1
|
Ochodnicka-Mackovicova K, van Keimpema M, Spaargaren M, van Noesel CJM, Guikema JEJ. DNA damage-induced p53 downregulates expression of RAG1 through a negative feedback loop involving miR-34a and FOXP1. J Biol Chem 2024:107922. [PMID: 39454960 DOI: 10.1016/j.jbc.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During the maturation of pre-B cells, the recombination activating gene 1 and 2 (RAG1/2) endonuclease complex plays a crucial role in coordinating V(D)J recombination by introducing DNA breaks in immunoglobulin (Ig) loci. Dysregulation of RAG1/2 has been linked to the onset of B-cell malignancies, yet the mechanisms controlling RAG1/2 in pre-B cells exposed to excessive DNA damage are not fully understood. In this study, we show that DNA damage-induced activation of p53 initiates a negative-feedback loop which rapidly downregulates RAG1 levels. This feedback loop involves ataxia telangiectasia mutated (ATM) activation, subsequent stabilization of p53, and modulation of microRNA-34a (miR-34a) levels, which is one of the p53 targets. Notably, this loop incorporates transcription factor forkhead box P1 (FOXP1) as a downstream effector. The absence of p53 resulted in an increased proportion of IgM+ cells prompted to upregulate RAG1/2 and to undergo Ig light chain (Igl) recombination. Similar results were obtained in primary pre-B cells with depleted levels of miR-34a. We propose that in pre-B cells undergoing Ig gene recombination, the DNA breaks activate a p53/miR-34a/FOXP1-mediated negative-feedback loop that contributes to the rapid downregulation of RAG. This regulation limits the RAG-dependent DNA damage, thereby protecting the stability of the genome during V(D)J rearrangement in developing B cells.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Martine van Keimpema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target & Therapy Discovery, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, The Netherlands, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands.
| |
Collapse
|
2
|
Ochodnicka-Mackovicova K, Mokry M, Haagmans M, Bradley TE, van Noesel CJM, Guikema JEJ. RAG1/2 induces double-stranded DNA breaks at non-Ig loci in the proximity of single sequence repeats in developing B cells. Eur J Immunol 2024; 54:e2350958. [PMID: 39046890 DOI: 10.1002/eji.202350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Martin Haagmans
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Ted E Bradley
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chen BR, Pham T, Reynolds LD, Dang N, Zhang Y, Manalang K, Matos-Rodrigues G, Neidigk JR, Nussenzweig A, Tyler JK, Sleckman BP. Senataxin and DNA-PKcs Redundantly Promote Non-Homologous End Joining Repair of DNA Double Strand Breaks During V(D)J Recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615014. [PMID: 39386666 PMCID: PMC11463457 DOI: 10.1101/2024.09.25.615014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-homologous end joining (NHEJ) is required for repairing DNA double strand breaks (DSBs) generated by the RAG endonuclease during lymphocyte antigen receptor gene assembly by V(D)J recombination. The Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) kinases regulate functionally redundant pathways required for NHEJ. Here we report that loss of the senataxin helicase leads to a significant defect in RAG DSB repair upon inactivation of DNA-PKcs. The NHEJ function of senataxin is redundant with the RECQL5 helicase and the HLTF translocase and is epistatic with ATM. Co-inactivation of ATM, RECQL5 and HLTF results in an NHEJ defect similar to that from the combined deficiency of DNA-PKcs and senataxin or losing senataxin, RECQL5 and HLTF. These data suggest that ATM and DNA-PKcs regulate the functions of senataxin and RECQL5/HLTF, respectively to provide redundant support for NHEJ.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Thu Pham
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Lance D. Reynolds
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Nghi Dang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Yanfeng Zhang
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
- Genetics Research Division, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Kimberly Manalang
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | | | - Jason Romero Neidigk
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD 20892
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Barry P. Sleckman
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233
| |
Collapse
|
4
|
Marshall S, Navarro MVAS, Ascenҫão CFR, Dibitetto D, Smolka MB. In-depth mapping of DNA-PKcs signaling uncovers noncanonical features of its kinase specificity. J Biol Chem 2024; 300:107513. [PMID: 38945450 PMCID: PMC11327452 DOI: 10.1016/j.jbc.2024.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
DNA-PKcs is a DNA damage sensor kinase with established roles in DNA double-strand break repair via nonhomologous end joining. Recent studies have revealed additional roles of DNA-PKcs in the regulation of transcription, translation, and DNA replication. However, the substrates through which DNA-PKcs regulates these processes remain largely undefined. Here, we utilized quantitative phosphoproteomics to generate a high coverage map of DNA-PKcs signaling in response to ionizing radiation and mapped its interplay with the ATM kinase. Beyond the detection of the canonical S/T-Q phosphorylation motif, we uncovered a noncanonical mode of DNA-PKcs signaling targeting S/T-ψ-D/E motifs. Sequence and structural analyses of the DNA-PKcs substrate recognition pocket revealed unique features compared to closely related phosphatidylinositol 3-kinase-related kinases that may explain its broader substrate preference. These findings expand the repertoire of DNA-PKcs and ATM substrates while establishing a novel preferential phosphorylation motif for DNA-PKcs.
Collapse
Affiliation(s)
- Shannon Marshall
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Marcos V A S Navarro
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA; IFSC Institute of Physics of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil.
| | - Carolline F R Ascenҫão
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Diego Dibitetto
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA; Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
5
|
Marshall S, Navarro MV, Ascenҫão CF, Smolka MB. IN-DEPTH MAPPING OF DNA-PKcs SIGNALING UNCOVERS CONSERVED FEATURES OF ITS KINASE SPECIFICITY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576037. [PMID: 38293078 PMCID: PMC10827184 DOI: 10.1101/2024.01.17.576037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
DNA-PKcs is a DNA damage sensor kinase with established roles in DNA double-strand break repair via non-homologous end joining. Recent studies have revealed additional roles of DNA-PKcs in the regulation of transcription, translation and DNA replication. However, the substrates through which DNA-PKcs regulates these processes remain largely undefined. Here we utilized quantitative phosphoproteomics to generate a high coverage map of DNA-PKcs signaling in response to ionizing radiation and mapped its interplay with the ATM kinase. Beyond the detection of the canonical S/T-Q phosphorylation motif, we uncovered a non-canonical mode of DNA-PKcs signaling targeting S/T-ψ-D/E motifs. Cross-species analysis in mouse pre-B and human HCT116 cell lines revealed splicing factors and transcriptional regulators phosphorylated at this novel motif, several of which contain SAP domains. These findings expand the list of DNA-PKcs and ATM substrates and establish a novel preferential phosphorylation motif for DNA-PKcs that connects it to proteins involved in nucleotide processes and interactions.
Collapse
Affiliation(s)
- Shannon Marshall
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marcos V.A.S. Navarro
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- 2. IFSC Institute of Physics of São Carlos, University of São Paulo, São Carlos - SP, 13566-590, Brazil
| | - Carolline F.R. Ascenҫão
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marcus B. Smolka
- 1. Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Xu H, Xiang X, Ding W, Dong W, Hu Y. The Research Progress on Immortalization of Human B Cells. Microorganisms 2023; 11:2936. [PMID: 38138080 PMCID: PMC10746006 DOI: 10.3390/microorganisms11122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Human B cell immortalization that maintains the constant growth characteristics and antibody expression of B cells in vitro is very critical for the development of antibody drugs and products for the diagnosis and bio-therapeutics of human diseases. Human B cell immortalization methods include Epstein-Barr virus (EBV) transformation, Simian virus 40 (SV40) virus infection, in vitro genetic modification, and activating CD40, etc. Immortalized human B cells produce monoclonal antibodies (mAbs) very efficiently, and the antibodies produced in this way can overcome the immune rejection caused by heterologous antibodies. It is an effective way to prepare mAbs and an important method for developing therapeutic monoclonal antibodies. Currently, the US FDA has approved more than 100 mAbs against a wide range of illnesses such as cancer, autoimmune diseases, infectious diseases, and neurological disorders. This paper reviews the research progress of human B cell immortalization, its methods, and future directions as it is a powerful tool for the development of monoclonal antibody preparation technology.
Collapse
Affiliation(s)
- Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Xinxin Xiang
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Hengyang Medical College, University of South China, Hengyang 421200, China
| | - Weizhe Ding
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Peking-Tsinghua-NIBS Joint Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Sala L, Kumar M, Prajapat M, Chandrasekhar S, Cosby RL, La Rocca G, Macfarlan TS, Awasthi P, Chari R, Kruhlak M, Vidigal JA. AGO2 silences mobile transposons in the nucleus of quiescent cells. Nat Struct Mol Biol 2023; 30:1985-1995. [PMID: 37985687 DOI: 10.1038/s41594-023-01151-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Argonaute 2 (AGO2) is a cytoplasmic component of the miRNA pathway, with essential roles in development and disease. Yet little is known about its regulation in vivo. Here we show that in quiescent mouse splenocytes, AGO2 localizes almost exclusively to the nucleus. AGO2 subcellular localization is modulated by the Pi3K-AKT-mTOR pathway, a well-established regulator of quiescence. Signaling through this pathway in proliferating cells promotes AGO2 cytoplasmic accumulation, at least in part by stimulating the expression of TNRC6, an essential AGO2 binding partner in the miRNA pathway. In quiescent cells in which mTOR signaling is low, AGO2 accumulates in the nucleus, where it binds to young mobile transposons co-transcriptionally to repress their expression via its catalytic domain. Our data point to an essential but previously unrecognized nuclear role for AGO2 during quiescence as part of a genome-defense system against young mobile elements and provide evidence of RNA interference in the soma of mammals.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Manish Kumar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Mahendra Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Rachel L Cosby
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
- The National Institute for General Medical Sciences, The National Institutes of Health, Bethesda, MD, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, The National Institutes of Health, Frederick, MD, USA
| | - Michael Kruhlak
- CCR Confocal Microscopy Core Facility, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Gao Z, Smith AL, Scott JF, Bevington S, Boyes J. Temporal analyses reveal a pivotal role for sense and antisense enhancer RNAs in coordinate immunoglobulin lambda locus activation. Nucleic Acids Res 2023; 51:10344-10363. [PMID: 37702072 PMCID: PMC10602925 DOI: 10.1093/nar/gkad741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Transcription enhancers are essential activators of V(D)J recombination that orchestrate non-coding transcription through complementary, unrearranged gene segments. How transcription is coordinately increased at spatially distinct promoters, however, remains poorly understood. Using the murine immunoglobulin lambda (Igλ) locus as model, we find that three enhancer-like elements in the 3' Igλ domain, Eλ3-1, HSCλ1 and HSE-1, show strikingly similar transcription factor binding dynamics and close spatial proximity, suggesting that they form an active enhancer hub. Temporal analyses show coordinate recruitment of complementary V and J gene segments to this hub, with comparable transcription factor binding dynamics to that at enhancers. We find further that E2A, p300, Mediator and Integrator bind to enhancers as early events, whereas YY1 recruitment and eRNA synthesis occur later, corresponding to transcription activation. Remarkably, the interplay between sense and antisense enhancer RNA is central to both active enhancer hub formation and coordinate Igλ transcription: Antisense Eλ3-1 eRNA represses Igλ activation whereas temporal analyses demonstrate that accumulating levels of sense eRNA boost YY1 recruitment to stabilise enhancer hub/promoter interactions and lead to coordinate transcription activation. These studies therefore demonstrate for the first time a critical role for threshold levels of sense versus antisense eRNA in locus activation.
Collapse
Affiliation(s)
- Zeqian Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair L Smith
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James N F Scott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah L Bevington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Bhat KH, Priyadarshi S, Naiyer S, Qu X, Farooq H, Kleiman E, Xu J, Lei X, Cantillo JF, Wuerffel R, Baumgarth N, Liang J, Feeney AJ, Kenter AL. An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation. Nat Commun 2023; 14:1225. [PMID: 36869028 PMCID: PMC9984487 DOI: 10.1038/s41467-023-36414-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
The mouse Igh locus is organized into a developmentally regulated topologically associated domain (TAD) that is divided into subTADs. Here we identify a series of distal VH enhancers (EVHs) that collaborate to configure the locus. EVHs engage in a network of long-range interactions that interconnect the subTADs and the recombination center at the DHJH gene cluster. Deletion of EVH1 reduces V gene rearrangement in its vicinity and alters discrete chromatin loops and higher order locus conformation. Reduction in the rearrangement of the VH11 gene used in anti-PtC responses is a likely cause of the observed reduced splenic B1 B cell compartment. EVH1 appears to block long-range loop extrusion that in turn contributes to locus contraction and determines the proximity of distant VH genes to the recombination center. EVH1 is a critical architectural and regulatory element that coordinates chromatin conformational states that favor V(D)J rearrangement.
Collapse
Affiliation(s)
- Khalid H Bhat
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore-193201, Wadoora, India
| | - Saurabh Priyadarshi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Xinyan Qu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Medpace, Cincinnati, Ohio, 45227, USA
| | - Hammad Farooq
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Eden Kleiman
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Crown Bioscience, San Diego, CA, 92127, USA
| | - Jeffery Xu
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Brookwood Baptist Health General Surgery Residency, Birmingham, AL, 35211, USA
| | - Xue Lei
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jose F Cantillo
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Immunotek, S.L. Alcala de Henares, Spain
| | - Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- 10441 Circle Dr. Apt 47C, Oak Lawn, IL, 60453, USA
| | - Nicole Baumgarth
- W. Harry Feinstone Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
| | - Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA.
| |
Collapse
|
10
|
Zhang Q, Wu B, Weng Q, Hu F, Lin Y, Xia C, Peng H, Wang Y, Liu X, Liu L, Xiong J, Geng Y, Zhao Y, Zhang M, Du J, Wang J. Regeneration of immunocompetent B lymphopoiesis from pluripotent stem cells guided by transcription factors. Cell Mol Immunol 2022; 19:492-503. [PMID: 34893754 PMCID: PMC8975874 DOI: 10.1038/s41423-021-00805-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Regeneration of functional B lymphopoiesis from pluripotent stem cells (PSCs) is challenging, and reliable methods have not been developed. Here, we unveiled the guiding role of three essential factors, Lhx2, Hoxa9, and Runx1, the simultaneous expression of which preferentially drives B lineage fate commitment and in vivo B lymphopoiesis using PSCs as a cell source. In the presence of Lhx2, Hoxa9, and Runx1 expression, PSC-derived induced hematopoietic progenitors (iHPCs) immediately gave rise to pro/pre-B cells in recipient bone marrow, which were able to further differentiate into entire B cell lineages, including innate B-1a, B-1b, and marginal zone B cells, as well as adaptive follicular B cells. In particular, the regenerative B cells produced adaptive humoral immune responses, sustained antigen-specific antibody production, and formed immune memory in response to antigen challenges. The regenerative B cells showed natural B cell development patterns of immunoglobulin chain switching and hypermutation via cross-talk with host T follicular helper cells, which eventually formed T cell-dependent humoral responses. This study exhibits de novo evidence that B lymphopoiesis can be regenerated from PSCs via an HSC-independent approach, which provides insights into treating B cell-related deficiencies using PSCs as an unlimited cell resource.
Collapse
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bingyan Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qitong Weng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangxiao Hu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yunqing Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chengxiang Xia
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Huan Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lijuan Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiapin Xiong
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yalan Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyun Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Juan Du
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Raczkowski HL, Xu LS, Wang WC, Dekoter RP. The E26 Transformation-Specific Family Transcription Factor Spi-C Is Dynamically Regulated by External Signals in B Cells. Immunohorizons 2022; 6:104-115. [PMID: 38285436 DOI: 10.4049/immunohorizons.2100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/31/2021] [Indexed: 01/30/2024] Open
Abstract
Spi-C is an E26 transformation-specific transcription factor closely related to PU.1 and Spi-B. Spi-C has lineage-instructive functions important in B cell development, Ab-generating responses, and red pulp macrophage generation. This research examined the regulation of Spi-C expression in mouse B cells. To determine the mechanism of Spic regulation, we identified the Spic promoter and upstream regulatory elements. The Spic promoter had unidirectional activity that was reduced by mutation of an NF-κB binding site. Reverse transcription-quantitative PCR analysis revealed that Spic expression was reduced in B cells following treatment with cytokines BAFF + IL-4 + IL-5, anti-IgM Ab, or LPS. Cytochalasin treatment partially prevented downregulation of Spic. Unstimulated B cells upregulated Spic on culture. Spic was repressed by an upstream regulatory region interacting with the heme-binding regulator Bach2. Taken together, these data indicate that Spi-C is dynamically regulated by external signals in B cells and provide insight into the mechanism of regulation.
Collapse
Affiliation(s)
- Hannah L Raczkowski
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Li S Xu
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Wei Cen Wang
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Rodney P Dekoter
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
12
|
Abstract
Development of B cells requires the programmed generation and repair of double-stranded DNA breaks in antigen receptor genes. Investigation of the cellular responses to these DNA breaks has established important insights into B cell development and, more broadly, has provided fundamental advances into the molecular mechanisms of DNA damage response pathways. Abelson transformed pre-B cell lines and primary pre-B cell cultures are malleable experimental systems with diverse applications for studying DNA damage responses. This chapter describes methods for generating these cellular systems, inducing and quantifying DSBs, and assessing DNA damage programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynn S White
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Chen BR, Sleckman BP. A Whole Genome CRISPR/Cas9 Screening Approach for Identifying Genes Encoding DNA End-Processing Proteins. Methods Mol Biol 2022; 2444:15-27. [PMID: 35290629 DOI: 10.1007/978-1-0716-2063-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA double-strand breaks (DSBs) are mainly repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of HR or NHEJ is dictated in part by whether the broken DNA ends are resected to generate extended single-stranded DNA (ssDNA) overhangs, which are quickly bound by the trimeric ssDNA binding complex RPA, the first step of HR. Here we describe a series of protocols for generating Abelson murine leukemia virus-transformed pre-B cells (abl pre-B cells) with stably integrated inducible Cas9 that can be used to identify and study novel pathways regulating DNA end processing. These approaches involve gene inactivation by CRISPR/Cas9, whole genome guide RNA (gRNA) library-mediated screen, and flow cytometry-based detection of chromatin-bound RPA after DNA damage.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Barry P Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Chen BR, Wang Y, Tubbs A, Zong D, Fowler FC, Zolnerowich N, Wu W, Bennett A, Chen CC, Feng W, Nussenzweig A, Tyler JK, Sleckman BP. LIN37-DREAM prevents DNA end resection and homologous recombination at DNA double-strand breaks in quiescent cells. eLife 2021; 10:68466. [PMID: 34477552 PMCID: PMC8416021 DOI: 10.7554/elife.68466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is thought to be restricted to the S- and G2- phases of the cell cycle in part due to 53BP1 antagonizing DNA end resection in G1-phase and non-cycling quiescent (G0) cells. Here, we show that LIN37, a component of the DREAM transcriptional repressor, functions in a 53BP1-independent manner to prevent DNA end resection and HR in G0 cells. Loss of LIN37 leads to the expression of HR proteins, including BRCA1, BRCA2, PALB2, and RAD51, and promotes DNA end resection in G0 cells even in the presence of 53BP1. In contrast to 53BP1-deficiency, DNA end resection in LIN37-deficient G0 cells depends on BRCA1 and leads to RAD51 filament formation and HR. LIN37 is not required to protect DNA ends in cycling cells at G1-phase. Thus, LIN37 regulates a novel 53BP1-independent cell phase-specific DNA end protection pathway that functions uniquely in quiescent cells.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Anthony Tubbs
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Faith C Fowler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Nicholas Zolnerowich
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Amelia Bennett
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Chun-Chin Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Wendy Feng
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Barry P Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
15
|
Yuan M, Wang Y, Qin M, Zhao X, Chen X, Li D, Miao Y, Otieno Odhiambo W, Liu H, Ma Y, Ji Y. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo. Cancer Sci 2021; 112:2679-2691. [PMID: 33949040 PMCID: PMC8253288 DOI: 10.1111/cas.14939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
BCR-ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML-LBC) lineage and BCR-ABL1+ acute lymphoblastic leukemia (BCR-ABL1+ ALL). The recombination-activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML-LBC and BCR-ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild-type (WT) RAG and catalytically inactive RAG-expressing BCR-ABL1+ and BCR-ABL1- cell lines, respectively, and demonstrate that BCR-ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG-expressing BCR-ABL1+ cell lines and primary CD34+ bone marrow cells from CML-LBC samples maintain more double-strand breaks (DSB) compared to catalytically inactive RAG-expressing BCR-ABL1+ cell lines and RAG-deficient CML-CP samples, which are measured by γ-H2AX. WT RAG-expressing BCR-ABL1+ cells are biased to repair RAG-mediated DSB by the alternative non-homologous end joining pathway (a-NHEJ), which could contribute genomic instability through increasing the expression of a-NHEJ-related MRE11 and RAD50 proteins. As a result, RAG-expressing BCR-ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR-ABL1 signaling but independent of the levels of BCR-ABL1 expression and mutations in the BCR-ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR-ABL1+ leukemia through its endonuclease activity.
Collapse
MESH Headings
- Acid Anhydride Hydrolases/metabolism
- Animals
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Endonucleases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Heterografts
- Histones/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MRE11 Homologue Protein/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Dandan Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Department of Clinical laboratoryXi’an No. 3 HospitalThe Affiliated Hospital of Northwest UniversityXi’anChina
| | - Wood Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Huasheng Liu
- Department of HematologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| |
Collapse
|
16
|
Ioniţă E, Marcu A, Temelie M, Savu D, Şerbănescu M, Ciubotaru M. Radiofrequency EMF irradiation effects on pre-B lymphocytes undergoing somatic recombination. Sci Rep 2021; 11:12651. [PMID: 34135382 PMCID: PMC8208969 DOI: 10.1038/s41598-021-91790-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Intense electromagnetic fields (EMFs) induce DNA double stranded breaks (DSBs) in exposed lymphocytes.We study developing pre-B lymphocytes following V(D)J recombination at their Immunoglobulin light chain loci (IgL). Recombination physiologically induces DNA DSBs, and we tested if low doses of EMF irradiation affect this developmental stage. Recombining pre-B cells, were exposed for 48 h to low intensity EMFs (maximal radiative power density flux S of 9.5 µW/cm2 and electric field intensity 3 V/m) from waves of frequencies ranging from 720 to 1224 MHz. Irradiated pre-B cells show decreased levels of recombination, reduction which is dependent upon the power dose and most remarkably upon the frequency of the applied EMF. Although 50% recombination reduction cannot be obtained even for an S of 9.5 µW/cm2 in cells irradiated at 720 MHz, such an effect is reached in cells exposed to only 0.45 µW/cm2 power with 950 and 1000 MHz waves. A maximal four-fold recombination reduction was measured in cells exposed to 1000 MHz waves with S from 0.2 to 4.5 µW/cm2 displaying normal levels of γH2AX phosphorylated histone. Our findings show that developing B cells exposure to low intensity EMFs can affect the levels of production and diversity of their antibodies repertoire.
Collapse
Affiliation(s)
- Elena Ioniţă
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania.,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania
| | - Aurelian Marcu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihaela Temelie
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Diana Savu
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Mihai Şerbănescu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihai Ciubotaru
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania. .,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania.
| |
Collapse
|
17
|
Chen CC, Chen BR, Wang Y, Curman P, Beilinson HA, Brecht RM, Liu CC, Farrell RJ, de Juan-Sanz J, Charbonnier LM, Kajimura S, Ryan TA, Schatz DG, Chatila TA, Wikstrom JD, Tyler JK, Sleckman BP. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination. J Exp Med 2021; 218:212182. [PMID: 34033676 PMCID: PMC8155808 DOI: 10.1084/jem.20201708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 04/05/2021] [Accepted: 05/07/2021] [Indexed: 11/26/2022] Open
Abstract
A whole-genome CRISPR/Cas9 screen identified ATP2A2, the gene encoding the Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2 protein, as being important for V(D)J recombination. SERCAs are ER transmembrane proteins that pump Ca2+ from the cytosol into the ER lumen to maintain the ER Ca2+ reservoir and regulate cytosolic Ca2+-dependent processes. In preB cells, loss of SERCA2 leads to reduced V(D)J recombination kinetics due to diminished RAG-mediated DNA cleavage. SERCA2 deficiency in B cells leads to increased expression of SERCA3, and combined loss of SERCA2 and SERCA3 results in decreased ER Ca2+ levels, increased cytosolic Ca2+ levels, reduction in RAG1 and RAG2 gene expression, and a profound block in V(D)J recombination. Mice with B cells deficient in SERCA2 and humans with Darier disease, caused by heterozygous ATP2A2 mutations, have reduced numbers of mature B cells. We conclude that SERCA proteins modulate intracellular Ca2+ levels to regulate RAG1 and RAG2 gene expression and V(D)J recombination and that defects in SERCA functions cause lymphopenia.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Bo-Ruei Chen
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Philip Curman
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Ryan M Brecht
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Catherine C Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Ryan J Farrell
- Department of Biochemistry, Weill Cornell Medicine, New York, NY.,David Rockefeller Graduate Program, The Rockefeller University, New York, NY
| | | | | | - Shingo Kajimura
- Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes and Metabolism, Harvard Medical School, Boston, MA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Talal A Chatila
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Barry P Sleckman
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| |
Collapse
|
18
|
Dai HQ, Hu H, Lou J, Ye AY, Ba Z, Zhang X, Zhang Y, Zhao L, Yoon HS, Chapdelaine-Williams AM, Kyritsis N, Chen H, Johnson K, Lin S, Conte A, Casellas R, Lee CS, Alt FW. Loop extrusion mediates physiological Igh locus contraction for RAG scanning. Nature 2021; 590:338-343. [PMID: 33442057 PMCID: PMC9037962 DOI: 10.1038/s41586-020-03121-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
RAG endonuclease initiates Igh V(D)J recombination in progenitor B cells by binding a JH-recombination signal sequence (RSS) within a recombination centre (RC) and then linearly scanning upstream chromatin, presented by loop extrusion mediated by cohesin, for convergent D-RSSs1,2. The utilization of convergently oriented RSSs and cryptic RSSs is intrinsic to long-range RAG scanning3. Scanning of RAG from the DJH-RC-RSS to upstream convergent VH-RSSs is impeded by D-proximal CTCF-binding elements (CBEs)2-5. Primary progenitor B cells undergo a mechanistically undefined contraction of the VH locus that is proposed to provide distal VHs access to the DJH-RC6-9. Here we report that an inversion of the entire 2.4-Mb VH locus in mouse primary progenitor B cells abrogates rearrangement of both VH-RSSs and normally convergent cryptic RSSs, even though locus contraction still occurs. In addition, this inversion activated both the utilization of cryptic VH-RSSs that are normally in opposite orientation and RAG scanning beyond the VH locus through several convergent CBE domains to the telomere. Together, these findings imply that broad deregulation of CBE impediments in primary progenitor B cells promotes RAG scanning of the VH locus mediated by loop extrusion. We further found that the expression of wings apart-like protein homologue (WAPL)10, a cohesin-unloading factor, was low in primary progenitor B cells compared with v-Abl-transformed progenitor B cell lines that lacked contraction and RAG scanning of the VH locus. Correspondingly, depletion of WAPL in v-Abl-transformed lines activated both processes, further implicating loop extrusion in the locus contraction mechanism.
Collapse
Affiliation(s)
- Hai-Qiang Dai
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| | - Hongli Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiangman Lou
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Yongxin Ye
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhaoqing Ba
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xuefei Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yiwen Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lijuan Zhao
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hye Suk Yoon
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aimee M. Chapdelaine-Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nia Kyritsis
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Huan Chen
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kerstin Johnson
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sherry Lin
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Conte
- Lymphocyte Nuclear Biology, NIAMS, NIH, and Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, and Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Cheng-Sheng Lee
- Institute of Molecular and Cellular Biology, Department of Life Sciences, Hsinchu, Taiwan, 30013, R.O.C.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Correspondence: ; ; . Correspondence and requests for materials should be addressed to F.W.A
| |
Collapse
|
19
|
Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat Commun 2020; 11:5239. [PMID: 33067475 PMCID: PMC7567796 DOI: 10.1038/s41467-020-19060-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
The alternative non-homologous end-joining (NHEJ) pathway promotes DNA double-strand break (DSB) repair in cells deficient for NHEJ or homologous recombination, suggesting that it operates at all stages of the cell cycle. Here, we use an approach in which DNA breaks can be induced in G1 cells and their repair tracked, enabling us to show that joining of DSBs is not functional in G1-arrested XRCC4-deficient cells. Cell cycle entry into S-G2/M restores DSB repair by Pol θ-dependent and PARP1-independent alternative NHEJ with repair products bearing kilo-base long DNA end resection, micro-homologies and chromosome translocations. We identify a synthetic lethal interaction between XRCC4 and Pol θ under conditions of G1 DSBs, associated with accumulation of unresolved DNA ends in S-G2/M. Collectively, our results support the conclusion that the repair of G1 DSBs progressing to S-G2/M by alternative NHEJ drives genomic instability and represent an attractive target for future DNA repair-based cancer therapies. Depending on the cell cycle stage, cells can repair their genome via different pathways. Here the authors reveal mechanistic insights into repair of double strand breaks induced during G1 in an error-prone manner by Pol θ-dependent and PARP1-independent alt NHEJ during the SG2/M phases of the cell cycle
Collapse
|
20
|
Shinoda K, Maman Y, Canela A, Schatz DG, Livak F, Nussenzweig A. Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Rep 2020; 29:4471-4481.e6. [PMID: 31875554 DOI: 10.1016/j.celrep.2019.11.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022] Open
Abstract
During V(D)J recombination, RAG proteins introduce DNA double-strand breaks (DSBs) at recombination signal sequences (RSSs) that contain either 12- or 23-nt spacer regions. Coordinated 12/23 cleavage predicts that DSBs at variable (V) gene segments should equal the level of breakage at joining (J) segments. Contrary to this, here we report abundant RAG-dependent DSBs at multiple Vκ gene segments independent of V-J rearrangement. We find that a large fraction of Vκ gene segments are flanked not only by a bone-fide 12 spacer but also an overlapping, 23-spacer flipped RSS. These compatible pairs of RSSs mediate recombination and deletion inside the Vκ cluster even in the complete absence of Jκ gene segments and support a V(D)J recombination center (RC) independent of the conventional Jκ-centered RC. We propose an improved model of Vκ-Jκ repertoire formation by incorporating these surprisingly frequent, evolutionarily conserved intra-Vκ cluster recombination events.
Collapse
Affiliation(s)
- Kenta Shinoda
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA; The Hakubi Center for Advanced Research and Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Hurtz C, Wertheim GB, Loftus JP, Blumenthal D, Lehman A, Li Y, Bagashev A, Manning B, Cummins KD, Burkhardt JK, Perl AE, Carroll M, Tasian SK. Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. J Clin Invest 2020; 130:3637-3653. [PMID: 32191635 PMCID: PMC7324172 DOI: 10.1172/jci134424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
Children and adults with Philadelphia chromosome-like B cell acute lymphoblastic leukemia (Ph-like B-ALL) experience high relapse rates despite best-available conventional chemotherapy. Ph-like ALL is driven by genetic alterations that activate constitutive cytokine receptor and kinase signaling, and early-phase trials are investigating the potential of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy to improve clinical outcomes. However, preclinical studies have shown that JAK or PI3K pathway inhibition is insufficient to eradicate the most common cytokine receptor-like factor 2-rearranged (CRLF2-rearranged) Ph-like ALL subset. We thus sought to define additional essential signaling pathways required in Ph-like leukemogenesis for improved therapeutic targeting. Herein, we describe an adaptive signaling plasticity of CRLF2-rearranged Ph-like ALL following selective TKI pressure, which occurs in the absence of genetic mutations. Interestingly, we observed that Ph-like ALL cells have activated SRC, ERK, and PI3K signaling consistent with activated B cell receptor (BCR) signaling, although they do not express cell surface μ-heavy chain (μHC). Combinatorial targeting of JAK/STAT, PI3K, and "BCR-like" signaling with multiple TKIs and/or dexamethasone prevented this signaling plasticity and induced complete cell death, demonstrating a more optimal and clinically pragmatic therapeutic strategy for CRLF2-rearranged Ph-like ALL.
Collapse
Affiliation(s)
- Christian Hurtz
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Gerald B. Wertheim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Joseph P. Loftus
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Anne Lehman
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Yong Li
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asen Bagashev
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Bryan Manning
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Katherine D. Cummins
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
- Center for Cellular Immunotherapies
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematopathology
| | - Alexander E. Perl
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Martin Carroll
- Division of Hematology and Oncology and
- Abramson Cancer Center, Department of Medicine, and
| | - Sarah K. Tasian
- Division of Oncology, and
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, and
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Abstract
V(D)J recombination assembles and diversifies Ig and T cell receptor genes in developing B and T lymphocytes. The reaction is initiated by the RAG1-RAG2 protein complex which binds and cleaves at discrete gene segments in the antigen receptor loci. To identify mechanisms that regulate V(D)J recombination, we used proximity-dependent biotin identification to analyze the interactomes of full-length and truncated forms of RAG1 in pre-B cells. This revealed an association of RAG1 with numerous nucleolar proteins in a manner dependent on amino acids 216 to 383 and allowed identification of a motif required for nucleolar localization. Experiments in transformed pre-B cell lines and cultured primary pre-B cells reveal a strong correlation between disruption of nucleoli, reduced association of RAG1 with a nucleolar marker, and increased V(D)J recombination activity. Mutation of the RAG1 nucleolar localization motif boosts recombination while removal of the first 215 amino acids of RAG1, required for efficient egress from nucleoli, reduces recombination activity. Our findings indicate that nucleolar sequestration of RAG1 is a negative regulatory mechanism in V(D)J recombination and identify regions of the RAG1 N-terminal region that control nucleolar association and egress.
Collapse
|
23
|
Setz CS, Hug E, Khadour A, Abdelrasoul H, Bilal M, Hobeika E, Jumaa H. PI3K-Mediated Blimp-1 Activation Controls B Cell Selection and Homeostasis. Cell Rep 2019; 24:391-405. [PMID: 29996100 PMCID: PMC6057491 DOI: 10.1016/j.celrep.2018.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 11/04/2022] Open
Abstract
Activation of phosphoinositide 3-kinase (PI3K) signaling plays a central role in regulating proliferation and survival of B cells. Here, we tested the hypothesis that B cell receptor (BCR)-mediated activation of PI3K induces the terminal differentiation factor Blimp-1 that interferes with proliferation and survival, thereby controlling the expansion of activated B cells. In fact, B-cell-specific inactivation of Pten, the negative regulator of PI3K signaling, leads to deregulated PI3K activity and elevated Blimp-1 expression. Combined deficiency for Pten and Blimp-1 results in abnormal expansion of B-1 B cells and splenomegaly. Interestingly, Blimp-1 also acts at early stages of B cell development to regulate B cell selection, as Blimp-1 deficiency results in an increased proportion of autoreactive B cells. Together, our data suggest that the combined requirement of deregulated PI3K signaling in addition to defective terminal differentiation represents the basis for proper selection and expansion of developing B cells. B cell expansion is normal despite increased PI3K activity after Pten deletion Deregulated PI3K induces Blimp-1 and leads to premature terminal differentiation Premature terminal differentiation prevents expansion of activated B cells Expansion of B-1 B cells by autoreactive BCR and defective terminal differentiation
Collapse
Affiliation(s)
- Corinna S Setz
- Institute of Immunology, University Medical Center Ulm, 89081 Ulm, Germany
| | - Eva Hug
- Institute of Immunology, University Medical Center Ulm, 89081 Ulm, Germany
| | - Ahmad Khadour
- Institute of Immunology, University Medical Center Ulm, 89081 Ulm, Germany
| | - Hend Abdelrasoul
- Institute of Immunology, University Medical Center Ulm, 89081 Ulm, Germany; Genetic Engineering and Biotechnology Division, Molecular Biology Department, National Research Centre (NRC), 12622 Giza, Egypt
| | - Mayas Bilal
- Institute of Immunology, University Medical Center Ulm, 89081 Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, University Medical Center Ulm, 89081 Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Medical Center Ulm, 89081 Ulm, Germany.
| |
Collapse
|
24
|
Wang S, Chim B, Su Y, Khil P, Wong M, Wang X, Foroushani A, Smith PT, Liu X, Li R, Ganesan S, Kanellopoulou C, Hafner M, Muljo SA. Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3. Genes Dev 2019; 33:1048-1068. [PMID: 31221665 PMCID: PMC6672051 DOI: 10.1101/gad.325100.119] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023]
Abstract
Fetal hematopoietic stem and progenitor cells (HSPCs) hold promise to cure a wide array of hematological diseases, and we previously found a role for the RNA-binding protein (RBP) Lin28b in respecifying adult HSPCs to resemble their fetal counterparts. Here we show by single-cell RNA sequencing that Lin28b alone was insufficient for complete reprogramming of gene expression from the adult toward the fetal pattern. Using proteomics and in situ analyses, we found that Lin28b (and its closely related paralog, Lin28a) directly interacted with Igf2bp3, another RBP, and their enforced co-expression in adult HSPCs reactivated fetal-like B-cell development in vivo more efficiently than either factor alone. In B-cell progenitors, Lin28b and Igf2bp3 jointly stabilized thousands of mRNAs by binding at the same sites, including those of the B-cell regulators Pax5 and Arid3a as well as Igf2bp3 mRNA itself, forming an autoregulatory loop. Our results suggest that Lin28b and Igf2bp3 are at the center of a gene regulatory network that mediates the fetal-adult hematopoietic switch. A method to efficiently generate induced fetal-like hematopoietic stem cells (ifHSCs) will facilitate basic studies of their biology and possibly pave a path toward their clinical application.
Collapse
Affiliation(s)
- Saifeng Wang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bryan Chim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yijun Su
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pavel Khil
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Madeline Wong
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amir Foroushani
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Patrick T Smith
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiuhuai Liu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rui Li
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chrysi Kanellopoulou
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stefan A Muljo
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Rodgers W, Byrum JN, Simpson DA, Hoolehan W, Rodgers KK. RAG2 localization and dynamics in the pre-B cell nucleus. PLoS One 2019; 14:e0216137. [PMID: 31075127 PMCID: PMC6510410 DOI: 10.1371/journal.pone.0216137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
RAG2 of the V(D)J recombinase is essential for lymphocyte development. Within the RAG2 noncore region is a plant homeodomain (PHD) that interacts with the modified histone H3K4me3, and this interaction is important for relieving inhibition of the RAG recombinase for V(D)J recombination. However, the effect of the noncore region on RAG2 localization and dynamics in cell nuclei is poorly understood. Here, we used cell imaging to measure the effect of mutating the RAG2 noncore region on properties of the full length protein. We measured GFP-labeled full length RAG2 (FL), the RAG2 core region alone (Core), and a T490A mutant in the noncore region, which has unique regulatory properties. This showed that FL, T490A, and Core localized to nuclear domains that were adjacent to DAPI-rich heterochromatin, and that contained the active chromatin marker H3K4me3. Within the RAG2-enriched regions, T490A exhibited greater colocalization with H3K4me3 than either FL or Core. Furthermore, colocalization of H3K4me3 with FL and T490A, but not Core, increased in conditions that increased H3K4me3 levels. Superresolution imaging showed H3K4me3 was distributed as puncta that RAG2 abutted, and mobility measurements showed that T490A had a significantly lower rate of diffusion within the nucleus than either FL or Core proteins. Finally, mutating Trp453 of the T490A mutant (W453A,T490A), which blocks PHD-dependent interactions with H3K4me3, abolished the T490A-mediated increased colocalization with H3K4me3 and slower mobility compared to FL. Altogether, these data show that Thr490 in the noncore region modulates RAG2 localization and dynamics in the pre-B cell nucleus, such as by affecting RAG2 interactions with H3K4me3.
Collapse
Affiliation(s)
- William Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, United States of America
| | - Jennifer N. Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Destiny A. Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Karla K. Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
26
|
Galindo-Campos MA, Bedora-Faure M, Farrés J, Lescale C, Moreno-Lama L, Martínez C, Martín-Caballero J, Ampurdanés C, Aparicio P, Dantzer F, Cerutti A, Deriano L, Yélamos J. Coordinated signals from the DNA repair enzymes PARP-1 and PARP-2 promotes B-cell development and function. Cell Death Differ 2019; 26:2667-2681. [PMID: 30996287 DOI: 10.1038/s41418-019-0326-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 regulate the function of various DNA-interacting proteins by transferring ADP-ribose emerging from catalytic cleavage of cellular β-NAD+. Hence, mice lacking PARP-1 or PARP-2 show DNA perturbations ranging from altered DNA integrity to impaired DNA repair. These effects stem from the central role that PARP-1 and PARP-2 have on the cellular response to DNA damage. Failure to mount a proper response culminates in cell death. Accordingly, PARP inhibitors are emerging as promising drugs in cancer therapy. However, the full impact of these inhibitors on immunity, including B-cell antibody production, remains elusive. Given that mice carrying dual PARP-1 and PARP-2 deficiency develop early embryonic lethality, we crossed PARP-1-deficient mice with mice carrying a B-cell-conditional PARP-2 gene deletion. We found that the resulting dually PARP-1 and PARP-2-deficient mice had perturbed bone-marrow B-cell development as well as profound peripheral depletion of transitional and follicular but not marginal zone B-cells. Of note, bone-marrow B-cell progenitors and peripheral mature B-cells were conserved in mice carrying either PARP-1 or PARP-2 deficiency. In dually PARP-1 and PARP-2-deficient mice, B-cell lymphopenia was associated with increased DNA damage and accentuated death in actively proliferating B-cells. Moreover, dual PARP-1 and PARP-2 deficiency impaired antibody responses to T-independent carbohydrate but not to T-dependent protein antigens. Notwithstanding the pivotal role of PARP-1 and PARP-2 in DNA repair, combined PARP-1 and PARP-2 deficiency did not perturb the DNA-editing processes required for the generation of a protective antibody repertoire, including Ig V(D)J gene recombination and IgM-to-IgG class switching. These findings provide key information as to the potential impact of PARP inhibitors on humoral immunity, which will facilitate the development of safer PARP-targeting regimens against cancer.
Collapse
Affiliation(s)
- Miguel A Galindo-Campos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France
| | - Jordi Farrés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France
| | - Lucia Moreno-Lama
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carlos Martínez
- Experimental Pathology Unit, IMIB-LAIB-Arrixaca, Murcia, Spain
| | | | - Coral Ampurdanés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | - Françoise Dantzer
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Andrea Cerutti
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.,Inflammatory and Cardiovascular Disorders Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France.
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,Department of Immunology, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
27
|
Barajas-Mora EM, Kleiman E, Xu J, Carrico NC, Lu H, Oltz EM, Murre C, Feeney AJ. A B-Cell-Specific Enhancer Orchestrates Nuclear Architecture to Generate a Diverse Antigen Receptor Repertoire. Mol Cell 2018; 73:48-60.e5. [PMID: 30449725 DOI: 10.1016/j.molcel.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The genome is organized into topologically associated domains (TADs) that enclose smaller subTADs. Here, we identify and characterize an enhancer that is located in the middle of the V gene region of the immunoglobulin kappa light chain (Igκ) locus that becomes active preceding the stage at which this locus undergoes V(D)J recombination. This enhancer is a hub of long-range chromatin interactions connecting subTADs in the V gene region with the recombination center at the J genes. Deletion of this element results in a highly altered long-range chromatin interaction pattern across the locus and, importantly, affects individual V gene utilization locus-wide. These results indicate the existence of an enhancer-dependent framework in the Igκ locus and further suggest that the composition of the diverse antibody repertoire is regulated in a subTAD-specific manner. This enhancer thus plays a structural role in orchestrating the proper folding of the Igκ locus in preparation for V(D)J recombination.
Collapse
Affiliation(s)
- E Mauricio Barajas-Mora
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eden Kleiman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Xu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy C Carrico
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hanbin Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Kleiman E, Xu J, Feeney AJ. Cutting Edge: Proper Orientation of CTCF Sites in Cer Is Required for Normal Jκ-Distal and Jκ-Proximal Vκ Gene Usage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1633-1638. [PMID: 30076197 PMCID: PMC6125182 DOI: 10.4049/jimmunol.1800785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/17/2018] [Indexed: 01/24/2023]
Abstract
Igκ locus contraction and Vκ gene usage are controlled by Cer, a cis-acting sequence in the Vκ-Jκ intervening region. This effect is attributed to two CTCF-binding sites within Cer that are oriented toward the Vκ gene region. However, the importance of Cer CTCF orientation in regulating VκJκ rearrangement is unknown. We used CRISPR/Cas9 editing to delete and invert Cer in murine Abl pro-B cell lines. This revealed that Cer orientation is critical because clones with either an inverted or deleted Cer element show skewing toward Jκ-proximal Vκ gene usage. However, only Cer deletion increased Jκ-proximal Vκ germline transcription, suggesting an insulating function of Cer. Lastly, circularized chromosome conformation capture interaction data show that Cer CTCF orientation regulates long-range interactions with inversion clones displaying fewer interactions with regions in the middle and distal parts of the Vκ locus and more interactions to downstream regions compared with wild-type or deletion clones.
Collapse
Affiliation(s)
- Eden Kleiman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jeffrey Xu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
29
|
Fistonich C, Zehentmeier S, Bednarski JJ, Miao R, Schjerven H, Sleckman BP, Pereira JP. Cell circuits between B cell progenitors and IL-7 + mesenchymal progenitor cells control B cell development. J Exp Med 2018; 215:2586-2599. [PMID: 30158115 PMCID: PMC6170173 DOI: 10.1084/jem.20180778] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023] Open
Abstract
B cell development is characterized by well-defined transitions. Fistonich et al. demonstrate that two distinct cell circuits formed between proB, preB, and IL-7+ cells regulate the size and quality of B cell progenitors and control B cell development. B cell progenitors require paracrine signals such as interleukin-7 (IL-7) provided by bone marrow stromal cells for proliferation and survival. Yet, how B cells regulate access to these signals in vivo remains unclear. Here we show that proB and IL-7+ cells form a cell circuit wired by IL-7R signaling, which controls CXCR4 and focal adhesion kinase (FAK) expression and restricts proB cell movement due to increased adhesion to IL-7+CXCL12Hi cells. PreBCR signaling breaks this circuit by switching the preB cell behavior into a fast-moving and lower-adhesion state via increased CXCR4 and reduced FAK/α4β1 expression. This behavioral change reduces preB cell exposure to IL-7, thereby attenuating IL-7R signaling in vivo. Remarkably, IL-7 production is downregulated by signals provided by preB cells with unrepaired double-stranded DNA breaks and by preB acute lymphoblastic leukemic cells. Combined, these studies revealed that distinct cell circuits control the quality and homeostasis of B cell progenitors.
Collapse
Affiliation(s)
- Chris Fistonich
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Runfeng Miao
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT
| |
Collapse
|
30
|
Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, Nguyen LXT. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol 2018; 233:9110-9120. [PMID: 30076717 DOI: 10.1002/jcp.26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Nguyen Vo
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
31
|
Schabla NM, Perry GA, Palmer VL, Swanson PC. VprBP (DCAF1) Regulates RAG1 Expression Independently of Dicer by Mediating RAG1 Degradation. THE JOURNAL OF IMMUNOLOGY 2018; 201:930-939. [PMID: 29925675 DOI: 10.4049/jimmunol.1800054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/03/2018] [Indexed: 12/21/2022]
Abstract
The assembly of Ig genes in developing B lymphocytes by V(D)J recombination is initiated by the RAG1-RAG2 endonuclease complex. We previously identified an interaction between RAG1 and viral protein R binding protein (VprBP) (also known as DNA damage binding protein 1 cullin 4-associated factor 1 [DCAF1]), a substrate receptor for the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase (CRL4). We report in this article that in mice, B cell-intrinsic loss of VprBP increases RAG1 protein levels and disrupts expression of the endoribonuclease Dicer, which is essential for microRNA maturation. Rag1/2 transcription is known to be derepressed by loss of microRNA-mediated suppression of phosphatase and tensin homolog, raising the possibility that the elevated level of RAG1 observed in VprBP-deficient B cells is caused indirectly by the loss of Dicer. However, we show that VprBP restrains RAG1 expression posttranscriptionally and independently of Dicer. Specifically, loss of VprBP stabilizes RAG1 protein, which we show is normally degraded via a mechanism requiring both 20S proteasome and cullin-RING E3 ubiquitin ligase activity. Furthermore, we show that RAG1 stabilization through small molecule inhibition of cullin-RING E3 ubiquitin ligase activation promotes V(D)J recombination in a murine pre-B cell line. Thus, in addition to identifying a role for VprBP in maintaining Dicer levels in B cells, our findings reveal the basis for RAG1 turnover and provide evidence that the CRL4VprBP(DCAF1) complex functions to maintain physiological levels of V(D)J recombination.
Collapse
Affiliation(s)
- N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Greg A Perry
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Victoria L Palmer
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| |
Collapse
|
32
|
Hewitt SL, Wong JB, Lee JH, Nishana M, Chen H, Coussens M, Arnal SM, Blumenberg LM, Roth DB, Paull TT, Skok JA. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect. Cell Rep 2018; 21:979-993. [PMID: 29069605 PMCID: PMC5662208 DOI: 10.1016/j.celrep.2017.09.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.
Collapse
Affiliation(s)
- Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jason B Wong
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Hongxi Chen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Marc Coussens
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suzzette M Arnal
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Lili M Blumenberg
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
33
|
Corrected and Republished from: BCL11A Is a Critical Component of a Transcriptional Network That Activates RAG Expression and V(D)J Recombination. Mol Cell Biol 2017; 38:MCB.00362-17. [PMID: 29038163 DOI: 10.1128/mcb.00362-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the RAG1 promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells. We employed BCL11A overexpression with recombination substrates to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.
Collapse
|
34
|
Bredemeyer AL, Edwards BS, Haynes MK, Morales AJ, Wang Y, Ursu O, Waller A, Sklar LA, Sleckman BP. High-Throughput Screening Approach for Identifying Compounds That Inhibit Nonhomologous End Joining. SLAS DISCOVERY 2017; 23:624-633. [PMID: 29232168 DOI: 10.1177/2472555217746324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA double-strand breaks (DSBs) are repaired primarily by homologous recombination (HR) or nonhomologous end joining (NHEJ). Compounds that modulate HR have shown promise as cancer therapeutics. The V(D)J recombination reaction, which assembles antigen receptor genes in lymphocytes, is initiated by the introduction of DNA DSBs at two recombining gene segments by the RAG endonuclease, followed by the NHEJ-mediated repair of these DSBs. Here, using HyperCyt automated flow cytometry, we develop a robust high-throughput screening (HTS) assay for NHEJ that utilizes engineered pre-B-cell lines where the V(D)J recombination reaction can be induced and monitored at a single-cell level. This approach, novel in processing four 384-well plates at a time in parallel, was used to screen the National Cancer Institute NeXT library to identify compounds that inhibit V(D)J recombination and NHEJ. Assessment of cell light scattering characteristics at the primary HTS stage (83,536 compounds) enabled elimination of 60% of apparent hits as false positives. Although all the active compounds that we identified had an inhibitory effect on RAG cleavage, we have established this as an approach that could identify compounds that inhibit RAG cleavage or NHEJ using new chemical libraries.
Collapse
Affiliation(s)
- Andrea L Bredemeyer
- 1 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce S Edwards
- 2 University of New Mexico Health Sciences Center and Cancer Research and Treatment Center, Department of Pathology, Cytometry, New Mexico Molecular Libraries Screening Center, Albuquerque, NM, USA
| | - Mark K Haynes
- 2 University of New Mexico Health Sciences Center and Cancer Research and Treatment Center, Department of Pathology, Cytometry, New Mexico Molecular Libraries Screening Center, Albuquerque, NM, USA
| | - Abigail J Morales
- 3 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yinan Wang
- 3 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Oleg Ursu
- 2 University of New Mexico Health Sciences Center and Cancer Research and Treatment Center, Department of Pathology, Cytometry, New Mexico Molecular Libraries Screening Center, Albuquerque, NM, USA
| | - Anna Waller
- 2 University of New Mexico Health Sciences Center and Cancer Research and Treatment Center, Department of Pathology, Cytometry, New Mexico Molecular Libraries Screening Center, Albuquerque, NM, USA
| | - Larry A Sklar
- 2 University of New Mexico Health Sciences Center and Cancer Research and Treatment Center, Department of Pathology, Cytometry, New Mexico Molecular Libraries Screening Center, Albuquerque, NM, USA
| | - Barry P Sleckman
- 3 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
35
|
Lenden Hasse H, Lescale C, Bianchi JJ, Yu W, Bedora-Faure M, Deriano L. Generation and CRISPR/Cas9 editing of transformed progenitor B cells as a pseudo-physiological system to study DNA repair gene function in V(D)J recombination. J Immunol Methods 2017; 451:71-77. [PMID: 28882611 PMCID: PMC5714433 DOI: 10.1016/j.jim.2017.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022]
Abstract
Antigen receptor gene assembly is accomplished in developing lymphocytes by the V(D)J recombination reaction, which can be separated into two steps: DNA cleavage by the recombination-activating gene (RAG) nuclease and joining of DNA double strand breaks (DSBs) by components of the nonhomologous end joining (NHEJ) pathway. Deficiencies for NHEJ factors can result in immunodeficiency and a propensity to accumulate genomic instability, thus highlighting the importance of identifying all players in this process and deciphering their functions. Bcl2 transgenic v-Abl kinase-transformed pro-B cells provide a pseudo-physiological cellular system to study V(D)J recombination. Treatment of v-Abl/Bcl2 pro-B cells with the Abl kinase inhibitor Imatinib leads to G1 cell cycle arrest, the rapid induction of Rag1/2 gene expression and V(D)J recombination. In this system, the Bcl2 transgene alleviates Imatinib-induced apoptosis enabling the analysis of induced V(D)J recombination. Although powerful, the use of mouse models carrying the Bcl2 transgene for the generation of v-Abl pro-B cell lines is time and money consuming. Here, we describe a method for generating v-Abl/Bcl2 pro-B cell lines from wild type mice and for performing gene knock-out using episomal CRISPR/Cas9 targeting vectors. Using this approach, we generated distinct NHEJ-deficient pro-B cell lines and quantified V(D)J recombination levels in these cells. Furthermore, this methodology can be adapted to generate pro-B cell lines deficient for any gene suspected to play a role in V(D)J recombination, and more generally DSB repair.
Collapse
Affiliation(s)
- Hélène Lenden Hasse
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Joy J Bianchi
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, Paris 75015, France
| | - Wei Yu
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
36
|
Dual Mechanism of Rag Gene Repression by c-Myb during Pre-B Cell Proliferation. Mol Cell Biol 2017; 37:MCB.00437-16. [PMID: 28373291 DOI: 10.1128/mcb.00437-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/26/2017] [Indexed: 11/20/2022] Open
Abstract
Developing B lymphocytes undergo clonal expansion following successful immunoglobulin heavy chain gene rearrangement. During this proliferative burst, expression of the Rag genes is transiently repressed to prevent the generation of double-stranded DNA (dsDNA) breaks in cycling large pre-B cells. The Rag genes are then reexpressed in small, resting pre-B cells for immunoglobulin light chain gene rearrangement. We previously identified c-Myb as a repressor of Rag transcription during clonal expansion using Abelson murine leukemia virus-transformed B cells. Nevertheless, the molecular mechanisms by which c-Myb achieved precise spatiotemporal repression of Rag expression remained obscure. Here, we identify two mechanisms by which c-Myb represses Rag transcription. First, c-Myb negatively regulates the expression of the Rag activator Foxo1, an activity dependent on M303 in c-Myb's transactivation domain, and likely the recruitment of corepressors to the Foxo1 locus by c-Myb. Second, c-Myb represses Rag transcription directly by occupying the Erag enhancer and antagonizing Foxo1 binding to a consensus forkhead site in this cis-regulatory element that we show is crucial for Rag expression in Abelson pre-B cell lines. This work provides important mechanistic insight into how spatiotemporal expression of the Rag genes is tightly controlled during B lymphocyte development to prevent mistimed dsDNA breaks and their deleterious consequences.
Collapse
|
37
|
Dong Y, Wu C, Zhao X, Zhang P, Zhang H, Zheng M, Li S, Jiao J, Yu X, Lv Z, Ji Y. Epigenetic modifications of the V H region after DJ H recombination in Pro-B cells. Immunology 2017; 152:218-231. [PMID: 28502113 DOI: 10.1111/imm.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022] Open
Abstract
The variable region of murine immunoglobulin heavy chain (Igh) is assembled by sequential DH -JH and VH -DJH recombination. The accessibility of the Igh locus determines the order of rearrangement. Because of the large number of VH genes and the lack of a suitable model, the epigenetic modifications of VH genes after DJH recombination have not previously been characterized. Here, we employed two v-Abl pro-B cell lines, in which the Igh locus is in germline and DJH -recombined configurations, respectively. The DJH junction displays the characteristics of a recombination centre, such as high levels of activation-associated histone modifications and recombination-activating gene protein (RAG) binding in DJH -rearranged pro-B cells, which extend the recombination centre model proposed for the germline Igh locus. The different domains of the VH region have distinct epigenetic characteristics after DJH recombination. Distal VH genes have higher levels of active histone modifications, germline transcription and Pax5 binding, and good quality recombination signal sequences. Proximal VH genes are relatively close to the DJH recombination centre, which partially compensates for the low levels of the above active epigenetic modifications. DJH recombination centre might serve as a cis-acting element to regulate the accessibility of the VH region. Furthermore, we demonstrate that RAG weakly binds to functional VH genes, which is the first detailed assessment of RAG dynamic binding to VH genes. We provide a way for VH -DJH recombination in which the VH gene is brought into close proximity with the DJH recombination centre for RAG binding by a Pax5-dependent chromosomal compaction event, and held in this position for subsequent cleavage and VH -DJH joining.
Collapse
Affiliation(s)
- Yanying Dong
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Caijun Wu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Ping Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Hua Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Mingzhe Zheng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Shichang Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Junna Jiao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Xiaozhuo Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Zhuangwei Lv
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2943-2956. [PMID: 28213501 PMCID: PMC5360515 DOI: 10.4049/jimmunol.1601639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.
Collapse
Affiliation(s)
- Megan R Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Noah B Bloch
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06520
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
39
|
Lio CW, Zhang J, González-Avalos E, Hogan PG, Chang X, Rao A. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. eLife 2016; 5. [PMID: 27869616 PMCID: PMC5142813 DOI: 10.7554/elife.18290] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022] Open
Abstract
Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine, facilitating DNA demethylation and generating new epigenetic marks. Here we show that concomitant loss of Tet2 and Tet3 in mice at early B cell stage blocked the pro- to pre-B cell transition in the bone marrow, decreased Irf4 expression and impaired the germline transcription and rearrangement of the Igκ locus. Tet2/3-deficient pro-B cells showed increased CpG methylation at the Igκ 3' and distal enhancers that was mimicked by depletion of E2A or PU.1, as well as a global decrease in chromatin accessibility at enhancers. Importantly, re-expression of the Tet2 catalytic domain in Tet2/3-deficient B cells resulted in demethylation of the Igκ enhancers and restored their chromatin accessibility. Our data suggest that TET proteins and lineage-specific transcription factors cooperate to influence chromatin accessibility and Igκ enhancer function by modulating the modification status of DNA.
Collapse
Affiliation(s)
- Chan-Wang Lio
- Division of Signaling and Gene Expression, San Diego, United States
| | - Jiayuan Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Patrick G Hogan
- Division of Signaling and Gene Expression, San Diego, United States
| | - Xing Chang
- Division of Signaling and Gene Expression, San Diego, United States.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sanford Consortium for Regenerative Medicine, San Diego, United States
| | - Anjana Rao
- Division of Signaling and Gene Expression, San Diego, United States.,Sanford Consortium for Regenerative Medicine, San Diego, United States.,Department of Pharmacology, University of California, San Diego, San Diego, United States.,Moores Cancer Center, University of California, San Diego, San Diego, United States
| |
Collapse
|
40
|
Lescale C, Lenden Hasse H, Blackford AN, Balmus G, Bianchi JJ, Yu W, Bacoccina L, Jarade A, Clouin C, Sivapalan R, Reina-San-Martin B, Jackson SP, Deriano L. Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination. Cell Rep 2016; 16:2967-2979. [PMID: 27601299 PMCID: PMC5033762 DOI: 10.1016/j.celrep.2016.08.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/04/2022] Open
Abstract
Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Hélène Lenden Hasse
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Gabriel Balmus
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Joy J Bianchi
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, Paris 75015, France
| | - Wei Yu
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Léa Bacoccina
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Angélique Jarade
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Christophe Clouin
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Rohan Sivapalan
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964, CNRS-UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Maintenance of Genome Stability, Genome Campus, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
41
|
Ochodnicka-Mackovicova K, Bahjat M, Maas C, van der Veen A, Bloedjes TA, de Bruin AM, van Andel H, Schrader CE, Hendriks RW, Verhoeyen E, Bende RJ, van Noesel CJM, Guikema JEJ. The DNA Damage Response Regulates RAG1/2 Expression in Pre-B Cells through ATM-FOXO1 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:2918-29. [PMID: 27559048 DOI: 10.4049/jimmunol.1501989] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Chiel Maas
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Amélie van der Veen
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Timon A Bloedjes
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Alexander M de Bruin
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Harmen van Andel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, CNRS, UMR5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France; and INSERM, U1065, Centre de Médecine Moléculaire, Équipe 3, 06204 Nice, France
| | - Richard J Bende
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
42
|
Kong NR, Davis M, Chai L, Winoto A, Tjian R. MEF2C and EBF1 Co-regulate B Cell-Specific Transcription. PLoS Genet 2016; 12:e1005845. [PMID: 26900922 PMCID: PMC4762780 DOI: 10.1371/journal.pgen.1005845] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic stem cells are capable of self-renewal or differentiation along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for blood progenitor cells is whether to adopt the lymphoid or myeloid fate. Previous work had shown that myocyte enhancer factor 2C (MEF2C) is indispensable for the lymphoid fate decision, yet the specific mechanism of action remained unclear. Here, we have identified early B cell factor-1 (EBF1) as a co-regulator of gene expression with MEF2C. A genome-wide survey of MEF2C and EBF1 binding sites identified a subset of B cell-specific genes that they target. We also determined that the p38 MAPK pathway activates MEF2C to drive B cell differentiation. Mef2c knockout mice showed reduced B lymphoid-specific gene expression as well as increased myeloid gene expression, consistent with MEF2C's role as a lineage fate regulator. This is further supported by interaction between MEF2C and the histone deacetylase, HDAC7, revealing a likely mechanism to repress the myeloid transcription program. This study thus elucidates both activation and repression mechanisms, identifies regulatory partners, and downstream targets by which MEF2C regulates lymphoid-specific differentiation.
Collapse
Affiliation(s)
- Nikki R. Kong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Matthew Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Li Chai
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Astar Winoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Office of the President, Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lescale C, Abramowski V, Bedora-Faure M, Murigneux V, Vera G, Roth DB, Revy P, de Villartay JP, Deriano L. RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat Commun 2016; 7:10529. [PMID: 26833222 PMCID: PMC4740868 DOI: 10.1038/ncomms10529] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2c/c mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites. In addition, Rag2c/cXLF−/−p53−/− mice develop aggressive pro-B cell lymphomas bearing complex chromosomal translocations and gene amplifications involving Igh and c-myc/pvt1 loci. Our results reveal an unanticipated functional interplay between the RAG complex and XLF in repairing RAG-induced DSBs and maintaining genome integrity during antigen receptor gene assembly. Antigen receptor diversity relies on careful DNA cleavage and repair. Here the authors identify a functional interplay between RAG2 and XLF during V(D)J recombination, revealing an important role for the RAG complex in repairing induced DNA double-strand breaks and maintaining genome integrity.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Vincent Abramowski
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Marie Bedora-Faure
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Valentine Murigneux
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Gabriella Vera
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - David B Roth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| |
Collapse
|
44
|
Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Mol Cell Biol 2015; 35:3701-13. [PMID: 26303526 DOI: 10.1128/mcb.00219-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination is initiated by the binding of the RAG1 and RAG2 proteins to recombination signal sequences (RSSs) that consist of conserved heptamer and nonamer sequences separated by a spacer of either 12 or 23 bp. Here, we used RAG-inducible pro-B v-Abl cell lines in conjunction with chromatin immunoprecipitation to better understand the protein and RSS requirements for RAG recruitment to chromatin. Using a catalytic mutant form of RAG1 to prevent recombination, we did not observe cooperation between RAG1 and RAG2 in their recruitment to endogenous Jκ gene segments over a 48-h time course. Using retroviral recombination substrates, we found that RAG1 was recruited inefficiently to substrates lacking an RSS or containing a single RSS, better to substrates with two 12-bp RSSs (12RSSs) or two 23-bp RSSs (23RSSs), and more efficiently to a substrate with a 12/23RSS pair. RSS mutagenesis demonstrated a major role for the nonamer element in RAG1 binding, and correspondingly, a cryptic RSS consisting of a repeat of CA dinucleotides, which poorly re-creates the nonamer, was ineffective in recruiting RAG1. Our findings suggest that 12RSS-23RSS cooperation (the "12/23 rule") is important not only for regulating RAG-mediated DNA cleavage but also for the efficiency of RAG recruitment to chromatin.
Collapse
|
45
|
Inoue T, Morita M, Hijikata A, Fukuda-Yuzawa Y, Adachi S, Isono K, Ikawa T, Kawamoto H, Koseki H, Natsume T, Fukao T, Ohara O, Yamamoto T, Kurosaki T. CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability. ACTA ACUST UNITED AC 2015; 212:1465-79. [PMID: 26238124 PMCID: PMC4548056 DOI: 10.1084/jem.20150384] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/16/2015] [Indexed: 11/07/2022]
Abstract
Inoue et al. report that CNOT3, a subunit of the CCR4–NOT deadenylase complex regulating mRNA decay and translational repression, controls Igh gene rearrangement and destabilizes the mRNA of the tumor suppressor p53. Loss of CNOT3 results in a block of pro- to pre–B cell transition. The CCR4–NOT deadenylase complex plays crucial roles in mRNA decay and translational repression induced by poly(A) tail shortening. Although the in vitro activities of each component of this complex have been well characterized, its in vivo role in immune cells remains unclear. Here we show that mice lacking the CNOT3 subunit of this complex, specifically in B cells, have a developmental block at the pro- to pre–B cell transition. CNOT3 regulated generation of germline transcripts in the VH region of the immunoglobulin heavy chain (Igh) locus, compaction of the locus, and subsequent Igh gene rearrangement and destabilized tumor suppressor p53 mRNA. The developmental defect in the absence of CNOT3 could be partially rescued by ablation of p53 or introduction of a pre-rearranged Igh transgene. Thus, our data suggest that the CCR4–NOT complex regulates B cell differentiation by controlling Igh rearrangement and destabilizing p53 mRNA.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Morita
- Department of Biochemistry and Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada Department of Biochemistry and Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Atsushi Hijikata
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Fukuda-Yuzawa
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Kyoichi Isono
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tomokatsu Ikawa
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruhiko Koseki
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Taro Fukao
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Osamu Ohara
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
46
|
NF-κB and AKT signaling prevent DNA damage in transformed pre-B cells by suppressing RAG1/2 expression and activity. Blood 2015; 126:1324-35. [PMID: 26153519 DOI: 10.1182/blood-2015-01-621623] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023] Open
Abstract
In developing lymphocytes, expression and activity of the recombination activation gene protein 1 (RAG1) and RAG2 endonuclease complex is tightly regulated to ensure ordered recombination of the immunoglobulin genes and to avoid genomic instability. Aberrant RAG activity has been implicated in the generation of secondary genetic events in human B-cell acute lymphoblastic leukemias (B-ALLs), illustrating the oncogenic potential of the RAG complex. Several layers of regulation prevent collateral genomic DNA damage by restricting RAG activity to the G1 phase of the cell cycle. In this study, we show a novel pathway that suppresses RAG expression in cycling-transformed mouse pre-B cells and human pre-B B-ALL cells that involves the negative regulation of FOXO1 by nuclear factor κB (NF-κB). Inhibition of NF-κB in cycling pre-B cells resulted in upregulation of RAG expression and recombination activity, which provoked RAG-dependent DNA damage. In agreement, we observe a negative correlation between NF-κB activity and the expression of RAG1, RAG2, and TdT in B-ALL patients. Our data suggest that targeting NF-κB in B-ALL increases the risk of RAG-dependent genomic instability.
Collapse
|
47
|
Rodgers W, Byrum JN, Sapkota H, Rahman NS, Cail RC, Zhao S, Schatz DG, Rodgers KK. Spatio-temporal regulation of RAG2 following genotoxic stress. DNA Repair (Amst) 2015; 27:19-27. [PMID: 25625798 PMCID: PMC4336829 DOI: 10.1016/j.dnarep.2014.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 11/30/2022]
Abstract
V(D)J recombination of lymphocyte antigen receptor genes occurs via the formation of DNA double strand breaks (DSBs) through the activity of RAG1 and RAG2. The co-existence of RAG-independent DNA DSBs generated by genotoxic stressors potentially increases the risk of incorrect repair and chromosomal abnormalities. However, it is not known whether cellular responses to DSBs by genotoxic stressors affect the RAG complex. Using cellular imaging and subcellular fractionation approaches, we show that formation of DSBs by treating cells with DNA damaging agents causes export of nuclear RAG2. Within the cytoplasm, RAG2 exhibited substantial enrichment at the centrosome. Further, RAG2 export was sensitive to inhibition of ATM, and was reversed following DNA repair. The core region of RAG2 was sufficient for export, but not centrosome targeting, and RAG2 export was blocked by mutation of Thr(490). In summary, DNA damage triggers relocalization of RAG2 from the nucleus to centrosomes, suggesting a novel mechanism for modulating cellular responses to DSBs in developing lymphocytes.
Collapse
Affiliation(s)
- William Rodgers
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hem Sapkota
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Negar S Rahman
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Robert C Cail
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shuying Zhao
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Karla K Rodgers
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
48
|
The proximal J kappa germline-transcript promoter facilitates receptor editing through control of ordered recombination. PLoS One 2015; 10:e0113824. [PMID: 25559567 PMCID: PMC4283955 DOI: 10.1371/journal.pone.0113824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/31/2014] [Indexed: 12/31/2022] Open
Abstract
V(D)J recombination creates antibody light chain diversity by joining a Vκ gene segment with one of four Jκ segments. Two Jκ germline-transcript (GT) promoters control Vκ-Jκ joining, but the mechanisms that govern Jκ choice are unclear. Here, we show in gene-targeted mice that the proximal GT promoter helps targeting rearrangements to Jκ1 by preventing premature DNA breaks at Jκ2. Consequently, cells lacking the proximal GT promoter show a biased utilization of downstream Jκ segments, resulting in a diminished potential for receptor editing. Surprisingly, the proximal—in contrast to the distal—GT promoter is transcriptionally inactive prior to Igκ recombination, indicating that its role in Jκ choice is independent of classical promoter function. Removal of the proximal GT promoter increases H3K4me3 levels at Jκ segments, suggesting that this promoter could act as a suppressor of recombination by limiting chromatin accessibility to RAG. Our findings identify the first cis-element critical for Jκ choice and demonstrate that ordered Igκ recombination facilitates receptor editing.
Collapse
|
49
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Dorsett Y, Zhou Y, Tubbs AT, Chen BR, Purman C, Lee BS, George R, Bredemeyer AL, Zhao JY, Sodergen E, Weinstock GM, Han ND, Reyes A, Oltz EM, Dorsett D, Misulovin Z, Payton JE, Sleckman BP. HCoDES reveals chromosomal DNA end structures with single-nucleotide resolution. Mol Cell 2014; 56:808-18. [PMID: 25435138 DOI: 10.1016/j.molcel.2014.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/27/2023]
Abstract
The structure of broken DNA ends is a critical determinant of the pathway used for DNA double-strand break (DSB) repair. Here, we develop an approach involving the hairpin capture of DNA end structures (HCoDES), which elucidates chromosomal DNA end structures at single-nucleotide resolution. HCoDES defines structures of physiologic DSBs generated by the RAG endonuclease, as well as those generated by nucleases widely used for genome editing. Analysis of G1 phase cells deficient in H2AX or 53BP1 reveals DNA ends that are frequently resected to form long single-stranded overhangs that can be repaired by mutagenic pathways. In addition to 3' overhangs, many of these DNA ends unexpectedly form long 5' single-stranded overhangs. The divergence in DNA end structures resolved by HCoDES suggests that H2AX and 53BP1 may have distinct activities in end protection. Thus, the high-resolution end structures obtained by HCoDES identify features of DNA end processing during DSB repair.
Collapse
Affiliation(s)
- Yair Dorsett
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanjiao Zhou
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anthony T Tubbs
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bo-Ruei Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Caitlin Purman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Baeck-Seung Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rosmy George
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea L Bredemeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiang-Yang Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erica Sodergen
- Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George M Weinstock
- Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan D Han
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alejandro Reyes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dale Dorsett
- Biochemistry Department, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ziva Misulovin
- Biochemistry Department, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Barry P Sleckman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|