1
|
Luo X, Luo L, Lai R, Li Y, Zhou H, Li X. Synthesis and Antioxidant Effects of Edaravone-Loaded MPEG-2000-DSPE Micelles in Rotenone-Induced PC12 Cell Model of Parkinson's Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1962. [PMID: 39683350 DOI: 10.3390/nano14231962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder globally that lacks any disease-modifying drug for prevention or treatment. Oxidative stress has been identified as one of the key pathogenic drivers of Parkinson's disease (PD). Edaravone, an approved free-radical scavenger, has proven to have potential against PD by targeting multiple key pathologies, including oxidative stress, focal mitochondria, and neuroinflammation. However, its bioavailability is potentially restricted due to its poor solubility and short half-life. This study aims to develop a simple and effective drug delivery system for edaravone to enhance its solubility, stability, and bioavailability to improve its neuroprotective efficacy. An MPEG-2000-DSPE-edaravone (MDE) micelle was prepared via solvent evaporation using MPEG-2000-DSPE as a carrier to encapsulate edaravone. The morphology, particle size, zeta potential, chemical structure, and edaravone loading of MDE were evaluated. We then investigated whether such targeted edaravone delivery could provide enhanced neuroprotection. A cell model of PD was established in PC12 cells through exposure to rotenone. The effects of MDE on PC12 cells treated with or without rotenone were evaluated using a cell counting kit-8, calcein acetoxymethyl ester (AM)-propidine iodide (PI) staining, and flow cytometry. Cell migration was evaluated using a wound healing assay. Additionally, the intracellular antioxidant study was performed using an ROS-level-detecting DCFH-DA probe, and the mitochondrial membrane potentials were evaluated using a JC-1 assay. MDE with a drug-loading content of 17.6% and an encapsulation efficiency of 92.8% was successfully prepared. The resultant MDE had a mean particle size of 112.97 ± 5.54 nm with a zeta potential of -42 mV. Cytotoxicity assays confirmed that the MDE (≤200 ug/mL) exhibited promising cytocompatibility with no significant effect on cell viability, cell cycle regulation, or apoptosis levels. Likewise, compared with the free edaravone, no effect on cell migration was noted for MDE. MDE might be able to target edaravone delivery into PC12 cells, increasing the mitochondrial membrane potential and providing a significant local antioxidant effect. The results demonstrated that MPEG-2000-DSPE could be a promising material for enhancing edaravone's aqueous solubility, stability, and antioxidant effects. MDE could be a potential drug formulation for treating PD and other diseases in which oxidative stress plays a key role in pathogenesis.
Collapse
Affiliation(s)
- Xin Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Linshan Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Rong Lai
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiting Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
2
|
Akkentli F, Jang IK, Choi Y, Min Y, Park J, Jo H, Kim L, Mendpara A, Bains B, Yoo D, Xu J, Na CH, Kang SU. Quantitative proteomic analysis using a mouse model of Lewy body dementia induced by α-synuclein preformed fibrils injection. FRONTIERS IN DEMENTIA 2024; 3:1477986. [PMID: 39529733 PMCID: PMC11552175 DOI: 10.3389/frdem.2024.1477986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The aggregation of α-synuclein in the nervous system leads to a class of neurodegenerative disorders termed α-synucleinopathies. A form of primary degenerative dementia called Lewy body dementia (LBD) often develops when these aggregations develop into intracellular inclusions called Lewy bodies (LB) and Lewy neurites (LN). Although high frequency of LBD are the leading cause of dementia after Alzheimer's disease (AD), limited information has been discovered about its pathological pathway or diagnostic criteria. In this report, we attempt to address such shortcomings via utilizing a proteomic approach to identify the proteome changes following intrastriatal injection of α-synuclein pre-formed fibril (α-syn PFF). Using mass spectrometry, we have identified a total of 179 proteins that were either up- or down-regulated at different time points, with the four proteins-TPP3, RAB10, CAMK2A, and DYNLL1, displaying the most significant changes throughout the timeframe. Through further examining the modulated proteins with network-based enrichment analyses, we have found that (1) the most significantly associated neurodegenerative pathways were Parkinson's (pV = 3.0e-16) and Huntington's (pV = 1.9e-15) disease, and (2) the majority of molecular functions specific to the pathology only appeared at later time points. While these results do not expose a conclusive biomarker for LBD, they suggest a framework that is potentially applicable to diagnose and differentiate LBD pathology from other forms of dementia by focusing on the cortical proteome changes which occur in a later time span.
Collapse
Affiliation(s)
- Fatih Akkentli
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - In kyu Jang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yoonseop Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Young Min
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jinhee Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Heejin Jo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Leoni Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aashi Mendpara
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bikram Bains
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dongyoon Yoo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jinchong Xu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
4
|
Roy D, Balasubramanian S, Kunte PP, Natarajan J, Sola P, Rymbai E, R PKM. Roflumilast-loaded nanostructured lipid carriers attenuate oxidative stress and neuroinflammation in Parkinson's disease model. J Drug Target 2024:1-16. [PMID: 39316825 DOI: 10.1080/1061186x.2024.2408724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with limited symptomatic treatment options. Targeting phosphodiesterase 4 (PDE4) has shown a promising result in several preclinical studies. In our study, we aim to repurpose US FDA-approved PDE4 inhibitor for PD. Through in-silico study, we identified roflumilast (ROF) as the potential candidate targeting PDE4B2. In Drosophila PD expressing the A30P mutant α-synuclein model, ROF exhibited anti-PD effects as indicated by negative geotaxis and antioxidant activities. Given the low brain distribution of ROF (<50%) at clinical doses, incorporation into nanostructured lipid carriers (NLCs) was carried out to enhanced blood-brain barrier permeability. In vitro release studies indicated sustained ROF release from NLCs (≈75%) over 24 h. Single-dose oral toxicity studies reported no mortality or toxicity signs. ROF-loaded NLCs significantly alleviated behavioural deficits, increased antioxidant parameters (p < 0.05), and reduced TNF-α and IL-6 levels (p < 0.5) in the striatum compared to pure ROF. ROF-loaded NLCs demonstrated potential anti-PD effects with high efficacy than pure ROF. Our study suggests that nanostructured lipid carriers (NLCs) can be a promising drug delivery system to overcome limitations associated with poor brain bioavailability of lipophilic drugs like ROF for PD treatment. Further investigation related to brain occupancy and underlying mechanisms of our formulation is warranted to confirm and strengthen our current findings.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Prajwal P Kunte
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praharsh Kumar M R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
5
|
Carli S, Brugnano L, Caligiore D. Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system. Front Comput Neurosci 2024; 18:1386841. [PMID: 39247252 PMCID: PMC11378529 DOI: 10.3389/fncom.2024.1386841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the variations in therapy effects. Methods We present a system-level bio-constrained computational model that comprehensively investigates the dynamic interactions between these neurotransmitter systems. The model was designed to replicate experimental data demonstrating the impact of NA and 5-HT depletion in a PD animal model, providing insights into the causal relationships between basal ganglia regions and neuromodulator release areas. Results The model successfully replicates experimental data and generates predictions regarding changes in unexplored brain regions, suggesting avenues for further investigation. It highlights the potential efficacy of alternative treatments targeting the locus coeruleus and dorsal raphe nucleus, though these preliminary findings require further validation. Sensitivity analysis identifies critical model parameters, offering insights into key factors influencing brain area activity. A stability analysis underscores the robustness of our mathematical formulation, bolstering the model validity. Discussion Our holistic approach emphasizes that PD is a multifactorial disorder and opens promising avenues for early diagnostic tools that harness the intricate interactions among monoaminergic systems. Investigating NA and 5-HT systems alongside the DA system may yield more effective, subtype-specific therapies. The exploration of multisystem dysregulation in PD is poised to revolutionize our understanding and management of this complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- Entersys s.r.l., Padua, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Luigi Brugnano
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
| |
Collapse
|
6
|
Suzuki T, Bono H. A systematic exploration of unexploited genes for oxidative stress in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:160. [PMID: 39154038 PMCID: PMC11330442 DOI: 10.1038/s41531-024-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Human disease-associated gene data are accessible through databases, including the Open Targets Platform, DisGeNET, miRTex, RNADisease, and PubChem. However, missing data entries in such databases are anticipated because of curational errors, biases, and text-mining failures. Additionally, the extensive research on human diseases has led to challenges in registering comprehensive data. The lack of essential data in databases hinders knowledge sharing and should be addressed. Therefore, we propose an analysis pipeline to explore missing entries of unexploited genes in the human disease-associated gene databases. Using this pipeline for genes in Parkinson's disease with oxidative stress revealed two unexploited genes: nuclear protein 1 (NUPR1) and ubiquitin-like with PHD and ring finger domains 2 (UHRF2). This methodology enhances the identification of underrepresented disease-associated genes, facilitating easier access to potential human disease-related functional genes. This study aims to identify unexploited genes for further research and does not include independent experimental validation.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan.
| |
Collapse
|
7
|
Akki AJ, Patil SA, Hungund S, Sahana R, Patil MM, Kulkarni RV, Raghava Reddy K, Zameer F, Raghu AV. Advances in Parkinson's disease research - A computational network pharmacological approach. Int Immunopharmacol 2024; 139:112758. [PMID: 39067399 DOI: 10.1016/j.intimp.2024.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is projected to see a significant rise in incidence over the next three decades. The precise treatment of PD remains a formidable challenge, prompting ongoing research into early diagnostic methodologies. Network pharmacology, a burgeoning field grounded in systems biology, examines the intricate networks of biological systems to identify critical signal nodes, facilitating the development of multi-target therapeutic molecules. This approach systematically maps the components of Parkinson's disease, thereby reducing its complexity. In this review, we explore the application of network pharmacology workflows in PD, discuss the techniques employed in this field, and evaluate the current advancements and status of network pharmacology in the context of Parkinson's disease. The comprehensive insights will pave newer paths to explore early disease biomarkers and to develop diagnosis with a holistic in silico, in vitro, in vivo and clinical studies.
Collapse
Affiliation(s)
- Ali Jawad Akki
- Faculty of Science and Technology, BLDE (Deemed-to-be University), Vijayapura 586 103, India
| | - Shruti A Patil
- Faculty of Science and Technology, BLDE (Deemed-to-be University), Vijayapura 586 103, India
| | - Sphoorty Hungund
- Faculty of Science and Technology, BLDE (Deemed-to-be University), Vijayapura 586 103, India
| | - R Sahana
- Department of Computer Science and Engineering, RV Institute of Technology and Management, 560 076 Bengaluru, India
| | - Malini M Patil
- Department of Computer Science and Engineering, RV Institute of Technology and Management, 560 076 Bengaluru, India.
| | - Raghavendra V Kulkarni
- Faculty of Science and Technology, BLDE (Deemed-to-be University), Vijayapura 586 103, India
| | - K Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 12 2006, Australia
| | - Farhan Zameer
- Department of Dravyaguna (Ayurveda Pharmacology), Alva's Ayurveda Medical College, and PathoGutOmics Laboratory, ATMA Research Centre, Dakshina Kannada 574 227, India.
| | - Anjanapura V Raghu
- Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, 562149 Bangalore, India.
| |
Collapse
|
8
|
Angelini G, Malvaso A, Schirripa A, Campione F, D'Addario SL, Toschi N, Caligiore D. Unraveling sex differences in Parkinson's disease through explainable machine learning. J Neurol Sci 2024; 462:123091. [PMID: 38870732 DOI: 10.1016/j.jns.2024.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Sex differences affect Parkinson's disease (PD) development and manifestation. Yet, current PD identification and treatments underuse these distinctions. Sex-focused PD literature often prioritizes prevalence rates over feature importance analysis. However, underlying aspects could make a feature significant for predicting PD, despite its score. Interactions between features require consideration, as do distinctions between scoring disparities and actual feature importance. For instance, a higher score in males for a certain feature doesn't necessarily mean it's less important for characterizing PD in females. This article proposes an explainable Machine Learning (ML) model to elucidate these underlying factors, emphasizing the importance of features. This insight could be critical for personalized medicine, suggesting the need to tailor data collection and analysis for males and females. The model identifies sex-specific differences in PD, aiding in predicting outcomes as "Healthy" or "Pathological". It adopts a system-level approach, integrating heterogeneous data - clinical, imaging, genetics, and demographics - to study new biomarkers for diagnosis. The explainable ML approach aids non-ML experts in understanding model decisions, fostering trust and facilitating interpretation of complex ML outcomes, thus enhancing usability and translational research. The ML model identifies muscle rigidity, autonomic and cognitive assessments, and family history as key contributors to PD diagnosis, with sex differences noted. The genetic variant SNCA-rs356181 may be more significant in characterizing PD in males. Interaction analysis reveals a greater occurrence of feature interplay among males compared to females. These disparities offer insights into PD pathophysiology and could guide the development of sex-specific diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Gianfrancesco Angelini
- Medical Physics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Antonio Malvaso
- Department of Brain and Behavioral Sciences, IRCCS Mondino Foundation, National Neurological Institute, University of Pavia, Via Mondino 2, 27100 Pavia, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196 Rome, Italy
| | - Aurelia Schirripa
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196 Rome, Italy
| | - Francesca Campione
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196 Rome, Italy
| | - Sebastian Luca D'Addario
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196 Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Nicola Toschi
- Medical Physics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196 Rome, Italy; AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy.
| |
Collapse
|
9
|
Mironova GD, Mosentsov AA, Mironov VV, Medvedeva VP, Khunderyakova NV, Pavlik LL, Mikheeva IB, Shigaeva MI, Agafonov AV, Khmil NV, Belosludtseva NV. The Protective Effect of Uridine in a Rotenone-Induced Model of Parkinson's Disease: The Role of the Mitochondrial ATP-Dependent Potassium Channel. Int J Mol Sci 2024; 25:7441. [PMID: 39000550 PMCID: PMC11242281 DOI: 10.3390/ijms25137441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoKATP) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed. The nucleoside uridine, which is a source for the synthesis of the mitoKATP channel opener uridine diphosphate, was able to dose-dependently decrease behavioral disorders and prevent the death of animals, which occurred for about 50% of animals in the model. Uridine prevented disturbances in redox, energy, and ion exchanges in brain mitochondria, and eliminated alterations in their structure and the myelin sheath in the substantia nigra. Cytochemical examination showed that uridine restored the indicators of oxidative phosphorylation and glycolysis in peripheral blood lymphocytes. The specific blocker of the mitoKATP channel, 5-hydroxydecanoate, eliminated the positive effects of uridine, suggesting that this channel is involved in neuroprotection. Taken together, these findings indicate the promise of using the natural metabolite uridine as a new drug to prevent and, possibly, stop the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.M.); (V.V.M.); (V.P.M.); (N.V.K.); (L.L.P.); (I.B.M.); (M.I.S.); (A.V.A.); (N.V.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
12
|
Trinchese G, Feola A, Cavaliere G, Cimmino F, Catapano A, Penna E, Scala G, Greco L, Bernardo L, Porcellini A, Crispino M, Pezone A, Mollica MP. Mitochondrial metabolism and neuroinflammation in the cerebral cortex and cortical synapses of rats: effect of milk intake through DNA methylation. J Nutr Biochem 2024; 128:109624. [PMID: 38518858 DOI: 10.1016/j.jnutbio.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.
Collapse
Affiliation(s)
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Luca Bernardo
- Department of Childhood and Developmental Medicine, Fatebenefratelli Hospital, Milan, Italy
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Zhao Z, Ji H, Pei J, Yan J, Zhang X, Yuan Y, Liu M. Transcranial Ultrasound Stimulation Improves Memory Performance of Parkinsonian Mice. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1284-1291. [PMID: 38498744 DOI: 10.1109/tnsre.2024.3378109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Cognitive impairment is one of the most common non-motor symptoms of Parkinson's disease (PD). Previous studies have demonstrated that low-intensity transcranial ultrasound stimulation can significantly suppress the motor symptoms of PD. However, whether ultrasound stimulation can improve cognitive ability in PD and the related neural oscillation mechanism remain unclear to date. To evaluate the effect of ultrasound stimulation on memory ability in PD and explore its neural oscillation mechanism. Ultrasonography was used for 7-day stimulation of the CA1 in transgenic mice with PD. The working memory ability of the PD mice was then tested using novel object discrimination, and the local field potential and spikes in the mice CA1 were recorded at the same time as in the behavioral test. We found that ultrasound stimulation of the PD mice CA1 for 4 days: 1) significantly increased their learning and memory ability, although the learning and memory ability on the 7th day after the stimulation stopped was not significantly different from that before stimulation (P>0.05); 2) significantly increased the relative power of theta, low gamma, and high gamma frequency bands of the local field potential, and the phase amplitude coupling strength between theta and low gamma and between theta and high gamma; and 3) modulated the phase-locking angle between the spike of interneuron and theta wave to a 180°-360° rise cycle. Transcranial ultrasound stimulation can improve the learning and memory abilities of PD mice, and evoking neural oscillations in the CA1 is the potential mechanism.
Collapse
|
14
|
Laugisch O, Ruppert-Jungck MC, Auschill TM, Eick S, Sculean A, Heumann C, Timmermann L, Pedrosa DJ, Eggers C, Arweiler NB. Glucose-6-Phosphatase-Dehydrogenase activity as modulative association between Parkinson's disease and periodontitis. Front Cell Infect Microbiol 2024; 14:1298546. [PMID: 38404290 PMCID: PMC10885135 DOI: 10.3389/fcimb.2024.1298546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
The association between periodontitis (PD) and Parkinson's disease (PK) is discussed due to the inflammatory component of neurodegenerative processes. PK severity and affected areas were determined using the following neuropsychological tests: Unified Parkinson's Disease Rating Score (UPDRS) and Hoehn and Yahr; non-motoric symptoms by Non-Motor Symptoms Scale (NMSS), and cognitive involvement by Mini-Mental State Examination (MMSE). Neuroinflammation and the resulting Glucose-6-Phosphatase-Dehydrogenase (G6PD) dysfunction are part of the pathophysiology of PK. This study aimed to evaluate these associations in periodontal inflammation. Clinical data and saliva-, serum-, and RNA-biobank samples of 50 well-characterized diametric patients with PK and five age- and sex-matched neurologically healthy participants were analyzed for G6PD function, periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Campylobacter rectus, Fusobacterium nucleatum, and Filifactor alocis), monocyte chemoattractant protein (MCP) 1, and interleukin (IL) 1-beta. Regression analysis was used to identify associations between clinical and behavioral data, and t-tests were used to compare health and disease. Compared with PK, no pathogens and lower inflammatory markers (p < 0.001) were detectible in healthy saliva and serum, PK-severity/UPDRS interrelated with the occurrence of Prevotella intermedia in serum as well as IL1-beta levels in serum and saliva (p = 0.006, 0.019, 0.034), Hoehn and Yahr correlated with Porphyromonas gingivalis, Prevotella intermedia, RNA IL1-beta regulation, serum, and saliva IL1-beta levels, with p-values of 0.038, 0.011, 0.008, <0.001, and 0.010, while MMSE was associated with Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, serum MCP 1 levels, RNA IL1-beta regulation and G6PD serum activity (p = 0.036, 0.003, 0.045, <0.001, and 0.021). Cognitive and motor skills seem to be important as representative tests are associated with periodontal pathogens and oral/general inflammation, wherein G6PD-saliva dysfunction might be involved. Clinical trial registration https://www.bfarm.de/DE/Das-BfArM/Aufgaben/Deutsches-Register-Klinischer-Studien/_node.html, identifier DRKS00005388.
Collapse
Affiliation(s)
- Oliver Laugisch
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Marina C. Ruppert-Jungck
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Thorsten M. Auschill
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christian Heumann
- Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - David J. Pedrosa
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop, Bottrop, Germany
| | - Nicole B. Arweiler
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| |
Collapse
|
15
|
Hu X, Yu L, Li Y, Li X, Zhao Y, Xiong L, Ai J, Chen Q, Wang X, Chen X, Ba Y, Wang Y, Wu X. Piperine improves levodopa availability in the 6-OHDA-lesioned rat model of Parkinson's disease by suppressing gut bacterial tyrosine decarboxylase. CNS Neurosci Ther 2024; 30:e14383. [PMID: 37528534 PMCID: PMC10848080 DOI: 10.1111/cns.14383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
AIM Tyrosine decarboxylase (TDC) presented in the gut-associated strain Enterococcus faecalis can convert levodopa (L-dopa) into dopamine (DA), and its increased abundance would potentially minimize the availability and efficacy of L-dopa. However, the known human decarboxylase inhibitors are ineffective in this bacteria-mediated conversion. This study aims to investigate the inhibition of piperine (PIP) on L-dopa bacterial metabolism and evaluates the synergistic effect of PIP combined with L-dopa on Parkinson's disease (PD). METHODS Metagenomics sequencing was adopted to determine the regulation of PIP on rat intestinal microbiota structure, especially on the relative abundance of E. faecalis. Then, the inhibitory effects of PIP on L-dopa conversion and TDC expression of E. faecalis were tested in vitro. We examined the synergetic effect of the combination of L-dopa and PIP on 6-hydroxydopamine (6-OHDA)-lesioned rats and tested the regulations of L-dopa bioavailability and brain DA level by pharmacokinetics study and MALDI-MS imaging. Finally, we evaluated the microbiota-dependent improvement effect of PIP on L-dopa availability using pseudo-germ-free and E. faecalis-transplanted rats. RESULTS We found that PIP combined with L-dopa could better ameliorate the move disorders of 6-OHDA-lesioned rats by remarkably improving L-dopa availability and brain DA level than L-dopa alone, which was associated with the effect of PIP on suppressing the bacterial decarboxylation of L-dopa via effectively downregulating the abnormal high abundances of E. faecalis and TDC in 6-OHDA-lesioned rats. CONCLUSION Oral administration of L-dopa combined with PIP can improve L-dopa availability and brain DA level in 6-OHDA-lesioned rats by suppressing intestinal bacterial TDC.
Collapse
Affiliation(s)
- Xiaolu Hu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Lan Yu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Yatong Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xiaoxi Li
- Department of PharmacyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yimeng Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Lijuan Xiong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Jiaxuan Ai
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Qijun Chen
- School of Pharmaceutical SciencesCapital Medical UniversityBeijingChina
| | - Xing Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xiaoqing Chen
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Yinying Ba
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Yaonan Wang
- Core facilities of modern pharmaceuticalsCapital Medical UniversityBeijingChina
| | - Xia Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Shen M, Zhang M, Mao N, Lin Z. Batokine in Central Nervous System Diseases. Mol Neurobiol 2023; 60:7021-7031. [PMID: 37526894 DOI: 10.1007/s12035-023-03490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Brown adipose tissue (BAT) is a special type of fat tissue in mammals and is also a key endocrine organ in the human body. Batokine, the endocrine effector of BAT, plays a neuroprotective role and improves the prognosis by exerting anti-apoptotic and anti-inflammatory effects, as well as by improving vascular endothelial function and other mechanisms in nerve injury diseases. The present article briefly reviewed several types of batokines related to central nervous system (CNS) diseases. Following this, the potential therapeutic value and future research direction of batokines for CNS diseases were chiefly discussed from the aspects of protective mechanism and signaling pathway.
Collapse
Affiliation(s)
- Ming Shen
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Niping Mao
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Bérard M, Martínez-Drudis L, Sheta R, El-Agnaf OMA, Oueslati A. Non-invasive systemic viral delivery of human alpha-synuclein mimics selective and progressive neuropathology of Parkinson's disease in rodent brains. Mol Neurodegener 2023; 18:91. [PMID: 38012703 PMCID: PMC10683293 DOI: 10.1186/s13024-023-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
Collapse
Affiliation(s)
- Morgan Bérard
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Laura Martínez-Drudis
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
18
|
Ragupathy H, Vukku M, Barodia SK. Cell-Type-Specific Mitochondrial Quality Control in the Brain: A Plausible Mechanism of Neurodegeneration. Int J Mol Sci 2023; 24:14421. [PMID: 37833867 PMCID: PMC10572699 DOI: 10.3390/ijms241914421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Neurodegeneration is an age-dependent progressive phenomenon with no defined cause. Aging is the main risk factor for neurodegenerative diseases. During aging, activated microglia undergo phenotypic alterations that can lead to neuroinflammation, which is a well-accepted event in the pathogenesis of neurodegenerative diseases. Several common mechanisms are shared by genetically or pathologically distinct neurodegenerative diseases, such as excitotoxicity, mitochondrial deficits and oxidative stress, protein misfolding and translational dysfunction, autophagy and microglia activation. Progressive loss of the neuronal population due to increased oxidative stress leads to neurodegenerative diseases, mostly due to the accumulation of dysfunctional mitochondria. Mitochondrial dysfunction and excessive neuroinflammatory responses are both sufficient to induce pathology in age-dependent neurodegeneration. Therefore, mitochondrial quality control is a key determinant for the health and survival of neuronal cells in the brain. Research has been primarily focused to demonstrate the significance of neuronal mitochondrial health, despite the important contributions of non-neuronal cells that constitute a significant portion of the brain volume. Moreover, mitochondrial morphology and function are distinctly diverse in different tissues; however, little is known about their molecular diversity among cell types. Mitochondrial dynamics and quality in different cell types markedly decide the fate of overall brain health; therefore, it is not justifiable to overlook non-neuronal cells and their significant and active contribution in facilitating overall neuronal health. In this review article, we aim to discuss the mitochondrial quality control of different cell types in the brain and how important and remarkable the diversity and highly synchronized connecting property of non-neuronal cells are in keeping the neurons healthy to control neurodegeneration.
Collapse
Affiliation(s)
| | - Manasvi Vukku
- Centre for Brain Research, Indian Institute of Science, Bengaluru 560012, India
| | | |
Collapse
|
19
|
Silva J, Alves C, Soledade F, Martins A, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson's Disease? Mar Drugs 2023; 21:451. [PMID: 37623732 PMCID: PMC10455662 DOI: 10.3390/md21080451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| | - Francisca Soledade
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
20
|
Rojas-Valverde D, Bonilla DA, Gómez-Miranda LM, Calleja-Núñez JJ, Arias N, Martínez-Guardado I. Examining the Interaction between Exercise, Gut Microbiota, and Neurodegeneration: Future Research Directions. Biomedicines 2023; 11:2267. [PMID: 37626763 PMCID: PMC10452292 DOI: 10.3390/biomedicines11082267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Physical activity has been demonstrated to have a significant impact on gut microbial diversity and function. Emerging research has revealed certain aspects of the complex interactions between the gut, exercise, microbiota, and neurodegenerative diseases, suggesting that changes in gut microbial diversity and metabolic function may have an impact on the onset and progression of neurological conditions. This study aimed to review the current literature from several databases until 1 June 2023 (PubMed/MEDLINE, Web of Science, and Google Scholar) on the interplay between the gut, physical exercise, microbiota, and neurodegeneration. We summarized the roles of exercise and gut microbiota on neurodegeneration and identified the ways in which these are all connected. The gut-brain axis is a complex and multifaceted network that has gained considerable attention in recent years. Research indicates that gut microbiota plays vital roles in metabolic shifts during physiological or pathophysiological conditions in neurodegenerative diseases; therefore, they are closely related to maintaining overall health and well-being. Similarly, exercise has shown positive effects on brain health and cognitive function, which may reduce/delay the onset of severe neurological disorders. Exercise has been associated with various neurochemical changes, including alterations in cortisol levels, increased production of endorphins, endocannabinoids like anandamide, as well as higher levels of serotonin and dopamine. These changes have been linked to mood improvements, enhanced sleep quality, better motor control, and cognitive enhancements resulting from exercise-induced effects. However, further clinical research is necessary to evaluate changes in bacteria taxa along with age- and sex-based differences.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Nucleus of Studies for High Performance and Health (CIDISAD-NARS), School of Human Movement Sciences and Quality of Life (CIEMHCAVI), National University, Heredia 86-3000, Costa Rica
- Sports Injury Clinic (Rehab & Readapt), School of Human Movement Sciences and Quality of Life (CIEMHCAVI), National University, Heredia 86-3000, Costa Rica
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia;
- Research Group in Biochemistry and Molecular Biology, Faculty of Sciences and Education, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Luis M. Gómez-Miranda
- Sports Faculty, Autonomous University of Baja California, Tijuana 22615, Mexico; (L.M.G.-M.); (J.J.C.-N.)
| | - Juan J. Calleja-Núñez
- Sports Faculty, Autonomous University of Baja California, Tijuana 22615, Mexico; (L.M.G.-M.); (J.J.C.-N.)
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| |
Collapse
|
21
|
Kim W, Tripathi M, Kim C, Vardhineni S, Cha Y, Kandi SK, Feitosa M, Kholiya R, Sah E, Thakur A, Kim Y, Ko S, Bhatia K, Manohar S, Kong YB, Sindhu G, Kim YS, Cohen B, Rawat DS, Kim KS. An optimized Nurr1 agonist provides disease-modifying effects in Parkinson's disease models. Nat Commun 2023; 14:4283. [PMID: 37463889 DOI: 10.1038/s41467-023-39970-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
The nuclear receptor, Nurr1, is critical for both the development and maintenance of midbrain dopamine neurons, representing a promising molecular target for Parkinson's disease (PD). We previously identified three Nurr1 agonists (amodiaquine, chloroquine and glafenine) that share an identical chemical scaffold, 4-amino-7-chloroquinoline (4A7C), suggesting a structure-activity relationship. Herein we report a systematic medicinal chemistry search in which over 570 4A7C-derivatives were generated and characterized. Multiple compounds enhance Nurr1's transcriptional activity, leading to identification of an optimized, brain-penetrant agonist, 4A7C-301, that exhibits robust neuroprotective effects in vitro. In addition, 4A7C-301 protects midbrain dopamine neurons in the MPTP-induced male mouse model of PD and improves both motor and non-motor olfactory deficits without dyskinesia-like behaviors. Furthermore, 4A7C-301 significantly ameliorates neuropathological abnormalities and improves motor and olfactory dysfunctions in AAV2-mediated α-synuclein-overexpressing male mouse models. These disease-modifying properties of 4A7C-301 may warrant clinical evaluation of this or analogous compounds for the treatment of patients with PD.
Collapse
Affiliation(s)
- Woori Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Mohit Tripathi
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Chunhyung Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | | | - Young Cha
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | | | - Melissa Feitosa
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Rohit Kholiya
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Eric Sah
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Anuj Thakur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Yehan Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Sanghyeok Ko
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Kaiya Bhatia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Sunny Manohar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Young-Bin Kong
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Gagandeep Sindhu
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Yoon-Seong Kim
- Institute for Neurological Therapeutics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Bruce Cohen
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
22
|
Caridade-Silva R, Araújo B, Martins-Macedo J, Teixeira FG. N-Acetylcysteine Treatment May Compensate Motor Impairments through Dopaminergic Transmission Modulation in a Striatal 6-Hydroxydopamine Parkinson's Disease Rat Model. Antioxidants (Basel) 2023; 12:1257. [PMID: 37371987 DOI: 10.3390/antiox12061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Preventing degeneration and the loss of dopaminergic neurons (DAn) in the brain while mitigating motor symptoms remains a challenge in Parkinson's Disease (PD) treatment development. In light of this, developing or repositioning potential disease-modifying approaches is imperative to achieve meaningful translational gains in PD research. Under this concept, N-acetylcysteine (NAC) has revealed promising perspectives in preserving the dopaminergic system capability and modulating PD mechanisms. Although NAC has been shown to act as an antioxidant and (neuro)protector of the brain, it has yet to be acknowledged how this repurposed drug can improve motor symptomatology and provide disease-modifying properties in PD. Therefore, in the present work, we assessed the impact of NAC on motor and histological deficits in a striatal 6-hydroxydopamine (6-OHDA) rat model of PD. The results revealed that NAC enhanced DAn viability, as we found that it could restore dopamine transporter (DAT) levels compared to the untreated 6-OHDA group. Such findings were positively correlated with a significant amelioration in the motor outcomes of the 6-OHDA-treated animals, demonstrating that NAC may, somehow, be a modulator of PD degenerative mechanisms. Overall, we postulated a proof-of-concept milestone concerning the therapeutic application of NAC. Nevertheless, it is extremely important to understand the complexity of this drug and how its therapeutical properties interact with the cellular and molecular PD mechanisms.
Collapse
Affiliation(s)
- Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Joana Martins-Macedo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
23
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
24
|
Smaili I, Tibar H, Rahmani M, Machkour N, Razine R, Darai HN, Bouslam N, Benomar A, Regragui W, Bouhouche A. Gene Panel Sequencing Analysis Revealed a Strong Contribution of Rare Coding Variants to the Risk of Parkinson's Disease in Sporadic Moroccan Patients. J Mol Neurosci 2023; 73:391-402. [PMID: 37256495 DOI: 10.1007/s12031-023-02128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder which can be either familial or sporadic. While it is well known that monogenic mutations are not a very common cause of PD, GWAS studies have shown that an additional fraction of the PD heritability could be explained by rare or common variants. To identify the rare variants that could influence the risk of PD in the Moroccan population, a cohort of 94 sporadic PD patients negative for the LRRK2 G2019S mutation was subjected to NGS gene panel sequencing, and gene dosage using the MLPA method. Mean age of onset at enrollment was 51.7 ± 11.51 years, and 60% of patients were men. We identified 70 rare variants under 0.5% of frequency in 16 of the 20 genes analyzed, of which 7 were novel. Biallelic disease-causing variants in genes with recessive inheritance were found in 5 PD cases (5.31%), whereas 13 patients (13.8%) carried likely pathogenic variants in genes with dominant inheritance. Moreover, 8 patients (8.5%) carried a single variant in MAPT or POLG, whereas co-occurrence of rare variants involving more than one gene was observed in 28 patients (30%). PD patients with variants in recessive genes had a younger mean age at onset than patients with dominant ones (33.40 (12.77) vs. 53.15 (6.63), p < 0.001), while their clinical features were similar. However, patients with rare variants in the risk factor genes or in more than one gene tended to have less resting tremor (p < 0.04), but more dystonia (p < 0.006) and dementia (p < 0.002) than those without any rare variants in known PD-associated genes. Our results showed a significant enrichment of rare variants particularly in LRRK2, VPS13C, POLG, and MAPT and underline their impact on the risk of sporadic form of the disease.
Collapse
Affiliation(s)
- Imane Smaili
- Research Team in Neurology and Neurogenetics, Center of Genomics of Human Pathologies, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Houyam Tibar
- Department of Neurology and Neurogenetics, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco
| | - Mounia Rahmani
- Research Team in Neurology and Neurogenetics, Center of Genomics of Human Pathologies, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Neurology and Neuropsychology, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco
| | - Najlaa Machkour
- Department of Neurology and Neurogenetics, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco
| | - Rachid Razine
- Laboratory of Biostatistics, Clinical and Epidemiological Research, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
| | - Hajar Naciri Darai
- Department of Neurology and Neurogenetics, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco
| | - Naima Bouslam
- Department of Neurology and Neurogenetics, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco
| | - Ali Benomar
- Research Team in Neurology and Neurogenetics, Center of Genomics of Human Pathologies, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco
| | - Wafa Regragui
- Research Team in Neurology and Neurogenetics, Center of Genomics of Human Pathologies, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco
- Department of Neurology and Neurogenetics, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco
| | - Ahmed Bouhouche
- Research Team in Neurology and Neurogenetics, Center of Genomics of Human Pathologies, Medical School and Pharmacy, University Mohammed V in Rabat, Rabat, Morocco.
- Department of Neurology and Neurogenetics, Specialties Hospital, CHU Ibn Sina, Rabat, Morocco.
| |
Collapse
|
25
|
Zeljkovic Jovanovic M, Stanojevic J, Stevanovic I, Stekic A, Bolland SJ, Jasnic N, Ninkovic M, Zaric Kontic M, Ilic TV, Rodger J, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Improves Motor and Behavioral Dysfunction through Modulation of NMDA Receptor Subunit Composition in Experimental Model of Parkinson's Disease. Cells 2023; 12:1525. [PMID: 37296646 PMCID: PMC10252812 DOI: 10.3390/cells12111525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive degeneration of the dopaminergic system, leading to a variety of motor and nonmotor symptoms. The currently available symptomatic therapy loses efficacy over time, indicating the need for new therapeutic approaches. Repetitive transcranial magnetic stimulation (rTMS) has emerged as one of the potential candidates for PD therapy. Intermittent theta burst stimulation (iTBS), an excitatory protocol of rTMS, has been shown to be beneficial in several animal models of neurodegeneration, including PD. The aim of this study was to investigate the effects of prolonged iTBS on motor performance and behavior and the possible association with changes in the NMDAR subunit composition in the 6-hydroxydopamine (6-OHDA)-induced experimental model of PD. Two-month-old male Wistar rats were divided into four groups: controls, 6-OHDA rats, 6-OHDA + iTBS protocol (two times/day/three weeks) and the sham group. The therapeutic effect of iTBS was evaluated by examining motor coordination, balance, spontaneous forelimb use, exploratory behavior, anxiety-like, depressive/anhedonic-like behavior and short-term memory, histopathological changes and changes at the molecular level. We demonstrated the positive effects of iTBS at both motor and behavioral levels. In addition, the beneficial effects were reflected in reduced degeneration of dopaminergic neurons and a subsequent increase in the level of DA in the caudoputamen. Finally, iTBS altered protein expression and NMDAR subunit composition, suggesting a sustained effect. Applied early in the disease course, the iTBS protocol may be a promising candidate for early-stage PD therapy, affecting motor and nonmotor deficits.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Stanojevic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Andjela Stekic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Samuel J. Bolland
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nebojsa Jasnic
- Department for Comparative Physiology and Ecophysiology, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Ninkovic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Romero-Sanz S, Caldero-Escudero E, Álvarez-Illera P, Santo-Domingo J, Fonteriz RI, Montero M, Álvarez J. SERCA inhibition improves lifespan and healthspan in a chemical model of Parkinson disease in Caenorhabditis elegans. Front Pharmacol 2023; 14:1182428. [PMID: 37284303 PMCID: PMC10239880 DOI: 10.3389/fphar.2023.1182428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: The high prevalence of neurodegenerative diseases in our population and the lack of effective treatments encourage the search for new therapeutic targets for these pathologies. We have recently described that submaximal inhibition of the Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA), the main responsible for ER calcium storage, is able to increase lifespan in Caenorhabditis elegans worms by mechanisms involving mitochondrial metabolism and nutrient-sensitive pathways. Methods: We have studied here the effects of submaximal SERCA inhibition in a chemical model of Parkinson's disease (PD) induced in C. elegans worms by treatment with the mitochondrial complex I inhibitor rotenone. For specific SERCA inhibition, we treated worms with RNAi against sca-1, the sole orthologue of SERCA in C. elegans. Results and Discussion: Our results show that rotenone produces alterations in worms that include decreased lifespan, smaller size, reduced fertility, decreased motility, defecation and pumping rate, increased mitochondrial ROS production, reduced mitochondrial membrane potential and oxygen consumption rate, altered mitochondrial structure, and altered ethanol preference in behavioral studies. Most of these alterations were either fully or partially reversed in worms treated with sca-1 RNAi, suggesting that SERCA inhibition could be a novel pharmacological target in the prevention or treatment of neurodegeneration.
Collapse
|
27
|
Riederer P, Nagatsu T, Youdim MBH, Wulf M, Dijkstra JM, Sian-Huelsmann J. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease. J Neural Transm (Vienna) 2023; 130:627-646. [PMID: 37062012 PMCID: PMC10121516 DOI: 10.1007/s00702-023-02630-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | | - Max Wulf
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801, Bochum, Germany
| | | | | |
Collapse
|
28
|
Lyra P, Machado V, Rota S, Chaudhuri KR, Botelho J, Mendes JJ. Revisiting Alpha-Synuclein Pathways to Inflammation. Int J Mol Sci 2023; 24:ijms24087137. [PMID: 37108299 PMCID: PMC10138587 DOI: 10.3390/ijms24087137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Alpha-synuclein (α-Syn) is a short presynaptic protein with an active role on synaptic vesicle traffic and the neurotransmitter release and reuptake cycle. The α-Syn pathology intertwines with the formation of Lewy Bodies (multiprotein intraneuronal aggregations), which, combined with inflammatory events, define various α-synucleinopathies, such as Parkinson's Disease (PD). In this review, we summarize the current knowledge on α-Syn mechanistic pathways to inflammation, as well as the eventual role of microbial dysbiosis on α-Syn. Furthermore, we explore the possible influence of inflammatory mitigation on α-Syn. In conclusion, and given the rising burden of neurodegenerative disorders, it is pressing to clarify the pathophysiological processes underlying α-synucleinopathies, in order to consider the mitigation of existing low-grade chronic inflammatory states as a potential pathway toward the management and prevention of such conditions, with the aim of starting to search for concrete clinical recommendations in this particular population.
Collapse
Affiliation(s)
- Patrícia Lyra
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Vanessa Machado
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - Silvia Rota
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London SE5 9RS, UK
| | - Kallol Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London SE5 9RS, UK
| | - João Botelho
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Caparica, 2829-511 Almada, Portugal
- Evidence-Based Hub, CiiEM, Egas Moniz-Cooperativa de Ensino Superior, Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
29
|
Soluble TREM2 in body fluid in Alzheimer's disease and Parkinson's disease. Neurol Sci 2023:10.1007/s10072-023-06729-5. [PMID: 36913148 DOI: 10.1007/s10072-023-06729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Previous studies showed conflicting results regarding soluble triggering receptor expressed on myeloid cells 2 (sTREM2) level alteration in body fluid in Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS We applied the STATA 12.0 software to compute standard mean difference (SMD) and 95% confidence interval (CI). RESULTS The study showed elevated sTREM2 level in cerebrospinal fluid (CSF) in AD, mild cognitive impairment (MCI), and preclinical AD (pre-AD) patients, compared to healthy controls (HCs) with random effects models (AD: SMD 0.28, 95% CI 0.12 to 0.44, I2 = 77.6%, p < 0.001; MCI: SMD 0.29, 95% CI 0.09 to 0.48, I2 = 89.7%, p < 0.001; pre-AD: SMD 0.24, 95% CI 0.00 to 0.48, I2 = 80.8%, p < 0.001). The study showed no significant difference in sTREM2 level in plasma between AD patients and HCs with a random effects model (SMD 0.06, 95% CI - 0.16 to 0.28, I2 = 65.6%, p = 0.008). The study showed no significant difference in sTREM2 level in CSF or plasma between PD patients and HCs with random effects models (CSF: SMD 0.33, 95% CI - 0.02 to 0.67, I2 = 85.6%, p < 0.001; plasma: SMD 0.37, 95% CI - 0.17 to 0.92, I2 = 77.8%, p = 0.011). CONCLUSIONS In conclusion, the study highlighted the CSF sTREM2 as a promising biomarker in the different clinical stages of AD. More studies were essential to explore the CSF and plasmatic concentrations of sTREM2 alteration in PD.
Collapse
|
30
|
Current Treatments and New, Tentative Therapies for Parkinson’s Disease. Pharmaceutics 2023; 15:pharmaceutics15030770. [PMID: 36986631 PMCID: PMC10051786 DOI: 10.3390/pharmaceutics15030770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative pathology, the origin of which is associated with the death of neuronal cells involved in the production of dopamine. The prevalence of PD has increased exponentially. The aim of this review was to describe the novel treatments for PD that are currently under investigation and study and the possible therapeutic targets. The pathophysiology of this disease is based on the formation of alpha-synuclein folds that generate Lewy bodies, which are cytotoxic and reduce dopamine levels. Most pharmacological treatments for PD target alpha-synuclein to reduce the symptoms. These include treatments aimed at reducing the accumulation of alpha-synuclein (epigallocatechin), reducing its clearance via immunotherapy, inhibiting LRRK2, and upregulating cerebrosidase (ambroxol). Parkinson’s disease continues to be a pathology of unknown origin that generates a significant social cost for the patients who suffer from it. Although there is still no definitive cure for this disease at present, there are numerous treatments available aimed at reducing the symptomatology of PD in addition to other therapeutic alternatives that are still under investigation. However, the therapeutic approach to this pathology should include a combination of pharmacological and non-pharmacological strategies to maximise outcomes and improve symptomatological control in these patients. It is therefore necessary to delve deeper into the pathophysiology of the disease in order to improve these treatments and therefore the quality of life of the patients.
Collapse
|
31
|
Tchekalarova J, Tzoneva R. Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. Int J Mol Sci 2023; 24:3022. [PMID: 36769340 PMCID: PMC9917989 DOI: 10.3390/ijms24033022] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Aging and neurodegenerative diseases share common hallmarks, including mitochondrial dysfunction and protein aggregation. Moreover, one of the major issues of the demographic crisis today is related to the progressive rise in costs for care and maintenance of the standard living condition of aged patients with neurodegenerative diseases. There is a divergence in the etiology of neurodegenerative diseases. Still, a disturbed endogenous pro-oxidants/antioxidants balance is considered the crucial detrimental factor that makes the brain vulnerable to aging and progressive neurodegeneration. The present review focuses on the complex relationships between oxidative stress, autophagy, and the two of the most frequent neurodegenerative diseases associated with aging, Alzheimer's disease (AD) and Parkinson's disease (PD). Most of the available data support the hypothesis that a disturbed antioxidant defense system is a prerequisite for developing pathogenesis and clinical symptoms of ADs and PD. Furthermore, the release of the endogenous hormone melatonin from the pineal gland progressively diminishes with aging, and people's susceptibility to these diseases increases with age. Elucidation of the underlying mechanisms involved in deleterious conditions predisposing to neurodegeneration in aging, including the diminished role of melatonin, is important for elaborating precise treatment strategies for the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
| |
Collapse
|
32
|
Zhu PA, Lu QQ, Li ZL, Hu RL, Xu S, Brodersen L, Liu YX, Liu H, Bao X. Efficacy of Tai Chi on lower limb function of Parkinson's disease patients: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1096417. [PMID: 36819715 PMCID: PMC9929552 DOI: 10.3389/fnagi.2023.1096417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Background At present, the effect of Tai Chi (TC) on lower limb function in patients with Parkinson's disease (PD) is controversial. Therefore, we conducted a meta-analysis on the influence of TC on lower limb function in PD patients. Methods According to the PRISMA guidelines, seven databases were searched. Randomized controlled trials (RCTS) were selected and screened according to inclusion and exclusion criteria. We assessed the quality of the studies using the Cochrane Risk of Bias tool and then extracted the characteristics of the included studies. The random effect model was adopted, and heterogeneity was measured by I 2 statistic. Results A total of 441 articles were screened, and 10 high-quality RCTs were with a total of 532 patients with PD met Our inclusion criteria. Meta-analysis showed that compared To control groups TC improved several outcomes. TC significantly improved motor function (SMD = -0.70; 95% CI = -0.95, -0.45; p < 0.001; I 2 = 35%), although The results were not statistically significant for The subgroup analysis of TC duration (SMD = -0.70; 95% CI = -0.95, -0.45; p = 0.88; I 2 = 0%;). TC significantly improved balance function (SMD = 0.89; 95% CI = 0.51, 1.27; p < 0.001; I 2 = 54%), functional walking capacity (SMD = -1.24; 95% CI = -2.40, -0.09; p = 0.04; I 2 = 95%), and gait velocity (SMD = 0.48; 95% CI = -0.02, 0.94; p = 0.04; I 2 = 78%), But Did Not improve endurance (SMD = 0.31; 95% CI = -0.12, 0.75; p = 0.16; I 2 = 0%), step length (SMD = 0.01; 95% CI = -0.34, 0.37; p = 0.94; I 2 = 29%), and cadence (SMD = 0.06; 95% CI = -0.25, 0.36; p = 0.70; I 2 = 0%). Conclusion TC has beneficial effects on motor function, balance function, functional walking ability, and gait velocity, but does not improve walking endurance, stride length, and cadence.
Collapse
Affiliation(s)
- Ping-an Zhu
- Department of Rehabilitation Medicine, Yuebei People’s Hospital, Shaoguan, China
| | - Qi-qi Lu
- Department of Rehabilitation Medicine, Yuebei People’s Hospital, Shaoguan, China
| | - Zhi-liang Li
- Department of Rehabilitation Medicine, Yuebei People’s Hospital, Shaoguan, China
| | - Rong-liang Hu
- Department of Rehabilitation Medicine, Jiangmen Central Hospital, Guangdong, Jiangmen, China
| | - Shu Xu
- Department of Rehabilitation Medicine, Shaoguan Railway Hospital, Shaoguan, China
| | - Lisa Brodersen
- Physical Therapy Program, Allen College, Waterloo, IA, United States
| | - Yuan-xin Liu
- College of Sports and Health Science, Xi’an Physical Education University, Xi’an, China,*Correspondence: Yuan-xin Liu,
| | - Howe Liu
- Physical Therapy Program, Allen College, Waterloo, IA, United States,Howe Liu,
| | - Xiao Bao
- Department of Rehabilitation Medicine, Yuebei People’s Hospital, Shaoguan, China,Xiao Bao,
| |
Collapse
|
33
|
Delay discounting in Parkinson’s disease: A systematic review and meta-analysis. Behav Brain Res 2023; 436:114101. [DOI: 10.1016/j.bbr.2022.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
|
34
|
Esteves AR, Munoz-Pinto MF, Nunes-Costa D, Candeias E, Silva DF, Magalhães JD, Pereira-Santos AR, Ferreira IL, Alarico S, Tiago I, Empadinhas N, Cardoso SM. Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut 2023; 72:73-89. [PMID: 34836918 PMCID: PMC9763194 DOI: 10.1136/gutjnl-2021-326023] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin β-N-methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities. DESIGN To test the hypothesis, we treated wild-type mice, primary neuronal cultures, cell lines and isolated mitochondria with BMAA, and analysed its impact on gut microbiota composition, barrier permeability, inflammation and aSyn aggregation as well as in brain inflammation, dopaminergic neuronal loss and motor behaviour. To further examine the key role of mitochondria, we also determined the specific effects of BMAA on mitochondrial function and on inflammasome activation. RESULTS BMAA induced extensive depletion of segmented filamentous bacteria (SFB) that regulate gut immunity, thus triggering gut dysbiosis, immune cell migration, increased intestinal inflammation, loss of barrier integrity and caudo-rostral progression of aSyn. Additionally, BMAA induced in vitro and in vivo mitochondrial dysfunction with cardiolipin exposure and consequent activation of neuronal innate immunity. These events primed neuroinflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION Taken together, our results demonstrate that chronic exposure to dietary BMAA can trigger a chain of events that recapitulate the evolution of the PD pathology from the gut to the brain, which is consistent with 'gut-first' PD.
Collapse
Affiliation(s)
- A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Mário F Munoz-Pinto
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Diana F Silva
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - I Luisa Ferreira
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Igor Tiago
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal .,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Kretzschmar GC, Targa ADS, Soares-Lima SC, dos Santos PI, Rodrigues LS, Macedo DA, Ribeiro Pinto LF, Lima MMS, Boldt ABW. Folic Acid and Vitamin B12 Prevent Deleterious Effects of Rotenone on Object Novelty Recognition Memory and Kynu Expression in an Animal Model of Parkinson's Disease. Genes (Basel) 2022; 13:genes13122397. [PMID: 36553663 PMCID: PMC9778036 DOI: 10.3390/genes13122397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is characterized by a range of motor signs, but cognitive dysfunction is also observed. Supplementation with folic acid and vitamin B12 is expected to prevent cognitive impairment. To test this in PD, we promoted a lesion within the substantia nigra pars compacta of rats using the neurotoxin rotenone. In the sequence, the animals were supplemented with folic acid and vitamin B12 for 14 consecutive days and subjected to the object recognition test. We observed an impairment in object recognition memory after rotenone administration, which was prevented by supplementation (p < 0.01). Supplementation may adjust gene expression through efficient DNA methylation. To verify this, we measured the expression and methylation of the kynureninase gene (Kynu), whose product metabolizes neurotoxic metabolites often accumulated in PD as kynurenine. Supplementation prevented the decrease in Kynu expression induced by rotenone in the substantia nigra (p < 0.05), corroborating the behavioral data. No differences were observed concerning the methylation analysis of two CpG sites in the Kynu promoter. Instead, we suggest that folic acid and vitamin B12 increased global DNA methylation, reduced the expression of Kynu inhibitors, maintained Kynu-dependent pathway homeostasis, and prevented the memory impairment induced by rotenone. Our study raises the possibility of adjuvant therapy for PD with folic acid and vitamin B12.
Collapse
Affiliation(s)
- Gabriela Canalli Kretzschmar
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Adriano D. S. Targa
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, National Cancer Institute, Research Coordination, Rio de Janeiro 20231-050, RJ, Brazil
| | - Priscila Ianzen dos Santos
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Lais S. Rodrigues
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Daniel A. Macedo
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, National Cancer Institute, Research Coordination, Rio de Janeiro 20231-050, RJ, Brazil
| | - Marcelo M. S. Lima
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
- Correspondence: ; Tel.: +55-(41)-3361-1553
| |
Collapse
|
36
|
Caligiore D, Giocondo F, Silvetti M. The Neurodegenerative Elderly Syndrome (NES) hypothesis: Alzheimer and Parkinson are two faces of the same disease. IBRO Neurosci Rep 2022; 13:330-343. [PMID: 36247524 PMCID: PMC9554826 DOI: 10.1016/j.ibneur.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that Alzheimer's disease (AD) and Parkinson's disease (PD) share monoamine and alpha-synuclein (αSyn) dysfunctions, often beginning years before clinical manifestations onset. The triggers for these impairments and the causes leading these early neurodegenerative processes to become AD or PD remain unclear. We address these issues by proposing a radically new perspective to frame AD and PD: they are different manifestations of one only disease we call "Neurodegenerative Elderly Syndrome (NES)". NES goes through three phases. The seeding stage, which starts years before clinical signs, and where the part of the brain-body affected by the initial αSyn and monoamine dysfunctions, influences the future possible progression of NES towards PD or AD. The compensatory stage, where the clinical symptoms are still silent thanks to compensatory mechanisms keeping monoamine concentrations homeostasis. The bifurcation stage, where NES becomes AD or PD. We present recent literature supporting NES and discuss how this hypothesis could radically change the comprehension of AD and PD comorbidities and the design of novel system-level diagnostic and therapeutic actions.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, Rome 00199, Italy
| | - Flora Giocondo
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council (LENAI-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| |
Collapse
|
37
|
Chen L, Bi M, Zhang Z, Du X, Chen X, Jiao Q, Jiang H. The functions of IRE1α in neurodegenerative diseases: Beyond ER stress. Ageing Res Rev 2022; 82:101774. [PMID: 36332756 DOI: 10.1016/j.arr.2022.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Inositol-requiring enzyme 1 α (IRE1α) is a type I transmembrane protein that resides in the endoplasmic reticulum (ER). IRE1α, which is the primary sensor of ER stress, has been proven to maintain intracellular protein homeostasis by activating X-box binding protein 1 (XBP1). Further studies have revealed novel physiological functions of the IRE1α, such as its roles in mRNA and protein degradation, inflammation, immunity, cell proliferation and cell death. Therefore, the function of IRE1α is not limited to its role in ER stress; IRE1α is also important for regulating other processes related to cellular physiology. Furthermore, IRE1α plays a key role in neurodegenerative diseases that are caused by the phosphorylation of Tau protein, the accumulation of α-synuclein (α-syn) and the toxic effects of mutant Huntingtin (mHtt). Therefore, targeting IRE1α is a valuable approach for treating neurodegenerative diseases and regulating cell functions. This review discusses the role of IRE1α in different cellular processes, and emphasizes the importance of IRE1α in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
38
|
De Maio M, Castellani L, Cugusi L, Cortis C, Fusco A. The Effect of a Combined Exercise Program on Postural Control and Fine Motor Skills in Parkinson's Disease: Study Design. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15216. [PMID: 36429935 PMCID: PMC9691118 DOI: 10.3390/ijerph192215216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a progressive and neurodegenerative disorder defined by physical symptoms such as hand disability and postural instability. To counteract the detrimental effects of PD, physical activity programs showed improvements in overall aspects of physical functioning. Therefore, this protocol will aim to evaluate the effect a of postural and fine motor skills training program in older adults with PD. PD individuals, with mild to moderate stage PD, aged between 65 to 80 years, will be voluntary selected from the Nursing Home Residences and Rehabilitation Centers. Subsequently, they will be randomly assigned to intervention group (PD) to receive a combined training program (postural control and fine motor skills exercises) or to the Control group (CON) to receive a stretching program. Before (PRE) and after (POST) a 12-week program both groups will perform wobble board (WB) and grooved pegboard (GPT) tests. Different performances between groups will be expected: (1) no significant differences between PD and CON group for WB and GPT test values before the beginning of the training intervention (PRE); (2) significantly better WB and GPT test values in PD subjects after the training intervention (POST) when compared to the base values (PRE); and (3) no significant differences in WB and GPT test values in CON subjects after the training intervention (POST) when compared to the base values (PRE). The findings of the present study protocol could be used for future studies investigating clinical populations, such as PD, and the effects of different rehabilitative interventions aiming to improve postural control and fine motor skills performances assessed by WB and GPT tests.
Collapse
Affiliation(s)
- Marianna De Maio
- Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, Viale dell’Università, 03043 Cassino, Italy
| | - Loriana Castellani
- Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, Viale dell’Università, 03043 Cassino, Italy
| | - Lucia Cugusi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Cristina Cortis
- Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, Viale dell’Università, 03043 Cassino, Italy
| | - Andrea Fusco
- Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, Viale dell’Università, 03043 Cassino, Italy
| |
Collapse
|
39
|
Struzyna LA, Browne KD, Burrell JC, Vélez WJG, Wofford KL, Kaplan HM, Murthy NS, Chen HI, Duda JE, España RA, Cullen DK. Axonal Tract Reconstruction Using a Tissue-Engineered Nigrostriatal Pathway in a Rat Model of Parkinson's Disease. Int J Mol Sci 2022; 23:13985. [PMID: 36430464 PMCID: PMC9692781 DOI: 10.3390/ijms232213985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) affects 1-2% of people over 65, causing significant morbidity across a progressive disease course. The classic PD motor deficits are caused by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in the loss of their long-distance axonal projections that modulate striatal output. While contemporary treatments temporarily alleviate symptoms of this disconnection, there is no approach able to replace the nigrostriatal pathway. We applied microtissue engineering techniques to create a living, implantable tissue-engineered nigrostriatal pathway (TE-NSP) that mimics the architecture and function of the native pathway. TE-NSPs comprise a discrete population of dopaminergic neurons extending long, bundled axonal tracts within the lumen of hydrogel micro-columns. Neurons were isolated from the ventral mesencephalon of transgenic rats selectively expressing the green fluorescent protein in dopaminergic neurons with subsequent fluorescent-activated cell sorting to enrich a population to 60% purity. The lumen extracellular matrix and growth factors were varied to optimize cytoarchitecture and neurite length, while immunocytochemistry and fast-scan cyclic voltammetry (FSCV) revealed that TE-NSP axons released dopamine and integrated with striatal neurons in vitro. Finally, TE-NSPs were implanted to span the nigrostriatal pathway in a rat PD model with a unilateral 6-hydroxydopamine SNpc lesion. Immunohistochemistry and FSCV established that transplanted TE-NSPs survived, maintained their axonal tract projections, extended dopaminergic neurites into host tissue, and released dopamine in the striatum. This work showed proof of concept that TE-NSPs can reconstruct the nigrostriatal pathway, providing motivation for future studies evaluating potential functional benefits and long-term durability of this strategy. This pathway reconstruction strategy may ultimately replace lost neuroarchitecture and alleviate the cause of motor symptoms for PD patients.
Collapse
Affiliation(s)
- Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wisberty J Gordián Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci 2022; 15:1030639. [PMID: 36438186 PMCID: PMC9687395 DOI: 10.3389/fnmol.2022.1030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2023] Open
Abstract
Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons. However, they will be cleaved into the corresponding truncated forms namely p25 and p29 under pathological conditions, such as neurodegenerative diseases and neurotoxic insults. The binding to truncated co-activators results in aberrant Cdk5 activity and contributes to the initiation and progression of multiple neurological disorders through affecting the down-stream targets. Although Cdk5 kinase activity is mainly regulated through combining with co-activators, it is not the only way. Post-translational modifications of Cdk5 including phosphorylation, S-nitrosylation, sumoylation, and acetylation can also affect its kinase activity and then participate in physiological and pathological processes of nervous system. In this review, we focus on the regulatory mechanisms of Cdk5 and its roles in a series of common neurological disorders such as neurodegenerative diseases, stroke, anxiety/depression, pathological pain and epilepsy.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China
| |
Collapse
|
41
|
Heng H, Liu J, Hu M, Li D, Su W, Li J. WDR43 is a potential diagnostic biomarker and therapeutic target for osteoarthritis complicated with Parkinson's disease. Front Cell Neurosci 2022; 16:1013745. [PMID: 36419937 PMCID: PMC9677099 DOI: 10.3389/fncel.2022.1013745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/18/2022] [Indexed: 01/03/2025] Open
Abstract
Osteoarthritis (OA) and Parkinson's disease (PD) are on the rise and greatly impact the quality of individuals' lives. Although accumulating evidence indicates a relationship between OA and PD, the particular interactions connecting the two diseases have not been thoroughly examined. Therefore, this study explored the association through genetic characterization and functional enrichment. Four datasets (GSE55235, GSE12021, GSE7621, and GSE42966) were chosen for assessment and validation from the Gene Expression Omnibus (GEO) database. Weighted Gene Co-Expression Network Analysis (WGCNA) was implemented to determine the most relevant genes for clinical features. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were carried out to explore the biological processes of common genes, and to display the interrelationships between common genes, the STRING database and the application Molecular Complex Detection Algorithm (MCODE) of Cytoscape software were leveraged to get hub genes. By intersecting the common genes with the differentially expressed genes (DEGs) acquired from GSE12021 and GSE42966, the hub genes were identified. Finally, we validated the diagnostic efficacy of hub genes and explored their correlation with 22 immune infiltrating cells. As a consequence, we discovered 71 common genes, most of which were functionally enriched in antigen processing and presentation, mitochondrial translation, the mRNA surveillance pathway, and nucleocytoplasmic transport. Furthermore, WDR43 was found by intersecting eight hub genes with 28 DEGs from the two validation datasets. Receiver Operating Characteristic (ROC) implied the diagnostic role of WDR43 in OA and PD. Immune infiltration research revealed that T-cell regulatory (Tregs), monocytes, and mast cells resting were associated with the pathogenesis of OA and PD. WDR43 may provide key insights into the relationship between OA and PD.
Collapse
Affiliation(s)
- Hongquan Heng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jie Liu
- Department of Orthopedics, Liyang People’s Hospital, Liyang, China
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Mingwei Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jian Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Feng SH, Chuang HJ, Yeh KC, Pan SL. Association of Osteoarthritis With Increased Risk of Parkinson's Disease: A Population-Based, Longitudinal Follow-Up Study. Arthritis Care Res (Hoboken) 2022; 74:1842-1848. [PMID: 34105302 DOI: 10.1002/acr.24708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate whether patients with osteoarthritis (OA) are at a higher risk of developing Parkinson's disease (PD). METHODS This retrospective cohort study was conducted using Taiwan's Longitudinal Health Insurance Database 2005. We enrolled 33,360 patients who were 50-64 years old and had OA in 2002-2005 to form the OA group. The comparison group consisted of 33,360 age- and sex-matched, randomly sampled subjects without OA. Then, their PD-free survival curves were generated using the Kaplan-Meier method. Multivariable Cox proportional hazards regression analysis was employed to estimate the effect of having OA on patients' subsequent risk of PD. RESULTS Of the 2 groups, the OA group had a significantly higher risk of developing PD (adjusted hazard ratio [HRadj ] 1.41 [95% confidence interval (95% CI) 1.16-1.70], P = 0.0003). The PD-free survival rate of the OA group was also significantly lower than that of the comparison group (P = 0.0004). The subgroup analysis showed that patients with knee or hip OA appeared to have a higher magnitude of PD risk (HRadj 1.55 [95% CI 1.14-2.11]) than patients with non-knee and non-hip OA (HRadj 1.42 [95% CI 1.06-1.89]) or with uncategorized OA (HRadj 1.32 [95% CI 1.05-1.64]). CONCLUSION Our findings suggest that OA is linked to an increased risk of developing PD.
Collapse
Affiliation(s)
- Shih-Hao Feng
- National Taiwan University Hospital Chu-Tung Branch, Hsin-Chu County, Taiwan
| | - Hung-Jui Chuang
- National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Yeh
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shin-Liang Pan
- National Taiwan University Hospital, National Taiwan University, and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
43
|
Gaertner Z, Azcorra M, Dombeck DA, Awatramani R. Molecular heterogeneity in the substantia nigra: A roadmap for understanding PD motor pathophysiology. Neurobiol Dis 2022; 175:105925. [DOI: 10.1016/j.nbd.2022.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
|
44
|
Deng I, Bobrovskaya L. Lipopolysaccharide mouse models for Parkinson's disease research: a critical appraisal. Neural Regen Res 2022; 17:2413-2417. [PMID: 35535880 PMCID: PMC9120679 DOI: 10.4103/1673-5374.331866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease, the most common movement disorder, has a strong neuroinflammatory aspect. This is evident by increased pro-inflammatory cytokines in the serum, and the presence of activated microglial cells, and inflammatory cytokines in the substantia nigra of post-mortem brains as well as cerebrospinal fluid of Parkinson's disease patients. The central and peripheral neuroinflammatory aspects of Parkinson's disease can be investigated in vivo via administration of the inflammagen lipopolysaccharide, a component of the cell wall of gram-negative bacteria. In this mini-review, we will critically evaluate different routes of lipopolysaccharide administration (including intranasal systemic and stereotasic), their relevance to clinical Parkinson's disease as well as the recent findings in lipopolysaccharide mouse models. We will also share our own experiences with systemic and intrastriatal lipopolysaccharide models in C57BL/6 mice and will discuss the usefulness of lipopolysaccharide mouse models for future research in the field.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
45
|
Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI, Harun-Or-Rashid M, Aktar MN, Khatun Kali MS, Jahan FI, Singla RK, Shen B, Rauf A, Sharma R. Multifunctional role of natural products for the treatment of Parkinson's disease: At a glance. Front Pharmacol 2022; 13:976385. [PMID: 36299886 PMCID: PMC9590378 DOI: 10.3389/fphar.2022.976385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Natural substances originating from plants have long been used to treat neurodegenerative disorders (NDs). Parkinson's disease (PD) is a ND. The deterioration and subsequent cognitive impairments of the midbrain nigral dopaminergic neurons distinguish by this characteristic. Various pathogenic mechanisms and critical components have been reported, despite the fact that the origin is unknown, such as protein aggregation, iron buildup, mitochondrial dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B inhibitors and anticholinergics are used to replace DA in the current treatment model. Surgery is advised in cases where drug therapy is ineffective. Unfortunately, the current conventional treatments for PD have a number of harmful side effects and are expensive. As a result, new therapeutic strategies that control the mechanisms that contribute to neuronal death and dysfunction must be addressed. Natural resources have long been a useful source of possible treatments. PD can be treated with a variety of natural therapies made from medicinal herbs, fruits, and vegetables. In addition to their well-known anti-oxidative and anti-inflammatory capabilities, these natural products also play inhibitory roles in iron buildup, protein misfolding, the maintenance of proteasomal breakdown, mitochondrial homeostasis, and other neuroprotective processes. The goal of this research is to systematically characterize the currently available medications for Parkinson's and their therapeutic effects, which target diverse pathways. Overall, this analysis looks at the kinds of natural things that could be used in the future to treat PD in new ways or as supplements to existing treatments. We looked at the medicinal plants that can be used to treat PD. The use of natural remedies, especially those derived from plants, to treat PD has been on the rise. This article examines the fundamental characteristics of medicinal plants and the bioactive substances found in them that may be utilized to treat PD.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohona Islam Mitu
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
46
|
Deus CM, Teixeira J, Raimundo N, Tucci P, Borges F, Saso L, Oliveira PJ. Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson's disease. Eur J Clin Invest 2022; 52:e13820. [PMID: 35638352 DOI: 10.1111/eci.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative movement disorder. PD affects 2% of the population above 65 years old; however, with the growing number of senior citizens, PD prevalence is predicted to increase in the following years. Pathologically, PD is characterized by dopaminergic cell neurodegeneration in the substantia nigra, resulting in decreased dopamine levels in the nigrostriatal pathway, triggering motor symptoms. Although the pathological mechanisms leading to PD are still unclear, large evidence indicates that oxidative stress plays an important role, not only because it increases with age which is the most significant risk factor for PD development, but also as a result of alterations in several processes, particularly mitochondria dysfunction. The modulation of oxidative stress, especially using dietary mitochondriotropic antioxidants, represents a promising approach to prevent or treat PD. Although most mitochondria-targeted antioxidants with beneficial effects in PD-associated models have failed to show any therapeutic benefit in clinical trials, several questions remain to be clarified. Hereby, we review the role played by oxidative stress in PD pathogenesis, emphasizing mitochondria as reactive oxygen species (ROS) producers and as targets for oxidative stress-related dysfunctional mechanisms. In addition, we also describe the importance of using dietary-based mitochondria-targeted antioxidants as a valuable strategy to counteract the deleterious effects of ROS in pre-clinical and/or clinical trials of PD, pointing out their significance to slow, and possibly halt, the progression of PD.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Roma, Italy
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
47
|
Sisalli MJ, Della Notte S, Secondo A, Ventra C, Annunziato L, Scorziello A. L-Ornithine L-Aspartate Restores Mitochondrial Function and Modulates Intracellular Calcium Homeostasis in Parkinson's Disease Models. Cells 2022; 11:cells11182909. [PMID: 36139485 PMCID: PMC9496730 DOI: 10.3390/cells11182909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
The altered crosstalk between mitochondrial dysfunction, intracellular Ca2+ homeostasis, and oxidative stress has a central role in the dopaminergic neurodegeneration. In the present study, we investigated the hypothesis that pharmacological strategies able to improve mitochondrial functions might prevent neuronal dysfunction in in vitro models of Parkinson’s disease. To this aim, the attention was focused on the amino acid ornithine due to its ability to cross the blood–brain barrier, to selectively reach and penetrate the mitochondria through the ornithine transporter 1, and to control mitochondrial function. To pursue this issue, experiments were performed in human neuroblastoma cells SH-SY5Y treated with rotenone and 6-hydroxydopamine to investigate the pharmacological profile of the compound L-Ornithine-L-Aspartate (LOLA) as a new potential therapeutic strategy to prevent dopaminergic neurons’ death. In these models, confocal microscopy experiments with fluorescent dyes measuring mitochondrial calcium content, mitochondrial membrane potential, and mitochondrial ROS production, demonstrated that LOLA improved mitochondrial functions. Moreover, by increasing NCXs expression and activity, LOLA also reduced cytosolic [Ca2+] thanks to its ability to modulate NO production. Collectively, these results indicate that LOLA, by interfering with those mitochondrial mechanisms related to ROS and RNS production, promotes mitochondrial functional recovery, thus confirming the tight relationship existing between cytosolic ionic homeostasis and cellular metabolism depending on the type of insult applied.
Collapse
Affiliation(s)
- Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
| | - Salvatore Della Notte
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
| | | | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
48
|
Human gingival mesenchymal stem cells improve movement disorders and tyrosine hydroxylase neuronal damage in Parkinson disease rats. Cytotherapy 2022; 24:1105-1120. [PMID: 35973920 DOI: 10.1016/j.jcyt.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AIMS Gingival mesenchymal stem cells (GMSCs) demonstrate high proliferation, trilineage differentiation and immunomodulatory properties. Parkinson disease (PD) is the second most common type of neurodegenerative disease. This study aimed to explore the effect and mechanism of GMSC-based therapy in 6-hydroxydopamine-induced PD rats. METHODS RNA sequencing and quantitative proteomics technology was used to validate the neuroprotective role of GMSCs therapeutic in 6-Hydroxydopamine -induced PD model in vitro and in vivo. Western blotting, immunofluorescence and real-time quantitative PCR verified the molecular mechanism of GMSCs treatment. RESULTS Intravenous injection of GMSCs improved rotation and forelimb misalignment behavior, enhanced the anti-apoptotic B-cell lymphoma 2/B-cell lymphoma 2-associated X axis, protected tyrosine hydroxylase neurons, decreased the activation of astrocytes and reduced the astrocyte marker glial fibrillary acidic protein and microglia marker ionized calcium-binding adaptor molecule 1 in the substantia nigra and striatum of PD rats. The authors found that GMSCs upregulated nerve regeneration-related molecules and inhibited metabolic disorders and the activation of signal transducer and activator of transcription 3. GMSCs showed a strong ability to protect neurons and reduce mitochondrial membrane potential damage and reactive oxygen species accumulation. The safety of GMSC transplantation was confirmed by the lack of tumor formation following subcutaneous transplantation into nude mice for up to 8 weeks. CONCLUSIONS The authors' research helps to explain the mechanism of GMSC-based therapeutic strategies and promote potential clinical application in Parkinson disease.
Collapse
|
49
|
Montemurro N, Aliaga N, Graff P, Escribano A, Lizana J. New Targets and New Technologies in the Treatment of Parkinson's Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8799. [PMID: 35886651 PMCID: PMC9321220 DOI: 10.3390/ijerph19148799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, whose main neuropathological finding is pars compacta degeneration due to the accumulation of Lewy bodies and Lewy neurites, and subsequent dopamine depletion. This leads to an increase in the activity of the subthalamic nucleus (STN) and the internal globus pallidus (GPi). Understanding functional anatomy is the key to understanding and developing new targets and new technologies that could potentially improve motor and non-motor symptoms in PD. Currently, the classical targets are insufficient to improve the entire wide spectrum of symptoms in PD (especially non-dopaminergic ones) and none are free of the side effects which are not only associated with the procedure, but with the targets themselves. The objective of this narrative review is to show new targets in DBS surgery as well as new technologies that are under study and have shown promising results to date. The aim is to give an overview of these new targets, as well as their limitations, and describe the current studies in this research field in order to review ongoing research that will probably become effective and routine treatments for PD in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Nelida Aliaga
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Pablo Graff
- Functional Neurosurgery Program, Department of Neurosurgery, San Miguel Arcángel Hospital, Buenos Aires B1406, Argentina;
| | - Amanda Escribano
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Jafeth Lizana
- Department of Neurosurgery, Hospital Nacional Guillermo Almenara Irigoyen, Lima 07035, Peru;
- Medicine Faculty, Universidad Nacional Mayor de San Marcos, Lima 07035, Peru
| |
Collapse
|
50
|
Cheng NN, Zhang LH, Ge R, Feng XE, Li QS. Triphenylpyrazoline ketone chlorophenols as potential candidate compounds against Parkinson’s disease: design, synthesis, and biological evaluation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|