1
|
Jin Y, Wang J, Wang Y. Unraveling the complexity of radiotherapy- and chemotherapy-induced oral mucositis: insights into pathogenesis and intervention strategies. Support Care Cancer 2025; 33:195. [PMID: 39954082 DOI: 10.1007/s00520-025-09239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Radiotherapy- or chemotherapy-induced oral mucositis (RIOM/CIOM) presents significant challenges in cancer treatment, severely impacting patients' quality of life (QoL) and therapeutic outcomes. Despite advancements, existing prevention and treatment measures have notable limitations. RIOM/CIOM involves a multifaceted interplay of inflammatory cascades orchestrated by the innate immune response. Furthermore, dysbiosis of oral and intestinal microbiota, triggered by anticancer therapy, exacerbates mucosal damage through intricate interactions with the innate immune system. This review provides an update on pivotal signaling pathways governing the initiation and progression of RIOM/CIOM. It also elucidates the intricate relationship between microbiota dysbiosis and dysregulation of oral mucosal immune homeostasis. Moreover, potential interventions targeting these pathogenic mechanisms are summarized, offering valuable insights for further exploration of RIOM/CIOM's complex pathophysiology and the development of more effective interventions.
Collapse
Affiliation(s)
- Yixin Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jiantao Wang
- Department of Radiation Oncology, Cancer Center; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Chowdhury P, Velalopoulou A, Verginadis II, Morcos G, Loo PE, Kim MM, Motlagh SAO, Shoniyozov K, Diffenderfer ES, Ocampo EA, Putt M, Assenmacher CA, Radaelli E, Lu J, Qin L, Liu H, Leli NM, Girdhani S, Denef N, Vander Stappen F, Cengel KA, Busch TM, Metz JM, Dong L, Lin A, Koumenis C. Proton FLASH Radiotherapy Ameliorates Radiation-induced Salivary Gland Dysfunction and Oral Mucositis and Increases Survival in a Mouse Model of Head and Neck Cancer. Mol Cancer Ther 2024; 23:877-889. [PMID: 38593239 PMCID: PMC11148539 DOI: 10.1158/1535-7163.mct-23-0663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Head and neck cancer radiotherapy often damages salivary glands and oral mucosa, severely negatively impacting patients' quality of life. The ability of FLASH proton radiotherapy (F-PRT) to decrease normal tissue toxicity while maintaining tumor control compared with standard proton radiotherapy (S-PRT) has been previously demonstrated for several tissues. However, its potential in ameliorating radiation-induced salivary gland dysfunction and oral mucositis and controlling orthotopic head and neck tumor growth has not been reported. The head and neck area of C57BL/6 mice was irradiated with a single dose of radiotherapy (ranging from 14-18 Gy) or a fractionated dose of 8 Gy × 3 of F-PRT (128 Gy/second) or S-PRT (0.95 Gy/second). Following irradiation, the mice were studied for radiation-induced xerostomia by measuring their salivary flow. Oral mucositis was analyzed by histopathologic examination. To determine the ability of F-PRT to control orthotopic head and neck tumors, tongue tumors were generated in the mice and then irradiated with either F-PRT or S-PRT. Mice treated with either a single dose or fractionated dose of F-PRT showed significantly improved survival than those irradiated with S-PRT. F-PRT-treated mice showed improvement in their salivary flow. S-PRT-irradiated mice demonstrated increased fibrosis in their tongue epithelium. F-PRT significantly increased the overall survival of the mice with orthotopic tumors compared with the S-PRT-treated mice. The demonstration that F-PRT decreases radiation-induced normal tissue toxicity without compromising tumor control, suggests that this modality could be useful for the clinical management of patients with head and neck cancer.
Collapse
Affiliation(s)
- Priyanka Chowdhury
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Morcos
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phoebe E Loo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Stanford University, Stanford, California
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Seyyedeh Azar Oliaei Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Khayrullo Shoniyozov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilio A Ocampo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- University of California, Los Angeles, California
| | - Mary Putt
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles-Antoine Assenmacher
- Penn Vet comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrico Radaelli
- Penn Vet comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiawei Lu
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengxi Liu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nektaria Maria Leli
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Swati Girdhani
- IBA (Ion Beam Applications S.A.), Ottignies-Louvain-la-Neuve, Belgium
| | - Nicolas Denef
- IBA (Ion Beam Applications S.A.), Ottignies-Louvain-la-Neuve, Belgium
| | | | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James M Metz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Dong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Wang L, Wang S, Zhang J, Peng J, Cheng B, Li H, Hu Q. Radiotherapy upregulated immune checkpoints contribute to the development of second primary OSCC. Oral Dis 2024; 30:2188-2201. [PMID: 37213085 DOI: 10.1111/odi.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVES Radiation injury is common after radiotherapy for head and neck cancer. Radiotherapy can reshape the immune microenvironment and cause immunosuppression, including dysregulation of immune checkpoints (ICs). However, the relationship between oral ICs expression after radiation and the development of second primary tumors is unclear. METHODS Clinical specimens of second primary oral squamous cell carcinoma after radiotherapy (s-OSCC) and primary OSCC (p-OSCC) were collected. The expression and prognostic value of PD-1, VISTA, and TIM-3 were analyzed using immunohistochemistry. To further clarify the relationship between radiation and ICs alteration, a rat model was constructed to explore the spatiotemporal changes of ICs in the oral mucosa after radiation. RESULTS In carcinoma tissue, the expression of TIM-3 was higher in s-OSCC than in p-OSCC, while the expression of PD-1 and VISTA was similar between the groups. In para-carcinoma tissue, the expression of PD-1, VISTA, and TIM-3 was higher in s-OSCC. High ICs expression was associated with poor survival. In the rat model, ICs were locally upregulated in the irradiated tongue. Moreover, there was a bystander effect, in which the ICs were also upregulated in the unirradiated site. CONCLUSION Radiation may upregulate ICs expression in oral mucosa and contribute to the development of s-OSCC.
Collapse
Affiliation(s)
- Li Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Siyu Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jiayu Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Huan Li
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Liu C, Wu J, Li M, Gao R, Zhang X, Ye-Lehmann S, Song J, Zhu T, Chen C. Smad7 in the hippocampus contributes to memory impairment in aged mice after anesthesia and surgery. J Neuroinflammation 2023; 20:175. [PMID: 37507781 PMCID: PMC10375636 DOI: 10.1186/s12974-023-02849-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common neurological complication following anesthesia and surgery. Increasing evidence has demonstrated that neuroinflammation caused by systemic inflammatory responses during the perioperative period is a key factor in the occurrence of POCD. In addition, SMAD family member 7 (Smad7) has been confirmed to play vital roles in the pathogenesis and treatment of inflammatory diseases, such as inflammatory bowel disease. However, whether Smad7 participates in the regulatory process of neuroinflammation and apoptosis in the development of POCD is still unknown. METHODS In this study, a POCD mouse model was constructed by unilateral nephrectomy under anesthesia, and cognitive function was assessed using the fear conditioning test and open field test. The expression of Smad7 at the mRNA and protein levels in the hippocampus 3 days after surgery was examined by qRT-PCR, western blot and immunofluorescence assays. Furthermore, to identify whether the elevation of Smad7 in the hippocampus after unilateral nephrectomy contributes to cognitive impairment, the expression of Smad7 in the hippocampal CA1 region was downregulated by crossing Smad7fl/fl conditional mutant mice and CaMKIIα-Cre line T29-1 transgenic mice or stereotaxic injection of shRNA-Smad7. Inflammation and apoptosis in the hippocampus were assessed by measuring the mRNA levels of typical inflammatory cytokines, including TNF-α, IL-1β, IL-6, CCL2, CXCL1, and CXCL2, and the protein levels of apoptotic proteins, including Bax and Bcl2. In addition, apoptosis in the hippocampus postoperation was investigated by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining assay. Finally, western blotting was used to explore how Smad7 mediates inflammation and apoptosis postoperation. RESULTS The results unequivocally revealed that elevated Smad7 in the hippocampal CA1 region significantly inhibited TGF-β signal transduction by blocking Smad2/3 phosphorylation, which enhanced neuroinflammation and apoptosis in the hippocampus and further led to learning and memory impairment after surgery. CONCLUSIONS Our results revealed that Smad7 contributes to cognitive impairment after surgery by enhancing neuroinflammation and apoptosis in the hippocampus and might serve as a promising therapeutic target for the treatment of memory impairment after anesthesia surgery.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahui Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueying Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- Diseases and Hormones of the Nervous System, University of Paris-Scalay Bicêtre Hosptial Bât. Grégory Pincus, 80 Rue du Gal Leclerc, Le Kremlin Bicêtre, 94276, CEDEX, Paris, France
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, VIC, Melbourne, Australia
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Luisa Valerio de Mello Braga L, Simão G, Silva Schiebel C, Caroline Dos Santos Maia A, Mulinari Turin de Oliveira N, Barbosa da Luz B, Rita Corso C, Soares Fernandes E, Maria Ferreira D. Rodent models for anticancer toxicity studies: contributions to drug development and future perspectives. Drug Discov Today 2023:103626. [PMID: 37224998 DOI: 10.1016/j.drudis.2023.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research. Teaser Experimental models for studying gastrointestinal mucositis have provided a wealth of information improving the understanding of antineoplastic toxicity.
Collapse
Affiliation(s)
- Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Silva Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Andressa Caroline Dos Santos Maia
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Ma L, Chen Y, Gong Q, Cheng Z, Ran C, Liu K, Shi C. Cold atmospheric plasma alleviates radiation-induced skin injury by suppressing inflammation and promoting repair. Free Radic Biol Med 2023; 204:184-194. [PMID: 37172912 DOI: 10.1016/j.freeradbiomed.2023.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Currently, there is no effective treatment for chronic skin radiation injury, which burdens patients significantly. Previous studies have shown that cold atmospheric plasma has an apparent therapeutic effect on acute and chronic skin injuries in clinical. However, whether CAP is effective for radiation-induced skin injury has not been reported. We created 35Gy X-ray radiation exposure within 3 * 3 cm2 region of the left leg of rats and applied CAP to the wound bed. Wound healing, cell proliferation and apoptosis were examined in vivo or vitro. CAP alleviated radiation-induced skin injury by enhancing proliferation and migration and cellular antioxidant stress and promoting DNA damage repair through regulated nuclear translocation of NRF2. In addition, CAP inhibited the proinflammatory factors' expression of IL-1β, TNF-α and temporarily increased the pro repair factor's expression of IL-6 in irradiated tissues. At the same time, CAP also changed the polarity of macrophages to a repair-promoting phenotype. Our finding suggested that CAP ameliorated radiation-induced skin injury by activating NRF2 and ameliorating the inflammatory response. Our work provided a preliminary theoretical foundation for the clinical administration of CAP in high-dose irradiated skin injury.
Collapse
Affiliation(s)
- Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, 400038, China.
| | - Zhuo Cheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Congfu Ran
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China.
| | - Kun Liu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Zhao M, Wang C, Ji C, Liu R, Xie J, Wang Y, Gu Z. Ascidian-Inspired Temperature-Switchable Hydrogels with Antioxidant Fullerenols for Protecting Radiation-Induced Oral Mucositis and Maintaining the Homeostasis of Oral Microbiota. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206598. [PMID: 36965142 DOI: 10.1002/smll.202206598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/04/2023] [Indexed: 06/18/2023]
Abstract
A key characteristic of radiation-induced oral mucositis (RIOM) is oxidative stress mediated by the "reactive oxygen species (ROS) storm" generated from water radiolysis, resulting in severe pathological lesions, accompanied by a disturbance of oral microbiota. Therefore, a sprayable in situ hydrogel loaded with "free radical sponge" fullerenols (FOH) is developed as antioxidant agent for RIOM radioprotection. Inspired by marine organisms, 3,4,5-trihydroxyphenylalanine (TOPA) which is enriched in ascidians is grafted to clinically approved temperature-switchable Pluronic F127 to produce gallic acid (containing the TOPA fragment)-modified Pluronic F127 (MGA) hydrogels to resist the fast loss of FOH via biomimetic adhesion during oral movement and saliva erosion. Based on this, progressive RIOM found in mice is alleviated by treatment of FOH-loaded MGA hydrogels whether pre-irradiation prophylactic administration or post-irradiation therapeutic administration, which contributes to maintaining the homeostasis of oral microbiota. Mechanistically, FOH inhibits cell apoptosis by scavenging radiation-induced excess ROS and up-regulates the inherent enzymatic antioxidants, thereby protecting the proliferation and migration of mucosal epithelial cells. In conclusion, this work not only provides proof-of-principle evidence for the oral radioprotection of FOH by blocking the "ROS storm", but also provides an effective and easy-to-use hydrogel system for mucosal in situ administration.
Collapse
Affiliation(s)
- Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruixue Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiani Xie
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Boss MK, Ke Y, Bian L, Harrison LG, Lee BI, Prebble A, Martin T, Trageser E, Hall S, Wang DD, Wang S, Chow L, Holwerda B, Raben D, Regan D, Karam SD, Dow S, Young CD, Wang XJ. Therapeutic Intervention Using a Smad7-Based Tat Protein to Treat Radiation-Induced Oral Mucositis. Int J Radiat Oncol Biol Phys 2022; 112:759-770. [PMID: 34610386 PMCID: PMC8810686 DOI: 10.1016/j.ijrobp.2021.09.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Recent studies reported therapeutic effects of Smad7 on oral mucositis in mice without compromising radiation therapy-induced cancer cell killing in neighboring oral cancer. This study aims to assess whether a Smad7-based biologic can treat oral mucositis in a clinically relevant setting by establishing an oral mucositis model in dogs and analyzing molecular targets. METHODS AND MATERIALS We created a truncated human Smad7 protein fused with the cell-penetrating Tat tag (Tat-PYC-Smad7). We used intensity modulated radiation therapy to induce oral mucositis in dogs and applied Tat-PYC-Smad7 to the oral mucosa in dose-finding studies after intensity modulated radiation therapy. Clinical outcomes were evaluated. Molecular targets were analyzed in biopsies and serum samples. RESULTS Tat-PYC-Smad7 treatment significantly shortened the duration of grade 3 oral mucositis based on double-blinded Veterinary Radiation Therapy Oncology Group scores and histopathology evaluations. Topically applied Tat-PYC-Smad7 primarily penetrated epithelial cells and was undetectable in serum. NanoString nCounter Canine IO Panel identified that, compared to the vehicle samples, top molecular changes in Tat-PYC-Smad7 treated samples include reductions in inflammation and cell death and increases in cell growth and DNA repair. Consistently, immunostaining shows that Tat-PYC-Smad7 reduced DNA damage and neutrophil infiltration with attenuated TGF-β and NFκB signaling. Furthermore, IL-1β and TNF-α were lower in Tat-PYC-Smad7 treated mucosa and serum samples compared to those in vehicle controls. CONCLUSIONS Topical Tat-PYC-Smad7 application demonstrated therapeutic effects on oral mucositis induced by intensity modulated radiation therapy in dogs. The local effects of Tat-PYC-Smad7 targeted molecules involved in oral mucositis pathogenesis as well as reduced systemic inflammatory cytokines.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado.
| | - Yao Ke
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Li Bian
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Lauren G Harrison
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Ber-In Lee
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Amber Prebble
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Tiffany Martin
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Erin Trageser
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Spencer Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Donna D Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Suyan Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado
| | - Lyndah Chow
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | | | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Steven Dow
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado.
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Allander Biotechnologies, LLC, Aurora, Colorado.
| |
Collapse
|
9
|
Inhibition of CtBP-Regulated Proinflammatory Gene Transcription Attenuates Psoriatic Skin Inflammation. J Invest Dermatol 2022; 142:390-401. [PMID: 34293351 PMCID: PMC8770725 DOI: 10.1016/j.jid.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.
Collapse
|
10
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
11
|
The science of mucositis. Support Care Cancer 2022; 30:2915-2917. [PMID: 35067733 DOI: 10.1007/s00520-022-06840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
|
12
|
Xiao H, Fan Y, Li Y, Dong J, Zhang S, Wang B, Liu J, Liu X, Fan S, Guan J, Cui M. Oral microbiota transplantation fights against head and neck radiotherapy-induced oral mucositis in mice. Comput Struct Biotechnol J 2021; 19:5898-5910. [PMID: 34815834 PMCID: PMC8579069 DOI: 10.1016/j.csbj.2021.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Oral mucositis is a common radiotherapy-induced complication among nasal, oral and laryngeal cancer (NOALC) patients. This complication leads to decreased quality of life and has few treatments. Here, fractionated radiation was performed to mimic radiotherapy for NOALCs in mouse models. Oral microbiota transplantation (OMT) mitigated oral mucositis, as judged by reconstructed epithelium and tongue papillae, fewer infiltrated leukocytes and more proliferative cells in the oral epithelium. The gut microbiota impacted oral mucositis progression, and OMT restructured oral and gut bacteria configurations and reprogrammed the gene expression profile of tongue tissues. In vivo silencing of glossal S100 calcium binding protein A9 debilitated the radioprotection of OMT. In light of clinical samples, we identified that patients with different alteration trends of Lactobacillaceae frequency presented different primary lesions and prognoses of NOALC following radiotherapy. Together, our findings provide new insights into the oral-gut microbiota axis and underpin the suggestion that OMT might be harnessed as a novel remedy to fight against oral mucositis in NOALC patients following radiotherapy in preclinical settings. Of note, oral microorganisms, such as Lactobacillaceae, might be employed as biomarkers to predict the prognosis of NOALC with radiotherapy.
Collapse
Affiliation(s)
- Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Yao Fan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jia Liu
- Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin 300192, China
| |
Collapse
|
13
|
Gao N, Lu L, Ma X, Liu Z, Yang S, Han G. Targeted inhibition of YAP/TAZ alters the biological behaviours of keloid fibroblasts. Exp Dermatol 2021; 31:320-329. [PMID: 34623712 DOI: 10.1111/exd.14466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Abnormal activation of fibroblasts plays a crucial role in keloid development. However, the mechanism of fibroblast activation remains to be determined. YAP/TAZ are key molecules in the Hippo signalling pathway that promote cell proliferation and inhibit apoptosis. Here, we show that keloid fibroblasts have higher levels of YAP/TAZ mRNA and proteins on primary culture. Targeted knockdown of endogenous YAP or TAZ significantly inhibited cell proliferation, reduced cell migration, induced cell apoptosis and down-regulated collagen1a1 production by keloid fibroblasts. Moreover, we demonstrate that verteporfin, an inhibitor of YAP/TAZ, has similar but stronger inhibitory effects on fibroblasts compared to YAP/TAZ knockdown. Our study provides evidence that YAP/TAZ may be involved in the pathogenesis of keloids. Targeted inhibition of YAP/TAZ could change the biological behaviours of fibroblasts and can potentially be used as therapy for keloids.
Collapse
Affiliation(s)
- Na Gao
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Lulu Lu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Xiaolei Ma
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Zhengyi Liu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Gangwen Han
- Department of Dermatology, Peking University International Hospital, Beijing, China
| |
Collapse
|
14
|
Vivekanandhan S, Madamsetty VS, Angom RS, Dutta SK, Wang E, Caulfield T, Pletnev AA, Upstill-Goddard R, Asmann YW, Chang D, Spaller MR, Mukhopadhyay D. Role of PLEXIND1/TGFβ Signaling Axis in Pancreatic Ductal Adenocarcinoma Progression Correlates with the Mutational Status of KRAS. Cancers (Basel) 2021; 13:cancers13164048. [PMID: 34439202 PMCID: PMC8393884 DOI: 10.3390/cancers13164048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Pancreatic cancer is among the most lethal cancers. The expression of PLEXIND1, a receptor, is upregulated in many cancers (including pancreatic cancer). Traditionally, PLEXIND1 is known to be involved in neuron development and mediate semaphorin signaling. However, its role and signaling in cancer is not fully understood. In our study, we present a new mechanism through which PLEXIND1 mediates its roles in cancer. For the first time, we demonstrate that it can function as a transforming growth factor beta coreceptor and modulate SMAD3 signaling. Around 90% of pancreatic cancer patients have mutant KRAS. Our work suggests that PLEXIND1 functions differently in pancreatic cancer cell lines, and the difference correlates with KRAS mutational status. Additionally, we demonstrate a novel peptide based therapeutic approach to target PLEXIND1 in cancer cells. Our work is valuable to both neuroscience and cancer fields, as it demonstrates an association between two previously unrelated signaling pathways. Abstract PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma (PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known coreceptors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth factor beta (TGFβ) coreceptor, modulating cell growth through SMAD3 signaling. Our findings demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS (KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregulation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely, PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt), as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Additionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may possess significant therapeutic implications. To our knowledge, this is the first report showing that (1) PLEXIND1 acts as a TGFβ coreceptor and mediates SMAD3 signaling, and (2) differential roles of PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status.
Collapse
Affiliation(s)
- Sneha Vivekanandhan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Vijay S. Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Thomas Caulfield
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Alexandre A. Pletnev
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA; (A.A.P.); (M.R.S.)
| | - Rosanna Upstill-Goddard
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate Switchback Road, Glasgow G12 8QQ, UK; (R.U.-G.); (D.C.)
| | - Yan W. Asmann
- Health Sciences Research, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA;
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate Switchback Road, Glasgow G12 8QQ, UK; (R.U.-G.); (D.C.)
| | - Mark R. Spaller
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA; (A.A.P.); (M.R.S.)
- Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, NH 03756, USA
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
- Correspondence:
| |
Collapse
|
15
|
Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1. Sci Rep 2021; 11:13371. [PMID: 34183697 PMCID: PMC8238984 DOI: 10.1038/s41598-021-92650-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
The severity of tissue injury in burn wounds from associated inflammatory and immune sequelae presents a significant clinical management challenge. Among various biophysical wound management approaches, low dose biophotonics treatments, termed Photobiomodulation (PBM) therapy, has gained recent attention. One of the PBM molecular mechanisms of PBM treatments involves photoactivation of latent TGF-β1 that is capable of promoting tissue healing and regeneration. This work examined the efficacy of PBM treatments in a full-thickness burn wound healing in C57BL/6 mice. We first optimized the PBM protocol by monitoring tissue surface temperature and histology. We noted this dynamic irradiance surface temperature-monitored PBM protocol improved burn wound healing in mice with elevated TGF-β signaling (phospho-Smad2) and reduced inflammation-associated gene expression. Next, we investigated the roles of individual cell types involved in burn wound healing following PBM treatments and noted discrete effects on epithelieum, fibroblasts, and macrophage functions. These responses appear to be mediated via both TGF-β dependent and independent signaling pathways. Finally, to investigate specific contributions of TGF-β1 signaling in these PBM-burn wound healing, we utilized a chimeric TGF-β1/β3 knock-in (TGF-β1Lβ3/Lβ3) mice. PBM treatments failed to activate the chimeric TGF-β1Lβ3/Lβ3 complex and failed to improve burn wound healing in these mice. These results suggest activation of endogenous latent TGF-β1 following PBM treatments plays a key role in burn wound healing. These mechanistic insights can improve the safety and efficacy of clinical translation of PBM treatments for tissue healing and regeneration.
Collapse
|
16
|
Hupy ML, Pedler MG, Shieh B, Wang D, Wang XJ, Petrash JM. Suppression of epithelial to mesenchymal transition markers in mouse lens by a Smad7-based recombinant protein. Chem Biol Interact 2021; 344:109495. [PMID: 33961834 DOI: 10.1016/j.cbi.2021.109495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Cataracts, a clouding of the eye lens, are a leading cause of visual impairment and are responsible for one of the most commonly performed surgical procedures worldwide. Although generally safe and effective, cataract surgery can lead to a secondary lens abnormality due to transition of lens epithelial cells to a mesenchymal phenotype (EMT) and opacification of the posterior lens capsular bag. Occurring in up to 40% of cataract cases over time, posterior capsule opacification (PCO) introduces additional treatment costs and reduced quality of life for patients. Studies have shown that PCO pathogenesis is driven in part by TGF-β, signaling through the action of the family of Smad coactivators to effect changes in gene transcription. In the present study, we evaluated the ability of Smad-7, a well characterized inhibitor of TGF-β -mediated Smad signaling, to suppress the EMT response in lens epithelial cells associated with PCO pathogenesis. Treatment of lens epithelial cells with a cell-permeable form of Smad7 variant resulted in suppressed expression of EMT markers such as alpha smooth muscle actin and fibronectin. A single application of cell-permeable Smad7 variant in the capsular bag of a mouse cataract surgery model resulted in suppression of gene transcripts encoding alpha smooth muscle actin and fibronectin. These results point to Smad7 as a promising biotherapeutic agent for prevention or substantial reduction in the incidence of PCO following cataract surgery.
Collapse
Affiliation(s)
- Matthew L Hupy
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Biehuoy Shieh
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dongyan Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
17
|
Rojas MA, Ceccarelli S, Gerini G, Vescarelli E, Marini L, Marchese C, Pilloni A. Gene expression profiles of oral soft tissue-derived fibroblast from healing wounds: correlation with clinical outcome, autophagy activation and fibrotic markers expression. J Clin Periodontol 2021; 48:705-720. [PMID: 33527447 DOI: 10.1111/jcpe.13439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/14/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
AIM Our aim was to evaluate gene expression profiling of fibroblasts from human alveolar mucosa (M), buccal attached gingiva (G) and palatal (P) tissues during early wound healing, correlating it with clinical response. MATERIALS AND METHODS M, G and P biopsies were harvested from six patients at baseline and 24 hr after surgery. Clinical response was evaluated through Early wound Healing Score (EHS). Fibrotic markers expression and autophagy were assessed on fibroblasts isolated from those tissues by Western blot and qRT-PCR. Fibroblasts from two patients were subjected to RT2 profiler array, followed by network analysis of the differentially expressed genes. The expression of key genes was validated with qRT-PCR on all patients. RESULTS At 24 hr after surgery, EHS was higher in P and G than in M. In line with our clinical results, no autophagy and myofibroblast differentiation were observed in G and P. We observed significant variations in mRNA expression of key genes: RAC1, SERPINE1 and TIMP1, involved in scar formation; CDH1, ITGA4 and ITGB5, contributing to myofibroblast differentiation; and IL6 and CXCL1, involved in inflammation. CONCLUSIONS We identified some genes involved in periodontal soft tissue clinical outcome, providing novel insights into the molecular mechanisms of oral repair (ClinicalTrial.gov-NCT04202822).
Collapse
Affiliation(s)
- Mariana Andrea Rojas
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Marini
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Pilloni
- Department of Oral and Maxillofacial Sciences, Section of Periodontics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Pulito C, Cristaudo A, Porta CL, Zapperi S, Blandino G, Morrone A, Strano S. Oral mucositis: the hidden side of cancer therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:210. [PMID: 33028357 PMCID: PMC7542970 DOI: 10.1186/s13046-020-01715-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Inflammation response of epithelial mucosa to chemo- radiotherapy cytotoxic effects leads to mucositis, a painful side effect of antineoplastic treatments. About 40% of the patients treated with chemotherapy develop mucositis; this percentage rises to about 90% for head and neck cancer patients (HNC) treated with both chemo- and radiotherapy. 19% of the latter will be hospitalized and will experience a delay in antineoplastic treatment for high-grade mucositis management, resulting in a reduction of the quality of life, a worse prognosis and an increase in patient management costs. Currently, several interventions and prevention guidelines are available, but their effectiveness is uncertain. This review comprehensively describes mucositis, debating the impact of standard chemo-radiotherapy and targeted therapy on mucositis development and pointing out the limits and the benefits of current mucositis treatment strategies and assessment guidelines. Moreover, the review critically examines the feasibility of the existing biomarkers to predict patient risk of developing oral mucositis and their role in early diagnosis. Despite the expression levels of some proteins involved in the inflammation response, such as TNF-α or IL-1β, partially correlate with mucositis process, their presence does not exclude others mucositis-independent inflammation events. This strongly suggests the need to discover biomarkers that specifically feature mucositis process development. Non-coding RNAs might hold this potential.
Collapse
Affiliation(s)
- Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Cristaudo
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Caterina La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 26, 20133, Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, 20125, Milano, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Aldo Morrone
- Scientific Director Office, San Gallicano Institute, Rome, Italy
| | - Sabrina Strano
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
19
|
Abstract
Chronic refractory wounds are generally caused by local tissue defects and necrosis, and they are characterized by delayed wound healing as well as high recurrence, which seriously affects life quality. However, effective therapeutics to treat wounds are currently unavailable. Therapy primarily aims to accelerate generation of granulation tissue and decrease recurrence. The pathogenesis of chronic refractory wounds is closely related to multiple complex signaling pathways and a series of cytokines. Among these signaling pathways, TGF-β/Smad7 axis plays a critical role. Specifically, Smad7 is an antagonist of TGF-β that inhibits activation of TGF-β. Moreover, Smad7 promotes wound healing by regulating cytokines and controlling growth, differentiation and apoptosis of cells, which may be exploited to cure the disease. This review aims to reveal the exact functions and mechanisms of Smad7 in regulation of wound healing.
Collapse
Affiliation(s)
- Min-Feng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Qing-Yu Zeng
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, China
| | - Jian-Hua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Hong-Wei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China -
| |
Collapse
|
20
|
Chen C, Zhang Q, Yu W, Chang B, Le AD. Oral Mucositis: An Update on Innate Immunity and New Interventional Targets. J Dent Res 2020; 99:1122-1130. [PMID: 32479139 DOI: 10.1177/0022034520925421] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral mucositis (OM), a common debilitating toxicity associated with chemo- and radiation therapies, is a significant unmet clinical need for head and neck cancer patients. The biological complexities of chemoradiotherapy-induced OM involve interactions among disrupted tissue structures, inflammatory infiltrations, and oral microbiome, whereby several master inflammatory pathways constitute the complicated regulatory networks. Oral mucosal damages triggered by chemoradiotherapy-induced cell apoptosis were further exacerbated by the amplified inflammatory cascades dominantly governed by the innate immune responses. The coexistence of microbiome and innate immune components in oral mucosal barriers indicates that a signaling hub coordinates the interaction between environmental cues and host cells during tissue and immune homeostasis. Dysbiotic shifts in oral microbiota caused by cytotoxic cancer therapies may also contribute to the progression and severity of chemoradiotherapy-induced OM. In this review, we have updated the mechanisms involving innate immunity-governed inflammatory cascades in the pathobiology of chemoradiotherapy-induced OM and the development of new interventional targets for the management of this severe morbidity in head and neck cancer patients.
Collapse
Affiliation(s)
- C Chen
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Chang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Li J, Yin P, Chen X, Kong X, Zhong W, Ge Y, She Y, Xian X, Qi L, Lin Z, Moe J, Fang S. Effect of α2‑macroglobulin in the early stage of jaw osteoradionecrosis. Int J Oncol 2020; 57:213-222. [PMID: 32377713 PMCID: PMC7252453 DOI: 10.3892/ijo.2020.5051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced osteoradionecrosis (ORN) is one of the most serious complications in patients with head and neck cancer, resulting in poor prognosis. Numerous studies have therefore focused on the pathogenesis and interventions of ORN early stage. The present study aimed to investigate whether α2-macroglobulin (α2M) could prevent early-stage jaw osteoradionecrosis caused by radiotherapy (RT). Following local injection of α2M, a single dose of 30 Gy was delivered to rats for pathological exploration. For 28 days, the irradiated mandible and soft tissues were examined for potential changes. Furthermore, primary human bone marrow mesenchymal stem cells pretreated with α2M followed by 8 Gy irradiation (IR) were also used. Tartrate-resistant acid phosphatase assay, terminal uridine deoxynucleotidyl nick end labeling assay and immunohistochemical staining were performed on irradiated mandibular bone, tongue or buccal mucosa tissues from rats. Cell proliferation was assessed by evaluating the cell morphology by microscopy and by using the cell counting kit-8. Fluorescence staining, flow cytometry and western blotting were conducted to detect the reactive oxygen species level, cell apoptosis and protein expression of superoxide dismutase 2 (SOD2), heme oxygenase-1 (HO-1) and phosphorylated Akt following irradiation. The results demonstrated that α2M attenuated physical inflammation, osteoclasts number and fat vacuole accumulation in mandibular bone marrow and bone marrow cell apoptosis following IR in vivo. Furthermore, α2M pretreatment suppressed the expression of 8-hydroxy-2′-deoxyguanosine in mandibular bone and tongue paraffin embedded sections, which is a marker of oxidative damage, and increased SOD2 expression in mucosa and tongue paraffin embedded sections. The present study demonstrated the efficient regulation of antioxidative enzymes, including SOD2 and heme oxygenase-1, and reduction in oxidative damage by α2M. In addition, in vitro results confirmed that α2M may protect cells from apoptosis and suppress reactive oxygen species accumulation. Overall, the present study demonstrated that α2M treatment may exert some radioprotective effects in early-stage ORN via antioxidant mechanisms, and may therefore be considered as a potential alternative molecule in clinical prophylactic treatments.
Collapse
Affiliation(s)
- Jie Li
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xueying Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiangbo Kong
- Department of Stomatology, Sun Yat‑sen Memorial Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wanzhen Zhong
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yaping Ge
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yangyang She
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xuehong Xian
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lei Qi
- Department of Oral and Cranio‑maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai 200001, P.R. China
| | - Zhi Lin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Justine Moe
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Silian Fang
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
22
|
Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Curr Opin Support Palliat Care 2020; 13:119-133. [PMID: 30925531 DOI: 10.1097/spc.0000000000000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Mucositis remains a prevalent, yet poorly managed side effect of anticancer therapies. Mucositis affecting both the oral cavity and gastrointestinal tract predispose to infection and require extensive supportive management, contributing to the growing economic burden associated with cancer care. Animal models remain a critical aspect of mucositis research, providing novel insights into its pathogenesis and revealing therapeutic targets. The current review aims to provide a comprehensive overview of the current animal models used in mucositis research. RECENT FINDINGS A wide variety of animal models of mucositis exist highlighting the highly heterogenous landscape of supportive oncology and the unique cytotoxic mechanisms of different anticancer agents. Golden Syrian hamsters remain the gold-standard species for investigation of oral mucositis induced by single dose and fractionated radiation as well as chemoradiation. There is no universally accepted gold-standard model for the study of gastrointestinal mucositis, with rats, mice, pigs and dogs all offering unique perspectives on its pathobiology. SUMMARY Animal models are a critical aspect of mucositis research, providing unprecedent insight into the pathobiology of mucositis. Introduction of tumour-bearing models, cyclic dosing scheduled, concomitant agents and genetically modified animals have been integral in refining our understanding of mucositis.
Collapse
|
23
|
Hernandez AL, Young CD, Bian L, Weigel K, Nolan K, Frederick B, Han G, He G, Devon Trahan G, Rudolph MC, Jones KL, Oweida AJ, Karam SD, Raben D, Wang XJ. PARP Inhibition Enhances Radiotherapy of SMAD4-Deficient Human Head and Neck Squamous Cell Carcinomas in Experimental Models. Clin Cancer Res 2020; 26:3058-3070. [PMID: 32139402 DOI: 10.1158/1078-0432.ccr-19-0514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/06/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE SMAD4 loss causes genomic instability and the initiation/progression of head and neck squamous cell carcinoma (HNSCC). Here, we study whether SMAD4 loss sensitizes HNSCCs to olaparib (PARP inhibitor) in combination with radiotherapy (RT). EXPERIMENTAL DESIGN We analyzed HNSCC The Cancer Genome Atlas data for SMAD4 expression in association with FANC/BRCA family gene expression. Human HNSCC cell lines were screened for sensitivity to olaparib. Isogenic HNSCC cell lines were generated to restore or reduce SMAD4 expression and treated with olaparib, radiation, or the combination. HNSCC pretreatment specimens from a phase I trial investigating olaparib were analyzed. RESULTS SMAD4 levels correlated with levels of FANC/BRCA genes in HNSCC. HNSCC cell lines with SMAD4 homozygous deletion were sensitive to olaparib. In vivo, olaparib or RT monotherapy reduced tumor volumes in SMAD4-mutant but not SMAD4-positive tumors. Olaparib with RT dual therapy sustained tumor volume reduction in SMAD4-deficient (mutant or knockdown) xenografts, which exhibited increased DNA damage and cell death compared with vehicle-treated tumors. In vitro, olaparib alone or in combination with radiation caused lower clonogenic survival, more DNA damage-associated cell death, and less proliferation in SMAD4-deficient cells than in SMAD4-positive (endogenous SMAD4 or transduced SMAD4) cells. Applicable to clinic, 5 out of 6 SMAD4-negative HNSCCs and 4 out of 8 SMAD4-positive HNSCCs responded to a standard treatment plus olaparib in a phase I clinical trial, and SMAD4 protein levels inversely correlated with DNA damage. CONCLUSIONS SMAD4 levels are causal in determining sensitivity to PARP inhibition in combination with RT in HNSCCs.
Collapse
Affiliation(s)
- Ariel L Hernandez
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Christian D Young
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Li Bian
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey Weigel
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kyle Nolan
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Barbara Frederick
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gangwen Han
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Guanting He
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - G Devon Trahan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ayman J Oweida
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado. .,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
24
|
Wang H, Wang Z, Huang Y, Zhou Y, Sheng X, Jiang Q, Wang Y, Luo P, Luo M, Shi C. Senolytics (DQ) Mitigates Radiation Ulcers by Removing Senescent Cells. Front Oncol 2020; 9:1576. [PMID: 32117790 PMCID: PMC7034035 DOI: 10.3389/fonc.2019.01576] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Radiation ulcers are a prevalent toxic side effect in patients receiving radiation therapy. At present, there is still no effective treatment for the complication. Senescent cells accumulate after radiation exposure, which can induce cell and tissue dysfunction. Here we demonstrate increased expression of p16 (a senescence biomarker) in human radiation ulcers after radiotherapy and radiation-induced persistent cell senescence in animal ulcer models. Furthermore, senescent cells secreted the senescence-associated secretory phenotype (SASP) and induced cell senescence in adjacent cells, which was alleviated by JAK inhibition. In addition, the clearance of senescent cells following treatment with a senolytics cocktail, Dasatinib plus Quercetin (DQ), mitigated radiation ulcers. Finally, DQ induced tumor cell apoptosis and enhanced radiosensitivity in representative CAL-27 and MCF-7 cell lines. Our results demonstrate that cell senescence is involved in the development of radiation ulcers and that elimination of senescent cells might be a viable strategy for patients with this condition.
Collapse
Affiliation(s)
- Huilan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Ziwen Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yue Zhou
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaowu Sheng
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingzhi Jiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Peng Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| | - Min Luo
- Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Chunmeng Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Gaillard D, Shechtman LA, Millar SE, Barlow LA. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Sci Rep 2019; 9:17934. [PMID: 31784592 PMCID: PMC6884601 DOI: 10.1038/s41598-019-54216-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer patients receiving conventional repeated, low dose radiotherapy (fractionated IR) suffer from taste dysfunction that can persist for months and often years after treatment. To understand the mechanisms underlying functional taste loss, we established a fractionated IR mouse model to characterize how taste buds are affected. Following fractionated IR, we found as in our previous study using single dose IR, taste progenitor proliferation was reduced and progenitor cell number declined, leading to interruption in the supply of new taste receptor cells to taste buds. However, in contrast to a single dose of IR, we did not encounter increased progenitor cell death in response to fractionated IR. Instead, fractionated IR induced death of cells within taste buds. Overall, taste buds were smaller and fewer following fractionated IR, and contained fewer differentiated cells. In response to fractionated IR, expression of Wnt pathway genes, Ctnnb1, Tcf7, Lef1 and Lgr5 were reduced concomitantly with reduced progenitor proliferation. However, recovery of Wnt signaling post-IR lagged behind proliferative recovery. Overall, our data suggest carefully timed, local activation of Wnt/β-catenin signaling may mitigate radiation injury and/or speed recovery of taste cell renewal following fractionated IR.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
26
|
An Investigation into the Prevalence and Treatment of Oral Mucositis After Cancer Treatment. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.88405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Ha Thi HT, Kim HY, Lee YJ, Kim SJ, Hong S. SMAD7 in keratinocytes promotes skin carcinogenesis by activating ATM-dependent DNA repair and an EGFR-mediated cell proliferation pathway. Carcinogenesis 2019; 40:112-120. [PMID: 30219864 DOI: 10.1093/carcin/bgy121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/23/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
SMA- and MAD-related protein 7 (SMAD7) is a general inhibitor of transforming growth factor-β (TGF-β) signaling that acts through interaction and degradation of TGF-β receptors. SMAD7 has been demonstrated to be transcriptionally upregulated in chemical-induced skin tumors and TGF-β-treated normal keratinocytes. To evaluate the function of SMAD7 in skin carcinogenesis in vivo, Smad7 transgenic mice that specifically express either wild-type (WT) SMAD7 (TG-Smad7-WT) or mutant SMAD7 (TG-Smad7-MT) in keratinocytes, as well as Smad7 keratinocyte-specific knockout (Smad72f/2f-K14Cre) mice, were subjected to chemical-induced skin carcinogenesis. WT-SMAD7-expressing transgenic mice showed significantly greater papilloma formation than did non-TG control and Smad7-MT mice. The expression of WT-SMAD7 attenuated DNA damage-induced apoptosis in epidermal keratinocytes by stimulating the ATM-dependent DNA repair pathway. Nonetheless, overexpression of WT-SMAD7 caused a susceptibility to 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperproliferation through activation of epidermal growth factor (EGF) signaling. In agreement with the transgenic mouse data, keratinocyte-specific deletion of SMAD7 markedly suppressed the tumor formation by inhibiting ATM and epidermal growth factor receptor (EGFR) signaling. Moreover, specific inhibition of EGFR signaling attenuated the hyperproliferation and tumor formation in TG-Smad7-WT mice. Taken together, these data support a novel role for SMAD7 as a tumor promoter in skin carcinogenesis where SMAD7 stimulates the DNA repair pathway and EGFR signaling activation.
Collapse
Affiliation(s)
- Huyen Trang Ha Thi
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Hye-Youn Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Young-Jae Lee
- Laboratory of Developmental Genetics, Department of Biochemistry, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Seong-Jin Kim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
28
|
Regulation of HMGB1 release protects chemoradiotherapy-associated mucositis. Mucosal Immunol 2019; 12:1070-1081. [PMID: 30647411 DOI: 10.1038/s41385-019-0132-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/28/2018] [Accepted: 12/31/2018] [Indexed: 02/04/2023]
Abstract
Oral mucositis (OM) is a common complication in cancer patients undergoing anticancer treatment. Despite the clinical and economic consequences of OM, there are no drugs available for its fundamental control. Here we show that high-mobility group box 1 (HMGB1), a "danger signal" that acts as a potent innate immune mediator, plays a critical role in the pathogenesis of OM. In addition, we investigated treatment of OM through HMGB1 blockade using NecroX-7 (tetrahydropyran-4-yl)-[2-phenyl-5-(1,1-dioxo-thiomorpholin-4-yl)methyl-1Hindole-7-yl]amine). NecroX-7 ameliorated basal layer epithelial cell death and ulcer size in OM induced by chemotherapy or radiotherapy. This protective effect of NecroX-7 was mediated by inhibition of HMGB1 release and downregulation of mitochondrial oxidative stress. Additionally, NecroX-7 inhibited the HMGB1-induced release of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and macrophage inflammatory protein (MIP)-1β, as well as the expression of p53-upregulated modulator of apoptosis (PUMA) and the excessive inflammatory microenvironment, including nuclear factor-kB (NF-kB) pathways. In conclusion, our findings suggest that HMGB1 plays a key role in the pathogenesis of OM; therefore, blockade of HMGB1 by NecroX-7 may be a novel therapeutic strategy for OM.
Collapse
|
29
|
Inferring novel genes related to oral cancer with a network embedding method and one-class learning algorithms. Gene Ther 2019; 26:465-478. [PMID: 31455874 DOI: 10.1038/s41434-019-0099-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Oral cancer (OC) is one of the most common cancers threatening human lives. However, OC pathogenesis has yet to be fully uncovered, and thus designing effective treatments remains difficult. Identifying genes related to OC is an important way for achieving this purpose. In this study, we proposed three computational models for inferring novel OC-related genes. In contrast to previously proposed computational methods, which lacked the learning procedures, each proposed model adopted a one-class learning algorithm, which can provide a deep insight into features of validated OC-related genes. A network embedding algorithm (i.e., node2vec) was applied to the protein-protein interaction network to produce the representation of genes. The features of the OC-related genes were used in the training of the one-class algorithm, and the performance of the final inferring model was improved through a feature selection procedure. Then, candidate genes were produced by applying the trained inferring model to other genes. Three tests were performed to screen out the important candidate genes. Accordingly, we obtained three inferred gene sets, any two of which were different. The inferred genes were also different from previous reported genes and some of them have been included in the public Oral Cancer Gene Database. Finally, we analyzed several inferred genes to confirm whether they are novel OC-related genes.
Collapse
|
30
|
The pathogenesis of mucositis: updated perspectives and emerging targets. Support Care Cancer 2019; 27:4023-4033. [PMID: 31286231 DOI: 10.1007/s00520-019-04893-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Mucositis research and treatment are a rapidly evolving field providing constant new avenues of research and potential therapies. The MASCC/ISOO Mucositis Study Group regularly assesses available literature relating to pathogenesis, mechanisms, and novel therapeutic approaches and distils this to summary perspectives and recommendations. Reviewers assessed 164 articles published between January 2011 and June 2016 to identify progress made since the last review and highlight new targets for further investigation. Findings were organized into sections including established and emerging mediators of toxicity, potential insights from technological advances in mucositis research, and perspective. Research momentum is accelerating for mucositis pathogenesis, and with this has come utilization of new models and interventions that target specific mechanisms of injury. Technological advances have the potential to revolutionize the field of mucositis research, although focused effort is needed to move rationally targeted interventions to the clinical setting.
Collapse
|
31
|
miR-200c Modulates the Pathogenesis of Radiation-Induced Oral Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2352079. [PMID: 31346357 PMCID: PMC6620860 DOI: 10.1155/2019/2352079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/28/2019] [Indexed: 01/12/2023]
Abstract
Radiation-induced oral mucositis (RIOM) is one of the most common side effects of radiotherapy in cancer patients, especially in almost all head and neck cancer patients. It presents as severe pain and ulceration. The development of RIOM is composed of five stages: initiation, primary damage response, signal amplification, ulceration, and healing. However, the key regulators involved in the RIOM pathogenesis remain largely unknown. In this study, we reveal a novel role of miR-200c, a member of the miR-200 family, in modulating RIOM pathogenesis. Using a mouse model mimicking RIOM, we found that the miR-200 family numbers (miR-141, miR-200a, miR-200b, and miR-200c) except miR-429 were significantly induced during the RIOM formation. Besides, in RIOM mice, miR-200c expression level was also increased dramatically in the normal human keratinocytes (NHKs) after irradiation. Knockdown of miR-200c expression with miR-200c-3p-shRNA significantly reduced senescence phenotype and enhanced cell proliferation in NHKs after irradiation. The generation of reactive oxygen species (ROS) and p47 enzyme involved in ROS production was increased after irradiation but both were markedly reduced in NHKs by miR-200c inhibition. Knockdown of miR-200c expression in NHKs increased DNA double-strand break repair after irradiation compared with control NHKs. Furthermore, miR-200c inhibition repressed the production of proinflammatory cytokines (TGF-β, TNF-α, and IL-1α) via inhibiting NF-κB and Smad2 activation in NHKs exposed to IR. Additionally, miR-200c inhibition promoted NHK migration and increased the expression of molecules that regulate epithelial to mesenchymal transition, including Snail, Vimentin, Zeb1, and Bmi-1. These results not only identify the key role of miR-200c in the pathogenesis of RIOM but also provide a novel therapeutic target to treat RIOM.
Collapse
|
32
|
Wang Z, Chen Z, Jiang Z, Luo P, Liu L, Huang Y, Wang H, Wang Y, Long L, Tan X, Liu D, Jin T, Wang Y, Wang Y, Liao F, Zhang C, Chen L, Gan Y, Liu Y, Yang F, Huang C, Miao H, Chen J, Cheng T, Fu X, Shi C. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun 2019; 10:2538. [PMID: 31182708 PMCID: PMC6557849 DOI: 10.1038/s41467-019-10386-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The pathological mechanisms of radiation ulcer remain unsolved and there is currently no effective medicine. Here, we demonstrate that persistent DNA damage foci and cell senescence are involved in radiation ulcer development. Further more, we identify cordycepin, a natural nucleoside analogue, as a potent drug to block radiation ulcer (skin, intestine, tongue) in rats/mice by preventing cell senescence through the increase of NRF2 nuclear expression (the assay used is mainly on skin). Finally, cordycepin is also revealed to activate AMPK by binding with the α1 and γ1 subunit near the autoinhibitory domain of AMPK, then promotes p62-dependent autophagic degradation of Keap1, to induce NRF2 dissociate from Keap1 and translocate to the nucleus. Taken together, our findings identify cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents, and activation of AMPK or NRF2 may thus represent therapeutic targets for preventing cell senescence and radiation ulcer.
Collapse
Affiliation(s)
- Ziwen Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zelin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhongyong Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Peng Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Lang Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025, Guiyang, China
| | - Yu Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- Department of Toxicology, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, 550025, Guiyang, China
| | - Huilan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- Institute of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yu Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Lei Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xu Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Dengqun Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Taotao Jin
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fengying Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yibo Gan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yunsheng Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fan Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chunji Huang
- College of Basic Medical Sciences, Third Military Medical University, 400038, Chongqing, China
| | - Hongming Miao
- College of Basic Medical Sciences, Third Military Medical University, 400038, Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University, 40038, Chongqing, China
| | - Tianmin Cheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, the First Affiliated Hospital, Chinese PLA General Hospital, Trauma Center of Postgraduate Medical College, 100000, Beijing, China.
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
33
|
Li Y, Ailing H, Jian P. Ecdysterone Accelerates Healing of Radiation-Induced Oral Mucositis in Rats by Increasing Matrix Cell Proliferation. Radiat Res 2019; 191:237-244. [DOI: 10.1667/rr15171.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yang Li
- Hefei University of Technology, Anhui Hefei, China
| | - Hui Ailing
- Hefei University of Technology, Anhui Hefei, China
| | - Pan Jian
- Hefei University of Technology, Anhui Hefei, China
| |
Collapse
|
34
|
Luo J, Bian L, Blevins MA, Wang D, Liang C, Du D, Wu F, Holwerda B, Zhao R, Raben D, Zhou H, Young CD, Wang XJ. Smad7 Promotes Healing of Radiotherapy-Induced Oral Mucositis without Compromising Oral Cancer Therapy in a Xenograft Mouse Model. Clin Cancer Res 2019; 25:808-818. [PMID: 30185419 PMCID: PMC6335168 DOI: 10.1158/1078-0432.ccr-18-1081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE We previously reported preventive and therapeutic effects of Smad7, a multifunctional protein, on radiotherapy (RT)-induced mucositis in mice without promoting human oral cancer cell survival or migration in vitro. The current study aims to determine whether a Smad7-based biologic can treat existing oral mucositis during radiotherapy for oral cancer and whether this treatment compromises RT-induced cancer cell killing in neighboring oral cancer.Experimental Design: We transplanted human oral cancer cells into the tongues of mice and applied craniofacial irradiation to simultaneously kill tumor cells and induce oral mucositis, thus modeling RT and mucositis in oral cancer patients. We topically applied a recombinant human Smad7 protein fused with the cell-penetrating Tat tag (Tat-Smad7) to the oral mucosa of tumor-bearing mice post RT when oral mucositis began to develop. RESULTS Topically applied Tat-Smad7 penetrated cells in both the oral mucosa and oral cancer, attenuating TGFβ and NF-κB signaling as well as inflammation at both sites. Tat-Smad7 treatment alleviated oral mucositis with reductions in DNA damage and apoptosis in keratinocytes, but increased keratinocyte proliferation compared with vehicle-treated mucositis lesions. In contrast, adjacent oral cancer exposed to Tat-Smad7 did not show alterations in proliferation or direct DNA damage, but showed increased oxidative stress damage and apoptosis compared with tumors treated with vehicle. CONCLUSIONS Our results suggest that short-course Tat-Smad7 application to oral mucositis promotes its healing but does not compromise the cytotoxic effect of RT on oral cancer and has context-specific effects on oral mucosa versus oral cancer.
Collapse
Affiliation(s)
- Jingjing Luo
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Li Bian
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
- Allander Biotechnologies, LLC, Aurora, Colorado
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dongyan Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Allander Biotechnologies, LLC, Aurora, Colorado
| | - Chao Liang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Danfeng Du
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China.
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Allander Biotechnologies, LLC, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Allander Biotechnologies, LLC, Aurora, Colorado
| |
Collapse
|
35
|
Byun MR, Lee SW, Paulson B, Lee S, Lee W, Lee KK, Kim YR, Kim JK, Choi JW. Micro-endoscopic In Vivo Monitoring in the Blood and Lymphatic Vessels of the Oral Cavity after Radiation Therapy. Int J Med Sci 2019; 16:1525-1533. [PMID: 31673245 PMCID: PMC6818205 DOI: 10.7150/ijms.36470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022] Open
Abstract
Radiotherapy, although used worldwide for the treatment of head, neck, and oral cancers, causes acute complications, including effects on vasculature and immune response due to cellular stress. Thus, the ability to diagnose side-effects and monitor vascular response in real-time during radiotherapy would be highly beneficial for clinical and research applications. In this study, recently-developed fluorescence micro-endoscopic technology provides non-invasive, high-resolution, real-time imaging at the cellular level. Moreover, with the application of high-resolution imaging technologies and micro-endoscopy, which enable improved monitoring of adverse effects in GFP-expressing mouse models, changes in the oral vasculature and lymphatic vessels are quantified in real time for 10 days following a mild localized single fractionation, 10 Gy radiotherapy treatments. Fluorescence micro-endoscopy enables quantification of the cardiovascular recovery and immune response, which shows short-term reduction in mean blood flow velocity, in lymph flow, and in transient immune infiltration even after this mild radiation dose, in addition to long-term reduction in blood vessel capacity. The data provided may serve as a reference for the expected cellular-level physiological, cardiovascular, and immune changes in animal disease models after radiotherapy.
Collapse
Affiliation(s)
- Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seok Won Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bjorn Paulson
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Wan Lee
- Department of Oral and Maxillofacial Radiology, College of Dentistry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kang Kyoo Lee
- Department of Radiation Oncology, School of Medicine, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yi Rang Kim
- Department of Hemato-Oncology, Yuseong Sun Hospital, Daejeon, 34084, Republic of Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
36
|
Smad7 Ameliorates TGF-β-Mediated Skin Inflammation and Associated Wound Healing Defects but Not Susceptibility to Experimental Skin Carcinogenesis. J Invest Dermatol 2018; 139:940-950. [PMID: 30423327 DOI: 10.1016/j.jid.2018.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 01/13/2023]
Abstract
We assessed the roles of Smad7 in skin inflammation and wound healing using genetic and pharmacological approaches. In K5.TGFβ1/K5.Smad7 bigenic (double transgenic) mice, Smad7 transgene expression reversed transforming growth factor (TGF)-β1 transgene-induced inflammation, fibrosis, and subsequent epidermal hyperplasia and molecularly abolished TGF-β and NF-κB activation. Next, we produced recombinant human Smad7 protein with a Tat-tag (Tat-Smad7) that rapidly enters cells. Subcutaneous injection of Tat-Smad7 attenuated infiltration of F4/80+ and CD11b+ leukocytes and α-smooth muscle actin+ fibroblasts before attenuating epidermal hyperplasia in K5.TGFβ1 skin. Furthermore, topically applied Tat-Smad7 on K5.TGFβ1 skin wounds accelerated wound closure, with improved re-epithelialization and reductions in inflammation and fibrotic response. A short treatment with Tat-Smad7 was also sufficient to reduce TGF-β and NF-κB signaling in K5.TGFβ1 skin and wounds. Relevant to the clinic, we found that human diabetic wounds had elevated TGF-β and NF-κB signaling compared with normal skin. To assess the oncogenic risk of a potential Smad7-based therapy, we exposed K5.Smad7 skin to chemical carcinogenesis and found reduced myeloid leukocyte infiltration in tumors but not accelerated carcinogenesis compared with wild-type littermates. Our study suggests the feasibility of using exogenous Smad7 below an oncogenic level to alleviate skin inflammation and wound healing defects associated with excessive activation of TGF-β and NF-κB.
Collapse
|
37
|
Barbosa MM, de Araújo AA, de Araújo Júnior RF, Guerra GCB, de Castro Brito GA, Leitão RC, Ribeiro SB, de Aragão Tavares E, Vasconcelos RC, Garcia VB, de Medeiros CACX. Telmisartan Modulates the Oral Mucositis Induced by 5-Fluorouracil in Hamsters. Front Physiol 2018; 9:1204. [PMID: 30210365 PMCID: PMC6123383 DOI: 10.3389/fphys.2018.01204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/10/2018] [Indexed: 01/20/2023] Open
Abstract
Oral mucositis (OM) is a common adverse effect resulting from cancer therapy. The OM it has implications that may compromise oncologic treatment and decrease the patient's quality of life. The therapeutic options to prevent or treat the symptoms of OM are scarce; there is no effective therapy that improves the symptoms. Based on the need for further research for the treatment of OM, the present study objective was to evaluate the effect of telmisartan (TELM) on the OM induced by 5-fluorouracil (5-FU), using as animal model Golden Syrian hamsters. 5-FU followed by mechanical trauma on day 4 was used to induce OM in hamsters. Euthanasia occurred on the day 10. The experiments were constituted by the groups saline, mechanical trauma, 5-FU, and TELM in three doses (1, 5, or 10 mg/kg). Macroscopic, histopathological, and immunohistochemical analyses as well as immunofluorescence experiments were performed on the oral mucosa of the animals. The samples also were used for analysis enzyme-linked immunosorbent assays and quantitative real-time polymerase chain reactions (qPCR). TELM (5 or 10 mg/kg) was able to reduce the inflammatory ulceration and infiltration in the oral mucosa of the animals, decreasing the levels of the cytokines TNF-α and IL-1β. These treatments was minimize the immunostaining for cyclooxygenase-2, matrix metalloproteinase-9, transforming growth factor-β, and smad 2/3. The nuclear transcription factor kappa B (NFκB) p65 and inducible nitric oxide synthase were reduced in the oral mucosa. Finally, TELM (10 mg/kg) increased the PPARγ gene expression and reduced STAT1 and NFκB p65 gene expression relative to the 5-FU group. Therefore, TELM prevents the OM produced by 5-FU on animal model.
Collapse
Affiliation(s)
- Maisie M Barbosa
- Post Graduation Program in Biological Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aurigena A de Araújo
- Post Graduation Program Public Health/Post Graduation Program in Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raimundo F de Araújo Júnior
- Post Graduation Program in Functional and Structural Biology/Post Graduation Program Health Science, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gerlane C B Guerra
- Post Graduation Program in Biological Sciences/Post Graduation Program in Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gerly A de Castro Brito
- Post Graduation Program of Morphological Science, Department of Morphology, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Renata C Leitão
- Post Graduation Program of Morphological Science, Department of Morphology, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Susana B Ribeiro
- Post Graduation Program in Biotechnology RENORBIO, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Roseane C Vasconcelos
- Post Graduation Program Public Health, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vinícius B Garcia
- Post Graduation in Program of Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Caroline A C X de Medeiros
- Post Graduation Program in Biological Sciences/Post Graduation Program in Biotechnology RENORBIO, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
38
|
Yang C, Tang H, Wang L, Peng R, Bai F, Shan Y, Yu Z, Zhou P, Cong Y. Dimethyl Sulfoxide Prevents Radiation-Induced Oral Mucositis Through Facilitating DNA Double-Strand Break Repair in Epithelial Stem Cells. Int J Radiat Oncol Biol Phys 2018; 102:1577-1589. [PMID: 30092334 DOI: 10.1016/j.ijrobp.2018.07.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Oral mucositis is one of the most prevalent side effects in patients undergoing radiation therapy for head and neck cancers. Current therapeutic agents such as palifermin recombinant human keratinocyte growth factor and amifostine do not efficiently or fully prevent mucositis. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study aimed to investigate the efficacy of DMSO in a clinically relevant mouse model of acute, radiation-induced oral mucositis. METHODS AND MATERIALS Oral mucositis was induced by a high single and fractioned irradiation of the head and neck area in C57BL/6J mice, and the effects of DMSO (by intraperitoneal injection) were assessed by macroscopic and histopathological examination. Epithelial stem and progenitor cells were analyzed by immunohistochemical staining of p63 and Ki-67, and DNA double-strand breaks (DSBs) were visualized by immunofluorescence detection of γ-H2AX. Tumor xenograft was obtained using CAL-27 cells. RESULTS Pretreatment with DMSO protected the oral mucosa from severe acute radiation injury, reduced the extent of radiation-induced weight loss, and had no significant effects on tumor weight in irradiated or nonirradiated xenograft mice. Furthermore, the efficacy of DMSO was superior to that of recombinant human keratinocyte growth factor and amifostine. DMSO treatment prevented the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation. More interestingly, the average levels of γ-H2AX foci were significantly decreased in p63-positive epithelial stem cells at 6 hours, but not at 2 hours, after irradiation, indicating that DMSO facilitated DNA DSB repair rather than suppressing the indirect action of irradiation. CONCLUSIONS DMSO prevents the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation by facilitating DNA DSB repair, thereby protecting against radiation-induced mucositis without tumor protection. Given its high efficacy and low toxicity, DMSO could be a potential treatment option to prevent radiation-induced oral mucositis.
Collapse
Affiliation(s)
- Chao Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, PR China; Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Hongwei Tang
- Department of Gastroenterology, Hospital of Tsinghua Changgung, Beijing, PR China
| | - Limei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Renjun Peng
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Fan Bai
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Yajun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Zuyin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China
| | - Pingkun Zhou
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, PR China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, PR China.
| | - Yuwen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology, Beijing, PR China.
| |
Collapse
|
39
|
Fan B, Wang T, Bian L, Jian Z, Wang DD, Li F, Wu F, Bai T, Zhang G, Muller N, Holwerda B, Han G, Wang XJ. Topical Application of Tat-Rac1 Promotes Cutaneous Wound Healing in Normal and Diabetic Mice. Int J Biol Sci 2018; 14:1163-1174. [PMID: 30123066 PMCID: PMC6097474 DOI: 10.7150/ijbs.25920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/09/2018] [Indexed: 01/02/2023] Open
Abstract
The endogenous small GTPase, Rac1, plays a critical role during normal skin wound healing. It remains to be determined whether endogenous Rac1 can be appropriately activated in chronic wounds; if not, whether exogenous Rac1 has therapeutic effects on wound healing. Here we show that Rac1 protein levels were lower in wounds of db/db diabetic mice than wounds in wild type mice during the healing process. To assess the therapeutic potential of exogenous Rac1 in wound healing, we produced a Tat-Rac1 fusion protein that enters into cells through protein transduction. Tat-Rac1 increased proliferation and migration of keratinocytes and dermal fibroblasts in vitro. Topical application of Tat-Rac1 accelerated cutaneous wound closure in vivo in db/db mice as well as wild type mice. Further analyses revealed that Tat-Rac1 had faster re-epithelialization, higher keratinocyte proliferation and migration without an earlier onset of myofibroblast activation than vehicle treated wounds. Tat-Rac1 also reduced inflammation in wounds. Our findings revealed the failure of diabetic wounds to elevate Rac1 expression and suggested a therapeutic strategy utilizing a Rac1-based biologic to compensate for this defect thereby promoting wound healing.
Collapse
Affiliation(s)
- Bin Fan
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Current address: Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Current address: Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Li Bian
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Zhe Jian
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Current address: Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Dongyan D. Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Fulun Li
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Current address: Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fanglong Wu
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Tao Bai
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, CO, USA
| | - Nik Muller
- Department of Ophthalmology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | | | - Gangwen Han
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Current address: Department of Dermatology, Peking University International Hospital, Beijing 102206, China
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
40
|
Homocysteine induces vascular inflammatory response via SMAD7 hypermethylation in human umbilical vein smooth muscle cells. Microvasc Res 2018; 120:8-12. [PMID: 29777793 DOI: 10.1016/j.mvr.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/14/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Homocysteine (Hcy) can induce atherosclerosis through the inflammatory response and DNA methylation disorder. Our recent study has reported a novel epigenetic modified gene related to atherosclerosis -SMAD7. To further understand the pathogenesis of atherosclerosis, the current study was designed to investigate an inflammatory role of Hcy in human umbilical vein smooth muscle cells (HUVSMCs) through interfering with SMAD7 methylation. Using MALDI-TOF MS, we found that Hcy increased DNA methylation levels of SMAD7 promoter in a dose and time-dependent manner in HUVSMCs. Meanwhile, both SMAD7 mRNA and protein levels were decreased along with the increase of Hcy concentrations and treating time. Decreased SMAD7 levels led to up regulation of pro-inflammatory cytokines (TNF-α and IL-1β) expression in HUVSMCs. Furthermore, we found that activation of NF-κB pathway was the mechanism by which reduced Smad7 levels enhanced vascular inflammation. Thus, Hcy is able to activate NF-κB-mediated vascular inflammatory response via inducing hypermethylation of SMAD7 promoter in HUVSMCs. The in vitro findings supplement our recent clinical study that SMAD7 methylation as a novel marker in atherosclerosis and further elucidate the role of Hcy in atherogenesis.
Collapse
|
41
|
Campos JC, Cunha JD, Ferreira DC, Reis S, Costa PJ. Challenges in the local delivery of peptides and proteins for oral mucositis management. Eur J Pharm Biopharm 2018; 128:131-146. [PMID: 29702221 DOI: 10.1016/j.ejpb.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Oral mucositis, a common inflammatory side effect of oncological treatments, is a disorder of the oral mucosa that can cause painful ulcerations, local motor disabilities, and an increased risk of infections. Due to the discomfort it produces and the associated health risks, it can lead to cancer treatment restrains, such as the need for dose reduction, cycle delays or abandonment. Current mucositis management has low efficiency in prevention and treatment. A topical drug application for a local action can be a more effective approach than systemic routes when addressing oral cavity pathologies. Local delivery of growth factors, antibodies, and anti-inflammatory cytokines have shown promising results. However, due to the peptide and protein nature of these novel agents, and the several anatomic, physiological and environmental challenges of the oral cavity, their local action might be limited when using traditional delivering systems. This review is an awareness of the issues and strategies in the local delivery of macromolecules for the management of oral mucositis.
Collapse
Affiliation(s)
- João C Campos
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1).
| | - João D Cunha
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Domingos C Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Paulo J Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| |
Collapse
|
42
|
Abstract
Normal tissue injury from irradiation is an unfortunate consequence of radiotherapy. Technologic improvements have reduced the risk of normal tissue injury; however, toxicity causing treatment breaks or long-term side effects continues to occur in a subset of patients. The molecular events that lead to normal tissue injury are complex and span a variety of biologic processes, including oxidative stress, inflammation, depletion of injured cells, senescence, and elaboration of proinflammatory and profibrogenic cytokines. This article describes selected recent advances in normal tissue radiobiology.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Kirk J, Shah N, Noll B, Stevens CB, Lawler M, Mougeot FB, Mougeot JLC. Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy. Support Care Cancer 2018; 26:2695-2705. [PMID: 29476419 DOI: 10.1007/s00520-018-4096-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. OBJECTIVES Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. METHODS OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. RESULTS Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. CONCLUSIONS Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.
Collapse
Affiliation(s)
- Jon Kirk
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA.,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Nirav Shah
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Braxton Noll
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Craig B Stevens
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Marshall Lawler
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Farah B Mougeot
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Jean-Luc C Mougeot
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA. .,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
44
|
Zhang T, Wu J, Ungvijanpunya N, Jackson-Weaver O, Gou Y, Feng J, Ho TV, Shen Y, Liu J, Richard S, Jin J, Hajishengallis G, Chai Y, Xu J. Smad6 Methylation Represses NFκB Activation and Periodontal Inflammation. J Dent Res 2018; 97:810-819. [PMID: 29420098 DOI: 10.1177/0022034518755688] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The balance between pro- and anti-inflammatory signals maintains tissue homeostasis and defines the outcome of chronic inflammatory diseases such as periodontitis, a condition that afflicts the tooth-supporting tissues and exerts an impact on systemic health. The induction of tissue inflammation relies heavily on Toll-like receptor (TLR) signaling, which drives a proinflammatory pathway through recruiting myeloid differentiation primary response gene 88 (MyD88) and activating nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). TLR-induced production of proinflammatory cytokines and chemokines is reined in by anti-inflammatory cytokines, including the transforming growth factor β (TGFβ) family of cytokines. Although Smad6 is a key mediator of TGFβ-induced anti-inflammatory signaling, the exact mechanism by which TGFβ regulates TLR proinflammatory signaling in the periodontal tissue has not been addressed to date. In this study, we demonstrate for the first time that the ability of TGFβ to inhibit TLR-NFκB signaling is mediated by protein arginine methyltransferase 1 (PRMT1)-induced Smad6 methylation. Upon methylation, Smad6 recruited MyD88 and promoted MyD88 degradation, thereby inhibiting NFκB activation. Most important, Smad6 is expressed and methylated in the gingival epithelium, and PRMT1-Smad6 signaling promotes tissue homeostasis by limiting inflammation. Consistent with this, disturbance of Smad6 methylation exacerbates inflammation and bone loss in experimental periodontitis. The dissected mechanism is therapeutically important, as it highlights the manipulation of PRMT1-Smad6 signaling as a novel promising strategy to modulate the host immune response in periodontitis.
Collapse
Affiliation(s)
- T Zhang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China.,2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - J Wu
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - N Ungvijanpunya
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - O Jackson-Weaver
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Y Gou
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - J Feng
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - T V Ho
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Y Shen
- 3 Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Liu
- 3 Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Richard
- 4 Segal Cancer Center, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Departments of Oncology and Medicine, McGill University, Montréal, Québec, Canada
| | - J Jin
- 3 Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Hajishengallis
- 5 Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Chai
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - J Xu
- 2 Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Sonis ST, Villa A. Phase II investigational oral drugs for the treatment of radio/chemotherapy induced oral mucositis. Expert Opin Investig Drugs 2018; 27:147-154. [PMID: 29323575 DOI: 10.1080/13543784.2018.1427732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Oral mucositis is a significant unmet clinical need for many cancer patients. The biological complexity of mucositis' pathogenesis provides a number of mechanistic targets suitable as pharmacologic targets. The diversity of targets has stimulated drug development in search of an effective intervention. In this paper, we review a range of agents that are currently being evaluated. AREAS COVERED Drugs for management of oral mucositis vary in formulation, route of administration and biological target. Most propose to interrupt the initiation of injury by suppressing activation of the innate immune response or countering oxidative stress, or minimizing downstream inflammatory responses. Overwhelmingly, the population most studied is patients being treated with concomitant chemoradiation for cancers of the head and neck as this is the cohort that most consistently suffers severe mucositis for long periods of time. The Phase 2 pipeline is robust. Preliminary data reported for a number of agents is optimistic. Genomics may be important in interpreting and comparing responses to agents across widely demographically diverse populations. EXPERT OPINION Oral mucositis remains a significant toxicity for patients undergoing cancer treatment. Incremental reports of successes have been noted for a number of targeted agents.
Collapse
Affiliation(s)
- Stephen T Sonis
- a Divisions of Oral Medicine and Dentistry , Brigham and Women's Hospital and the Dana-Farber Cancer Institute , Boston , MA , USA.,b Primary Endpoint Solutions , Watertown , MA , USA
| | - Alessandro Villa
- a Divisions of Oral Medicine and Dentistry , Brigham and Women's Hospital and the Dana-Farber Cancer Institute , Boston , MA , USA.,b Primary Endpoint Solutions , Watertown , MA , USA
| |
Collapse
|
46
|
Identification of the protective mechanisms of Lactoferrin in the irradiated salivary gland. Sci Rep 2017; 7:9753. [PMID: 28852132 PMCID: PMC5575150 DOI: 10.1038/s41598-017-10351-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is commonly used in patients with head and neck cancer, and usually results in irreversible salivary glands damage and hypofunction. It is therefore important to manage such irradiation to prevent damage to the salivary glands. A previous study showed that Lactoferrin (LF) has a radioprotective effect, but the mechanism was not determined in salivary glands. In the present study, we investigated the detailed radioprotective effect of LF using both ex vivo submandibular salivary gland organ culture and ICR male mice in vivo. We found that LF had effects on both cell proliferation and CyclinD1-mediated cell-cycle progression which were regulated via the ERK1/2 and AKT signal transduction pathways. In addition, LF affected acinar cell structure and function after irradiation. These findings suggest that LF may be a useful agent to prevent irradiation effects in salivary glands.
Collapse
|
47
|
Oral Mucositis: Melatonin Gel an Effective New Treatment. Int J Mol Sci 2017; 18:ijms18051003. [PMID: 28481279 PMCID: PMC5454916 DOI: 10.3390/ijms18051003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
The current treatment for cervico-facial cancer involves radio and/or chemotherapy. Unfortunately, cancer therapies can lead to local and systemic complications such as mucositis, which is the most common dose-dependent complication in the oral cavity and gastrointestinal tract. Mucositis can cause a considerably reduced quality of life in cancer patients already suffering from physical and psychological exhaustion. However, the role of melatonin in the treatment of mucositis has recently been investigated, and offers an effective alternative therapy in the prevention and/or management of radio and/or chemotherapy-induced mucositis. This review focuses on the pathobiology and management of mucositis in order to improve the quality of cancer patients' lives.
Collapse
|
48
|
Lee HJ, Park JM, Hahm KB. [Role of Inhibitory Transforming Growth Factor-β Signal Smad7 in Helicobacter pylori-associated Gastric Damage]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 68:186-194. [PMID: 27780942 DOI: 10.4166/kjg.2016.68.4.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background/Aims Transforming growth factor-beta (TGF-β) is a cytokine implicated in the susceptibility, development, and progression of gastrointestinal cancer and certain other neoplasms. In the later stages of cancer, TGF-β not only acts as a bystander of host-immune response, but also contributes to cell growth, invasion, and metastasis. In the current study, we generated gastric mucosal cells that stably express Smad7, and explored the Helicobacter pylori-associated biological changes between mock-transfected and Smad7-transfected RGM1 cells. Methods RGM1 cells stably transfected with Smad7 were infected with H. pylori, and molecular changes in apoptotic markers and inflammatory mediators were examined. Several candidate genes were explored in Smad7-overexpressing cells after H. pylori infection. Results Overexpression of Smad7 in RGM1 cells significantly increased the H. pylori-induced cytotoxicity compared to mock-transfected cells. Exaggerated increases in inflammatory mediators, cyclooxygenase 2, inducible NO synthase, and augmented apoptosis were noted in Smad7-overexpressing cells, whereas mitigated heme oxygenase 1 was noted in Smad7- overexpressing cells. These phenomena were reversed in cells transfected with Smad7 siRNA. Conclusions These data suggest that inhibition of Smad7 is a possible target for mitigating H. pylori-associated inflammation.
Collapse
Affiliation(s)
- Ho Jae Lee
- Department of Biochemistry, Gachon University School of Medicine, Incheon, Korea
| | - Jong Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam, Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam, Korea.,Digestive Disease Center, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
49
|
Hu L, Wang Y, Cotrim AP, Zhu Z, Gao R, Zheng C, Goldsmith CM, Jin L, Zhang C, Mitchell JB, Baum BJ, Wang S. Effect of Tempol on the prevention of irradiation-induced mucositis in miniature pigs. Oral Dis 2017; 23:801-808. [PMID: 28326646 DOI: 10.1111/odi.12667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The goals of this study were to (i) establish a useful miniature pig (minipig) model for irradiation-induced oral mucositis and (ii) evaluate the effect of Tempol to prevent its development. METHODS AND MATERIALS Minipigs were irradiated with 6 Gy for five consecutive days targeting the entire oral cavity. To prevent radiation damage, minipigs were treated with 30 mg kg-1 Tempol 10 min before irradiation (n = 4), while the radiation-alone group was similarly injected with saline (n = 4). Lesions were graded using an oral mucositis score and visual inspection every 3 days, and biopsy of multiple sites was performed at day 18. Weight and chest and abdominal circumferences were measured every 3 days. RESULTS Lesions began about 12 days after the first irradiation fraction and healed about 30 days after irradiation. Epithelial thickness was calculated on the lingual and buccal mucosa on the 18th day after the first irradiation fraction. Tempol provided modest protection from ulceration after irradiation using this treatment strategy. CONCLUSIONS This study established a useful large animal model for irradiation-induced oral mucositis and showed modest beneficial effects of Tempol in limiting tissue damage. The latter finding may be potentially valuable in preventing oral mucositis in patients receiving irradiation for head and neck cancers.
Collapse
Affiliation(s)
- L Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Y Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - A P Cotrim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Z Zhu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - R Gao
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - C M Goldsmith
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - L Jin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - J B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - B J Baum
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - S Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|