1
|
Zhou Z, Zhang L, Wei X, Wang A, Hu Y, Xiao M, Zheng Y. 1,25(OH) 2D 3 inhibits pancreatic stellate cells activation and promotes insulin secretion in T2DM. Endocrine 2024; 85:1193-1205. [PMID: 38656750 DOI: 10.1007/s12020-024-03833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE To evaluate the effect and mechanism of 1,25(OH)2D3 on pancreatic stellate cells (PSCs) in type 2 diabetes mellitus (T2DM). METHODS A mouse model of T2DM was successfully established by high-fat diet (HFD) /streptozotocin (STZ) and administered 1,25(OH)2D3 for 3 weeks. Fasting blood glucose (FBG), glycated hemoglobin A1c (GHbA1c), insulin (INS) and glucose tolerance were measured. Histopathology changes and fibrosis of pancreas were examined by hematoxylin and eosin staining and Masson staining. Mouse PSCs were extracted, co-cultured with mouse insulinoma β cells (MIN6 cells) and treated with 1,25(OH)2D3. ELISA detection of inflammatory factor expression. Tissue reactive oxygen species (ROS) levels were also measured. Immunofluorescence or Western blotting were used to measure fibrosis and inflammation-related protein expression. RESULTS PSCs activation and islets fibrosis in T2DM mice. Elevated blood glucose was accompanied by significant increases in serum inflammatory cytokines and tissue ROS levels. 1,25(OH)2D3 attenuated islet fibrosis by reducing hyperglycemia, ROS levels, and inflammatory factors expression. Additionally, the co-culture system confirmed that 1,25(OH)2D3 inhibited PSCs activation, reduced the secretion of pro-inflammatory cytokines, down-regulated the expression of fibrosis and inflammation-related proteins, and promoted insulin secretion. CONCLUSION Our findings identify that PSCs activation contributes to islet fibrosis and β-cell dysfunction. 1,25(OH)2D3 exerts beneficial effects on T2DM potentially by inhibiting PSCs activation and inflammatory response, highlighting promising control strategies of T2DM by vitamin D.
Collapse
Affiliation(s)
- Zhengyu Zhou
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China.
| | - Lewen Zhang
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| | - Xun Wei
- Center of Laboratory Animal, Shanghai Jiao Tong University, Shanghai, China
| | - Aiqing Wang
- Suzhou Medical college of Soochow University, Suzhou, China
| | - Yudie Hu
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| | - Min Xiao
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| | - Yuxuan Zheng
- Laboratory Animal Center of Suzhou Medical college, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Yoshida T, Latt KZ, Rosenberg AZ, Santo BA, Myakala K, Ishimoto Y, Zhao Y, Shrivastav S, Jones BA, Yang X, Wang XX, Tutino VM, Sarder P, Levi M, Okamoto K, Winkler CA, Kopp JB. PKR activation-induced mitochondrial dysfunction in HIV-transgenic mice with nephropathy. eLife 2024; 12:RP91260. [PMID: 39207915 PMCID: PMC11361708 DOI: 10.7554/elife.91260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
HIV disease remains prevalent in the USA and chronic kidney disease remains a major cause of morbidity in HIV-1-positive patients. Host double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a sensor for viral dsRNA, including HIV-1. We show that PKR inhibition by compound C16 ameliorates the HIV-associated nephropathy (HIVAN) kidney phenotype in the Tg26 transgenic mouse model, with reversal of mitochondrial dysfunction. Combined analysis of single-nucleus RNA-seq and bulk RNA-seq data revealed that oxidative phosphorylation was one of the most downregulated pathways and identified signal transducer and activator of transcription (STAT3) as a potential mediating factor. We identified in Tg26 mice a novel proximal tubular cell cluster enriched in mitochondrial transcripts. Podocytes showed high levels of HIV-1 gene expression and dysregulation of cytoskeleton-related genes, and these cells dedifferentiated. In injured proximal tubules, cell-cell interaction analysis indicated activation of the pro-fibrogenic PKR-STAT3-platelet-derived growth factor (PDGF)-D pathway. These findings suggest that PKR inhibition and mitochondrial rescue are potential novel therapeutic approaches for HIVAN.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Briana A Santo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Yu Ishimoto
- Polycystic Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, NCI, NIHFrederickUnited States
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| | - Bryce A Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Vincent M Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University at BuffaloBuffaloUnited States
- College of Medicine, University of FloridaGainesvilleUnited States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown UniversityWashingtonUnited States
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
- Nephrology Endocrinology and Vascular Medicine, Tohoku University HospitalSendaiJapan
| | - Cheryl A Winkler
- Frederick National Laboratory for Cancer Research, NCI, NIHFrederickUnited States
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIHBethesdaUnited States
| |
Collapse
|
3
|
Deng EZ, Marino GB, Clarke DJB, Diamant I, Resnick AC, Ma W, Wang P, Ma'ayan A. Multiomics2Targets identifies targets from cancer cohorts profiled with transcriptomics, proteomics, and phosphoproteomics. CELL REPORTS METHODS 2024; 4:100839. [PMID: 39127042 PMCID: PMC11384097 DOI: 10.1016/j.crmeth.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The availability of data from profiling of cancer patients with multiomics is rapidly increasing. However, integrative analysis of such data for personalized target identification is not trivial. Multiomics2Targets is a platform that enables users to upload transcriptomics, proteomics, and phosphoproteomics data matrices collected from the same cohort of cancer patients. After uploading the data, Multiomics2Targets produces a report that resembles a research publication. The uploaded matrices are processed, analyzed, and visualized using the tools Enrichr, KEA3, ChEA3, Expression2Kinases, and TargetRanger to identify and prioritize proteins, genes, and transcripts as potential targets. Figures and tables, as well as descriptions of the methods and results, are automatically generated. Reports include an abstract, introduction, methods, results, discussion, conclusions, and references and are exportable as citable PDFs and Jupyter Notebooks. Multiomics2Targets is applied to analyze version 3 of the Clinical Proteomic Tumor Analysis Consortium (CPTAC3) pan-cancer cohort, identifying potential targets for each CPTAC3 cancer subtype. Multiomics2Targets is available from https://multiomics2targets.maayanlab.cloud/.
Collapse
Affiliation(s)
- Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Ido Diamant
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA.
| |
Collapse
|
4
|
Yang JZ, Zhang KK, Hsu C, Miao L, Chen LJ, Liu JL, Li JH, Li XW, Zeng JH, Chen L, Li JH, Xie XL, Wang Q. Polystyrene nanoplastics induce cardiotoxicity by upregulating HIPK2 and activating the P53 and TGF-β1/Smad3 pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134823. [PMID: 38852254 DOI: 10.1016/j.jhazmat.2024.134823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-β1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.
Collapse
Affiliation(s)
- Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lin Miao
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ji-Hui Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Lee K, Drakas R, He JC. Small Molecule Allosteric Inhibitor of HIPK2 as a Novel Therapy against Kidney Fibrosis. J Am Soc Nephrol 2024; 35:809-811. [PMID: 39288913 PMCID: PMC11164111 DOI: 10.1681/asn.0000000000000327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Affiliation(s)
- Kyung Lee
- Icahn School of Medicine at Mount Sinai, New York, New York
- Rila Therapeutics Inc, South San Francisco, California
| | - Robert Drakas
- Rila Therapeutics Inc, South San Francisco, California
- ShangPharma Innovations Inc, South San Francisco, California
| | - John C. He
- Icahn School of Medicine at Mount Sinai, New York, New York
- Rila Therapeutics Inc, South San Francisco, California
| |
Collapse
|
6
|
Chen M, Fang Y, Ge Y, Qiu S, Dworkin L, Gong R. The redox-sensitive GSK3β is a key regulator of glomerular podocyte injury in type 2 diabetic kidney disease. Redox Biol 2024; 72:103127. [PMID: 38527400 PMCID: PMC10979123 DOI: 10.1016/j.redox.2024.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Emerging evidence suggests that GSK3β, a redox-sensitive transducer downstream of insulin signaling, acts as a convergent point for myriad pathways implicated in kidney injury, repair, and regeneration. However, its role in diabetic kidney disease remains controversial. In cultured glomerular podocytes, exposure to a milieu of type 2 diabetes elicited prominent signs of podocyte injury and degeneration, marked by loss of homeostatic marker proteins like synaptopodin, actin cytoskeleton disruption, oxidative stress, apoptosis, and stress-induced premature senescence, as shown by increased staining for senescence-associated β-galactosidase activity, amplified formation of γH2AX foci, and elevated expression of mediators of senescence signaling, like p21 and p16INK4A. These degenerative changes coincided with GSK3β hyperactivity, as evidenced by GSK3β overexpression and reduced inhibitory phosphorylation of GSK3β, and were averted by tideglusib, a highly-selective small molecule inhibitor of GSK3β. In agreement, post-hoc analysis of a publicly-available glomerular transcriptomics dataset from patients with type 2 diabetic nephropathy revealed that the curated diabetic nephropathy-related gene set was enriched in high GSK3β expression group. Mechanistically, GSK3β-modulated nuclear factor Nrf2 signaling is involved in diabetic podocytopathy, because GSK3β knockdown reinforced Nrf2 antioxidant response and suppressed oxidative stress, resulting in an improvement in podocyte injury and senescence. Conversely, ectopic expression of the constitutively active mutant of GSK3β impaired Nrf2 antioxidant response and augmented oxidative stress, culminating in an exacerbated diabetic podocyte injury and senescence. Moreover, IRS-1 was found to be a cognate substrate of GSK3β for phosphorylation at IRS-1S332, which negatively regulates IRS-1 activity. GSK3β hyperactivity promoted IRS-1 phosphorylation, denoting a desensitized insulin signaling. Consistently, in vivo in db/db mice with diabetic nephropathy, GSK3β was hyperactive in glomerular podocytes, associated with IRS-1 hyperphosphorylation, impaired Nrf2 response and premature senescence. Our finding suggests that GSK3β is likely a novel therapeutic target for treating type 2 diabetic glomerular injury.
Collapse
Affiliation(s)
- Mengxuan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Yudong Fang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Yan Ge
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Shuhao Qiu
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Lance Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, OH, USA.
| |
Collapse
|
7
|
Trinh-Minh T, Chen CW, Tran Manh C, Li YN, Zhu H, Zhou X, Chakraborty D, Zhang Y, Rauber S, Dees C, Lin NY, Kah D, Gerum R, Bergmann C, Kreuter A, Reuter C, Groeber-Becker F, Eckes B, Distler O, Fabry B, Ramming A, Schambony A, Schett G, Distler JH. Noncanonical WNT5A controls the activation of latent TGF-β to drive fibroblast activation and tissue fibrosis. J Clin Invest 2024; 134:e159884. [PMID: 38747285 PMCID: PMC11093613 DOI: 10.1172/jci159884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
Transforming growth factor β (TGF-β) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-β remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-β in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-β. The activation of latent TGF-β requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-β, rebalanced TGF-β signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-β in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.
Collapse
Affiliation(s)
- Thuong Trinh-Minh
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Cuong Tran Manh
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Yi-Nan Li
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang Zhou
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Debomita Chakraborty
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Yun Zhang
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| | - Simon Rauber
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Clara Dees
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Neng-Yu Lin
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Delf Kah
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Richard Gerum
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Alexander Kreuter
- Clinic for Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Clinic Oberhausen, North-Rhine-Westphalia, Germany
| | - Christiane Reuter
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC) Würzburg, Bavaria, Germany
| | - Florian Groeber-Becker
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC) Würzburg, Bavaria, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Cologne, North-Rhine-Westphalia, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, North-Rhine-Westphalia, Germany
| | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Alexandra Schambony
- Division of Developmental Biology, Biology Department, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Bavaria, Germany
- German Center for Immunotherapy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University of Erlangen, Erlangen, Bavaria, Germany
| | - Jörg H.W. Distler
- Department of Rheumatology and
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, North-Rhine-Westphalia, Germany
| |
Collapse
|
8
|
Feng Y, Li Z, Wang H, Liu BC, Lee K, He JC. HIPK2 C-terminal domain inhibits NF-κB signaling and renal inflammation in kidney injury. JCI Insight 2024; 9:e175153. [PMID: 38512421 PMCID: PMC11141872 DOI: 10.1172/jci.insight.175153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
HIPK2 is a multifunctional kinase that acts as a key pathogenic mediator of chronic kidney disease and fibrosis. It acts as a central effector of multiple signaling pathways implicated in kidney injury, such as TGF-β/Smad3-mediated extracellular matrix accumulation, NF-κB-mediated inflammation, and p53-mediated apoptosis. Thus, a better understanding of the specific HIPK2 regions necessary for distinct downstream pathway activation is critical for optimal drug development for CKD. Our study now shows that caspase-6-mediated removal of the C-terminal region of HIPK2 (HIPK2-CT) lead to hyperactive p65 NF-κB transcriptional response in kidney cells. In contrast, the expression of cleaved HIPK2-CT fragment could restrain the NF-κB transcriptional activity by cytoplasmic sequestration of p65 and the attenuation of IκBα degradation. Therefore, we examined whether HIPK2-CT expression can be exploited to restrain renal inflammation in vivo. The induction of HIPK2-CT overexpression in kidney tubular cells attenuated p65 nuclear translocation, expression of inflammatory cytokines, and macrophage infiltration in the kidneys of mice with unilateral ureteral obstruction and LPS-induced acute kidney injury. Collectively, our findings indicate that the HIPK2-CT is involved in the regulation of nuclear NF-κB transcriptional activity and that HIPK2-CT or its analogs could be further exploited as potential antiinflammatory agents to treat kidney disease.
Collapse
Affiliation(s)
- Ye Feng
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzhe Li
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Heather Wang
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Zhong W, Hong C, Zhang Y, Li Y, Xiao C, Liu X. ASH2L-mediated H3K4me3 drives diabetic nephropathy through HIPK2 and Notch1 pathway. Transl Res 2024; 264:85-96. [PMID: 37879562 DOI: 10.1016/j.trsl.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Diabetic nephropathy (DN) is one of the complications of diabetes. Long-term hyperglycemia in the kidney results in renal insufficiency, and eventually leads to end-stage renal disease. Epigenetic factor ASH2L has long been identified as a transcriptional activator, and we previously indicated that ASH2L aggravated fibrosis and inflammation in high glucose-induced glomerular mesangial cells, but the pathophysiological relevance and the mechanism of ASH2L-mediated H3K4me3 in DN is not well understood. Here we demonstrated that ASH2L is upregulated in glomeruli isolated from db/db mice. Loss of ASH2L protected glomerular injury caused by hyperglycemia, as evidenced by reduced albuminuria, preserved structure, decreased glomerular extracellular matrix deposition, and lowered renal glomerular expression of proinflammatory and profibrotic markers in db/db mice. Furthermore, we demonstrated that enrichment of ASH2L-mediated H3K4me3 on the promoter regions of ADAM17 and HIPK2 triggered their transcription, leading to aberrant activation of Notch1 signaling pathway, thereby contributing to fibrosis and inflammation in DN. The findings of this study provide compelling evidence for targeting ASH2L as a potential therapeutic strategy to prevent or slow down the progression of DN.
Collapse
Affiliation(s)
- Wen Zhong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuyu Zhang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuhui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenxi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China.
| |
Collapse
|
10
|
Yang F, Hu Y, Shi Z, Liu M, Hu K, Ye G, Pang Q, Hou R, Tang K, Zhu Y. The occurrence and development mechanisms of esophageal stricture: state of the art review. J Transl Med 2024; 22:123. [PMID: 38297325 PMCID: PMC10832115 DOI: 10.1186/s12967-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.
Collapse
Affiliation(s)
- Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- Ningbo No.2 Hospital, Ningbo, 315001, People's Republic of China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kefeng Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruixia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
11
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
12
|
Garufi A, D'Orazi V, Pistritto G, Cirone M, D'Orazi G. The Sweet Side of HIPK2. Cancers (Basel) 2023; 15:2678. [PMID: 37345014 DOI: 10.3390/cancers15102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Valerio D'Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D'Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
13
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
14
|
Xia Y, Jiang H, Chen J, Xu F, Zhang G, Zhang D. Low dose Taxol ameliorated renal fibrosis in mice with diabetic kidney disease by downregulation of HIPK2. Life Sci 2023; 320:121540. [PMID: 36907324 DOI: 10.1016/j.lfs.2023.121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/13/2023]
Abstract
Our previous studies reported that low-dose paclitaxel (Taxol) ameliorated renal fibrosis in the unilateral ureteral obstruction and remnant kidney models. However, the regulatory role of Taxol in diabetic kidney disease (DKD) is still unclear. Herein, we observed that low-dose Taxol attenuated high glucose-increased expression of fibronectin, collagen I and collagen IV in Boston University mouse proximal tubule cells. Mechanistically, Taxol suppressed the expression of homeodomain-interacting protein kinase 2 (HIPK2) via disrupting the binding of Smad3 to HIPK2 promoter region, and consequently inhibited the activation of p53. Besides, Taxol ameliorated RF in Streptozotocin mice and db/db-induced DKD via suppression of Smad3/HIPK2 axis as well as inactivation of p53. Altogether, these results suggest that Taxol can block Smad3-HIPK2/p53 axis, thereby attenuating the progression of DKD. Hence, Taxol is a promising therapeutic drug for DKD.
Collapse
Affiliation(s)
- Yang Xia
- Department of Emergency Medicine, Second Xiangya Hospital, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, People's Republic of China
| | - Hongwei Jiang
- Department of Endocrinology, First Affiliated Hospital of Henan University of Science and Technology, People's Republic of China
| | - Jinwen Chen
- Department of Emergency Medicine, Hunan Aerospace Hospital, People's Republic of China
| | - Fang Xu
- Department of Emergency Medicine, Second Xiangya Hospital, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, People's Republic of China
| | - Guoxiu Zhang
- Department of General Practice, First Affiliated Hospital of Henan University of Science and Technology, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, People's Republic of China; Department of General Practice, First Affiliated Hospital of Henan University of Science and Technology, People's Republic of China.
| |
Collapse
|
15
|
Garufi A, Pistritto G, D’Orazi G. HIPK2 as a Novel Regulator of Fibrosis. Cancers (Basel) 2023; 15:1059. [PMID: 36831402 PMCID: PMC9954661 DOI: 10.3390/cancers15041059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Fibrosis is an unmet medical problem due to a lack of evident biomarkers to help develop efficient targeted therapies. Fibrosis can affect almost every organ and eventually induce organ failure. Homeodomain-interacting protein kinase 2 (HIPK2) is a protein kinase that controls several molecular pathways involved in cell death and development and it has been extensively studied, mainly in the cancer biology field. Recently, a role for HIPK2 has been highlighted in tissue fibrosis. Thus, HIPK2 regulates several pro-fibrotic pathways such as Wnt/β-catenin, TGF-β and Notch involved in renal, pulmonary, liver and cardiac fibrosis. These findings suggest a wider role for HIPK2 in tissue physiopathology and highlight HIPK2 as a promising target for therapeutic purposes in fibrosis. Here, we will summarize the recent studies showing the involvement of HIPK2 as a novel regulator of fibrosis.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
16
|
Zhong W, Hong C, Dong Y, Li Y, Xiao C, Liu X. ASH2L Aggravates Fibrosis and Inflammation through HIPK2 in High Glucose-Induced Glomerular Mesangial Cells. Genes (Basel) 2022; 13:genes13122244. [PMID: 36553510 PMCID: PMC9816940 DOI: 10.3390/genes13122244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease and continues to be a threat to patients with diabetes. Dysfunction of glomerular mesangial cells (GMCs) is the main contributing factor to glomerulosclerosis, which is a pathological feature of DN. The epigenetic factor ASH2L has long been thought to be a transcriptional activator, but its function and involvement in diabetic nephropathy is still unclear. Here, we investigated the effect of ASH2L on the regulation of fibrosis and inflammation induced by high glucose in mouse mesangial cells (mMCs). We observed that ASH2L expression is increased in high glucose-induced mMCs, while loss of ASH2L alleviated fibrosis and inflammation. Furthermore, ASH2L-mediates H3K4me3 of the homeodomain-interacting protein kinase 2 (HIPK2) promoter region, which is a contributor to fibrosis in the kidneys and promotes its transcriptional expression. Similar to loss of ASH2L, silencing HIPK2 also inhibited fibrosis and inflammation. In addition, ASH2L and HIPK2 are upregulated in the kidneys of both streptozocin-induced and db/db mouse. In conclusion, we uncovered the crucial role of ASH2L in high glucose-induced fibrosis and inflammation, suggesting that ASH2L regulation may be an attractive approach to attenuate the progression of DN.
Collapse
Affiliation(s)
- Wen Zhong
- School of pharmacy, Fudan University, Shanghai 201203, China
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yejun Dong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuhui Li
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chenxi Xiao
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
- Correspondence: ; Tel.: +86-21-51980159
| |
Collapse
|
17
|
Zhou Q, Meng D, Li F, Zhang X, Liu L, Zhu Y, Liu S, Xu M, Deng J, Lei Z, Sluijter JP, Xiao J. Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine 2022; 85:104274. [PMID: 36182775 PMCID: PMC9526139 DOI: 10.1016/j.ebiom.2022.104274] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
|
18
|
Li X, Li W, Zhang Z, Wang W, Huang H. SIRT6 overexpression retards renal interstitial fibrosis through targeting HIPK2 in chronic kidney disease. Front Pharmacol 2022; 13:1007168. [PMID: 36172184 PMCID: PMC9510922 DOI: 10.3389/fphar.2022.1007168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: Renal interstitial fibrosis is a common pathophysiological change in the chronic kidney disease (CKD). Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin 6 (SIRT6) is demonstrated to protect against kidney injury. Vitamin B3 is the mostly used form of NAD precursors. However, the role of SIRT6 overexpression in renal interstitial fibrosis of CKD and the association between dietary vitamin B3 intake and renal function remain to be elucidated. Methods: Wild-type (WT) and SIRT6-transgene (SIRT6-Tg) mice were given with high-adenine diets to establish CKD model. HK2 cells were exposed to transforming growth factor β1 (TGF-β1) in vitro to explore related mechanism. Population data from Multi-Ethnic Study of Atherosclerosis (MESA) was used to examine the association between dietary vitamin B3 intake and renal function decline. Results: Compared to WT mice, SIRT6-Tg mice exhibited alleviated renal interstitial fibrosis as evidenced by reduced collagen deposit, collagen I and α-smooth muscle actin expression. Renal function was also improved in SIRT6-Tg mice. Homeodomain interacting protein kinase 2 (HIPK2) was induced during the fibrogenesis in CKD, while HIPK2 was downregulated after SIRT6 overexpression. Further assay in vitro confirmed that SIRT6 depletion exacerbated epithelial-to-mesenchymal transition of HK2 cells, which might be linked with HIPK2 upregulation. HIPK2 was inhibited by SIRT6 in the post-transcriptional level. Population study indicated that higher dietary vitamin B3 intake was independently correlated with a lower risk of estimate glomerular filtration rate decline in those ≥65 years old during follow-up. Conclusion: SIRT6/HIPK2 axis serves as a promising target of renal interstitial fibrosis in CKD. Dietary vitamin B3 intake is beneficial for renal function in the old people.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenxin Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhengzhipeng Zhang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Huang,
| |
Collapse
|
19
|
Overstreet JM, Gifford CC, Tang J, Higgins PJ, Samarakoon R. Emerging role of tumor suppressor p53 in acute and chronic kidney diseases. Cell Mol Life Sci 2022; 79:474. [PMID: 35941392 PMCID: PMC11072039 DOI: 10.1007/s00018-022-04505-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023]
Abstract
p53 is a major regulator of cell cycle arrest, apoptosis, and senescence. While involvement of p53 in tumorigenesis is well established, recent studies implicate p53 in the initiation and progression of several renal diseases, which is the focus of this review. Ischemic-, aristolochic acid (AA) -, diabetic-, HIV-associated-, obstructive- and podocyte-induced nephropathies are accompanied by activation and/or elevated expression of p53. Studies utilizing chemical or renal-specific inhibition of p53 in mice confirm the pathogenic role of this transcription factor in acute kidney injury and chronic kidney disease. TGF-β1, NOX, ATM/ATR kinases, Cyclin G, HIPK, MDM2 and certain micro-RNAs are important determinants of renal p53 function in response to trauma. AA, cisplatin or TGF-β1-mediated ROS generation via NOXs promotes p53 phosphorylation and subsequent tubular dysfunction. p53-SMAD3 transcriptional cooperation downstream of TGF-β1 orchestrates induction of fibrotic factors, extracellular matrix accumulation and pathogenic renal cell communication. TGF-β1-induced micro-RNAs (such as mir-192) could facilitate p53 activation, leading to renal hypertrophy and matrix expansion in response to diabetic insults while AA-mediated mir-192 induction regulates p53 dependent epithelial G2/M arrest. The widespread involvement of p53 in tubular maladaptive repair, interstitial fibrosis, and podocyte injury indicate that p53 clinical targeting may hold promise as a novel therapeutic strategy for halting progression of certain acute and chronic renal diseases, which affect hundreds of million people worldwide.
Collapse
Affiliation(s)
| | - Cody C Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
20
|
Knockdown of HIPK2 attenuates angiotensin II-induced cardiac fibrosis in cardiac fibroblasts. J Cardiovasc Pharmacol 2022; 80:125-131. [PMID: 35522151 DOI: 10.1097/fjc.0000000000001292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Homeodomain-interacting protein kinase-2 (HIPK2), a member of an evolutionary conserved family of serine/threonine kinases, has been observed to be involved in the pathogenesis of fibrotic diseases. However, its role in cardiac fibrosis remains unclear. In the current study, we assessed the effect of HIPK2 on cardiac fibroblasts (CFs) in response to angiotensin II (Ang II) stimulation. The results indicated that HIPK2 expression was significantly increased in Ang II-induced CFs in a dose-dependent manner. Then, HIPK2 was knocked down in CFs to evaluate the roles of HIPK2. Knockdown of HIPK2 suppressed cell proliferation and migration in Ang II-induced CFs. The Ang II-caused increase in expression of α-SMA, a hallmark of myofibroblast differentiation, was decreased by knockdown of HIPK2. HIPK2 knockdown also reduced ECM production including type I collagen (Col I) and connective tissue growth factor (CTGF). Furthermore, knockdown of HIPK2 blocked the activation of TGF-β1/Smad pathway in Ang II-induced CFs. These data suggested that HIPK2 knockdown prevented the Ang II-induced activation of CFs via inhibiting TGF-β1/Smad pathway, indicating HIPK2 might be an anti-fibrosis target for the treatment of cardiac fibrosis.
Collapse
|
21
|
Hu L, Wang G, Zhao C, Peng Z, Tao L, Chen Z, Hu G, Li Q. Identification of selective homeodomain interacting protein kinase 2 inhibitors, a potential treatment for renal fibrosis. Bioorg Chem 2022; 126:105866. [DOI: 10.1016/j.bioorg.2022.105866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
|
22
|
Cheung KL, Jaganathan A, Hu Y, Xu F, Lejeune A, Sharma R, Caescu CI, Meslamani J, Vincek A, Zhang F, Lee K, Zaware N, Qayum AA, Ren C, Kaplan MH, He JC, Xiong H, Zhou MM. HIPK2 directs cell type-specific regulation of STAT3 transcriptional activity in Th17 cell differentiation. Proc Natl Acad Sci U S A 2022; 119:e2117112119. [PMID: 35344430 PMCID: PMC9168845 DOI: 10.1073/pnas.2117112119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
SignificanceSTAT3 (signal transducer and activator of transcription 3) is a master transcription factor that organizes cellular responses to cytokines and growth factors and is implicated in inflammatory disorders. STAT3 is a well-recognized therapeutic target for human cancer and inflammatory disorders, but how its function is regulated in a cell type-specific manner has been a major outstanding question. We discovered that Stat3 imposes self-directed regulation through controlling transcription of its own regulator homeodomain-interacting protein kinase 2 (Hipk2) in a T helper 17 (Th17) cell-specific manner. Our validation of the functional importance of the Stat3-Hipk2 axis in Th17 cell development in the pathogenesis of T cell-induced colitis in mice suggests an approach to therapeutically treat inflammatory bowel diseases that currently lack a safe and effective therapy.
Collapse
Affiliation(s)
- Ka Lung Cheung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anbalagan Jaganathan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yuan Hu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Feihong Xu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alannah Lejeune
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Cristina I. Caescu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jamel Meslamani
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adam Vincek
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Fan Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kyung Lee
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nilesh Zaware
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Amina Abdul Qayum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Chunyan Ren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - John Cijiang He
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Huabao Xiong
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
23
|
Yang T, Wu J, Ge K, Wang F, Fan J. MicroRNA-193b-3p reduces oxidative stress and mitochondrial damage in rats with cerebral ischemia-reperfusion injury via the seven in absentia homolog 1/Jun N-terminal kinase pathway. Bioengineered 2022; 13:6942-6954. [PMID: 35249453 PMCID: PMC8974224 DOI: 10.1080/21655979.2022.2036398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ischemic stroke is one of the major causes of death and disability among adults. This study sought to explore the mechanism of microRNA (miR)-193b-3p in rats with cerebral ischemia-reperfusion (I/R) injury. The cerebral I/R injury models of rats were established using the suture-occluded method. The pathological changes were observed, and oxidative stress (OS) and mitochondrial function indexes in rat brain tissue were examined. The levels of miR-193b-3p and seven in absentia homolog 1 (SIAH1) were detected. miR-193b-3p agomir or antagomir was injected into the lateral ventricle of I/R rats to overexpress or inhibit miR-193b-3p expression. The targeting relationship between miR-193b-3p and SIAH1 was verified. The effect of SIAH1 overexpression on brain injury in I/R rats was investigated by injecting the lentivirus vector into the lateral ventricle. The phosphorylation level of Jun N-terminal kinase (JNK) was identified. miR-193b-3p was lowly expressed in I/R rats. Overexpression of miR-193b-3p alleviated the pathological damage of I/R rats and limited the OS and mitochondrial damage. miR-193b-3p targeted SIAH1. Overexpression of SIAH1 partially reversed the protection of miR-193b-3p overexpression against cerebral I/R injury. p-JNK was up-regulated in I/R rats and overexpression of miR-193b-3p inhibited p-JNK. Overall, overexpression of miR-193b-3p targeted SIAH1 to inhibit the activation of the JNK pathway and protect rats against cerebral I/R injury.
Collapse
Affiliation(s)
- Tianye Yang
- Emergency Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Wu
- Emergency Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kui Ge
- Emergency Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fanlin Wang
- Emergency Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingxian Fan
- Emergency Department, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
24
|
Di Segni M, Virdia I, Verdina A, Amoreo CA, Baldari S, Toietta G, Diodoro MG, Mottolese M, Sperduti I, Moretti F, Buglioni S, Soddu S, Di Rocco G. HIPK2 cooperates with KRAS signaling and associates with colorectal cancer progression. Mol Cancer Res 2022; 20:686-698. [PMID: 35082165 DOI: 10.1158/1541-7786.mcr-21-0628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
HIPK2 is an evolutionary conserved kinase that has gained attention as a fine tuner of multiple signaling pathways, among which those commonly altered in colorectal cancer (CRC). The aim of this study was to evaluate the relationship of HIPK2 expression with progression markers and mutational pattern and gain insights into the contribution of HIPK2 activity in CRC. We evaluated a retrospective cohort of CRC samples by immunohistochemistry for HIPK2 expression and by NGS for the detection of mutations of cancer associated genes. We show that the percentage of HIPK2 positive cells increases with tumor progression, significantly correlates with TNM staging and associates with a worse outcome. In addition, we observed that high HIPK2 expression significantly associates with KRAS mutations but not with other cancer related genes. Functional characterization of the link between HIPK2 and KRAS show that activation of the RAS pathway either due to KRAS mutation or via upstream receptor stimulation, increases HIPK2 expression at the protein level. Of note, HIPK2 physically participates in the active RAS complex while HIPK2 depletion impairs ERK phosphorylation and the growth of tumors derived from KRAS mutated CRC cells. Overall, this study identifies HIPK2 as a prognostic biomarker candidate in CRC patients and underscores a previously unknown functional link between HIPK2 and the KRAS signaling pathway. Implications: Our data indicate HIPK2 as a new player in the complex picture of the KRAS signaling network, providing rationales for future clinical studies and new treatment strategies for KRAS mutated CRC.
Collapse
Affiliation(s)
- Micol Di Segni
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS - Regina Elena National Cancer Institute
| | - Ilaria Virdia
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, IRCCS - Regina Elena National Cancer Institute
| | - Alessandra Verdina
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS - Regina Elena National Cancer Institute
| | - Carla Azzurra Amoreo
- Research, Advanced Diagnostic, and Technological Innovation, Istituto Nazionale Tumori Regina Elena
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute
| | | | | | | | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy
| | | | - Silvia Soddu
- Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute
| | - Giuliana Di Rocco
- Department of Research and Advanced Technologies, IRCCS - Regina Elena National Cancer Institute
| |
Collapse
|
25
|
Caescu CI, Hansen J, Crockett B, Xiao W, Arnaud P, Spronck B, Weinberg A, Hashimoto T, Murtada SI, Borkar R, Gallo JM, Jondeau G, Boileau C, Humphrey JD, He JC, Iyengar R, Ramirez F. Inhibition of HIPK2 Alleviates Thoracic Aortic Disease in Mice With Progressively Severe Marfan Syndrome. Arterioscler Thromb Vasc Biol 2021; 41:2483-2493. [PMID: 34320838 PMCID: PMC8530207 DOI: 10.1161/atvbaha.121.316464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Approach and Results Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-β/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. Conclusions HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.
Collapse
MESH Headings
- Adult
- Aortic Dissection/enzymology
- Aortic Dissection/genetics
- Aortic Dissection/pathology
- Aortic Dissection/prevention & control
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/enzymology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/prevention & control
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dilatation, Pathologic
- Disease Models, Animal
- Disease Progression
- Fibrillin-1/genetics
- Humans
- Male
- Marfan Syndrome/complications
- Marfan Syndrome/genetics
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Severity of Illness Index
- Signal Transduction
- Smad3 Protein/metabolism
- Vascular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Cristina I Caescu
- Department of Pharmacological Sciences, Institute for Systems Biomedicine (C.I.C., J.H., B.C., T.H., R.I., F.R.), Icahn School of Medicine at Mount Sinai, New York
| | - Jens Hansen
- Department of Pharmacological Sciences, Institute for Systems Biomedicine (C.I.C., J.H., B.C., T.H., R.I., F.R.), Icahn School of Medicine at Mount Sinai, New York
| | - Brittany Crockett
- Department of Pharmacological Sciences, Institute for Systems Biomedicine (C.I.C., J.H., B.C., T.H., R.I., F.R.), Icahn School of Medicine at Mount Sinai, New York
| | - Wenzhen Xiao
- Division of Nephrology, Department of Medicine (W.X., J.C.H.), Icahn School of Medicine at Mount Sinai, New York
| | - Pauline Arnaud
- Département de Génétique et Centre de Référence Maladies Rares Syndrome de Marfan et Pathologies Apparentées, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, France (P.A., G.J., C.B.)
- LVTS, INSERM U1148, Université de Paris, Hôpital Bichat, France (P.A., G.J., C.B.)
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT (B.S., S.-I.M., J.D.H.)
| | - Alan Weinberg
- Department of Population Health Science and Policy (A.W.), Icahn School of Medicine at Mount Sinai, New York
| | - Takeshi Hashimoto
- Department of Pharmacological Sciences, Institute for Systems Biomedicine (C.I.C., J.H., B.C., T.H., R.I., F.R.), Icahn School of Medicine at Mount Sinai, New York
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT (B.S., S.-I.M., J.D.H.)
| | - Roshan Borkar
- Department of Pharmaceutical Sciences, State University of New York, Buffalo (R.B., J.M.G.)
| | - James M Gallo
- Department of Pharmaceutical Sciences, State University of New York, Buffalo (R.B., J.M.G.)
| | - Guillaume Jondeau
- Département de Génétique et Centre de Référence Maladies Rares Syndrome de Marfan et Pathologies Apparentées, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, France (P.A., G.J., C.B.)
- LVTS, INSERM U1148, Université de Paris, Hôpital Bichat, France (P.A., G.J., C.B.)
| | - Catherine Boileau
- Département de Génétique et Centre de Référence Maladies Rares Syndrome de Marfan et Pathologies Apparentées, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, France (P.A., G.J., C.B.)
- LVTS, INSERM U1148, Université de Paris, Hôpital Bichat, France (P.A., G.J., C.B.)
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (B.S., S.-I.M., J.D.H.)
| | - John Cijiang He
- Division of Nephrology, Department of Medicine (W.X., J.C.H.), Icahn School of Medicine at Mount Sinai, New York
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Institute for Systems Biomedicine (C.I.C., J.H., B.C., T.H., R.I., F.R.), Icahn School of Medicine at Mount Sinai, New York
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Institute for Systems Biomedicine (C.I.C., J.H., B.C., T.H., R.I., F.R.), Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
26
|
HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci U S A 2021; 118:2021798118. [PMID: 34244427 DOI: 10.1073/pnas.2021798118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although inflammation is critical for the clearance of pathogens, uncontrolled inflammation also contributes to the development of multiple diseases such as cancer and sepsis. Since NF-κB-mediated transactivation in the nucleus is pivotal downstream of various stimuli to induce inflammation, searching the nuclear-localized targets specifically regulating NF-κB activation will provide important therapeutic application. Here, we have identified that homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, increases its expression in inflammatory macrophages. Importantly, HIPK2 deficiency or overexpression could enhance or inhibit inflammatory responses in LPS-stimulated macrophages, respectively. HIPK2-deficient mice were more susceptible to LPS-induced endotoxemia and CLP-induced sepsis. Adoptive transfer of Hipk2 +/- bone marrow cells (BMs) also aggravated AOM/DSS-induced colorectal cancer. Mechanistically, HIPK2 bound and phosphorylated histone deacetylase 3 (HDAC3) at serine 374 to inhibit its enzymatic activity, thus reducing the deacetylation of p65 at lysine 218 to suppress NF-κB activation. Notably, the HDAC3 inhibitors protected wild-type or Hipk2 -/- BMs-reconstituted mice from LPS-induced endotoxemia. Our findings suggest that the HIPK2-HDAC3-p65 module in macrophages restrains excessive inflammation, which may represent a new layer of therapeutic mechanism for colitis-associated colorectal cancer and sepsis.
Collapse
|
27
|
Ergul M, Aktan F, Yildiz MT, Tutar Y. Perturbation of HSP Network in MCF-7 Breast Cancer Cell Line Triggers Inducible HSP70 Expression and Leads to Tumor Suppression. Anticancer Agents Med Chem 2021; 20:1051-1060. [PMID: 32053081 DOI: 10.2174/1871520620666200213102210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/09/2019] [Accepted: 12/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heat shock protein 70 (HSP70) is constitutively expressed in normal cells but aberrantly expressed in several types of tumor cells, helping their survival in extreme conditions. Thus, specific inhibition of HSP70 in tumor cells is a promising strategy in the treatment of cancer. HSP70 has a variety of isoforms in the cellular organelles and form different functions by coordinating and cooperating with cochaperones. Cancer cells overexpress HSPs during cell growth and proliferation and HSP network provides resistance against apoptosis. The present study aimed to evaluate quantitative changes in HSPs- and cancerassociated gene expressions and their interactions in the presence of 2-phenylethyenesulfonamide (PES) in MCF-7 cells. METHODS Antiproliferative activity of PES was evaluated using the XTT assay. Inducible HSP70 (HSP70i) levels in the PES-treated cells were determined using the ELISA kit. PCR Array was performed to assess the HSPs- and cancer-pathway focused gene expression profiling. Gene network analysis was performed using the X2K, yEd (V.3.18.1) programs, and web-based gene list enrichment analysis tool Enrichr. RESULTS The results demonstrated that PES exposure increased the amount of both HSP70i gene and protein expression surprisingly. However, the expression of HSP70 isoforms as well as other co-chaperones, and 17 cancer-associated genes decreased remarkably as expected. Additionally, interaction network analysis revealed a different mechanism; PES induction of HSP70i employs a cell cycle negative regulator, RB1, which is a tumor suppressor gene. CONCLUSION PES treatment inhibited MCF-7 cell proliferation and changed several HSPs- and cancer-related gene expressions along with their interactions through a unique mechanism although it causes an interesting increase at HSP70i gene and protein expressions. RB1 gene expression may play an important role in this effect as revealed by the interaction network analysis.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Fugen Aktan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet T Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
28
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
29
|
Chen J, Hu Y, Mou X, Wang H, Xie Z. Amygdalin alleviates renal injury by suppressing inflammation, oxidative stress and fibrosis in streptozotocin-induced diabetic rats. Life Sci 2020; 265:118835. [PMID: 33253723 DOI: 10.1016/j.lfs.2020.118835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
AIMS To explore the protective efficacies and potent mechanism of amygdalin on high glucose-cultured renal cell HBZY-1 in vitro and streptozotocin (STZ)-induced diabetic nephropathy (DN) rat in vivo. MAIN METHODS The cellar proliferation and generation of ROS in high-glucose cultured HBZY-1 cell were assessed by MTT and DCFH-DA assay, respectively. The fasting blood glucose levels, renal function and inflammation indexes as well as oxidative stress markers in STZ-induced diabetic rats were all measured. The histologic renal section was stained with Mason and periodic acid-Schiff (PAS) method. Immunohistochemistry and western blotting methods were applied to assess expression levels of extracellular matrix (ECM), epithelial-mesenchymal transition (EMT)-related as well as TGF-β1/Smad signaling pathway-related proteins. KEY FINDINGS Firstly, amygdalin significantly suppressed the excessive cell proliferation and ROS generation in HBZY-1 cells cultured with high glucose. The hyperglycemia, 24 h-UP excretion, BUN and Scr of DN rats were significantly attenuated after the chronic treatment of amygdalin. Moreover, MDA, SOD, IFN-γ and IL-12 levels in kidney tissues were all effectively reduced. Besides, amygdalin can suppress the ECM accumulation and EMT transformation by inhibiting Smad/TGF-β pathway to alleviate the renal fibrosis in renal tissues of DN model rats. SIGNIFICANCE Amygdalin ameliorates excessive oxidative stress, inflammation and renal tissue fibrosis of DN mainly by suppressing TGF-β1/Smad signaling pathway and regulating the key enzymes of ECM degradation.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Endocrinology, Hangzhou Red Cross Hospital, Xiacheng District, Hangzhou City 310000, Zhejiang Province, PR China.
| | - Yongbin Hu
- Department of Endocrinology, Hangzhou Red Cross Hospital, Xiacheng District, Hangzhou City 310000, Zhejiang Province, PR China
| | - Xin Mou
- Department of Endocrinology, Hangzhou Red Cross Hospital, Xiacheng District, Hangzhou City 310000, Zhejiang Province, PR China
| | - Huiyang Wang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou City 310051, Zhejiang Province, PR China
| | - Zhujuan Xie
- The First Affiliated Hospital, University of South China, Hengyang City 421001, Hunan Province, PR China
| |
Collapse
|
30
|
Zeng X, Tsui JCC, Shi M, Peng J, Cao CY, Kan LLY, Lau CPY, Liang Y, Wang L, Liu L, Chen Z, Tsui SKW. Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes. Front Immunol 2020; 11:2131. [PMID: 33013899 PMCID: PMC7511662 DOI: 10.3389/fimmu.2020.02131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background and methods: Host genomic alterations are closely related to dysfunction of CD4+ T lymphocytes in the HIV-host interplay. However, the roles of aberrant DNA methylation and gene expression in the response to HIV infection are not fully understood. We investigated the genome-wide DNA methylation and transcriptomic profiles in two HIV-infected T lymphocyte cell lines using high-throughput sequencing. Results: Based on DNA methylation data, we identified 3,060 hypomethylated differentially methylated regions (DMRs) and 2,659 hypermethylated DMRs in HIV-infected cells. Transcription-factor-binding motifs were significantly associated with methylation alterations, suggesting that DNA methylation modulates gene expression by affecting the binding to transcription factors during HIV infection. In support of this hypothesis, genes with promoters overlapping with DMRs were enriched in the biological function related to transcription factor activities. Furthermore, the analysis of gene expression data identified 1,633 upregulated genes and 2,142 downregulated genes on average in HIV-infected cells. These differentially expressed genes (DEGs) were significantly enriched in apoptosis-related pathways. Our results suggest alternative splicing as an additional mechanism that may contribute to T-cell apoptosis during HIV infection. We also demonstrated a genome-scale correlation between DNA methylation and gene expression in HIV-infected cells. We identified 831 genes with alterations in both DNA methylation and gene expression, which were enriched in apoptosis. Our results were validated using various experimental methods. In addition, consistent with our in silico results, a luciferase assay showed that the activity of the PDX1 and SMAD3 promoters was significantly decreased in the presence of HIV proteins, indicating the potential of these genes as genetic markers of HIV infection. Conclusions: Our results suggest important roles for DNA methylation and gene expression regulation in T-cell apoptosis during HIV infection. We propose a list of novel genes related to these processes for further investigation. This study also provides a comprehensive characterization of changes occurring at the transcriptional and epigenetic levels in T cells in response to HIV infection.
Collapse
Affiliation(s)
- Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Chi-Ching Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Peng
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Cyanne Ye Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lea Ling-Yu Kan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Carol Po-Ying Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Liu
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Xiao W, E J, Bao L, Fan Y, Jin Y, Wang A, Bauman D, Li Z, Zheng YL, Liu R, Lee K, He JC. Tubular HIPK2 is a key contributor to renal fibrosis. JCI Insight 2020; 5:136004. [PMID: 32701510 PMCID: PMC7526443 DOI: 10.1172/jci.insight.136004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
We previously used global Hipk2-null mice in various models of kidney disease to demonstrate the central role of homeodomain-interacting protein kinase 2 (HIPK2) in renal fibrosis development. However, renal tubular epithelial cell–specific (RTEC-specific) HIPK2 function in renal fibrogenesis has yet to be determined. Here, we show that modulation of tubular HIPK2 expression and activity affects renal fibrosis development in vivo. The loss of HIPK2 expression in RTECs resulted in a marked diminution of renal fibrosis in unilateral ureteral obstruction (UUO) mouse models and HIV-associated nephropathy (HIVAN) mouse models, which was associated with the reduction of Smad3 activation and downstream expression of profibrotic markers. Conversely, WT HIPK2 overexpression in RTECs accentuated the extent of renal fibrosis in the setting of UUO, HIVAN, and folic acid–induced nephropathy in mice. Notably, kinase-dead HIPK2 mutant overexpression or administration of BT173, an allosteric inhibitor of HIPK2-Smad3 interaction, markedly attenuated the renal fibrosis in these mouse models of kidney disease, indicating that HIPK2 requires both the kinase activity and its interaction with Smad3 to promote TGF-β–mediated renal fibrosis. Together, these results establish an important RTEC-specific role of HIPK2 in kidney fibrosis and further substantiate the inhibition of HIPK2 as a therapeutic approach against renal fibrosis. Modulation of HIPK2 expression in murine renal tubular epithelial cells reveals an important role in renal fibrosis development.
Collapse
Affiliation(s)
- Wenzhen Xiao
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jing E
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Li Bao
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanmeng Jin
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Andrew Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Bauman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ya-Li Zheng
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, China
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Wang X, Liu R, Zhang W, Hyink DP, Das GC, Das B, Li Z, Wang A, Yuan W, Klotman PE, Lee K, He JC. Role of SIRT1 in HIV-associated kidney disease. Am J Physiol Renal Physiol 2020; 319:F335-F344. [PMID: 32657157 PMCID: PMC7473906 DOI: 10.1152/ajprenal.00140.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection of kidney cells can lead to HIV-associated nephropathy (HIVAN) and aggravate the progression of other chronic kidney diseases. Thus, a better understanding of the mechanisms of HIV-induced kidney cell injury is needed for effective therapy against HIV-induced kidney disease progression. We have previously shown that the acetylation and activation of key inflammatory regulators, NF-κB p65 and STAT3, were increased in HIVAN kidneys. Here, we demonstrate the key role of sirtuin 1 (SIRT1) deacetylase in the regulation of NF-κB and STAT3 activity in HIVAN. We found that SIRT1 expression was reduced in the glomeruli of human and mouse HIVAN kidneys and that HIV-1 gene expression was associated with reduced SIRT1 expression and increased acetylation of NF-κB p65 and STAT3 in cultured podocytes. Interestingly, SIRT1 overexpression, in turn, reduced the expression of negative regulatory factor in podocytes stably expressing HIV-1 proviral genes, which was associated with inactivation of NF-κB p65 and a reduction in HIV-1 long terminal repeat promoter activity. In vivo, the administration of the small-molecule SIRT1 agonist BF175 or inducible overexpression of SIRT1 specifically in podocytes markedly attenuated albuminuria, kidney lesions, and expression of inflammatory markers in Tg26 mice. Finally, we showed that the reduction in SIRT1 expression by HIV-1 is in part mediated through miR-34a expression. Together, our data provide a new mechanism of SIRT1 regulation and its downstream effects in HIV-1-infected kidney cells and indicate that SIRT1/miR-34a are potential drug targets to treat HIV-related kidney disease.
Collapse
Affiliation(s)
- Xuan Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deborah P Hyink
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Gokul C Das
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Weijie Yuan
- Division of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Paul E Klotman
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Section, James J Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
33
|
Shi XX, Wu FX, Mei LC, Wang YL, Hao GF, Yang GF. Bioinformatics toolbox for exploring protein phosphorylation network. Brief Bioinform 2020; 22:5871447. [PMID: 32666116 DOI: 10.1093/bib/bbaa134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 01/23/2023] Open
Abstract
A clear systematic delineation of the interactions between phosphorylation sites on substrates and their effector kinases plays a fundamental role in revealing cellular activities, understanding signaling modulation mechanisms and proposing novel hypotheses. The emergence of bioinformatics tools contributes to studying phosphorylation network. Some of them feature the visualization of network, enabling more effective trace of the underlying biological problems in a clear and succinct way. In this review, we aimed to provide a toolbox for exploring phosphorylation network. We first systematically surveyed 19 tools that are available for exploring phosphorylation networks, and subsequently comparatively analyzed and summarized these tools to guide tool selection in terms of functionality, data sources, performance, network visualization and implementation, and finally briefly discussed the application cases of these tools. In different scenarios, the conclusion on the suitability of a tool for a specific user may vary. Nevertheless, easily accessible bioinformatics tools are proved to facilitate biological findings. Hopefully, this work might also assist non-specialists, students, as well as computational scientists who aim at developing novel tools in the field of phosphorylation modification.
Collapse
Affiliation(s)
- Xing-Xing Shi
- College of Chemistry, Central China Normal University (CCNU)
| | | | | | - Yu-Liang Wang
- College of Chemistry, Central China Normal University (CCNU)
| | - Ge-Fei Hao
- Bioinformatics in State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering of GZU and College of Chemistry of CCNU
| | | |
Collapse
|
34
|
Ding BS, Yang D, Swendeman SL, Christoffersen C, Nielsen LB, Friedman SL, Powell CA, Hla T, Cao Z. Aging Suppresses Sphingosine-1-Phosphate Chaperone ApoM in Circulation Resulting in Maladaptive Organ Repair. Dev Cell 2020; 53:677-690.e4. [PMID: 32544390 DOI: 10.1016/j.devcel.2020.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Here, we show that the liver-derived apolipoprotein M (ApoM) protects the lung and kidney from pro-fibrotic insults and that this circulating factor is attenuated in aged mice. Aged mouse hepatocytes exhibit transcriptional suppression of ApoM. This leads to reduced sphingosine-1-phosphate (S1P) signaling via the S1P receptor 1 (S1PR1) in the vascular endothelial cells of lung and kidney. Suboptimal S1PR1 angiocrine signaling causes reduced resistance to injury-induced vascular leak and leads to organ fibrosis. Plasma transfusion from Apom transgenic mice but not Apom knockout mice blocked fibrosis in the lung. Similarly, infusion of recombinant therapeutics, ApoM-Fc fusion protein enhanced kidney and lung regeneration and attenuated fibrosis in aged mouse after injury. Furthermore, we identified that aging alters Sirtuin-1-hepatic nuclear factor 4α circuit in hepatocytes to downregulate ApoM. These data reveal an integrative organ adaptation that involves circulating S1P chaperone ApoM+ high density lipoprotein (HDL), which signals via endothelial niche S1PR1 to spur regeneration over fibrosis.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Fibrosis Research Center, Mount Sinai-National Jewish Respiratory Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Dawei Yang
- Fibrosis Research Center, Mount Sinai-National Jewish Respiratory Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steve L Swendeman
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Righosiptalet, and Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Righosiptalet, and Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Aarhus University, 8000 Aarhus, Denmark
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charles A Powell
- Fibrosis Research Center, Mount Sinai-National Jewish Respiratory Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongwei Cao
- Fibrosis Research Center, Mount Sinai-National Jewish Respiratory Institute, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
35
|
Leonard-Duke J, Evans S, Hannan RT, Barker TH, Bates JHT, Bonham CA, Moore BB, Kirschner DE, Peirce SM. Multi-scale models of lung fibrosis. Matrix Biol 2020; 91-92:35-50. [PMID: 32438056 DOI: 10.1016/j.matbio.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
The architectural complexity of the lung is crucial to its ability to function as an organ of gas exchange; the branching tree structure of the airways transforms the tracheal cross-section of only a few square centimeters to a blood-gas barrier with a surface area of tens of square meters and a thickness on the order of a micron or less. Connective tissue comprised largely of collagen and elastic fibers provides structural integrity for this intricate and delicate system. Homeostatic maintenance of this connective tissue, via a balance between catabolic and anabolic enzyme-driven processes, is crucial to life. Accordingly, when homeostasis is disrupted by the excessive production of connective tissue, lung function deteriorates rapidly with grave consequences leading to chronic lung conditions such as pulmonary fibrosis. Understanding how pulmonary fibrosis develops and alters the link between lung structure and function is crucial for diagnosis, prognosis, and therapy. Further information gained could help elaborate how the healing process breaks down leading to chronic disease. Our understanding of fibrotic disease is greatly aided by the intersection of wet lab studies and mathematical and computational modeling. In the present review we will discuss how multi-scale modeling has facilitated our understanding of pulmonary fibrotic disease as well as identified opportunities that remain open and have produced techniques that can be incorporated into this field by borrowing approaches from multi-scale models of fibrosis beyond the lung.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Riley T Hannan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Jason H T Bates
- Department of Medicine, Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Catherine A Bonham
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville VA 22908, USA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
36
|
Tian XJ, Zhou D, Fu H, Zhang R, Wang X, Huang S, Liu Y, Xing J. Sequential Wnt Agonist Then Antagonist Treatment Accelerates Tissue Repair and Minimizes Fibrosis. iScience 2020; 23:101047. [PMID: 32339988 PMCID: PMC7186527 DOI: 10.1016/j.isci.2020.101047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/15/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis compromises organ function and occurs as a potential long-term outcome in response to acute tissue injuries. Currently, lack of mechanistic understanding prevents effective prevention and treatment of the progression from acute injury to fibrosis. Here, we combined quantitative experimental studies with a mouse kidney injury model and a computational approach to determine how the physiological consequences are determined by the severity of ischemia injury and to identify how to manipulate Wnt signaling to accelerate repair of ischemic tissue damage while minimizing fibrosis. The study reveals that memory of prior injury contributes to fibrosis progression and ischemic preconditioning reduces the risk of death but increases the risk of fibrosis. Furthermore, we validated the prediction that sequential combination therapy of initial treatment with a Wnt agonist followed by treatment with a Wnt antagonist can reduce both the risk of death and fibrosis in response to acute injuries.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Dong Zhou
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaojie Wang
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Youhua Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA; Department of Physics, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| |
Collapse
|
37
|
Shen T, Zheng Q, Luo H, Li X, Chen Z, Song Z, Zhou G, Hong C. Exosomal miR-19a from adipose-derived stem cells suppresses differentiation of corneal keratocytes into myofibroblasts. Aging (Albany NY) 2020; 12:4093-4110. [PMID: 32112551 PMCID: PMC7093196 DOI: 10.18632/aging.102802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/19/2020] [Indexed: 04/11/2023]
Abstract
In this study, we investigated the effects of exosomal microRNAs (miRNAs) from adipose-derived stem cells (ADSCs) on the differentiation of rabbit corneal keratocytes. Keratocytes grown in 10% FBS differentiated into myofibroblasts by increasing HIPK2 kinase levels and activity. HIPK2 enhanced p53 and Smad3 pathways in FBS-induced keratocytes. Keratocytes grown in 10% FBS also showed increased levels of pro-fibrotic proteins, including collagen III, MMP9, fibronectin, and α-SMA. These effects were reversed by knocking down HIPK2. Moreover, ADSCs and exosomes derived from ADSCs (ADSCs-Exo) suppressed FBS-induced differentiation of keratocytes into myofibroblasts by inhibiting HIPK2. Quantitative RT-PCR analysis showed that ADSCs-Exos were significantly enriched in miRNA-19a as compared to ADSCs. Targetscan and dual luciferase reporter assays confirmed that the HIPK2 3'UTR is a direct binding target of miR-19a. Keratocytes treated with 10% FBS and ADSCs-Exo-miR-19a-agomir or ADSCs-Exo-NC-antagomir showed significantly lower levels of HIPK2, phospho-Smad3, phospho-p53, collagen III, MMP9, fibronectin and α-SMA than those treated with 10% FBS plus ADSCs-Exo-NC-agomir or ADSCs-Exo-miR-19a-antagomir. Thus, exosomal miR-19a derived from the ADSCs suppresses FBS-induced differentiation of rabbit corneal keratocytes into myofibroblasts by inhibiting HIPK2 expression. This suggests their potential use in the treatment of corneal fibrosis.
Collapse
Affiliation(s)
- Ting Shen
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Qingqing Zheng
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Hongbo Luo
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital and People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China
| | - Xin Li
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuo Chen
- Bengbu Medical College, Bengbu 233030, Anhui, P. R. China
| | - Zeyu Song
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Guanfang Zhou
- Bengbu Medical College, Bengbu 233030, Anhui, P. R. China
| | - Chaoyang Hong
- Wenzhou School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
- Department of Ophthalmology, Zhejiang Hospital, Hangzhou 310007, Zhejiang, P. R. China
| |
Collapse
|
38
|
An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis. Cells 2020; 9:cells9020484. [PMID: 32093146 PMCID: PMC7072727 DOI: 10.3390/cells9020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis.
Collapse
|
39
|
Barneh F, Mirzaie M, Nickchi P, Tan TZ, Thiery JP, Piran M, Salimi M, Goshadrou F, Aref AR, Jafari M. Integrated use of bioinformatic resources reveals that co-targeting of histone deacetylases, IKBK and SRC inhibits epithelial-mesenchymal transition in cancer. Brief Bioinform 2020; 20:717-731. [PMID: 29726962 DOI: 10.1093/bib/bby030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/04/2018] [Indexed: 02/07/2023] Open
Abstract
With the advent of high-throughput technologies leading to big data generation, increasing number of gene signatures are being published to predict various features of diseases such as prognosis and patient survival. However, to use these signatures for identifying therapeutic targets, use of additional bioinformatic tools is indispensible part of research. Here, we have generated a pipeline comprised of nearly 15 bioinformatic tools and enrichment statistical methods to propose and validate a drug combination strategy from already approved drugs and present our approach using published pan-cancer epithelial-mesenchymal transition (EMT) signatures as a case study. We observed that histone deacetylases were critical targets to tune expression of multiple epithelial versus mesenchymal genes. Moreover, SRC and IKBK were the principal intracellular kinases regulating multiple signaling pathways. To confirm the anti-EMT efficacy of the proposed target combination in silico, we validated expression of targets in mesenchymal versus epithelial subtypes of ovarian cancer. Additionally, we inhibited the pinpointed proteins in vitro using an invasive lung cancer cell line. We found that whereas low-dose mono-therapy failed to limit cell dispersion from collagen spheroids in a microfluidic device as a metric of EMT, the combination fully inhibited dissociation and invasion of cancer cells toward cocultured endothelial cells. Given the approval status and safety profiles of the suggested drugs, the proposed combination set can be considered in clinical trials.
Collapse
Affiliation(s)
- Farnaz Barneh
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payman Nickchi
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore, Translational Centre for Development and Research, National University Health System, MD11, #03-10, 10 Medical Drive, Singapore 117597, Singapore
| | - Jean Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,Institut Gustave Roussy, Inserm Unit 1186 Comprehensive Cancer Center, Villejuif, France.,CNRS UMR 7057 Matter and Complex Systems, University Paris Denis Diderot, Paris, France
| | - Mehran Piran
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston 02215, USA
| | - Mohieddin Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2004-2013. [PMID: 31932432 PMCID: PMC6994980 DOI: 10.1073/pnas.1912894117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.
Collapse
|
41
|
Tang Y, Yang L, Qin W, Yi MX, Liu B, Yuan X. Impact of genetic variant of HIPK2 on the risk of severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Radiat Oncol 2020; 15:9. [PMID: 31915028 PMCID: PMC6950809 DOI: 10.1186/s13014-019-1456-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Homeodomain-interacting protein kinase 2 (HIPK2) has increasingly drawn attention as recent researches demonstrated its unique role in the regulation of multiple fundamental processes such as apoptosis, proliferation and DNA damage repair. Most importantly, HIPK2 was shown to play regulatory role in inflammation and influence the phenotype and activity of fibroblasts. In this study, we aimed to evaluate the impact of HIPK2 gene variant on risk of radiation pneumonitis for patients with pulmonary malignancies. METHODS 169 lung cancer patients with radiotherapy were included in our prospective study and genotyped by Sanger Sequence method. Multivariable Cox hazard analysis and multiple testing were applied to estimate the hazard ratio (HR) and 95% confidence intervals (CIs) of all factors possibly related to the risk of radiation pneumonitis (RP). RESULTS Patients with Mean Lung Dose (MLD) ≥ 15Gy, Lung V20 ≥ 24% had higher risk of RP ≥ grade 2 compared with those counterparts (HR = 1.888, 95% CI: 1.186-3.004, P = 0.007; HR = 2.126, 95% CI: 1.338-3.378, P = 0.001, respectively). Importantly, CC genotype of HIPK2: rs2030712 were strongly related to an increased occurrence of RP ≥ grade 2 (HR = 2.146, 95% CI: 1.215-3.791, P = 0.009). CONCLUSION HIPK2: rs2030712 was found to be significantly related to RP of grade ≥ 2 in our cohort, and may thus be one of the important predictors of severe RP before radiotherapy, if further validated in larger population. TRIAL REGISTRATION Our study was prospective and observational. The research was registered in ClinicalTrials.gov database as NCT02490319.
Collapse
Affiliation(s)
- Yang Tang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Min' Xiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiang'Lin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
42
|
HIPK2 overexpression relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes through enhancement of the Nrf2/ARE signaling pathway. Chem Biol Interact 2020; 316:108922. [DOI: 10.1016/j.cbi.2019.108922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
|
43
|
Zingariello M, Martelli F, Verachi P, Bardelli C, Gobbo F, Mazzarini M, Migliaccio AR. Novel targets to cure primary myelofibrosis from studies on Gata1 low mice. IUBMB Life 2019; 72:131-141. [PMID: 31749302 DOI: 10.1002/iub.2198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 01/06/2023]
Abstract
In 2002, we discovered that mice carrying the hypomorphic Gata1low mutation that reduces expression of the transcription factor GATA1 in megakaryocytes (Gata1low mice) develop myelofibrosis, a phenotype that recapitulates the features of primary myelofibrosis (PMF), the most severe of the Philadelphia-negative myeloproliferative neoplasms (MPNs). At that time, this discovery had a great impact on the field because mutations driving the development of PMF had yet to be discovered. Later studies identified that PMF, as the others MPNs, is associated with mutations activating the thrombopoietin/JAK2 axis raising great hope that JAK inhibitors may be effective to treat the disease. Unfortunately, ruxolitinib, the JAK1/2 inhibitor approved by FDA and EMEA for PMF, ameliorates symptoms but does not improve the natural course of the disease, and the cure of PMF is still an unmet clinical need. Although GATA1 is not mutated in PMF, reduced GATA1 content in megakaryocytes as a consequence of ribosomal deficiency is a hallmark of myelofibrosis (both in humans and mouse models) and, in fact, a driving event in the disease. Conversely, mice carrying the hypomorphic Gata1low mutation express an activated TPO/JAK2 pathway and partially respond to JAK inhibitors in a fashion similar to PMF patients (reduction of spleen size but limited improvement of the natural history of the disease). These observations cross-validated Gata1low mice as a bona fide animal model for PMF and prompted the use of this model to identify abnormalities that might be targeted to cure the disease. We will summarize here data generated in Gata1low mice indicating that the TGF-β/P-selectin axis is abnormal in PMF and represents a novel target for its treatment.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | | - Paola Verachi
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Claudio Bardelli
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Francesca Gobbo
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Maria Mazzarini
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Department of Biological and Neurobiological Medicine, University of Bologna, Bologna, Italy.,Myeloproliferative Neoplasms Research Consortium, New York, New York
| |
Collapse
|
44
|
Ishikawa G, Fujiwara N, Hirschfield H, Varricchio L, Hoshida Y, Barosi G, Rosti V, Padilla M, Mazzarini M, Friedman SL, Hoffman R, Migliaccio AR. Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia. Exp Hematol 2019; 79:16-25.e3. [PMID: 31678370 PMCID: PMC6910948 DOI: 10.1016/j.exphem.2019.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Megakaryocytes have been implicated in the micro-environmental abnormalities associated with fibrosis and hematopoietic failure in the bone marrow (BM) of primary myelofibrosis (PMF) patients, the Philadelphia-negative myeloproliferative neoplasm (MPN) associated with the poorest prognosis. To identify possible therapeutic targets for restoring BM functions in PMF, we compared the expression profiling of PMF BM with that of BM from essential thrombocytopenia (ET), a fibrosis-free MPN also associated with BM megakaryocyte hyperplasia. The signature of PMF BM was also compared with published signatures associated with liver and lung fibrosis. Gene set enrichment analysis (GSEA) identified distinctive differences between the expression profiles of PMF and ET. Notch, K-Ras, IL-8, and apoptosis pathways were altered the most in PMF as compared with controls. By contrast, cholesterol homeostasis, unfolded protein response, and hypoxia were the pathways found altered to the greatest degree in ET compared with control specimens. BM from PMF expressed a noncanonical transforming growth factor β (TGF-β) signature, which included activation of ID1, JUN, GADD45b, and genes with binding motifs for the JUN transcriptional complex AP1. By contrast, the expression of ID1 and GADD45b was not altered and there was a modest signal for JUN activation in ET. The similarities among PMF, liver fibrosis, and lung fibrosis were modest and included activation of integrin-α9 and tropomyosin-α1 between PMF and liver fibrosis, and of ectoderm-neural cortex protein 1 and FRAS1-related extracellular matrix protein 1 between PMF and lung fibrosis, but not TGF-β. These data identify TGF-β as a potential target for micro-environmental therapy in PMF.
Collapse
Affiliation(s)
- Genta Ishikawa
- Division of Pulmonary Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoto Fujiwara
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Tumor Translational Research Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hadassa Hirschfield
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yujin Hoshida
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Tumor Translational Research Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostic, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Padilla
- Division of Pulmonary Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Scott L Friedman
- Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna Rita Migliaccio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
45
|
Guo Y, Sui JY, Kim K, Zhang Z, Qu XA, Nam YJ, Willette RN, Barnett JV, Knollmann BC, Force T, Lal H. Cardiomyocyte Homeodomain-Interacting Protein Kinase 2 Maintains Basal Cardiac Function via Extracellular Signal-Regulated Kinase Signaling. Circulation 2019; 140:1820-1833. [PMID: 31581792 DOI: 10.1161/circulationaha.119.040740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiac kinases play a critical role in the development of heart failure, and represent potential tractable therapeutic targets. However, only a very small fraction of the cardiac kinome has been investigated. To identify novel cardiac kinases involved in heart failure, we used an integrated transcriptomics and bioinformatics analysis and identified Homeodomain-Interacting Protein Kinase 2 (HIPK2) as a novel candidate kinase. The role of HIPK2 in cardiac biology is unknown. METHODS We used the Expression2Kinase algorithm for the screening of kinase targets. To determine the role of HIPK2 in the heart, we generated cardiomyocyte (CM)-specific HIPK2 knockout and heterozygous mice. Heart function was examined by echocardiography, and related cellular and molecular mechanisms were examined. Adeno-associated virus serotype 9 carrying cardiac-specific constitutively active MEK1 (TnT-MEK1-CA) was administrated to rescue cardiac dysfunction in CM-HIPK2 knockout mice. RESULTS To our knowledge, this is the first study to define the role of HIPK2 in cardiac biology. Using multiple HIPK2 loss-of-function mouse models, we demonstrated that reduction of HIPK2 in CMs leads to cardiac dysfunction, suggesting a causal role in heart failure. It is important to note that cardiac dysfunction in HIPK2 knockout mice developed with advancing age, but not during development. In addition, CM-HIPK2 knockout mice and CM-HIPK2 heterozygous mice exhibited a gene dose-response relationship of CM-HIPK2 on heart function. HIPK2 expression in the heart was significantly reduced in human end-stage ischemic cardiomyopathy in comparison to nonfailing myocardium, suggesting a clinical relevance of HIPK2 in cardiac biology. In vitro studies with neonatal rat ventricular CMscorroborated the in vivo findings. Specifically, adenovirus-mediated overexpression of HIPK2 suppressed the expression of heart failure markers, NPPA and NPPB, at basal condition and abolished phenylephrine-induced pathological gene expression. An array of mechanistic studies revealed impaired extracellular signal-regulated kinase 1/2 signaling in HIPK2-deficient hearts. An in vivo rescue experiment with adeno-associated virus serotype 9 TnT-MEK1-CA nearly abolished the detrimental phenotype of knockout mice, suggesting that impaired extracellular signal-regulated kinase signaling mediated apoptosis as the key factor driving the detrimental phenotype in CM-HIPK2 knockout mice hearts. CONCLUSIONS Taken together, these findings suggest that CM-HIPK2 is required to maintain normal cardiac function via extracellular signal-regulated kinase signaling.
Collapse
Affiliation(s)
- Yuanjun Guo
- Division of Cardiovascular Medicine (Y.G., J.Y.S., Z.Z., Y.-J.N., T.F., H.L.), Vanderbilt University Medical Center, Nashville, TN.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (Y. Guo, J.V.B.)
| | - Jennifer Y Sui
- Division of Cardiovascular Medicine (Y.G., J.Y.S., Z.Z., Y.-J.N., T.F., H.L.), Vanderbilt University Medical Center, Nashville, TN
| | - Kyungsoo Kim
- Division of Clinical Pharmacology (K.K., B.C.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Zhentao Zhang
- Division of Cardiovascular Medicine (Y.G., J.Y.S., Z.Z., Y.-J.N., T.F., H.L.), Vanderbilt University Medical Center, Nashville, TN.,Department of Cell and Developmental Biology (Z.Z., Y.-J.N.), Vanderbilt University, Nashville, TN.,Vanderbilt Center for Stem Cell Biology (Z.Z., Y.-J.N.), Vanderbilt University, Nashville, TN
| | - Xiaoyan A Qu
- PAREXEL International, Research Triangle Park, Durham, NC (X.A.Q.)
| | - Young-Jae Nam
- Division of Cardiovascular Medicine (Y.G., J.Y.S., Z.Z., Y.-J.N., T.F., H.L.), Vanderbilt University Medical Center, Nashville, TN.,Department of Cell and Developmental Biology (Z.Z., Y.-J.N.), Vanderbilt University, Nashville, TN.,Vanderbilt Center for Stem Cell Biology (Z.Z., Y.-J.N.), Vanderbilt University, Nashville, TN
| | - Robert N Willette
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area GlaxoSmithKline, King of Prussia, PA (R.N.W.)
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (Y. Guo, J.V.B.)
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology (K.K., B.C.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas Force
- Division of Cardiovascular Medicine (Y.G., J.Y.S., Z.Z., Y.-J.N., T.F., H.L.), Vanderbilt University Medical Center, Nashville, TN
| | - Hind Lal
- Division of Cardiovascular Medicine (Y.G., J.Y.S., Z.Z., Y.-J.N., T.F., H.L.), Vanderbilt University Medical Center, Nashville, TN.,Division of Cardiovascular Disease, University of Alabama at Birmingham, AL (H.L.)
| |
Collapse
|
46
|
Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. J Biol Chem 2019; 294:13545-13559. [PMID: 31341017 PMCID: PMC6746438 DOI: 10.1074/jbc.ra119.009725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Indexed: 01/07/2023] Open
Abstract
The homeodomain-interacting protein kinase (HIPK) family is comprised of four nuclear protein kinases, HIPK1-4. HIPK proteins phosphorylate a diverse range of transcription factors involved in cell proliferation, differentiation, and apoptosis. HIPK2, thus far the best-characterized member of this largely understudied family of protein kinases, plays a role in the activation of p53 in response to DNA damage. Despite this tumor-suppressor function, HIPK2 is also found overexpressed in several cancers, and its hyperactivation causes chronic fibrosis. There are currently no structures of HIPK2 or of any other HIPK kinase. Here, we report the crystal structure of HIPK2's kinase domain bound to CX-4945, a casein kinase 2α (CK2α) inhibitor currently in clinical trials against several cancers. The structure, determined at 2.2 Å resolution, revealed that CX-4945 engages the HIPK2 active site in a hybrid binding mode between that seen in structures of CK2α and Pim1 kinases. The HIPK2 kinase domain crystallized in the active conformation, which was stabilized by phosphorylation of the activation loop. We noted that the overall kinase domain fold of HIPK2 closely resembles that of evolutionarily related dual-specificity tyrosine-regulated kinases (DYRKs). Most significant structural differences between HIPK2 and DYRKs included an absence of the regulatory N-terminal domain and a unique conformation of the CMGC-insert region and of a newly defined insert segment in the αC-β4 loop. This first crystal structure of HIPK2 paves the way for characterizing the understudied members of the HIPK family and for developing HIPK2-directed therapies for managing cancer and fibrosis.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Lijun Liu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wei Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wayland Yeung
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Natarajan Kannan
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - David Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115, Supported by the Kazan McClain Partners' Foundation and the H. N. and Frances C. Berger Foundation. To whom correspondence may be addressed:
1600 Divisadero St., A745, San Francisco, CA 94115. Tel.:
415-353-7502; E-mail:
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, To whom correspondence may be addressed:
555 Mission Bay Blvd. S., Rm. 452W, San Francisco, CA 94158. Tel.:
415-514-1133; E-mail:
| |
Collapse
|
47
|
Clarke DJB, Kuleshov MV, Schilder BM, Torre D, Duffy ME, Keenan AB, Lachmann A, Feldmann AS, Gundersen GW, Silverstein MC, Wang Z, Ma'ayan A. eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks. Nucleic Acids Res 2019; 46:W171-W179. [PMID: 29800326 PMCID: PMC6030863 DOI: 10.1093/nar/gky458] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
While gene expression data at the mRNA level can be globally and accurately measured, profiling the activity of cell signaling pathways is currently much more difficult. eXpression2Kinases (X2K) computationally predicts involvement of upstream cell signaling pathways, given a signature of differentially expressed genes. X2K first computes enrichment for transcription factors likely to regulate the expression of the differentially expressed genes. The next step of X2K connects these enriched transcription factors through known protein–protein interactions (PPIs) to construct a subnetwork. The final step performs kinase enrichment analysis on the members of the subnetwork. X2K Web is a new implementation of the original eXpression2Kinases algorithm with important enhancements. X2K Web includes many new transcription factor and kinase libraries, and PPI networks. For demonstration, thousands of gene expression signatures induced by kinase inhibitors, applied to six breast cancer cell lines, are provided for fetching directly into X2K Web. The results are displayed as interactive downloadable vector graphic network images and bar graphs. Benchmarking various settings via random permutations enabled the identification of an optimal set of parameters to be used as the default settings in X2K Web. X2K Web is freely available from http://X2K.cloud.
Collapse
Affiliation(s)
- Daniel J B Clarke
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Maxim V Kuleshov
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Brian M Schilder
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Denis Torre
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Mary E Duffy
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Alexandra B Keenan
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Alexander Lachmann
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Axel S Feldmann
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Gregory W Gundersen
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Moshe C Silverstein
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Zichen Wang
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Avi Ma'ayan
- DBD2K-LINCS Data Coordination and Integration Center; Knowledge Management Center for the Illuminating the Druggable Genome; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| |
Collapse
|
48
|
Ke CY, Mei HH, Wong FH, Lo LJ. IRF6 and TAK1 coordinately promote the activation of HIPK2 to stimulate apoptosis during palate fusion. Sci Signal 2019; 12:12/593/eaav7666. [DOI: 10.1126/scisignal.aav7666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cleft palate is a common craniofacial defect caused by a failure in palate fusion. The palatal shelves migrate toward one another and meet at the embryonic midline, creating a seam. Transforming growth factor–β3 (TGF-β3)–induced apoptosis of the medial edge epithelium (MEE), the cells located along the seam, is required for completion of palate fusion. The transcription factor interferon regulatory factor 6 (IRF6) promotes TGF-β3–induced MEE cell apoptosis by stimulating the degradation of the transcription factor ΔNp63 and promoting the expression of the gene encoding the cyclin-dependent kinase inhibitor p21. Because homeodomain-interacting protein kinase 2 (HIPK2) functions downstream of IRF6 in human cancer cells and is required for ΔNp63 protein degradation in keratinocytes, we investigated whether HIPK2 played a role in IRF6-induced ΔNp63 degradation in palate fusion. HIPK2 was present in the MEE cells of mouse palatal shelves during seam formation in vivo, and ectopic expression of IRF6 in palatal shelves cultured ex vivo stimulated the expression of Hipk2 and the accumulation of phosphorylated HIPK2. Knockdown and ectopic expression experiments in organ culture demonstrated that p21 was required for HIPK2- and IRF6-dependent activation of caspase 3, MEE apoptosis, and palate fusion. Contact between palatal shelves enhanced the phosphorylation of TGF-β–activated kinase 1 (TAK1), which promoted the phosphorylation of HIPK2 and palate fusion. Our findings demonstrate that HIPK2 promotes seam cell apoptosis and palate fusion downstream of IRF6 and that IRF6 and TAK1 appear to coordinately enhance the abundance and activation of HIPK2 during palate fusion.
Collapse
|
49
|
Xu L, Li X, Zhang F, Wu L, Dong Z, Zhang D. EGFR drives the progression of AKI to CKD through HIPK2 overexpression. Theranostics 2019; 9:2712-2726. [PMID: 31131063 PMCID: PMC6526000 DOI: 10.7150/thno.31424] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/25/2019] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanism underlying the transition of acute kidney injury (AKI) to chronic kidney disease (CKD) induced by vancomycin (VAN) remains largely unknown. Methods: The mice model of VAN drives AKI to CKD was developed to investigate the role and molecular mechanism of epidermal growth factor receptor (EGFR). The EGF receptor mutant (Wa-2) mice and gefitinib were used to inactivation of EGFR. The homeodomain interacting protein kinase 2 (HIPK2) siRNA was applied to silence of HIPK2. Human proximal tubular epithelial cells (HK-2) were used to explore the molecular regulation methanism of EGFR. ChIp analysis was used to investigate if STAT3 interaction with the promoter of HIPK2. Results: A novel VAN-induced AKI mouse model was established for the first time. Moreover, the expression levels collagen I&IV, α-SMA, p-EGFR and the expression of HIPK2 proteins were upregulated in this model. Interestingly, AKI caused by VAN was markedly attenuated in waved-2 mice at the early stage, as evidenced by the suppression of renal dysfunction, renal cell apoptosis and caspase3 activation. In the latter stage, renal fibrosis and inflammation were significantly ameliorated in Wa-2 mice, accompanied by the downregulation of profibrotic molecules and F4/80. Besides, the expression levels of HIPK2 and p-STAT3 were suppressed in Wa-2 mice during VAN-induced transition of AKI to CKD. In addition, renal fibrosis and inflammation, profibrotic molecules, and EGFR/STAT3/HIPK2 signaling were ameliorated by gefitinib treatment after VAN-induced AKI. These results were consistent with the findings of Wa-2 mice. EGFR/STAT3 signaling mediated VAN-induced HIPK2 expression in HK-2 cells. ChIp analysis revealed that STAT3 directly bound to the promoter region of HIPK2. Finally, inhibition of HIPK2 attenuated the VAN drove the progression of AKI to CKD. Conclusion: These data suggest that EGFR plays an important role in VAN-driven progression of AKI to CKD.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Acute Kidney Injury/chemically induced
- Acute Kidney Injury/complications
- Acute Kidney Injury/genetics
- Acute Kidney Injury/metabolism
- Animals
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Caspase 3/genetics
- Caspase 3/metabolism
- Cell Line
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gefitinib/pharmacology
- Gene Expression Regulation
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mutation
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Vancomycin/administration & dosage
Collapse
Affiliation(s)
- Luyang Xu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
| | - Fei Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, People's Republic of China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, People's Republic of China
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of cellular Biology and anatomy, Medical college of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
50
|
Wu J, Li DD, Li JY, Yin YC, Li PC, Qiu L, Chen LM. Identification of microRNA-mRNA networks involved in cisplatin-induced renal tubular epithelial cells injury. Eur J Pharmacol 2019; 851:1-12. [PMID: 30768982 DOI: 10.1016/j.ejphar.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin is a widely used chemotherapeutic drug that often causes acute kidney injury (AKI) in cancer patients. The contribution of miRNAs to the cisplatin-induced renal tubular epithelial cell injury remains largely unknown. Here we performed an integrative network analysis of miRNA and mRNA expression profiles to shed light into the underlying mechanism of cisplatin-induced renal tubular epithelial cell injury. Microarray analysis identified 47 differentially expressed miRNAs, among them 26 were upregulated and 21 were downregulated. Moreover, integrating dysregulated miRNAs target prediction and altered mRNA expression enabled us to identify 1181 putative target genes for further bioinformatics analysis. Gene ontology (GO) analysis revealed that the putative target genes were involved in apoptosis process and regulation of transcription. Pathway analysis indicated that the top upregulated pathways included MAPK and p53 signaling pathway, while the top downregulated pathways were PI3K-Akt and Wnt signaling pathway. Further network analysis showed that MAPK signaling pathway and apoptosis with the highest degree were identified as core pathways, hsa-miR-9-3p and hsa-miR-371b-5p as the most critical miRNAs, and CASK, ASH1L, CDK6 etc. as hub target genes. In addition, the expression level change of selected five microRNAs (hsa-miR-4299, hsa-miR-297, hsa-miR-3135b, hsa-miR-9-3p, and hsa-miR-371b-5p) and two mRNAs( CASK and CDK6) were validated in cisplatin-induced HK-2 cells. Furthermore, a similar trend of expression level change was observed in NRK-52E cells by cisplatin treatment. Overall, our results provide the molecular basis and potential targets for the treatment of cisplatin-induced renal tubular cell injury.
Collapse
Affiliation(s)
- Jie Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Dan-Dan Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Jia-Yao Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Yi-Cong Yin
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Peng-Chang Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China.
| | - Li-Meng Chen
- Department of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China.
| |
Collapse
|