight key areas of uncertainty that require further mechanistic investigation.
Collapse
Affiliation(s)
- Kaori Oshima
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Samantha I King
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah A McMurtry
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric P Schmidt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
48
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
49
|
Jain P, Shanthamurthy CD, Leviatan Ben-Arye S, Woods RJ, Kikkeri R, Padler-Karavani V. Discovery of rare sulfated N-unsubstituted glucosamine based heparan sulfate analogs selectively activating chemokines. Chem Sci 2021; 12:3674-3681. [PMID: 33889380 PMCID: PMC8025211 DOI: 10.1039/d0sc05862a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Achieving selective inhibition of chemokines with structurally well-defined heparan sulfate (HS) oligosaccharides can provide important insights into cancer cell migration and metastasis. However, HS is highly heterogeneous in chemical composition, which limits its therapeutic use. Here, we report the rational design and synthesis of N-unsubstituted (NU) and N-acetylated (NA) heparan sulfate tetrasaccharides that selectively inhibit structurally homologous chemokines. HS analogs were produced by divergent synthesis, where fully protected HS tetrasaccharide precursor was subjected to selective deprotection and regioselectively O-sulfated, and O-phosphorylated to obtain 13 novel HS tetrasaccharides. HS microarray and SPR analysis with a wide range of chemokines revealed the structural significance of sulfation patterns and NU domain in chemokine activities for the first time. Particularly, HT-3,6S-NH revealed selective recognition by CCL2 chemokine. Further systematic interrogation of the role of HT-3,6S-NH in cancer demonstrated an effective blockade of CCL2 and its receptor CCR2 interactions, thereby impairing cancer cell proliferation, migration and invasion, a step towards designing novel drug molecules.
Collapse
Affiliation(s)
- Prashant Jain
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Chethan D Shanthamurthy
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology , The Shmunis School of Biomedicine and Cancer Research , The George S. Wise Faculty of Life Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel .
| | - Robert J Woods
- Complex Carbohydrate Research Center , University of Georgia , Athens 30606 , GA , USA
| | - Raghavendra Kikkeri
- Department of Chemistry , Indian Institute of Science Education and Research , Pune-411008 , India .
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology , The Shmunis School of Biomedicine and Cancer Research , The George S. Wise Faculty of Life Sciences , Tel Aviv University , Tel Aviv , 69978 , Israel .
| |
Collapse
|
50
|
Morrison PJ, Suhrkamp I, Gerdes S, Mrowietz U. Oral dimethyl fumarate induces changes within the peripheral neutrophil compartment of patients with psoriasis that are linked with skin improvement. Br J Dermatol 2021; 185:605-615. [PMID: 33657656 DOI: 10.1111/bjd.19899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a treatment for moderate-to-severe psoriasis and multiple sclerosis. DMF therapy typically improves skin inflammation within the first 3 months of treatment. DMF is a prodrug that generates the hydroxycarboxylic acid receptor 2 (HCA2) agonist, monomethyl fumarate (MMF). Despite widespread clinical use, DMF's mechanism of action is not fully understood. OBJECTIVES We wished to characterize the changes induced by DMF in peripheral neutrophils within the first 3 months of treatment to better understand its early antipsoriatic effects. METHODS Flow cytometry was used to assess T-cell and neutrophil frequencies, apoptosis and activation phenotype. In vitro culture of neutrophils with DMF and MMF was used to evaluate apoptosis and HCA2 internalization. Serum levels of neutrophil degranulation products were measured by enzyme-linked immunosorbent assay. RESULTS Patients with psoriasis had significantly higher leucocyte counts at baseline compared with controls, with a large population of pro-inflammatory CD62Llo CD11bbright neutrophils. Analysis revealed that DMF treatment reduced the frequency of CD62Llo CD11bbright neutrophils and serum levels of neutrophil activation markers. This reduction was not linked to increased apoptosis. CONCLUSIONS Our results reveal a novel in vivo effect of DMF therapy on pro-inflammatory neutrophils that likely contributes to this treatment's antipsoriatic efficacy.
Collapse
Affiliation(s)
- P J Morrison
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - I Suhrkamp
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - S Gerdes
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - U Mrowietz
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| |
Collapse
|