1
|
Mauvais FX, Hamel Y, Silvin A, Mulder K, Hildner K, Akyol R, Dalod M, Koumantou D, Saveanu L, Garfa M, Cagnard N, Bertocci B, Ginhoux F, van Endert P. Metallophilic marginal zone macrophages cross-prime CD8 + T cell-mediated protective immunity against blood-borne tumors. Immunity 2025:S1074-7613(25)00094-9. [PMID: 40139188 DOI: 10.1016/j.immuni.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/27/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Splenic metallophilic marginal zone macrophages (MMMs) are positioned to control the dissemination of blood-borne threats. We developed a purification protocol to enable characterization of MMMs phenotypically and transcriptionally. MMM gene expression profile was enriched for pathways associated with CD8+ T cell activation and major histocompatibility complex class I (MHC class I) cross-presentation. In vitro, purified MMMs equaled conventional dendritic cells type 1 (cDC1s) in cross-priming CD8+ T cells to soluble and particulate antigens, yet MMMs employed a distinct vacuolar processing pathway. In vivo biphoton and ex vivo light-sheet imaging showed long-standing contacts with cognate T cells differentiating to effectors. MMMs cross-primed protective CD8+ T cell antitumor responses both by capturing blood-borne tumor antigens and by internalizing tumor cells seeding the spleen. This cross-priming required expression of the transcription factor Batf3 by MMMs but was independent of cDC1-mediated capture of tumor material for cross-presentation or MHC class I-dressing. Thus, MMMs combine control of the dissemination of blood-borne pathogens and tumor materials with the initiation of innate and adaptive responses.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, 75019 Paris, France.
| | - Yamina Hamel
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kevin Mulder
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
| | - Kai Hildner
- University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Medical Department 1, Deutsches Zentrum Immuntherapie, 91054 Erlangen, Germany
| | - Ramazan Akyol
- Aix Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Marc Dalod
- Aix Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Despoina Koumantou
- Université Paris Cité, Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018 Paris, France; Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018 Paris, France
| | - Loredana Saveanu
- Université Paris Cité, Centre de recherche sur l'inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, 75018 Paris, France; Université Paris Cité, Laboratoire d'Excellence Inflamex, 75018 Paris, France
| | - Meriem Garfa
- Cell Imaging, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UMS3633, 75015 Paris, France
| | - Nicolas Cagnard
- Bioinformatics Core Facilities, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UMS3633, 75015 Paris, France
| | - Barbara Bertocci
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, (A∗STAR), Singapore, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
2
|
Huang X, Wang X, Sun Y, Xie X, Xiao L, Xu Y, Yan Q, Xu X, Li L, Xu W, Weng W, Wu W, Xie X, Dai C, Diao Y. Effective Reduction of Transgene-Specific Immune Response With rAAV Vectors Co-Expressing miRNA-UL112-5p or ERAP1 shRNA. J Cell Mol Med 2025; 29:e70308. [PMID: 39823241 PMCID: PMC11740984 DOI: 10.1111/jcmm.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex. Therefore, we hypothesise that modulation of the ERAP1 activity in rAAV transduced cells may be favoured to evade immune response against transgene products. In this study, we incorporated either miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors expressing full-length ovalbumin (OVA) as a model antigen, and evaluated their effects for antigen presentation, cellular and humour immune response induced by OVA expression. The results indicated that silencing ERAP1 using miR-UL112-5p or ERAP1 shRNA did not affect the expression of OVA in cells, but inhibited the processing and presentation of OVA antigen peptide SIINFEKL in antigen presenting cells (APCs). Moreover, the rAAV vector co-expressing ERAP1 shRNA maintains stable and high expression of OVA in vivo, while simultaneously suppressing the humoral immunity of OVA. In addition, experimental results demonstrated that rAAV vectors incorporated ERAP1 shRNA efficiently repress costimulatory signals in dendritic cells (DCs), significantly attenuated the cytotoxic T-cell response, allowed for sustained transgene expression and reduced clearance of transduced muscle cells in mice. Moreover, our study suggested that the incorporation of miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors effectively reduced transgene products induced immune response. The proposed method may potentially be applied in clinics to deliver therapeutic proteins safely and efficiently.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Yaqi Sun
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xinrui Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Luming Xiao
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yihang Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Qiongshi Yan
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xianxiang Xu
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenting Weng
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Congjie Dai
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Yong Diao
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
3
|
Georgaki G, Mpakali A, Trakada M, Papakyriakou A, Stratikos E. Polymorphic positions 349 and 725 of the autoimmunity-protective allotype 10 of ER aminopeptidase 1 are key in determining its unique enzymatic properties. Front Immunol 2024; 15:1415964. [PMID: 39493758 PMCID: PMC11527673 DOI: 10.3389/fimmu.2024.1415964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction ER aminopeptidase 1 (ERAP1) is a polymorphic intracellular aminopeptidase with key roles in antigen presentation and adaptive immune responses. ERAP1 allotype 10 is highly protective toward developing some forms of autoimmunity and displays unusual functional properties, including very low activity versus some substrates. Methods To understand the molecular mechanisms that underlie the biology of allotype 10, we studied its enzymatic and biophysical properties focusing on its unique polymorphisms V349M and Q725R. Results Compared to ancestral allotype 1, allotype 10 is much less effective in trimming small substrates but presents allosteric kinetics that ameliorate activity differences at high substrate concentrations. Furthermore, it is inhibited by a transition-state analogue via a non-competitive mechanism and is much less responsive to an allosteric small-molecule modulator. It also presents opposite enthalpy, entropy, and heat capacity of activation compared to allotype 1, and its catalytic rate is highly dependent on viscosity. Polymorphisms V349M and Q725R significantly contribute to the lower enzymatic activity of allotype 10 for small substrates, especially at high substrate concentrations, influence the cooperation between the regulatory and active sites, and regulate viscosity dependence, likely by limiting product release. Conclusions Overall, our results suggest that allotype 10 is not just an inactive variant of ERAP1 but rather carries distinct enzymatic properties that largely stem from changes at positions 349 and 725. These changes affect kinetic and thermodynamic parameters that likely control rate-limiting steps in the catalytic cycle, resulting in an enzyme optimized for sparing small substrates and contributing to the homeostasis of antigenic epitopes in the ER.
Collapse
Affiliation(s)
- Galateia Georgaki
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Anastasia Mpakali
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| | - Myrto Trakada
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- National Centre for Scientific Research Demokritos, Athens, Greece
| |
Collapse
|
4
|
Al-Okaily A, Abu Khashabeh R, Alsmadi O, Ahmad Y, Sultan I, Tbakhi A, Srivastava PK. ERAMER: A novel in silico tool for prediction of ERAP1 enzyme trimming. J Immunol Methods 2024; 531:113713. [PMID: 38925438 DOI: 10.1016/j.jim.2024.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
MHC class I pathway consists of four main steps: proteasomal cleavage in the cytosol in which precursor proteins are cleaved into smaller peptides, which are then transported into the endoplasmic reticulum by the transporter associated with antigen processing, TAP, for further processing (trimming) from the N-terminal region by an ER resident aminopeptidases 1 (ERAP1) enzyme, to generate optimal peptides (8-10 amino acids in length) to produce a stable MHCI-peptide complex, that get transited via the Golgi apparatus to the cell surface for presentation to the cellular immune system. Several studies reported specificities related to the ERAP1 trimming process, yet there is no in silico tool for the prediction of the trimming process of the ERAP1 enzyme. In this paper, we provide and implement a prediction model for the trimming process of the ERAP1 enzyme.
Collapse
Affiliation(s)
- Anas Al-Okaily
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan.
| | - Razan Abu Khashabeh
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Osama Alsmadi
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Yazan Ahmad
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Iyad Sultan
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Abdelghani Tbakhi
- Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
5
|
Gatenby RA, Luddy KA, Teer JK, Berglund A, Freischel AR, Carr RM, Lam AE, Pienta KJ, Amend SR, Austin RH, Hammarlund EU, Cleveland JL, Tsai KY, Brown JS. Lung adenocarcinomas without driver genes converge to common adaptive strategies through diverse genetic, epigenetic, and niche construction evolutionary pathways. Med Oncol 2024; 41:135. [PMID: 38704802 PMCID: PMC11070398 DOI: 10.1007/s12032-024-02344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
Somatic evolution selects cancer cell phenotypes that maximize survival and proliferation in dynamic environments. Although cancer cells are molecularly heterogeneous, we hypothesized convergent adaptive strategies to common host selection forces can be inferred from patterns of epigenetic and genetic evolutionary selection in similar tumors. We systematically investigated gene mutations and expression changes in lung adenocarcinomas with no common driver genes (n = 313). Although 13,461 genes were mutated in at least one sample, only 376 non-synonymous mutations evidenced positive evolutionary selection with conservation of 224 genes, while 1736 and 2430 genes exhibited ≥ two-fold increased and ≥ 50% decreased expression, respectively. Mutations under positive selection are more frequent in genes with significantly altered expression suggesting they often "hardwire" pre-existing epigenetically driven adaptations. Conserved genes averaged 16-fold higher expression in normal lung tissue compared to those with selected mutations demonstrating pathways necessary for both normal cell function and optimal cancer cell fitness. The convergent LUAD phenotype exhibits loss of differentiated functions and cell-cell interactions governing tissue organization. Conservation with increased expression is found in genes associated with cell cycle, DNA repair, p53 pathway, epigenetic modifiers, and glucose metabolism. No canonical driver gene pathways exhibit strong positive selection, but extensive down-regulation of membrane ion channels suggests decreased transmembrane potential may generate persistent proliferative signals. NCD LUADs perform niche construction generating a stiff, immunosuppressive microenvironment through selection of specific collagens and proteases. NCD LUADs evolve to a convergent phenotype through a network of interconnected genetic, epigenetic, and ecological pathways.
Collapse
Affiliation(s)
- Robert A Gatenby
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Kimberly A Luddy
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jamie K Teer
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, USA
| | - Anders Berglund
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, USA
| | | | - Ryan M Carr
- Department of Oncology, Mayo Clinic, Rochester, USA
| | | | - Kenneth J Pienta
- Cancer Ecology Program, Johns Hopkins University, Baltimore, USA
| | - Sarah R Amend
- Cancer Ecology Program, Johns Hopkins University, Baltimore, USA
| | | | - Emma U Hammarlund
- Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - John L Cleveland
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Kenneth Y Tsai
- Departments of Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, USA
| | - Joel S Brown
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
6
|
Nowak I, Bochen P. The Antigen-Processing Pathway via Major Histocompatibility Complex I as a New Perspective in the Diagnosis and Treatment of Endometriosis. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0008. [PMID: 38478380 DOI: 10.2478/aite-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
Endometriosis is a debilitating gynecological disease defined as the presence of endometrium-like epithelium and/or stroma outside the uterine cavity. The most commonly affected sites are the pelvic peritoneum, ovaries, uterosacral ligaments, and the rectovaginal septum. The aberrant tissue responds to hormonal stimulation, undergoing cyclical growth and shedding similar to appropriately located endometrial tissue in the uterus. Common symptoms of endometriosis are painful periods and ovulation, severe pelvic cramping, heavy bleeding, pain during sex, urination and bowel pain, bleeding, and pain between periods. Numerous theories have been proposed to explain the pathogenesis of endometriosis. Sampson's theory of retrograde menstruation is considered to be the most accepted. This theory assumes that endometriosis occurs due to the retrograde flow of endometrial cells through the fallopian tubes during menstruation. However, it has been shown that this process takes place in 90% of women, while endometriosis is diagnosed in only 10% of them. This means that there must be a mechanism that blocks the immune system from removing endometrial cells and interferes with its function, leading to implantation of the ectopic endometrium and the formation of lesions. In this review, we consider the contribution of components of the Major Histocompatibility Complex (MHC)-I-mediated antigen-processing pathway, such as the ERAP, TAP, LMP, LNPEP, and tapasin, to the susceptibility, onset, and severity of endometriosis. These elements can induce significant changes in MHC-I-bound peptidomes that may influence the response of immune cells to ectopic endometrial cells.
Collapse
Affiliation(s)
- Izabela Nowak
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Patrycja Bochen
- Department of Clinical Immunology, Laboratory of Immunogenetics and Tissue, Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Guan J, Peske JD, Manoharan Valerio M, Park C, Robey EA, Sadegh-Nasseri S. Commensal bacteria maintain a Qa-1 b-restricted unconventional CD8 + T population in gut epithelium. eLife 2023; 12:RP90466. [PMID: 38127067 PMCID: PMC10735220 DOI: 10.7554/elife.90466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8+ T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1b-restricted CD8+ T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1b-dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigens, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1b-restricted IEL landscape.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - J David Peske
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chansu Park
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
8
|
Manoharan Valerio M, Arana K, Guan J, Chan SW, Yang X, Kurd N, Lee A, Shastri N, Coscoy L, Robey EA. The promiscuous development of an unconventional Qa1b-restricted T cell population. Front Immunol 2023; 14:1250316. [PMID: 38022509 PMCID: PMC10644506 DOI: 10.3389/fimmu.2023.1250316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αβ+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αβ intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αβ T cells. QFL T cells require the MHC I subunit β-2 microglobulin (β2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αβ+CD4- pathway for development of CD8αα IELs.
Collapse
Affiliation(s)
- Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Kathya Arana
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Jian Guan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiao Wei Chan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Xiaokun Yang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nadia Kurd
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Angus Lee
- Gene Targeting Facility Cancer Research Laboratory, University of California Berkeley, Berkeley, CA, United States
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Guan J, Peske JD, Valerio MM, Park C, Robey EA, Sadegh-Nasseri S. Commensal Bacteria Maintain a Qa-1 b -restricted Unconventional CD8 + T Population in Gut Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530600. [PMID: 36909616 PMCID: PMC10002720 DOI: 10.1101/2023.03.01.530600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8 + T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1 b -restricted CD8 + T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1 b -dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigen, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1 b -restricted IEL landscape.
Collapse
|
10
|
Temponeras I, Samiotaki M, Koumantou D, Nikopaschou M, Kuiper JJW, Panayotou G, Stratikos E. Distinct modulation of cellular immunopeptidome by the allosteric regulatory site of ER aminopeptidase 1. Eur J Immunol 2023; 53:e2350449. [PMID: 37134263 DOI: 10.1002/eji.202350449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
ER aminopeptidase 1 (ERAP1) is an ER-resident aminopeptidase that excises N-terminal residues of peptides that then bind onto Major Histocompatibility Complex I molecules (MHC-I) and indirectly modulates adaptive immune responses. ERAP1 contains an allosteric regulatory site that accommodates the C-terminus of at least some peptide substrates, raising questions about its exact influence on antigen presentation and the potential of allosteric inhibition for cancer immunotherapy. We used an inhibitor that targets this regulatory site to study its effect on the immunopeptidome of a human cancer cell line. The immunopeptidomes of allosterically inhibited and ERAP1 KO cells contain high-affinity peptides with sequence motifs consistent with the cellular HLA class I haplotypes but are strikingly different in peptide composition. Compared to KO cells, allosteric inhibition did not affect the length distribution of peptides and skewed the peptide repertoire both in terms of sequence motifs and HLA allele utilization, indicating significant mechanistic differences between the two ways of disrupting ERAP1 function. These findings suggest that the regulatory site of ERAP1 plays distinct roles in antigenic peptide selection, which should be taken into consideration when designing therapeutic interventions targeting the cancer immunopeptidome.
Collapse
Affiliation(s)
- Ioannis Temponeras
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Pharmacy, University of Patras, Patra, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming,", Institute for Bioinnovation, Vari, Greece
| | - Despoina Koumantou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
| | - Martha Nikopaschou
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming,", Institute for Bioinnovation, Vari, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
11
|
Talwar JV, Laub D, Pagadala MS, Castro A, Lewis M, Luebeck GE, Gorman BR, Pan C, Dong FN, Markianos K, Teerlink CC, Lynch J, Hauger R, Pyarajan S, Tsao PS, Morris GP, Salem RM, Thompson WK, Curtius K, Zanetti M, Carter H. Autoimmune alleles at the major histocompatibility locus modify melanoma susceptibility. Am J Hum Genet 2023; 110:1138-1161. [PMID: 37339630 PMCID: PMC10357503 DOI: 10.1016/j.ajhg.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.
Collapse
Affiliation(s)
- James V Talwar
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - David Laub
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Meghana S Pagadala
- Biomedical Science Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Castro
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - McKenna Lewis
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Georg E Luebeck
- Public Health Sciences Division, Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Cuiping Pan
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA
| | - Frederick N Dong
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Booz Allen Hamilton, Inc., McLean, VA 22102, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02115, USA
| | - Craig C Teerlink
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Julie Lynch
- Department of Veterans Affairs Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard Hauger
- VA San Diego Healthcare System, La Jolla, CA, USA; Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Brigham Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Kit Curtius
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Laboratory of Immunology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, Division of Hematology and Oncology, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Apcher S, Vojtesek B, Fahraeus R. In search of the cell biology for self- versus non-self- recognition. Curr Opin Immunol 2023; 83:102334. [PMID: 37210933 DOI: 10.1016/j.coi.2023.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023]
Abstract
Several of today's cancer treatments are based on the immune system's capacity to detect and destroy cells expressing neoantigens on major histocompatibility class-I molecules (MHC-I). Despite this, we still do not know the cell biology behind how antigenic peptide substrates (APSs) for the MHC-I pathway are produced. Indeed, there are few research fields with so many divergent views as the one concerning the source of APSs. This is quite remarkable considering their fundamental role in the immune systems' capacity to detect and destroy virus-infected or transformed cells. A better understanding of the processes generating APSs and how these are regulated will shed light on the evolution of self-recognition and provide new targets for therapeutic intervention. We discuss the search for the elusive source of MHC-I peptides and highlight the cell biology that is still missing to explain how they are synthesised and where they come from.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, UMR 1015, Villejuif, France
| | - Borek Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, France; Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
13
|
Geiger KM, Manoharan M, Coombs R, Arana K, Park CS, Lee AY, Shastri N, Robey EA, Coscoy L. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self. Cell Rep 2023; 42:112317. [PMID: 36995940 PMCID: PMC10539480 DOI: 10.1016/j.celrep.2023.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) plays a crucial role in shaping the peptide-major histocompatibility complex (MHC) class I repertoire and maintaining immune surveillance. While murine cytomegalovirus (MCMV) has multiple strategies for manipulating the antigen processing pathway to evade immune responses, the host has also developed ways to counter viral immune evasion. In this study, we find that MCMV modulates ERAAP and induces an interferon γ (IFN-γ)-producing CD8+ T cell effector response that targets uninfected ERAAP-deficient cells. We observe that ERAAP downregulation during infection leads to the presentation of the self-peptide FL9 on non-classical Qa-1b, thereby eliciting Qa-1b-restricted QFL T cells to proliferate in the liver and spleen of infected mice. QFL T cells upregulate effector markers upon MCMV infection and are sufficient to reduce viral load after transfer to immunodeficient mice. Our study highlights the consequences of ERAAP dysfunction during viral infection and provides potential targets for anti-viral therapies.
Collapse
Affiliation(s)
- Kristina M Geiger
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Manoharan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel Coombs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathya Arana
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chan-Su Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angus Y Lee
- Cancer Research Lab, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ellen A Robey
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Laurent Coscoy
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
15
|
Schmidt K, Leisegang M, Kloetzel PM. ERAP2 supports TCR recognition of three immunotherapy targeted tumor epitopes. Mol Immunol 2023; 154:61-68. [PMID: 36608422 DOI: 10.1016/j.molimm.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The therapy of cancer by adoptive T cell transfer (ACT) requires T cell receptors (TCRs) with optimal affinity for HLA class I-bound peptides (pHLA-I). But not every patient responds to ACT. Therefore, it is critical to understand the individual factors influencing the recognition of HLA class I-bound peptides (pHLA-I) by TCRs. Focusing on three immunotherapy-targeted human HLA-A* 02:01-presented T cell epitopes we investigated the contribution of the ER-resident aminopeptidases ERAP1 and ERAP2 to TCR recognition of cancer cells. We found that ERAP2 on its own, when expressed in ERAP-deficient cells, elicited a strong CTL response towards the Tyrosinase368-376 epitope. In vitro generated TAP-dependent N-terminally extended epitope precursor peptides were differently customized by ERAP1 and ERAP2 and thus may serve as potential source for the Tyrosinase368-376 epitope. ERAP2 also influenced recognition of the gp100209-217 tumor epitope and enhanced T cell recognition of the MART-126/27-35 epitope in the absence of ERAP1 expression. Our results underline the relevance of ERAP2 for tumor epitope presentation and TCR recognition and may need to be considered when designing ACT in the future.
Collapse
Affiliation(s)
- Karin Schmidt
- Institute für Biochemie Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany.
| | - Matthias Leisegang
- Institute of Immunology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, USA; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter-Michael Kloetzel
- Institute für Biochemie Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany.
| |
Collapse
|
16
|
Korotaeva AA, Borunova AA, Kuzevanova AY, Zabotina TN, Alimov AA. [Molecular mechanisms of impaired antigenic presentation as a cause of tumor escape from immune surveillance]. Arkh Patol 2023; 85:76-83. [PMID: 38010642 DOI: 10.17116/patol20238506176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The review summarizes data on the features of antigen presentation in tumor cells. The molecular mechanisms of the antitumor immune response are considered with an emphasis on the ability of tumor cells to avoid the action of immune surveillance. The features of expression of MHC molecules depending on treatment regimens are provided. Ways to improve existing and create new treatment regimens aimed at elimination of tumor cells because of antitumor immune response are discussed.
Collapse
Affiliation(s)
- A A Korotaeva
- Research Centre for Medical Genetics, Moscow, Russia
| | - A A Borunova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | | | - T N Zabotina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A A Alimov
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
17
|
Martín-Esteban A, Rodriguez JC, Peske D, Lopez de Castro JA, Shastri N, Sadegh-Nasseri S. The ER Aminopeptidases, ERAP1 and ERAP2, synergize to self-modulate their respective activities. Front Immunol 2022; 13:1066483. [PMID: 36569828 PMCID: PMC9774488 DOI: 10.3389/fimmu.2022.1066483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Critical steps in Major Histocompatibility Complex Class I (MHC-I) antigen presentation occur in the endoplasmic reticulum (ER). In general, peptides that enter the ER are longer than the optimal length for MHC-I binding. The final trimming of MHC-I epitopes is performed by two related aminopeptidases, ERAP1 and ERAP2 in humans that possess unique and complementary substrate trimming specificities. While ERAP1 efficiently trims peptides longer than 9 residues, ERAP2 preferentially trims peptides shorter than 9 residues. Materials and Methods Using a combination of biochemical and proteomic studies followed by biological verification. Results We demonstrate that the optimal ligands for either enzyme act as inhibitors of the other enzyme. Specifically, the presence of octamers reduced the trimming of long peptides by ERAP1, while peptides longer than nonomers inhibit ERAP2 activity. Discussion We propose a mechanism for how ERAP1 and ERAP2 synergize to modulate their respective activities and shape the MHC-I peptidome by generating optimal peptides for presentation.
Collapse
Affiliation(s)
- Adrian Martín-Esteban
- Department of Pathology, Immunopathology Division, Johns Hopkins University, Baltimore, MD, United States,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,*Correspondence: Scheherazade Sadegh-Nasseri, ; Adrian Martín-Esteban,
| | - Jesus Contreras Rodriguez
- Department of Pathology, Immunopathology Division, Johns Hopkins University, Baltimore, MD, United States
| | - David Peske
- Department of Pathology, Immunopathology Division, Johns Hopkins University, Baltimore, MD, United States
| | | | - Nilabh Shastri
- Department of Pathology, Immunopathology Division, Johns Hopkins University, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Department of Pathology, Immunopathology Division, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Scheherazade Sadegh-Nasseri, ; Adrian Martín-Esteban,
| |
Collapse
|
18
|
Vargas-Zapata V, Geiger KM, Tran D, Ma J, Mao X, Puschnik AS, Coscoy L. SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.29.518257. [PMID: 36482965 PMCID: PMC9727756 DOI: 10.1101/2022.11.29.518257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8+ T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire and, accordingly, the resulting immune responses. We recently showed that infection with murine cytomegalovirus leads to a dramatic loss of ERAAP levels in infected cells. In mice, this loss is associated with the activation of QFL T-cells, a subset of T-cells that monitor ERAAP integrity and eliminate cells experiencing ERAAP dysfunction. In this study, we aimed to identify host factors that regulate ERAAP expression level and determine whether these could be manipulated during viral infections. We performed a CRISPR knockout screen and identified ERp44 as a factor promoting ERAAP retention in the ER. ERp44's interaction with ERAAP is dependent on the pH gradient between the ER and Golgi. We hypothesized that viruses that disrupt the pH of the secretory pathway interfere with ERAAP retention. Here, we demonstrate that expression of the Envelope (E) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to Golgi pH neutralization and consequently decrease of ERAAP intracellular levels. Furthermore, SARS-CoV-2-induced ERAAP loss correlates with its release into the extracellular environment. ERAAP's reliance on ERp44 and a functioning ER/Golgi pH gradient for proper localization and function led us to propose that ERAAP serves as a sensor of disturbances in the secretory pathway during infection and disease.
Collapse
Affiliation(s)
- Valerie Vargas-Zapata
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kristina M Geiger
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dan Tran
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jessica Ma
- Division of Microbial Biology, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaowen Mao
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
19
|
Cavers A, Kugler MC, Ozguler Y, Al-Obeidi AF, Hatemi G, Ueberheide BM, Ucar D, Manches O, Nowatzky J. Behçet's disease risk-variant HLA-B51/ERAP1-Hap10 alters human CD8 T cell immunity. Ann Rheum Dis 2022; 81:1603-1611. [PMID: 35922122 PMCID: PMC9585993 DOI: 10.1136/ard-2022-222277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The endoplasmic reticulum aminopeptidase (ERAP1) haplotype Hap10 encodes for a variant allotype of the endoplasmic reticulum (ER)-resident peptide-trimming aminopeptidase ERAP1 with low enzymatic activity. This haplotype recessively confers the highest risk for Behçet's diseases (BD) currently known, but only in carriers of HLA-B*51, the classical risk factor for the disease. The mechanistic implications and biological consequences of this epistatic relationship are unknown. Here, we aimed to determine its biological relevance and functional impact. METHODS We genotyped and immune phenotyped a cohort of 26 untreated Turkish BD subjects and 22 healthy donors, generated CRISPR-Cas9 ERAP1 KOs from HLA-B*51 + LCL, analysed the HLA class I-bound peptidome for peptide length differences and assessed immunogenicity of genome-edited cells in CD8 T cell co-culture systems. RESULTS Allele frequencies of ERAP1-Hap10 were similar to previous studies. There were frequency shifts between antigen-experienced and naïve CD8 T cell populations of carriers and non-carriers of ERAP1-Hap10 in an HLA-B*51 background. ERAP1 KO cells showed peptidomes with longer peptides above 9mer and significant differences in their ability to stimulate alloreactive CD8 T cells compared with wild-type control cells. CONCLUSIONS We demonstrate that hypoactive ERAP1 changes immunogenicity to CD8 T cells, mediated by an HLA class I peptidome with undertrimmed peptides. Naïve/effector CD8 T cell shifts in affected carriers provide evidence of the biological relevance of ERAP1-Hap10/HLA-B*51 at the cellular level and point to an HLA-B51-restricted process. Our findings suggest that variant ERAP1-Hap10 partakes in BD pathogenesis by generating HLA-B51-restricted peptides, causing a change in immunodominance of the ensuing CD8 T cell response.
Collapse
Affiliation(s)
- Ann Cavers
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Matthias Christian Kugler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Yesim Ozguler
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York, NY, USA
- Department of Internal Medicine, Division of Rheumatology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Behçet's Disease Research Center, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Arshed Fahad Al-Obeidi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Gulen Hatemi
- Department of Internal Medicine, Division of Rheumatology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Behçet's Disease Research Center, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beatrix M Ueberheide
- Department of Biochemistry and Molecular Pharmacology, Department of Neurology, Perlmutter Cancer Center, Proteomics Laboratory at the Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Didar Ucar
- Behçet's Disease Research Center, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Ophthalmology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Olivier Manches
- Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Inserm U 1209, Université Grenoble-Alpes, Grenoble, France
- Recherche et Développement, Etablissement Français du Sang Auvergne-Rhône-Alpes, La Tronche, France
| | - Johannes Nowatzky
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
D’Amico S, Tempora P, Melaiu O, Lucarini V, Cifaldi L, Locatelli F, Fruci D. Targeting the antigen processing and presentation pathway to overcome resistance to immune checkpoint therapy. Front Immunol 2022; 13:948297. [PMID: 35936007 PMCID: PMC9352877 DOI: 10.3389/fimmu.2022.948297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the significant clinical advances with the use of immune checkpoint inhibitors (ICIs) in a wide range of cancer patients, response rates to the therapy are variable and do not always result in long-term tumor regression. The development of ICI-resistant disease is one of the pressing issue in clinical oncology, and the identification of new targets and combination therapies is a crucial point to improve response rates and duration. Antigen processing and presentation (APP) pathway is a key element for an efficient response to ICI therapy. Indeed, malignancies that do not express tumor antigens are typically poor infiltrated by T cells and unresponsive to ICIs. Therefore, improving tumor immunogenicity potentially increases the success rate of ICI therapy. In this review, we provide an overview of the key elements of the APP machinery that can be exploited to enhance tumor immunogenicity and increase the efficacy of ICI-based immunotherapy.
Collapse
Affiliation(s)
- Silvia D’Amico
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Patrizia Tempora
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Doriana Fruci,
| |
Collapse
|
21
|
Xu Q, Zheng X, Mao Y, Chen W, Chen S, Zhang H, Zhen Q, Li B, Yong L, Ge H, Yu Y, Zhang R, Cao L, Cheng H, Wang W, Sun L. Gene interaction analysis of psoriasis in Chinese Han population. Mol Genet Genomic Med 2022; 10:e1858. [PMID: 35352505 PMCID: PMC9034666 DOI: 10.1002/mgg3.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/10/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background/aims Psoriasis is a chronic immune‐mediated inflammatory skin disease characterized by excessive proliferation of keratinocytes. It has a strong genetic predisposition; gene‐gene interactions are important genetic models for common diseases. In this study, we explore pair‐wise interactions among SNPs contributing to psoriasis susceptibility. Methods We first performed gene interactions with exome‐sequencing, next, we analyzed gene interactions combining the exome sequencing data with the targeted sequencing data. After we sequenced HLA region, we analyzed gene interactions including HLA regions and non‐HLA regions. Results We found interactions between HLA regions were significant. We observed significant interactions between HLA‐C*06:02 and rs118179173 (snp31443520; p = 8.21 × 10−20, OR = 0.22) and between HLA‐C*06:02 and HLA‐B:AA67 (p = 1.22 × 10−12, OR = 0.45). Conclusion This study provides evidence that HLA is the most important susceptibility region on the risk of psoriasis and interactions that occur in this region are still significant.
Collapse
Affiliation(s)
- Qiongqiong Xu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yiwen Mao
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Shirui Chen
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hui Zhang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Qi Zhen
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Bao Li
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Liang Yong
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yafen Yu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Ruixue Zhang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Lu Cao
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hui Cheng
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Wenjun Wang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Liangdan Sun
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.,Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
22
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare System and the Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicola Ternette
- Centre for Cellular and Molecular PhysiologyNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
23
|
Stamatakis G, Samiotaki M, Temponeras I, Panayotou G, Stratikos E. Allotypic variation in antigen processing controls antigenic peptide generation from SARS-CoV-2 S1 spike glycoprotein. J Biol Chem 2021; 297:101329. [PMID: 34688668 PMCID: PMC8530767 DOI: 10.1016/j.jbc.2021.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/05/2022] Open
Abstract
Population genetic variability in immune system genes can often underlie variability in immune responses to pathogens. Cytotoxic T-lymphocytes are emerging as critical determinants of both severe acute respiratory syndrome coronavirus 2 infection severity and long-term immunity, after either recovery or vaccination. A hallmark of coronavirus disease 2019 is its highly variable severity and breadth of immune responses between individuals. To address the underlying mechanisms behind this phenomenon, we analyzed the proteolytic processing of S1 spike glycoprotein precursor antigenic peptides across ten common allotypes of endoplasmic reticulum aminopeptidase 1 (ERAP1), a polymorphic intracellular enzyme that can regulate cytotoxic T-lymphocyte responses by generating or destroying antigenic peptides. We utilized a systematic proteomic approach that allows the concurrent analysis of hundreds of trimming reactions in parallel, thus better emulating antigen processing in the cell. While all ERAP1 allotypes were capable of producing optimal ligands for major histocompatibility complex class I molecules, including known severe acute respiratory syndrome coronavirus 2 epitopes, they presented significant differences in peptide sequences produced, suggesting allotype-dependent sequence biases. Allotype 10, previously suggested to be enzymatically deficient, was rather found to be functionally distinct from other allotypes. Our findings suggest that common ERAP1 allotypes can be a major source of heterogeneity in antigen processing and through this mechanism contribute to variable immune responses in coronavirus disease 2019.
Collapse
Affiliation(s)
- George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Attica, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Attica, Greece
| | - Ioannis Temponeras
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Attica, Greece
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Attica, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Attica, Greece; Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, Athens, Greece.
| |
Collapse
|
24
|
Piekarska K, Radwan P, Tarnowska A, Wiśniewski A, Radwan M, Wilczyński JR, Malinowski A, Nowak I. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure. Front Immunol 2021; 12:755624. [PMID: 34745129 PMCID: PMC8569704 DOI: 10.3389/fimmu.2021.755624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/29/2023] Open
Abstract
The mother's uterine immune system is dominated by uterine natural killer (NK) cells during the first trimester of pregnancy. These cells express killer cell immunoglobulin-like receptors (KIRs) of inhibitory or activating function. Invading extravillous trophoblast cells express HLA-C molecules, and both maternal and paternal HLA-C allotypes are presented to KIRs. Endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) shape the HLA class I immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides to fit into the HLA class I groove. The inability to form the correct HLA class I complexes with the appropriate peptides may result in a lack of immune response by NK cells. The aim of this study was to investigate the role of ERAP1 and ERAP2 polymorphisms in the context of KIR and HLA-C genes in recurrent implantation failure (RIF). In addition, for the first time, we showed the results of ERAP1 and ERAP2 secretion into the peripheral blood of patients and fertile women. We tested a total of 881 women. Four hundred ninety-six females were patients who, together with their partners, participated in in vitro fertilization (IVF). A group of 385 fertile women constituted the control group. Women positive for KIR genes in the Tel AA region and HLA-C2C2 were more prevalent in the RIF group than in fertile women (p/pcorr. = 0.004/0.012, OR = 2.321). Of the ERAP polymorphisms studied, two of them (rs26653 and rs26618) appear to affect RIF susceptibility in HLA-C2-positive patients. Moreover, fertile women who gave birth in the past secreted significantly more ERAP1 than IVF women and control pregnant women (p < 0.0001 and p = 0.0005, respectively). In the case of ERAP2, the opposite result was observed; i.e., fertile women secreted far less ERAP2 than IVF patients (p = 0.0098). Patients who became pregnant after in vitro fertilization embryo transfer (IVF-ET) released far less ERAP2 than patients who miscarried (p = 0.0032). Receiver operating characteristic (ROC) analyses indicate a value of about 2.9 ng/ml of ERAP2 as a point of differentiation between patients who miscarried and those who gave birth to a healthy child. Our study indicates that both ERAP1 and ERAP2 may be involved in processes related to reproduction.
Collapse
Affiliation(s)
- Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
| | - Agnieszka Tarnowska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
- Faculty of Health Sciences, The Mazovian State University in Płock, Płock, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Łódź, Łódź, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers’ Memorial Hospital—Research Institute, Łódź, Poland
- Medical Centre Gynemed, Łódź, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
25
|
Wellington D, Yin Z, Kessler BM, Dong T. Immunodominance complexity: lessons yet to be learned from dominant T cell responses to SARS-COV-2. Curr Opin Virol 2021; 50:183-191. [PMID: 34534732 PMCID: PMC8424056 DOI: 10.1016/j.coviro.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022]
Abstract
Immunodominance is a complex and highly debated topic of T cell biology. The current SARS-CoV-2 pandemic has provided the opportunity to profile adaptive immune responses and determine molecular factors contributing to emerging responses towards immunodominant viral epitopes. Here, we discuss parameters that alter the dynamics of CD8 viral epitope processing, generation and T-cell responses, and how immunodominance counteracts viral immune escape mechanisms that develop in the context of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| | - Zixi Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Benedikt M Kessler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK; Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| |
Collapse
|
26
|
The nonclassical immune surveillance for ERAAP function. Curr Opin Immunol 2021; 70:105-111. [PMID: 34098489 DOI: 10.1016/j.coi.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023]
Abstract
The peptide repertoire presented by MHC class I molecules on the cell surface is essential for the immune surveillance of intracellular pathogens and transformed cells. The generation of this peptide repertoire is critically dependent on the endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP). Loss of ERAAP function leads to the generation of a profoundly disrupted peptide repertoire including many novel and immunogenic peptides. Strikingly, a large fraction of these novel peptides on ERAAP-KO cells are presented by the nonclassical MHC Ib molecule, Qa-1b. One immunodominant Qa-1b-restricted novel peptide is recognized by a unique CD8+ T cell population showing features of both conventional cytotoxic T cells and unconventional innate-like T cells. While much remains to be uncovered, here we summarize the latest discoveries of our lab on the important immune surveillance of ERAAP function mediated by nonclassical MHC Ib molecules and their unusual cognate T cells.
Collapse
|
27
|
Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021; 21:298-312. [PMID: 33750922 DOI: 10.1038/s41568-021-00339-z] [Citation(s) in RCA: 757] [Impact Index Per Article: 189.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.
Collapse
|
28
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 526] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
29
|
Fruci D, Locatelli F, Cifaldi L. ERAAP modulation: A possible novel strategy for cancer immunotherapy? Oncoimmunology 2021; 1:81-82. [PMID: 22720218 DOI: 10.4161/onci.1.1.17828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings demonstrate that loss of ERAAP, an endoplasmic reticulum aminopeptidase involved in antigen processing, plays a key role in stimulating anti-tumor innate and adaptive immune responses. We show that MHC class I molecules produced in the absence of ERAAP retain their capability of presenting antigens to CD8+ T cells, but not of inhibiting NK cells.
Collapse
Affiliation(s)
- Doriana Fruci
- Oncohaematology Department; IRCCS, Ospedale Pediatrico "Bambino Gesù"; Rome, Italy
| | | | | |
Collapse
|
30
|
Jiang P, Veenstra RN, Seitz A, Nolte IM, Hepkema BG, Visser L, van den Berg A, Diepstra A. Interaction between ERAP Alleles and HLA Class I Types Support a Role of Antigen Presentation in Hodgkin Lymphoma Development. Cancers (Basel) 2021; 13:cancers13030414. [PMID: 33499248 PMCID: PMC7865538 DOI: 10.3390/cancers13030414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a common lymphoma in young adults derived from B cells. Emerging evidence suggests that antigen presentation by the malignant B cells is critically involved in HL pathogenesis. In fact, genetic variants of the antigen presenting Human Leukocyte Antigens (HLA) are strongly associated with HL susceptibility. Interestingly, the endoplasmic reticulum aminopeptidase (ERAP)1 and ERAP2 genes, that code for enzymes that process antigens, also appear to be associated. In this study, we show that genetic variants of ERAP genes strongly affect expression levels of ERAP1 and ERAP2. In addition, we find that certain ERAP variants interact with specific HLA class I types in HL patients. This suggests that mechanisms that determine the repertoire of antigens that are presented to the immune system, affect the chance of developing HL. Our findings therefore support a prominent role of antigen presentation in HL susceptibility. Abstract Genetic variants in the HLA region are the strongest risk factors for developing Hodgkin lymphoma (HL), suggesting an important role for antigen presentation. This is supported by another HL-associated genomic region which contains the loci of two enzymes that process endogenous proteins to peptides to be presented by HLA class I, i.e., endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2. We hypothesized that ERAP and HLA class I type interact in HL susceptibility, as shown previously for several autoimmune diseases. We detected ERAP1 and ERAP2 expression in tumor cells and cells in the microenvironment in primary HL tissue samples. Seven ERAP SNPs and ERAP1 haplotypes showed strong associations with RNA and protein levels of ERAP1 and ERAP2 in LCLs and HL cell lines. Analysis of HLA class I types, ERAP SNPs and ERAP haplotypes by direct genotyping or imputation from genome-wide association data in 390 HL patients revealed significant interactions between HLA-A11, rs27038 and the rs27038 associated ERAP haplotype, as well as between HLA-Cw2 and rs26618. In conclusion, our results show that ERAP and HLA class I interact in genetic susceptibility to HL, providing further evidence that antigen presentation is an important process in HL susceptibility and pathogenesis.
Collapse
Affiliation(s)
- Peijia Jiang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Department of Laboratory Medicine, Shenyang Huanggu National Defense Hospital, Shenyang 110032, China
| | - Rianne N. Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Bouke G. Hepkema
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Correspondence:
| |
Collapse
|
31
|
Impact of Natural Occurring ERAP1 Single Nucleotide Polymorphisms within miRNA-Binding Sites on HCMV Infection. Int J Mol Sci 2020; 21:ijms21165861. [PMID: 32824160 PMCID: PMC7461596 DOI: 10.3390/ijms21165861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that causes serious problems in people with a compromised immune system, whereas it coexists asymptomatically within the host with a healthy immune system. Like other viruses, HCMV has adopted multiples strategies to manipulate the host’s immune responses. Among them, expression of viral microRNAs (miRNAs) is one of the most intriguing. HCMV miR-UL112-5p and miR-US4-1 have been found to contribute to immune evasion by targeting the endoplasmic reticulum aminopeptidase 1 (ERAP1), a highly polymorphic key component of antigen processing. The current incomplete picture on the interplay between viral miRNAs and host immunity implies the need to better characterize the host genetic determinants. Naturally occurring single nucleotide polymorphisms (SNPs) within the miRNA binding sites of target genes may affect miRNA–target interactions. In this review, we focus on the relevance of 3′ untranslated region (3′UTR) ERAP1 SNPs within miRNA binding sites in modulating miRNA–mRNA interactions and the possible consequent individual susceptibility to HCMV infection. Moreover, we performed an in silico analysis using different bioinformatic algorithms to predict ERAP1 variants with a putative powerful biological function. This evidence provides a basis to deepen the knowledge on how 3′UTR ERAP1 variants may alter the mechanism of action of HCMV miRNAs, in order to develop targeted antiviral therapies.
Collapse
|
32
|
Margulies DH, Jiang J, Natarajan K. Structural and dynamic studies of TAPBPR and Tapasin reveal the mechanism of peptide loading of MHC-I molecules. Curr Opin Immunol 2020; 64:71-79. [DOI: 10.1016/j.coi.2020.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
33
|
Mavridis G, Arya R, Domnick A, Zoidakis J, Makridakis M, Vlahou A, Mpakali A, Lelis A, Georgiadis D, Tampé R, Papakyriakou A, Stern LJ, Stratikos E. A systematic re-examination of processing of MHCI-bound antigenic peptide precursors by endoplasmic reticulum aminopeptidase 1. J Biol Chem 2020; 295:7193-7210. [PMID: 32184355 PMCID: PMC7247305 DOI: 10.1074/jbc.ra120.012976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in preformed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08, and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12-mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic, and computational analyses suggested that this 12-mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from preformed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1/MHCI/peptide complex. Similarly, no interactions between ERAP1 and purified peptide-loading complex were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution along with the dynamic nature of peptide binding to MHCI are sufficient to explain ERAP1 processing of antigenic peptide precursors.
Collapse
Affiliation(s)
- George Mavridis
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Richa Arya
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alexander Domnick
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Jerome Zoidakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Antonia Vlahou
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Chemistry Department, University of Athens, Athens 15772, Greece
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | - Lawrence J Stern
- University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi 15341, Greece.
| |
Collapse
|
34
|
Reeves E, Islam Y, James E. ERAP1: a potential therapeutic target for a myriad of diseases. Expert Opin Ther Targets 2020; 24:535-544. [PMID: 32249641 DOI: 10.1080/14728222.2020.1751821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) is a key regulator of the peptide repertoire displayed by Major Histocompatibility Complex I (MHC I) to circulating CD8 + T cells and NK cells. Studies have highlighted the essential requirement for the generation of stable peptide MHC I in regulating both innate and adaptive immune responses in health and disease.Areas covered: We review the role of ERAP1 in peptide trimming of N-terminally extended precursors that enter the ER, before loading on to MHC I, and the consequence of loss or downregulation of this activity. Polymorphisms in ERAP1 form multiple combinations (allotypes) within the population, and we discuss the contribution of this ERAP1 variation, and expression, on disease pathogenesis, including the resulting effect on both innate and adaptive immunity. We consider the current efforts to design inhibitors based on approaches using rational design and small molecule screening, and the potential effect of pharmacological modulation on the treatment of autoimmunity and cancer.Expert opinion: ERAP1 is fundamental for the regulation of immune responses, through generation of the presented peptide repertoire at the cell surface. Modulation of ERAP1 function, through design of inhibitors, may serve as a vital tool for changing immune responses in disease.
Collapse
Affiliation(s)
- Emma Reeves
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Yasmin Islam
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
35
|
Sagert L, Hennig F, Thomas C, Tampé R. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. eLife 2020; 9:55326. [PMID: 32167472 PMCID: PMC7117912 DOI: 10.7554/elife.55326] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
Adaptive immunity vitally depends on major histocompatibility complex class I (MHC I) molecules loaded with peptides. Selective loading of peptides onto MHC I, referred to as peptide editing, is catalyzed by tapasin and the tapasin-related TAPBPR. An important catalytic role has been ascribed to a structural feature in TAPBPR called the scoop loop, but the exact function of the scoop loop remains elusive. Here, using a reconstituted system of defined peptide-exchange components including human TAPBPR variants, we uncover a substantial contribution of the scoop loop to the stability of the MHC I-chaperone complex and to peptide editing. We reveal that the scoop loop of TAPBPR functions as an internal peptide surrogate in peptide-depleted environments stabilizing empty MHC I and impeding peptide rebinding. The scoop loop thereby acts as an additional selectivity filter in shaping the repertoire of presented peptide epitopes and the formation of a hierarchical immune response.
Collapse
Affiliation(s)
- Lina Sagert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Felix Hennig
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
36
|
Babaie F, Hosseinzadeh R, Ebrazeh M, Seyfizadeh N, Aslani S, Salimi S, Hemmatzadeh M, Azizi G, Jadidi-Niaragh F, Mohammadi H. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol Immunol 2020; 121:7-19. [PMID: 32135401 DOI: 10.1016/j.molimm.2020.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Autoimmunity and cancer affect millions worldwide and both, in principal, result from dysregulated immune responses. There are many well-known molecules involved in immunological process playing as a double-edged sword, by which associating autoimmune diseases and cancer. In this regard, Endoplasmic reticulum aminopeptidases (ERAP) 1, which belongs to the M1 family of aminopeptidases, plays a central role as a "molecular ruler", proteolyzing of N-terminal of the antigenic peptides before their loading onto HLA-I molecules for antigen presentation in the Endoplasmic Reticulum (ER). Several genome-wide association studies (GWAS) highlighted the significance of ERAP1 and ERAP2 in autoimmune diseases, including Ankylosing spondylitis, Psoriasis, Bechet's disease, and Birdshot chorioretinopathy, as well as in cancers. The expression of ERAP1/2 is mostly altered in different cancers compared to normal cells, but how this affects anti-cancer immune responses and cancer growth has been little explored. Recent studies on the immunological outcomes and the catalytic functions of ERAP1 and ERAP2 have provided a better understanding of their potential pathogenetic role in autoimmunity and cancer. In this review, we summarize the role of ERAP1 and ERAP2 in the autoimmune diseases and cancer immunity based on the recent advances in GWAS studies.
Collapse
Affiliation(s)
- Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrazeh
- Department of Biology, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Salimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
37
|
Welsh RA, Song N, Foss CA, Boronina T, Cole RN, Sadegh-Nasseri S. Lack of the MHC class II chaperone H2-O causes susceptibility to autoimmune diseases. PLoS Biol 2020; 18:e3000590. [PMID: 32069316 PMCID: PMC7028248 DOI: 10.1371/journal.pbio.3000590] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
DO (HLA-DO, in human; murine H2-O) is a highly conserved nonclassical major histocompatibility complex class II (MHC II) accessory molecule mainly expressed in the thymic medulla and B cells. Previous reports have suggested possible links between DO and autoimmunity, Hepatitis C (HCV) infection, and cancer, but the mechanism of how DO contributes to these diseases remains unclear. Here, using a combination of various in vivo approaches, including peptide elution, mixed lymphocyte reaction, T-cell receptor (TCR) deep sequencing, tetramer-guided naïve CD4 T-cell precursor enumeration, and whole-body imaging, we report that DO affects the repertoire of presented self-peptides by B cells and thymic epithelium. DO induces differential effects on epitope presentation and thymic selection, thereby altering CD4 T-cell precursor frequencies. Our findings were validated in two autoimmune disease models by demonstrating that lack of DO increases autoreactivity and susceptibility to autoimmune disease development.
Collapse
Affiliation(s)
- Robin A. Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nianbin Song
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Catherine A. Foss
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1. J Med Chem 2019; 63:103-121. [PMID: 31841350 DOI: 10.1021/acs.jmedchem.9b00293] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound 1 (N-(N-(2-(1H-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound 2 (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity. Compound 3 (4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)sulfamoyl)benzoic acid) allosterically activates ERAP1's hydrolysis of fluorogenic and chromogenic amino acid substrates but competitively inhibits its activity toward a nonamer peptide representative of physiological substrates. Compounds 2 and 3 inhibit antigen presentation in a cellular assay. Compound 3 displays higher potency for an ERAP1 variant associated with increased risk of autoimmune disease. These inhibitors provide mechanistic insights into the determinants of specificity for ERAP1, ERAP2, and IRAP and offer a new therapeutic approach of specifically inhibiting ERAP1 activity in vivo.
Collapse
Affiliation(s)
| | | | - Digamber Rane
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | - W Frank An
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Shailesh Metkar
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Marc Hickey
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Samantha Bender
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | | | | | - Irini Evnouchidou
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Roger Schilling
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Jennifer Golden
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | | |
Collapse
|
39
|
Dimopoulou C, Lundgren JD, Sundal J, Ullum H, Aukrust P, Nielsen FC, Marvig RL. Variant in ERAP1 promoter region is associated with low expression in a patient with a Behçet-like MHC-I-opathy. J Hum Genet 2019; 65:325-335. [PMID: 31873220 DOI: 10.1038/s10038-019-0709-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 11/09/2022]
Abstract
Behçet disease (BD) is an immune-mediated disease. The cause of BD remains unknown, but the existence of multiple pathological pathways is suspected, including different genetic factors. Polymorphisms in ERAP1 gene have been associated with an increased risk of BD. However, while current BD-associated ERAP1 variants are suggested to contribute to disease by altering the activity of the encoded protein, there is no knowledge of variants that alter the expression level of ERAP1, despite previous associations between ERAP1 expression and BD. Here, we used whole-exome sequencing of a patient with a Behçet-like MHC-I-opathy to identify that the patient, unlike its healthy parents, was homozygous for a rare 1-bp deletion, rs140416843, in the promoter region of ERAP1. rs140416843 has not previously been associated with disease, but is linked to ERAP1 haplotype Hap10 which is associated with BD. The expression of ERAP1 by both RT-qPCR and RNA sequencing showed that ERAP1 mRNA expression correlated with the zygosity for the identified deletion and was decreased in comparison to a healthy cohort. In conclusion, we diagnosed the patient as having BD, and hypothesize that rs140416843-mediated changes in ERAP1 expression play a causative role in BD and that this risk factor is contributing to the association between Hap10 and BD. This is the first report to identify a variant that may cause BD by altering the expression of ERAP1, and our findings suggest that downregulation of ERAP1 expression can serve as a diagnostic marker for BD.
Collapse
Affiliation(s)
- Chrysoula Dimopoulou
- Centre of Excellence for Health, Immunity and Infection (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens D Lundgren
- Centre of Excellence for Health, Immunity and Infection (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jon Sundal
- Department of Infectious Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Insitute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
40
|
Mechanism for antigenic peptide selection by endoplasmic reticulum aminopeptidase 1. Proc Natl Acad Sci U S A 2019; 116:26709-26716. [PMID: 31843903 DOI: 10.1073/pnas.1912070116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that optimizes the peptide cargo of major histocompatibility class I (MHC-I) molecules and regulates adaptive immunity. It has unusual substrate selectivity for length and sequence, resulting in poorly understood effects on the cellular immunopeptidome. To understand substrate selection by ERAP1, we solved 2 crystal structures of the enzyme with bound transition-state pseudopeptide analogs at 1.68 Å and 1.72 Å. Both peptides have their N terminus bound at the active site and extend away along a large internal cavity, interacting with shallow pockets that can influence selectivity. The longer peptide is disordered through the central region of the cavity and has its C terminus bound in an allosteric pocket of domain IV that features a carboxypeptidase-like structural motif. These structures, along with enzymatic and computational analyses, explain how ERAP1 can select peptides based on length while retaining the broad sequence-specificity necessary for its biological function.
Collapse
|
41
|
Georgiadis D, Mpakali A, Koumantou D, Stratikos E. Inhibitors of ER Aminopeptidase 1 and 2: From Design to Clinical Application. Curr Med Chem 2019; 26:2715-2729. [PMID: 29446724 DOI: 10.2174/0929867325666180214111849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Athens, Greece
| | - Anastasia Mpakali
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Despoina Koumantou
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| |
Collapse
|
42
|
Guasp P, Lorente E, Martín-Esteban A, Barnea E, Romania P, Fruci D, Kuiper JW, Admon A, López de Castro JA. Redundancy and Complementarity between ERAP1 and ERAP2 Revealed by their Effects on the Behcet's Disease-associated HLA-B*51 Peptidome. Mol Cell Proteomics 2019; 18:1491-1510. [PMID: 31092671 PMCID: PMC6682995 DOI: 10.1074/mcp.ra119.001515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to be loaded onto HLA molecules, including the main risk factor for Behçet's disease HLA-B*51. ERAP1 is also a risk factor among HLA-B*51-positive individuals, whereas no association is known with ERAP2. This study addressed the mutual relationships between both enzymes in the processing of an HLA-bound peptidome, interrogating their differential association with Behçet's disease. CRISPR/Cas9 was used to generate knock outs of ERAP1, ERAP2 or both from transfectant 721.221-HLA-B*51:01 cells. The surface expression of HLA-B*51 was reduced in all cases. The effects of depleting each or both enzymes on the B*51:01 peptidome were analyzed by quantitative label-free mass spectrometry. Substantial quantitative alterations of peptide length, subpeptidome balance, N-terminal residue usage, affinity and presentation of noncanonical ligands were observed. These effects were often different in the presence or absence of the other enzyme, revealing their mutual dependence. In the absence of ERAP1, ERAP2 showed similar and significant processing of B*51:01 ligands, indicating functional redundancy. The high overlap between the peptidomes of wildtype and double KO cells indicates that a large majority of B*51:01 ligands are present in the ER even in the absence of ERAP1/ERAP2. These results indicate that both enzymes have distinct, but complementary and partially redundant effects on the B*51:01 peptidome, leading to its optimization and maximal surface expression. The distinct effects of both enzymes on the HLA-B*51 peptidome provide a basis for their differential association with Behçet's disease and suggest a pathogenetic role of the B*51:01 peptidome.
Collapse
Affiliation(s)
- Pablo Guasp
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - Elena Lorente
- ‡Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | | | - Eilon Barnea
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Paolo Romania
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Doriana Fruci
- ¶Immuno-Oncology Laboratory, Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - JonasJ W Kuiper
- ‖Department of Ophthalmology, Laboratory of Translational Immunology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Arie Admon
- §Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
43
|
Koumantou D, Barnea E, Martin-Esteban A, Maben Z, Papakyriakou A, Mpakali A, Kokkala P, Pratsinis H, Georgiadis D, Stern LJ, Admon A, Stratikos E. Editing the immunopeptidome of melanoma cells using a potent inhibitor of endoplasmic reticulum aminopeptidase 1 (ERAP1). Cancer Immunol Immunother 2019; 68:1245-1261. [PMID: 31222486 PMCID: PMC6684451 DOI: 10.1007/s00262-019-02358-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
The efficacy of cancer immunotherapy, including treatment with immune-checkpoint inhibitors, often is limited by ineffective presentation of antigenic peptides that elicit T-cell-mediated anti-tumor cytotoxic responses. Manipulation of antigen presentation pathways is an emerging approach for enhancing the immunogenicity of tumors in immunotherapy settings. ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that trims peptides as part of the system that generates peptides for binding to MHC class I molecules (MHC-I). We hypothesized that pharmacological inhibition of ERAP1 in cells could regulate the cellular immunopeptidome. To test this hypothesis, we treated A375 melanoma cells with a recently developed potent ERAP1 inhibitor and analyzed the presented MHC-I peptide repertoire by isolating MHC-I, eluting bound peptides, and identifying them using capillary chromatography and tandem mass spectrometry (LC-MS/MS). Although the inhibitor did not reduce cell-surface MHC-I expression, it induced qualitative and quantitative changes in the presented peptidomes. Specifically, inhibitor treatment altered presentation of about half of the total 3204 identified peptides, including about one third of the peptides predicted to bind tightly to MHC-I. Inhibitor treatment altered the length distribution of eluted peptides without change in the basic binding motifs. Surprisingly, inhibitor treatment enhanced the average predicted MHC-I binding affinity, by reducing presentation of sub-optimal long peptides and increasing presentation of many high-affinity 9-12mers, suggesting that baseline ERAP1 activity in this cell line is destructive for many potential epitopes. Our results suggest that chemical inhibition of ERAP1 may be a viable approach for manipulating the immunopeptidome of cancer.
Collapse
MESH Headings
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/metabolism
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacology
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunogenicity, Vaccine
- Immunotherapy/methods
- Lymphocyte Activation
- Melanoma/drug therapy
- Minor Histocompatibility Antigens/metabolism
- Molecular Targeted Therapy
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Protease Inhibitors/pharmacology
- Protein Binding
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Despoina Koumantou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Eilon Barnea
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Adrian Martin-Esteban
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas, Universidad Autonoma), Madrid, Spain
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Athanasios Papakyriakou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Paraskevi Kokkala
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Harris Pratsinis
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece.
| |
Collapse
|
44
|
ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Nat Commun 2019; 10:3304. [PMID: 31341163 PMCID: PMC6656771 DOI: 10.1038/s41467-019-11093-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated βTrCP, the substrate-receptor subunit of the SCFβTrCP ubiquitin ligase, and promotes βTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors. ERAP1 is an endoplasmic reticulum aminopeptidase that trims MHC Class-I peptides for antigen presentation. Here, the authors show that ERAP1 enhances Hedgehog signalling by sequestering USP47 from βTrCP and promoting tumorigenesis through βTrCP degradation and increased Gli protein stability.
Collapse
|
45
|
Thomas C, Tampé R. MHC I chaperone complexes shaping immunity. Curr Opin Immunol 2019; 58:9-15. [DOI: 10.1016/j.coi.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 01/21/2023]
|
46
|
Giastas P, Neu M, Rowland P, Stratikos E. High-Resolution Crystal Structure of Endoplasmic Reticulum Aminopeptidase 1 with Bound Phosphinic Transition-State Analogue Inhibitor. ACS Med Chem Lett 2019; 10:708-713. [PMID: 31097987 PMCID: PMC6511960 DOI: 10.1021/acsmedchemlett.9b00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/13/2019] [Indexed: 01/25/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that helps generate peptides presented by Major Histocompatibility Complex Class I (MHC class I) molecules and is an emerging target for immunotherapy applications. Despite almost two decades of research on ERAP1, lack of high-resolution crystal structures has hampered drug-development efforts. By optimizing the protein construct, we obtained a high-resolution (1.60 Å) crystal structure of the closed-conformation of ERAP1 with a potent phosphinic pseudopeptide inhibitor bound in its active site. The structure provides key insight on the mechanism of inhibition as well as selectivity toward homologous enzymes and allows detailed mapping of the internal cavity of the enzyme that accommodates peptide-substrates. Bis-tris propane and malic acid molecules, found bound in pockets in the internal cavity, reveal potential druggable secondary binding sites. The ability to obtain high-resolution crystal structures of ERAP1 removes a major bottleneck in the development of compounds that regulate its activity and will greatly accelerate drug-discovery efforts.
Collapse
Affiliation(s)
- Petros Giastas
- National Center for Scientific Research Demokritos, Agia
Paraskevi, Athens 15310, Greece
| | - Margarete Neu
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Rowland
- Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia
Paraskevi, Athens 15310, Greece
| |
Collapse
|
47
|
Evnouchidou I, van Endert P. Peptide trimming by endoplasmic reticulum aminopeptidases: Role of MHC class I binding and ERAP dimerization. Hum Immunol 2019; 80:290-295. [DOI: 10.1016/j.humimm.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
|
48
|
Hanson AL, Morton CJ, Parker MW, Bessette D, Kenna TJ. The genetics, structure and function of the M1 aminopeptidase oxytocinase subfamily and their therapeutic potential in immune-mediated disease. Hum Immunol 2019; 80:281-289. [DOI: 10.1016/j.humimm.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
|
49
|
Compagnone M, Cifaldi L, Fruci D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum Immunol 2019; 80:318-324. [PMID: 30825518 DOI: 10.1016/j.humimm.2019.02.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 are two multifunctional enzymes playing an important role in the biological processes requiring trimming of substrates, including the generation of major histocompatibility complex (MHC) class I binding peptides. In the absence of ERAP enzymes, the cells exhibit a different pool of peptides on their surface which can promote both NK and CD8+ T cell-mediated immune responses. The expression of ERAP1 and ERAP2 is frequently altered in tumors, as compared to their normal counterparts, but how this affects tumor growth and anti-tumor immune responses has been little investigated. This review will provide an overview of current knowledge on transcriptional and post-transcriptional regulations of ERAP enzymes, and will discuss the contribution of recent studies to our understanding of ERAP1 and ERAP2 role in cancer immunity.
Collapse
Affiliation(s)
- Mirco Compagnone
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
50
|
The role of ERAP1 in autoinflammation and autoimmunity. Hum Immunol 2019; 80:302-309. [PMID: 30817945 DOI: 10.1016/j.humimm.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune and autoinflammatory diseases affect millions worldwide. These classes of disease involve abnormal immune activation of both the innate and adaptive immune systems. While both classes of disease represent a spectrum of aberrant immune activation, excessive activation of the innate immune system has been considered causal for the inflammation and tissue damage found in autoinflammatory diseases, while excessive activation of the adaptive immune system has been thought to primarily contribute to end-organ symptoms noted in autoimmune diseases. Interestingly, the endoplasmic reticulum aminopeptidase 1 (ERAP1) protein, well known for its aminopeptidase function as a "molecular ruler", trimming peptides prior to their loading onto MHC-I molecules for antigen presentation in the ER, has also been shown to be genetically associated with both autoinflammatory and autoimmune diseases. Indeed, this multifaceted protein has been found to have many functions that affect both the innate and adaptive immune responses. In this review, we summarize these findings, with an attempt to identify the possible ERAP1 dependent mechanisms responsible for the pathogenesis of multiple, ERAP1 associated diseases.
Collapse
|