1
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Yan W, Ni T, Zhang Q, Sun X, Xu Z, Li X, Yi M, Wang Y, Zhang H, Shi J, Zhu Z. MCC950 promotes diabetic wound healing through modulating macrophage polarization in an MDSC-dependent manner. Int Immunopharmacol 2024; 142:112983. [PMID: 39217887 DOI: 10.1016/j.intimp.2024.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Diabetic foot ulcers (DFUs) are serious skin injuries whereby the wound healing process is frequently stalled in the inflammatory phase. Currently, there is a lack of effective therapeutic strategies. MCC950, a highly selective nod-like receptor family pyrin domain containing 3 (NLRP3) inhibitor, has been reported to show strong anti-inflammation effects in many diseases. In this study, we unveiled the role of MCC950 in DFU mice model and its underlying molecular mechanisms. MCC950 could significantly accelerate diabetic wound healing, as shown by shortened healing time and better healing quality. Moreover, increased M2 phenotype macrophages and decreased pro-inflammatory genes were observed in MCC950-treated DFU mice. Additionally, myeloid-derived suppressor cells (MDSCs) were significantly increased in blood, spleen and wound tissues at different time courses. Specifically, MCC950 could recruit more MDSCs in an early phase in DFU mice, exerting an anti-inflammation effect. We identified the cell crosstalk between macrophages and MDSCs with MCC950 treatment process. Depleting MDSCs in vivo could eliminate the therapeutic effect of MCC950 on diabetic wound healing through inhibiting M2 macrophage polarization. Besides, MDSCs isolated from the wounds of MCC950 or saline treated mice were cocultured with bone marrow derived macrophage (BMDM) in a transwell system. Results confirmed that MDSCs sorted from MCC950 treated mice caused a significant increased percentage of M2 macrophages. Collectively, our findings suggest that the administration of MCC950 has the potential to accelerate diabetic wound healing by promoting M2 macrophage polarization in an MDSC-dependent manner. This study provides valuable insights into the utilization of pharmacological agents for DFU treatment.
Collapse
Affiliation(s)
- Wei Yan
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Tianyi Ni
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Xiaowei Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Zibo Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Xiangyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Min Yi
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Yingying Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Zhechen Zhu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| |
Collapse
|
3
|
Shi C, Lyu W, Yu J, Chen Y, Xiu S, Zhang X, Zhang L, Liu Z. Scaffold hopping-driven optimization for the identification of NLRP3 inhibitors as potential gout therapeutics. Eur J Med Chem 2024; 279:116881. [PMID: 39316843 DOI: 10.1016/j.ejmech.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Gout as a common inflammatory arthritis seriously affects the quality of life of a large number of people. Targeting NLRP3 inflammasome has been certified as a promising therapeutic strategy for gout. This study, a series of new imidazolidinone derivatives were validated as NLRP3 inhibitors by scaffold hopping from the reported NLRP3 inhibitor CSC-6. In contrast to the poor physicochemical properties of the template molecule, the representative compound 23 showed good plasma stability, water solubility, and no significant inhibitory toxicity to CYP450 enzymes. Surface plasmon resonance and immunoblotting experiments showed that compound 23 binds NLRP3 and inhibits NLRP3 activation. Finally, compound 23 showed good anti-inflammatory and analgesic effects in acute peritonitis and arthritis. Overall, the present study provides NLRP3 inhibitors with favorable pharmacological properties, which may not only serve as a tool molecule for studying NLRP3-related functions, but also may further facilitate the gout treatment.
Collapse
Affiliation(s)
- Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jie Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanming Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Siyu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Cai G, Song X, Luo H, Dai G, Zhang H, Jiang D, Lei X, Chen H, Zhang L. NLRP3 blockade by MCC950 suppressed osteoclastogenesis via NF-κB/c-Fos/NFATc1 signal pathway and alleviated bone loss in diabetes mellitus. Mol Cell Endocrinol 2024; 594:112382. [PMID: 39349237 DOI: 10.1016/j.mce.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are linked to osteoporosis development, with obesity being a significant risk factor for T2DM. T2DM patients with obesity exhibit a higher fracture rate and often have a poor prognosis post-fracture. To address the urgent need for understanding the mechanisms of diabetic osteoporosis (DOP), research is ongoing to explore how obesity and T2DM impact bone metabolism. The NLRP3 inflammasome has been implicated in the pathogenesis of osteoporosis, and MCC950, an NLRP3 inflammasome inhibitor, has shown promise in various diseases but its role in osteoporosis remains unexplored. In this study, BMMs and BMSCs were isolated and cultured to investigate the effects of MCC950 on bone metabolism, and DOP model was used to evaluate the efficacy of MCC950 in vivo. The study demonstrated that MCC950 treatment inhibited osteoclast differentiation, reduced bone resorption capacity in BMMs without suppression for osteoblast differentiation from BMSCs. Additionally, MCC950 suppressed the activation of the NF-κB signaling pathway and downregulated key factors associated with osteoclast differentiation. Additionally, MCC950 alleviated bone loss in DOP mouse. These findings suggest that MCC950, by targeting the NLRP3 inflammasome, may have a protective role in preventing osteoporosis induced by T2DM with obesity. The study highlights the potential therapeutic implications of MCC950 in managing diabetic osteoporosis and calls for further research to explore its clinical application in high-risk patient populations.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- Furans/pharmacology
- Furans/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Signal Transduction/drug effects
- Osteogenesis/drug effects
- NF-kappa B/metabolism
- Indenes/pharmacology
- Sulfones/pharmacology
- Sulfones/therapeutic use
- Osteoclasts/metabolism
- Osteoclasts/drug effects
- Mice
- Mice, Inbred C57BL
- Bone Resorption/drug therapy
- Bone Resorption/pathology
- Bone Resorption/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/metabolism
- Osteoporosis/pathology
- Osteoporosis/etiology
- Proto-Oncogene Proteins c-fos/metabolism
- Cell Differentiation/drug effects
- Male
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Heterocyclic Compounds, 4 or More Rings/therapeutic use
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Inflammasomes/metabolism
- NFATC Transcription Factors
Collapse
Affiliation(s)
- Guoping Cai
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Xiaoting Song
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Hua Luo
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Gaoyuan Dai
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Honghao Zhang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Dengteng Jiang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Xinhuan Lei
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Haixiao Chen
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China.
| | - Liwei Zhang
- Orthopedic Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China; Institute of Bone Metabolism, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China.
| |
Collapse
|
5
|
Wang Z, Guo L, Yuan C, Zhu C, Li J, Zhong H, Mao P, Li J, Cui L, Dong J, Liu K, Meng X, Zhu G, Wang H. Staphylococcus pseudintermedius induces pyroptosis of canine corneal epithelial cells by activating the ROS-NLRP3 signalling pathway. Virulence 2024; 15:2333271. [PMID: 38515339 PMCID: PMC10984133 DOI: 10.1080/21505594.2024.2333271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
Staphylococcus pseudintermedius (S. pseudintermedius) is a common pathogen that causes canine corneal ulcers. However, the pathogenesis remained unclear. In this study, it has been demonstrated that S. pseudintermedius invaded canine corneal epithelial cells (CCECs) intracellularly, mediating oxidative damage and pyroptosis by promoting the accumulation of intracellular reactive oxygen species (ROS) and activating the NLRP3 inflammasome. The canine corneal stroma was infected with S. pseudintermedius to establish the canine corneal ulcer model in vivo. The intracellular infectious model in CCECs was established in vitro to explore the mechanism of the ROS - NLRP3 signalling pathway during the S. pseudintermedius infection by adding NAC or MCC950. Results showed that the expression of NLRP3 and gasdermin D (GSDMD) proteins increased significantly in the infected corneas (p < 0.01). The intracellular infection of S. pseudintermedius was confirmed by transmission electron microscopy and immunofluorescent 3D imaging. Flow cytometry analysis revealed that ROS and pyroptosis rates increased in the experimental group in contrast to the control group (p < 0.01). Furthermore, NAC or MCC950 inhibited activation of the ROS - NLRP3 signalling pathway and pyroptosis rate significantly, by suppressing pro-IL-1β, cleaved-IL-1β, pro-caspase-1, cleaved-caspase-1, NLRP3, GSDMD, GSDMD-N, and HMGB1 proteins. Thus, the research confirmed that oxidative damage and pyroptosis were involved in the process of CCECs infected with S. pseudintermedius intracellularly by the ROS - NLRP3 signalling pathway. The results enrich the understanding of the mechanisms of canine corneal ulcers and facilitate the development of new medicines and prevention measures.
Collapse
Affiliation(s)
- Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Changning Yuan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Chengcheng Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng Mao
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Leal VNC, Roa MEGV, Cantoni JS, Reis ECD, Lara AN, Pontillo A. Integrated Genetic and Cellular Analysis Reveals NLRP1 Activation in CD4+ T Lymphocytes During Chronic HIV Infection. Immunol Invest 2024:1-20. [PMID: 39495019 DOI: 10.1080/08820139.2024.2419940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Most of the investigations related to inflammasome activation during HIV infection have focused on the receptor NLRP3 and innate immune cells such as monocytes/macrophages. However, during the past years, inflammasome activation has also been explored in lymphocytes, and novel sensors, other than the NLRP3, have been shown to play a role in the biology of these cells. Here, we hypothesized that NLRP1 may be involved in CD4+ T cell dysregulation in people living with HIV (PLWH), therefore contributing to chronic inflammation and to the pathogenesis of non-HIV-associated diseases. METHODS The activation of NLRP1 in CD4+ T cells was assessed ex-vivo and in-vitro by the meaning of anti-CD3/anti-CD28 and Talabostat/Val-boroPro (VbP) response. RESULTS Our results showed that the NLRP1 inflammasome was activated in PLWH CD4+ T cells, and that the stimulation of CD4+ T cells resulted in increased response to anti-CD3/anti-CD28 and VbP. Functional variants in NLRP1 significantly affected the level of inflammatory dysregulation of CD4+ T cells, therefore explaining at least in part the association with CD4+ T-mediated diseases. CONCLUSION PLWH CD4+ T cells are more prone to IL-1β release and pyroptosis, therefore contributing to chronic inflammation.
Collapse
Affiliation(s)
- Vinicius Nunes Cordeiro Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Mariela Estefany Gislane Vera Roa
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Julia Silva Cantoni
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Edione Cristina Dos Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Amanda Nazareth Lara
- Departamento de Moléstias Infecciosas e Parasitárias da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
7
|
Taru V, Szabo G, Mehal W, Reiberger T. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation. J Hepatol 2024; 81:895-910. [PMID: 38908436 DOI: 10.1016/j.jhep.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Chronic liver disease leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types, ultimately resulting in liver fibrosis, cirrhosis, portal hypertension and liver failure. Thus, an improved understanding of inflammasomes - as key molecular drivers of liver injury - may result in the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic insults by activating cell-intrinsic inflammasomes via toll-like receptors and NF-κB, and by releasing pro-inflammatory cytokines (such as IL-1β, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation and hepatic parenchymal cells may undergo gasdermin D-mediated programmed cell death, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in MASH (metabolic dysfunction-associated steatohepatitis). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunction/failure, as seen in ACLF (acute-on-chronic liver failure). This review provides an overview of current concepts regarding inflammasome activation in liver disease progression, with a focus on related biomarkers and therapeutic approaches that are being developed for patients with liver disease.
Collapse
Affiliation(s)
- Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Iuliu Hatieganu University of Medicine and Pharmacy, 4(th) Dept. of Internal Medicine, Cluj-Napoca, Romania
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; West Haven Veterans Medical Center, West Haven, CT, USA.
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Science, Vienna, Austria
| |
Collapse
|
8
|
Martins B, Mossemann J, Aguilar F, Zhao S, Bilan PJ, Sayed BA. Liver Transplantation: A Test of Cellular Physiology, Preservation, and Injury. Physiology (Bethesda) 2024; 39:401-411. [PMID: 39078382 DOI: 10.1152/physiol.00020.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
Liver transplantation has evolved into a mature clinical field, but scarcity of usable organs poses a unique challenge. Expanding the donor pool requires novel approaches for protecting hepatic physiology and cellular homeostasis. Here we define hepatocellular injury during transplantation, with an emphasis on modifiable cell death pathways as future therapeutics.
Collapse
Affiliation(s)
- B Martins
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - J Mossemann
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - F Aguilar
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Zhao
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - P J Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - B A Sayed
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of General Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Zhou DH, Jia XX, Wu YZ, Zhang WW, Wang Y, Liang DL, Gao LP, Xiao K, Chen C, Dong XP, Shi Q. Aberrant Enhanced NLRP3 Inflammasomes and Cell Pyroptosis in the Brains of Prion-Infected Rodent Models Are Largely Associated with the Proliferative Astrocytes. Mol Neurobiol 2024; 61:9582-9594. [PMID: 38664301 DOI: 10.1007/s12035-024-04169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 10/23/2024]
Abstract
Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1β and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.
Collapse
Affiliation(s)
- Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Dong-Lin Liang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
11
|
Huo C, Zhu Y, Fang X, Cui J, Ye H, Zhao H, Ye L, Zhou L. Polystyrene Microplastics Induce Injury to the Vascular Endothelial Through NLRP3-Mediated Pyroptosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:5086-5098. [PMID: 39087870 DOI: 10.1002/tox.24387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The health risks associated with microplastics have attracted widespread attention. Polystyrene microplastics (PS-MPs) can induce damage to cardiac tissue, while pyroptosis-mediated injury to the vascular endothelial plays a vital role in the pathogenesis of cardiovascular diseases. The study intended to explore the role and mechanism of NLR family pyrin domain containing 3 (NLRP3) mediated pyroptosis in PS-MPs causing the injury of vascular endothelial cells. In vivo, Wistar rats were exposed to 0.5, 5, and 50 mg/kg/d 0.5 μm PS-MPs. In vitro, the human vascular endothelial cells (HUVECs) were used for mechanistic studies. siRNA was used for silencing the NILRP3 gene. H&E staining and flow cytometry were performed to examine the vascular injury and cell membrane damage. The oxidative stress was detected by flow cytometry, immunofluorescence, and corresponding kits. ELISA were used to measure the levels of inflammatory factors. Real-time PCR and western blot were used to measure the expression of pyroptosis signaling pathway. In rats, PS-MPs could cause vascular damage, oxidative stress, and inflammatory response, and activated the pyroptosis signaling pathway. HUVECs exposure to PS-MPs, the vitality decreased in a dose-dependent manner, ROS and MDA were significantly increased while SOD was decreased. PS-MPs induced the onset of pyroptosis signaling pathway in HUVECs. Cell membrane damage and the levels of IL-Iβ and IL-18 in HUVECs significantly increased, those are symbols for the development of pyroptosis. Inhibition of NLRP3-mediated pyroptosis effectively protected HUVECs from PS-MPs-induced damage. Pyroptosis played a vital role in controlling the vascular endothelial injury caused by PS-MPs.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hui Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
12
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
13
|
Kang T, Sun S, Wang H, Liu J, Li X, Jiang Y. Design, synthesis and biological evaluation of novel diphenylamine analogues as NLRP3 inflammasome inhibitors. Bioorg Med Chem 2024; 113:117927. [PMID: 39317006 DOI: 10.1016/j.bmc.2024.117927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The aberrant activation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous inflammation-related diseases. Development of NLRP3 inflammasome inhibitors is expected to provide a new strategy for the treatment of these diseases. Herein, a novel series of diphenylamine derivatives were designed based on the lead compounds H20 and H28, and the preliminary structure-activity relationship was studied. The representative compound 19 displayed significantly higher inhibitory activity against NLRP3 inflammasome compared to lead compounds H20 and H28, with an IC50 of 0.34 μM. Mechanistic studies indicated that compound 19 directly targets the NLRP3 protein (KD: 0.45 μM), blocking the assembly and activation of the NLRP3 inflammasome, leading to anti-inflammatory effects and inhibition of cellular pyroptosis. Our findings indicated that compound 19 is a promising NLRP3 inhibitor and could potentially serve as a lead compound for further optimization.
Collapse
Affiliation(s)
- Tongtong Kang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huimin Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, China.
| |
Collapse
|
14
|
Szabo A, O'Connell KS, Akkouh IA, Ueland T, Sønderby IE, Hope S, Røe AB, Dønnum MS, Sjaastad I, Steen NE, Ueland T, Sæther LS, Osete JR, Andreassen OA, Nærland T, Djurovic S. Elevated levels of peripheral and central nervous system immune markers reflect innate immune dysregulation in autism spectrum disorder. Psychiatry Res 2024; 342:116245. [PMID: 39481220 DOI: 10.1016/j.psychres.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Evidence suggests dysregulated immune functions in the pathophysiology of Autism spectrum disorder (ASD), although specific immune mechanisms are yet to be identified. METHODS We assessed circulating levels of 25 immune/neuroinflammatory markers in a large ASD sample (n = 151) and matched controls (n = 72) using linear models. In addition, we performed global brain transcriptomics analyses of relevant immune-related genes. We also assessed the expression and function of factors and pathway elements of the inflammasome system in peripheral blood mononuclear cells (PBMC) isolated from ASD and controls using in vitro methods. RESULTS We found higher circulating levels of IL-18 and adhesion factors (ICAM-1, MADCAM1) in individuals with ASD relative to controls. Consistent with this, brain levels of ICAM1 mRNA were also higher in ASD compared to controls. Furthermore, we found higher expression/activity of Caspase-1 and the inflammasome sensor NLRP3 in PBMCs in ASD, both at baseline and following inflammatory challenge. This corresponded with higher levels of secreted IL-18, IL-1β, and IL-8, as well as increased expression of adhesion factors following inflammasome activation in ASD PBMC cultures. Inhibition of the NLRP3-inflammasome rescued the observed immune phenotype in ASD in vitro. CONCLUSION Our results suggest a role for inflammasome dysregulation in ASD pathophysiology.
Collapse
Affiliation(s)
- Attila Szabo
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway
| | - Sigrun Hope
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway; Department of Rare Disorders and Disabilities, Nevsom, Oslo University Hospital, Oslo, Norway
| | - Anne B Røe
- St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Monica S Dønnum
- Department of Adult Habilitation, Akershus University Hospital, Oslo, Norway
| | - Ingrid Sjaastad
- Department of Child and Adolescent Psychiatry, Vestre Viken Hospital Trust, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Jordi Requena Osete
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway
| | - Ole A Andreassen
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Rare Disorders and Disabilities, Nevsom, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway; Department of Clinical Science, NORMENT, University of Bergen, Bergen, Norway.
| |
Collapse
|
15
|
Jiang T, Qian S, Xu J, Yu S, Lu Y, Xu L, Yang X. Discovery of novel NLRP3 inhibitors based on machine learning and physical methods. BMC Chem 2024; 18:210. [PMID: 39468648 PMCID: PMC11520493 DOI: 10.1186/s13065-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
The NLRP3 inflammasome plays a crucial role in inflammatory responses, particularly in alcohol-related liver disease (ALD). Given that NLRP3 has emerged as a potential therapeutic target for ALD, the development of effective inhibitors is of great importance. In this study, we trained 11 regression models, and the results showed that LightGBM, Random Forest, and XGBoost performed the best, achieving R² values of 0.774, 0.755, and 0.719, respectively. Using machine learning models and physical methods, we screened more than 11.5 million compounds from Asinex, Princeton, UkrOrgSynthesis, Chemdiv, Chembridge, Alinda, Enamine, and Lifechemicals, which led to the identification of 26 potential NLRP3 inhibitors. Furthermore, molecular dynamics simulations and MMGBSA binding energy calculations confirmed the stability of the interactions between NLRP3 and three key molecules: 19,655,631 (source Chembridge), 38,214,692 (source Chembridge), and Z1180203703 (source Enamine). Additionally, ADMET analysis revealed their favorable pharmacokinetic properties. This study provides insights and candidate molecules for discovering NLRP3 inhibitors, potentially applicable in treating related diseases.
Collapse
Affiliation(s)
- Tao Jiang
- Anqing 116 Hospital, No.150 Shuangjing Street, Yingjiang District, Anqing City, Anhui Province, China
| | - Shijing Qian
- Tongji Hospital of Tongji University, No. 389 Xincun Road, Putuo District, Shanghai City, China
| | - Jinhong Xu
- Anqing 116 Hospital, No.150 Shuangjing Street, Yingjiang District, Anqing City, Anhui Province, China
| | - Shuihong Yu
- School of Basic Medical Sciences, Anqing Medical College, No.1588, Jixian North Road,Yixiu District, Anqing City, Anhui Province, China
| | - Yang Lu
- Anqing 116 Hospital, No.150 Shuangjing Street, Yingjiang District, Anqing City, Anhui Province, China
| | - Linsheng Xu
- Anqing 116 Hospital, No.150 Shuangjing Street, Yingjiang District, Anqing City, Anhui Province, China.
| | - Xiaosi Yang
- School of Basic Medical Sciences, Anqing Medical College, No.1588, Jixian North Road,Yixiu District, Anqing City, Anhui Province, China.
| |
Collapse
|
16
|
Chen P, Wang Y, Tang H, Liu Z, Wang J, Wang T, Xu Y, Ji SL. Gastrodenol suppresses NLRP3/GSDMD mediated pyroptosis and ameliorates inflammatory diseases. Cell Immunol 2024; 405-406:104888. [PMID: 39486308 DOI: 10.1016/j.cellimm.2024.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Pyroptosis, a form of inflammatory programmed cell death, plays a pivotal role in the pathogenesis of various diseases. This process is primarily mediated by the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3). Gastrodenol (Bismuth tripotassium dicitrate, GAS) is a mineral compound which is used to treat duodenal and gastric ulcers associated with Helicobacter pylori. In this study, GAS was found to exhibit protective effects against classical pyroptosis in macrophages. Specifically, GAS effectively inhibits the activation of the NLRP3 inflammasome, Gasdermin D (GSDMD)-mediated pyroptosis, and the secretion of pro-inflammatory cytokines. Mechanistically, GAS inhibited NLRP3 oligomerization and reduced the oligomerization of adaptor protein apoptosis-associated speck like protein containing a caspase activation and recruitment domain (ASC) by directly binding to NLRP3. The interaction between GAS and NLRP3 is primarily mediated through hydrogen bonding and hydrophobic forces. Hydrogen bonds are formed with PHE-727, LEU-723, and ASP-700. Remarkably, GAS treatment attenuated pyroptosis-mediated inflammatory diseases, including experimental autoimmune encephalomyelitis (EAE), lipopolysaccharide (LPS)-induced septic, and monosodium urate (MSU)-induced peritonitis in mice. To conclude, this is the first report that discovered clinical old medicine GAS as a potent inhibitor of pyroptosis and propose a novel therapeutic strategy for the prevention and treatment of NLRP3-GSDMD mediated diseases.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yunshu Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Huaiping Tang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhuo Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Nanjing Neurology Clinical Medical Center, Nanjing, China
| | - Jing Wang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Nanjing Neurology Clinical Medical Center, Nanjing, China.
| | - Sen-Lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
17
|
Guo Z, Yao Z, Huang B, Wu D, Li Y, Chen X, Lu Y, Wang L, Lv W. MAFLD-related hepatocellular carcinoma: Exploring the potent combination of immunotherapy and molecular targeted therapy. Int Immunopharmacol 2024; 140:112821. [PMID: 39088919 DOI: 10.1016/j.intimp.2024.112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related mortality and morbidity globally, and with the prevalence of metabolic-related diseases, the incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) related hepatocellular carcinoma (MAFLD-HCC) continues to rise with the limited efficacy of conventional treatments, which has created a major challenge for HCC surveillance. Immune checkpoint inhibitors (ICIs) and molecularly targeted drugs offer new hope for advanced MAFLD-HCC, but the evidence for the use of both types of therapy in this type of tumour is still insufficient. Theoretically, the combination of immunotherapy, which awakens the body's anti-tumour immunity, and targeted therapies, which directly block key molecular events driving malignant progression in HCC, is expected to produce synergistic effects. In this review, we will discuss the progress of immunotherapy and molecular targeted therapy in MAFLD-HCC and look forward to the opportunities and challenges of the combination therapy.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People 's Hospital, Beijing 100044, China
| | - Bohao Huang
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanbo Li
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaohan Chen
- Department of Hematology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, China.
| | - Li Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
18
|
El-Sayed S, McMahon E, Musleh S, Freeman S, Brough D, Kasher PR, Bryce RA. Virtual screening-led design of inhibitor scaffolds for the NLRP3 inflammasome. Bioorg Chem 2024; 153:107909. [PMID: 39467507 DOI: 10.1016/j.bioorg.2024.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The NLRP3 inflammasome is a key target for drug discovery due to its implication in a range of inflammation-related diseases. In this work, we identify new inhibitors of the NLRP3 inflammasome via a hierarchical virtual screening strategy using molecular similarity, docking and MD simulation. The most potent inhibitors identified from a subsequent biological assay (IC50 of 1 - 4 μM) feature a sulfonamide group, a motif known to favour NLRP3 inhibition, in conjunction with an indole, benzofuran or tricyclic 6,7-dihydro-5H-indeno[5,6-b]furan ring, yielding novel scaffolds. These structures provide a basis for the design of more potent, selective NLRP3 inhibitors.
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Emily McMahon
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Sondos Musleh
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK; Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6 8HD, UK
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, M13 9PT, UK.
| |
Collapse
|
19
|
Sun C, Jiang Y, Li C, Sun S, Lin J, Wang W, Zhou L, Li L, Shah M, Che Q, Zhang G, Wang D, Zhu T, Li D. Discovery, Total Synthesis, and Anti-Inflammatory Evaluation of Naturally Occurring Naphthopyrone-Macrolide Hybrids as Potent NLRP3 Inflammasome Inhibitors. Angew Chem Int Ed Engl 2024; 63:e202405860. [PMID: 38837604 DOI: 10.1002/anie.202405860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Numerous clinical disorders have been linked to the etiology of dysregulated NLRP3 (NACHT, LRR, and PYD domain-containing protein 3) inflammasome activation. Despite its potential as a pharmacological target, modulation of NLRP3 activity remains challenging. Only a sparse number of compounds have been reported that can modulate NLRP3 and none of them have been developed into a commercially available drug. In this research, we identified three potent NLRP3 inflammasome inhibitors, gymnoasins A-C (1-3), with unprecedented pentacyclic scaffolds, from an Antarctic fungus Pseudogymnoascus sp. HDN17-895, which represent the first naturally occurring naphthopyrone-macrolide hybrids. Additionally, biomimetic synthesis of gymnoasin A (1) was also achieved validating the chemical structure and affording ample amounts of material for exhaustive bioactivity assessments. Biological assays indicated that 1 could significantly inhibited in vitro NLRP3 inflammasome activation and in vivo pro-inflammatory cytokine IL-1β release, representing a valuable new lead compound for the development of novel therapeutics with the potential to inhibit the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chunxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, China
| | - Changlong Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Jiaqi Lin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Liping Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Mudassir Shah
- Department of Pharmacy, Abbottabad University of Science and Technology, Havellian, District, Abbottabad, 22010 KPK, Pakistan
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, China
| |
Collapse
|
20
|
Ren Y, Wu K, He Y, Zhang H, Ma J, Li C, Ruan Y, Zhang J, Wen Y, Wu X, Chen S, Qiu H, Zhang Y, Zhou L, Ou Z, Liang J, Wang Z. The role of NLRP3 inflammasome-mediated neuroinflammation in chronic noise-induced impairment of learning and memory ability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117183. [PMID: 39437517 DOI: 10.1016/j.ecoenv.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Noise pollution pervades daily working and living environment, becoming a serious public health problem. In addition to causing auditory impairment, noise independently contributes to cognitive decline as a risk factor. Though neuroinflammation plays an important role in noise-induced cognitive deficits, the mechanisms underlying noise-induced neuroinflammation in the hippocampus are still poorly understood. Glial hyperactivation of the NLRP3 inflammasome contributes to various neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). However, whether the NLRP3 inflammasome plays a role in noise-induced cognitive impairment remains to be further investigated. METHODS Adult male Wistar rats were exposed to 100 dB white noise (4 h/day) for 30 days with or without injection of the NLRP3 inhibitor MCC950 (10 mg/kg/day). The Morris water maze (MWM) test and the open field test (OFT) were performed to evaluate learning and memory ability of rats. HE staining was used to explore hippocampal pathological changes, while immunohistochemical staining was employed to evaluate the number and morphology of microglia and astrocytes. The mRNA levels of the NLRP3 inflammasome in the hippocampus were examined by Real-time PCR. The protein levels of NLRP3 inflammasome, inflammatory cytokines, p-Tau-S396, and amyloid-β (Aβ) 42 in the hippocampus were examined by Western blot. Immunofluorescence was used to observe the distribution of NLRP3 in glial cells and neurons, and the assembly of the NLRP3 inflammasome. RESULTS We found that noise exposure induced learning and memory impairment in rats, mainly related to the activation of microglia and astrocytes in hippocampus region. Noise exposure increased the protein levels of p-Tau-S396, Aβ42, ionized calcium binding adapter molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), interleukin (IL)-1β, IL-18, and tumor necrosis factor-α (TNF-α) in hippocampus. Furthermore, the hippocampus of noise-exposed rats showed elevated protein levels of NLRP3, ASC and cleaved caspase-1. The co-labeled immunofluorescence levels of Iba-1 or GFAP with NLRP3 significantly increased in the dentate gyrus (DG) region of the hippocampus. NLRP3 inhibitor MCC950 intervention reversed chronic noise-induced activation of NLRP3 inflammasome, AD-like pathologies and impairment of learning and memory in rats. CONCLUSIONS The NLRP3 inflammasome-mediated neuroinflammation played an essential role in chronic noise-induced cognitive dysfunction. These results provide novel strategies for the prevention and treatment of cognitive deficits caused by chronic noise.
Collapse
Affiliation(s)
- Yixian Ren
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Kangyong Wu
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Yongke He
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hangqian Zhang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Jialao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Caixia Li
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yanmei Ruan
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Ying Wen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xian Wu
- Health Management Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siran Chen
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Heng Qiu
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Yifan Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Liping Zhou
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Jiabin Liang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Balahura Stămat LR, Dinescu S. Inhibition of NLRP3 inflammasome contributes to paclitaxel efficacy in triple negative breast cancer treatment. Sci Rep 2024; 14:24753. [PMID: 39433537 PMCID: PMC11494052 DOI: 10.1038/s41598-024-75805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Chronic inflammation and NLRP3 inflammasome activation are among the determining factors of breast malignancies. Paclitaxel (PTX) is a drug used in breast cancer treatment which sustains prolonged inflammation, reducing the effectiveness of chemotherapy. Considering the impact of inflammatory processes in cancer progression, there is a strong concern to develop therapeutic strategy targeting NLRP3 inflammasome for triple-negative breast cancer (TNBC) treatment. Therefore, the aim of this study was to evaluate the potential of PTX and NLRP3 inflammasome modulation to counterbalance TNBC by inducing programmed cell death and inhibiting the activity of pro-inflammatory cytokines. The obtained results suggested the strong interaction between NLRP3 inflammasome and TNBC and revealed that pharmacological inhibition, using NLRP3-specific inhibitor MCC950, and genetic silencing of NLRP3 inflammasome using specific small interfering RNA, reduced inflammatory responses and facilitated PTX-determined tumor cell death. Thus, NLRP3 inflammasome manipulation in combination with anti-tumor drugs opens up new therapeutic perspectives for TNBC therapy.
Collapse
Affiliation(s)
- Liliana-Roxana Balahura Stămat
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania.
- Research Institute of the University of Bucharest, Bucharest, 050663, Romania.
| |
Collapse
|
22
|
Shen Y, Jia J, Teng J, Yang C, Hu Q. Advancing personalised precision treatment for Still's disease based on molecular characteristics and disease progression. THE LANCET. RHEUMATOLOGY 2024:S2665-9913(24)00225-X. [PMID: 39433056 DOI: 10.1016/s2665-9913(24)00225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 10/23/2024]
Abstract
Still's disease, a systemic autoinflammatory disorder with a classic multigenetic background, is characterised by polyarthritis, high-spiking fever, salmon-like evanescent skin rash, and hyperferritinaemia. Although the exact cause of Still's disease remains unclear, it is believed to be influenced by genetic factors, infections, and immune dysregulation. Current studies indicate that neutrophils and macrophages play crucial roles in the pathogenesis of Still's disease, along with involvement of natural killer cells, T cells, and B cells. Advances in biologic agents have expanded treatment strategies beyond conventional approaches, with cytokine-targeted agents showing promise in the management of Still's disease. Some cytokine-targeting biologic agents can be developed based on clinical manifestations, complications, immune cells, and molecular networks. Emphasis of immunophenotyping for precise clinical subtyping and targeted molecular therapies based on these findings is crucial for optimising treatment outcomes. In this Review, we discuss the latest advancements in the understanding of Still's disease pathogenesis and corresponding therapeutic approaches.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Ortega AJ, Daniel S, Renwick M, Kambhampati P, Thompson KN, Collier GE, Baker EL, Zaki H, Hulleman JD. Genetic removal of Nlrp3 protects against sporadic and R345W Efemp1-induced basal laminar deposit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618289. [PMID: 39464028 PMCID: PMC11507711 DOI: 10.1101/2024.10.14.618289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic, unresolved inflammation has long been speculated to serve as an initiating and propagating factor in numerous neurodegenerative diseases, including a leading cause of irreversible blindness in the elderly, age-related macular degeneration (AMD). Intracellular multiprotein complexes called inflammasomes in combination with activated caspases facilitate production of pro-inflammatory cytokines such as interleukin 1 beta. Specifically, the nucleotide-binding oligomerization (NOD)-like receptor protein 3 (NLRP3) has received heightened attention due to the wide range of stimuli to which it can respond and its potential involvement in AMD. In this study, we directly tested the role of Nlrp3 and its downstream effector, caspase 1 (Casp1) in mediating early AMD-like pathology (i.e., basal laminar deposits [BLamDs]) in wild-type (WT) mice and the Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) mouse model (p.R345W mutation in Efemp1). Compared to aged-matched controls, R345W+/+ knockin mice demonstrated increased Muller cell gliosis, subretinal Iba-1+ microglial cells, higher Nlrp3 immunoreactivity in the retina, as well as significant transcriptional upregulation of complement component 3, Nlrp3, pro-Il1b, pro-caspase-1, and tissue inhibitor of matrix metalloproteinase 3 in the retinal pigmented epithelium (RPE)/choroid. These findings were accompanied by an age-related increase in BLamD formation in the R345W+/+ mice. Genetic elimination of either Nlrp3 or Casp1 significantly reduced both the size and coverage of BLamDs in the R345W+/+ background, highlighting an important and underappreciated pathway that could affect ML/DHRD onset and progression. Moreover, Nlrp3 knockout reduced spontaneous, idiopathic BLamDs in WT mice, suggesting translatability of our findings not only to rare inherited retinal dystrophies, but also potentially to AMD itself.
Collapse
Affiliation(s)
- Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Marian Renwick
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Pravallika Kambhampati
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Emily L. Baker
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Hasan Zaki
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
24
|
Zhang J, Zhang J, Yao Z, Shao W, Song Y, Tang W, Li B. GAMG ameliorates silica-induced pulmonary inflammation and fibrosis via the regulation of EMT and NLRP3/TGF-β1/Smad signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117124. [PMID: 39342756 DOI: 10.1016/j.ecoenv.2024.117124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Silicosis is an occupational disease caused by exposure to silica characterized by pulmonary inflammation and fibrosis, for which there is a lack of effective drugs. Glycyrrhetinic acid 3-O-β-D-glucuronide (GAMG) can treat silicosis due to its anti-inflammatory and anti-fibrotic properties. Here, the effect of therapeutic interventions of GAMG was evaluated in early-stage and advanced silicosis mouse models. GAMG significantly improved fibrotic pathological changes and collagen deposition in the lungs, alleviated lung inflammation in the BALF, reduced the expression of TNF-α, IL-6, NLRP3, TGF-β1, vimentin, Col-Ⅰ, N-cadherin, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Moreover, the dose of 100 mg/kg GAMG can effectively prevent early-stage silicosis, while that of 200 mg/kg was recommended for advanced silicosis. In vitro and in vivo study verified that GAMG can suppress EMT through the NLRP3/TGF-β1/Smad2/3 signaling pathway. Therefore, GAMG could be a promising preventive (early-stage silicosis) and therapeutic (advanced silicosis) strategy, which provides a new idea for formulating prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| | - Jiazhen Zhang
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Zongze Yao
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei Shao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Wenjian Tang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Bo Li
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China.
| |
Collapse
|
25
|
Xu L, Peng F, Luo Q, Ding Y, Yuan F, Zheng L, He W, Zhang SS, Fu X, Liu J, Mutlu AS, Wang S, Nehring RB, Li X, Tang Q, Li C, Lv X, Dobrolecki LE, Zhang W, Han D, Zhao N, Jaehnig E, Wang J, Wu W, Graham DA, Li Y, Chen R, Peng W, Chen Y, Catic A, Zhang Z, Zhang B, Mustoe AM, Koong AC, Miles G, Lewis MT, Wang MC, Rosenberg SM, O'Malley BW, Westbrook TF, Xu H, Zhang XHF, Osborne CK, Li JB, Ellis MJ, Rimawi MF, Rosen JM, Chen X. IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer. Cell 2024:S0092-8674(24)01090-0. [PMID: 39419025 DOI: 10.1016/j.cell.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53-/- TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1high immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.
Collapse
Affiliation(s)
- Longyong Xu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Luo
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yao Ding
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liting Zheng
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Xin Fu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Jin Liu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Ayse Sena Mutlu
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuyue Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ralf Bernd Nehring
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xingyu Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Catherine Li
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Zhao
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Jaehnig
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingyi Wang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiche Wu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Davis A Graham
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhibin Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George Miles
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Susan M Rosenberg
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas F Westbrook
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C Kent Osborne
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Ellis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar F Rimawi
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Tran UT, Kitami T. Chemical screens for particle-induced macrophage death identifies kinase inhibitors of phagocytosis as targets for toxicity. J Nanobiotechnology 2024; 22:621. [PMID: 39396993 PMCID: PMC11472441 DOI: 10.1186/s12951-024-02885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Nanoparticles are increasingly being used in medicine, cosmetics, food, and manufacturing. However, potential toxicity may limit the use of newly engineered nanoparticles. Prior studies have identified particle characteristics that are predictive of toxicity, although the mechanisms responsible for toxicity remain largely unknown. Nanoparticle treatment in cell culture, combined with high-throughput chemical screen allows for systematic perturbations of thousands of molecular targets against potential pathways of toxicity. The resulting data matrix, called chemical compendium, can provide insights into the mechanism of toxicity as well as help classify nanoparticles based on toxicity pathway. RESULTS We performed unbiased screens of 1280 bioactive chemicals against a panel of four particles, searching for inhibitors of macrophage toxicity. Our hit compounds clustered upon inhibitors of kinases involved in phagocytosis, including focal adhesion kinase (FAK), with varying specificity depending on particles. Interestingly, known inhibitors of cell death including NLRP3 inflammasome inhibitor were unable to suppress particle-induced macrophage death for many of the particles. By searching for upstream receptors of kinases, we identified Cd11b as one of the receptors involved in recognizing a subset of particles. We subsequently used these hit compounds and antibodies to further characterize a larger panel of particles and identified hydrodynamic size as an important particle characteristic in Cd11b-mediated particle uptake and toxicity. CONCLUSIONS Our chemical compendium and workflow can be expanded across cell types and assays to characterize the toxicity mechanism of newly engineered nanoparticles. The data in their current form can also be analyzed to help design future high-throughput screening for nanoparticle toxicity.
Collapse
Affiliation(s)
- Uyen Thi Tran
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Cell and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Toshimori Kitami
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| |
Collapse
|
27
|
Pazhouhesh Far N, Hajiheidari Varnousafaderani M, Faghihkhorasani F, Etemad S, Abdulwahid AHRR, Bakhtiarinia N, Mousaei A, Dortaj E, Karimi S, Ebrahimi N, Aref AR. Breaking the barriers: Overcoming cancer resistance by targeting the NLRP3 inflammasome. Br J Pharmacol 2024. [PMID: 39394867 DOI: 10.1111/bph.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1β and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1β and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Sareh Etemad
- Department of Pathology, Faculty of Anatomical Pathology, Ghaem Hospital, University of Medicine, Mashhad, Iran
| | | | | | - Afsaneh Mousaei
- Department of Biology, College of Science, Qaemshahr Branch, Islamic Azad University, Qaem Shahr, Iran
| | - Elahe Dortaj
- Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Polizio AH, Marino L, Duk-Min K, Yura Y, Rolauer L, Cochran JD, Evans MA, Park E, Doviak H, Miura-Yura E, Good ME, Wolpe AG, Grandoch M, Isakson B, Walsh K. Experimental TET2 Clonal Hematopoiesis Predisposes to Renal Hypertension Through an Inflammasome-Mediated Mechanism. Circ Res 2024; 135:933-950. [PMID: 39234670 PMCID: PMC11519839 DOI: 10.1161/circresaha.124.324492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease. It is not known whether CH and hypertension in the elderly are causally related and, if so, what are the mechanistic features. METHODS A murine model of adoptive bone marrow transplantation was employed to examine the interplay between Tet2 (ten-eleven translocation methylcytosine dioxygenase 2) clonal hematopoiesis and hypertension. RESULTS In this model, a subpressor dose of Ang II (angiotensin II) resulted in elevated systolic and diastolic blood pressure as early as 1 day after challenge. These conditions led to the expansion of Tet2-deficient proinflammatory monocytes and bone marrow progenitor populations. Tet2 deficiency promoted renal CCL5 (C-C motif ligand 5) chemokine expression and macrophage infiltration into the kidney. Consistent with macrophage involvement, Tet2 deficiency in myeloid cells promoted hypertension when mice were treated with a subpressor dose of Ang II. The hematopoietic Tet2-/- condition led to sodium retention, renal inflammasome activation, and elevated levels of IL (interleukin)-1β and IL-18. Analysis of the sodium transporters indicated NCC (sodium-chloride symporter) and NKCC2 (Na+-K+-Cl- cotransporter 2) activation at residues Thr53 and Ser105, respectively. Administration of the NLRP3 (NLR family pyrin domain containing 3) inflammasome inhibitor MCC950 reversed the hypertensive state, sodium retention, and renal transporter activation. CONCLUSIONS Tet2-mediated CH sensitizes mice to a hypertensive stimulus. Mechanistically, the expansion of hematopoietic Tet2-deficient cells promotes hypertension due to elevated renal immune cell infiltration and activation of the NLRP3 inflammasome, with consequences on sodium retention. These data indicate that carriers of TET2 CH could be at elevated risk for the development of hypertension and that immune modulators could be useful in treating hypertension in this patient population.
Collapse
Affiliation(s)
- Ariel H. Polizio
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lucila Marino
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kyung Duk-Min
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yoshimitsu Yura
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Luca Rolauer
- Institute of Translational Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jesse D. Cochran
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Megan A. Evans
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eunbee Park
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Heather Doviak
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Emiri Miura-Yura
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Miranda E. Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston MA, 02111, USA
| | | | - Maria Grandoch
- Institute of Translational Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Brant Isakson
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kenneth Walsh
- Cardiovascular Medicine and the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
29
|
Feng H, Li D, Zhu F, Jiang C, Su M, Kong Y, Zheng Y, Yuan Y, Huang W, Chen X, Ma L. Design, synthesis and biological evaluation of sulfonylurea derivatives as NLRP3 inflammasome inhibitors. Bioorg Med Chem Lett 2024; 114:129987. [PMID: 39395633 DOI: 10.1016/j.bmcl.2024.129987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The NLRP3 inflammasome has been extensively studied in recent years and its aberrant activation can exacerbate inflammatory responses, contributing to various diseases. MCC950, a sulfonylurea drug, is a potent selective inhibitor of the NLRP3 inflammasome. However, its clinical development was halted due to hepatotoxicity, and studies have indicated significant reduction in activity among its metabolites. Building upon MCC950, we referenced substitution sites of NP3-146 for structural modifications aimed at addressing potential metabolism-related issues. Consequently, we synthesized a series of sulfonylurea derivatives. Ultimately, the optimized compound C4 exhibited a remarkable 80.39 % inhibition of IL-1β at 2 μM, with an IC50 value of 0.805 μM. In conclusion, compound C4 shows potential as a lead compound and warrants further development as an anti-inflammatory NLRP3 inhibitor.
Collapse
Affiliation(s)
- Haonan Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Donglai Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fuli Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengjun Su
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yonghao Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
30
|
Shi C, Gao T, Lyu W, Qiang B, Chen Y, Chen Q, Zhang L, Liu Z. Deep-Learning-Driven Discovery of SN3-1, a Potent NLRP3 Inhibitor with Therapeutic Potential for Inflammatory Diseases. J Med Chem 2024; 67:17833-17854. [PMID: 39302813 DOI: 10.1021/acs.jmedchem.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The NLRP3 inflammasome plays a central role in the pathogenesis of various intractable human diseases, making it an urgent target for therapeutic intervention. Here, we report the development of SN3-1, a novel orally potent NLRP3 inhibitor, designed through a lead compound strategy centered on deep-learning-based molecular generative models. Our strategy enables rapid fragment enumeration and takes into account the synthetic accessibility of the compounds, thereby significantly enhancing the optimization of lead compounds and facilitating the discovery of potent inhibitors. X-ray crystallography provided insights into the SN3-1 inhibitory mechanism. SN3-1 has shown a favorable safety profile in both acute and chronic toxicity assessments and exhibits robust pharmacokinetic properties. Furthermore, SN3-1 demonstrated significant therapeutic efficacy in various disease models characterized by NLRP3 activation. This study introduces a potent candidate for developing NLRP3 inhibitors and significantly expands the repertoire of tools available for the discovery of novel inhibitors.
Collapse
Affiliation(s)
- Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Qiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanming Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
31
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
32
|
Biby S, Mondal P, Xu Y, Gomm A, Kaur B, Namme JN, Wang C, Tanzi RE, Zhang S, Zhang C. Functional Characterization of an Arylsulfonamide-Based Small-Molecule Inhibitor of the NLRP3 Inflammasome. ACS Chem Neurosci 2024; 15:3576-3586. [PMID: 39297418 PMCID: PMC11450741 DOI: 10.1021/acschemneuro.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
Considerable evidence indicates that the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays key roles in human pathophysiology, suggesting it as a potential drug target. Currently, studies have yet to develop compounds that are promising therapeutics in the clinic by targeting the NLRP3 inflammasome. Herein, we aim to further biologically characterize a previously identified small-molecule inhibitor of the NLRP3 inflammasome from our group, YM-I-26, to confirm its functional activities. We showed that YM-I-26 is highly selective toward the NLRP3 inflammasome and binds to NLRP3 directly. A systemic analysis revealed YM-I-26 with inflammation-related and immunomodulatory activities by the Eurofins BioMAP Diversity PLUS panel. In addition, studies using the mouse microglia BV2 cell model demonstrated that YM-I-26 is not cytotoxic, improved the phagocytotic functions of BV2 cells toward beta-amyloid, and suppressed the production of cytokines of IL-1β and IL-10 upon the activation of the NLRP3 inflammasome. Collectively, our studies support the functional activities of YM-I-26 as a NLRP3 inhibitor in physiologically relevant cell models, and warrant future studies of YM-I-26 and its analogs to advance the drug development as potential therapeutics.
Collapse
Affiliation(s)
- Savannah Biby
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Prasenjit Mondal
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yiming Xu
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Ashley Gomm
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Baljit Kaur
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Jannatun N. Namme
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Changning Wang
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E. Tanzi
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shijun Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Can Zhang
- Genetics
and Aging Research Unit, McCance Center for Brain Health, MassGeneral
Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
33
|
Arzuk E. Investigation of the role of NLRP3 inflammasome activation in new-generation BCR-ABL1 tyrosine kinase inhibitors-induced hepatotoxicity. Toxicol Lett 2024; 400:71-80. [PMID: 39134127 DOI: 10.1016/j.toxlet.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
New generation BCR-ABL1 TKIs raised attention regarding their adverse effects, including hepatotoxicity. Indeed, bosutinib and nilotinib were associated with severe hepatotoxicity compared with imatinib. Moreover, ponatinib has a boxed warning due to its potential to cause inflammatory liver damage, even death. However, the underlying mechanisms remain unclear. This study aimed to investigate the role of NLRP3 inflammasome activation in the underlying mechanism of ponatinib and bosutinib-induced hepatotoxicity. Furthermore, we determined the initiating event of this adverse outcome pathway by measuring the levels of reactive oxygen species as well as mitochondrial membrane potential in AML12 cells. The results demonstrated that ponatinib or bosutinib markedly inhibited cell viability and caused cytosolic membrane damage in cells. Moreover, drugs (IC50) dramatically induced oxidative stress and mitochondrial membrane potential disruption, which led to upregulation in the expression levels of NLRP3 inflammasome-related genes and proteins, activation of NLRP3 inflammasomes, cleavage of gasdermin-D and caspase-1, secretion of IL-1β, and cytosolic membrane damage. Furthermore, MCC950, a well-known specific inhibitor of NLRP3 inflammasome, and antioxidant N-acetyl-l-cysteine reversed the effects of drugs on the NLRP3 signaling pathway and cytosolic membranes. In summary, NLRP3 inflammasome activation is involved in new-generation BCR-ABL1 TKIs-triggered hepatotoxicity. Mitochondrial damage and reactive oxygen species accumulation were significant upstream signaling events in this signaling pathway.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, İzmir, Turkey.
| |
Collapse
|
34
|
Wang A, Zhong G, Ying M, Fang Z, Chen Y, Wang H, Wang C, Liu C, Guo Y. Inhibition of NLRP3 inflammasome ameliorates LPS-induced neuroinflammatory injury in mice via PINK1/Parkin pathway. Neuropharmacology 2024; 257:110063. [PMID: 38972372 DOI: 10.1016/j.neuropharm.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is characterized by the severe loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor dysfunction. The onset of PD is often accompanied by neuroinflammation and α-Synuclein aggregation, and extensive research has focused on the activation of microglial NLRP3 inflammasomes in PD, which promotes the death of dopaminergic neurons. In this study, a model of cerebral inflammatory response was constructed in wild-type and Parkin+/- mice through bilateral intraventricular injection of LPS. LPS-induced activation of the NLRP3 inflammasome in wild-type mice promotes the progression of PD. The use of MCC950 in wild mice injected with LPS induces activation of Parkin/PINK and improves autophagy, which in turn improves mitochondrial turnover. It also inhibits LPS-induced inflammatory responses, improves motor function, protects dopaminergic neurons, and inhibits microglia activation. Furthermore, Parkin+/- mice exhibited motor dysfunction, loss of dopaminergic neurons, activation of the NLRP3 inflammasome, and α-Synuclein aggregation beginning at an early age. Parkin ± mice exhibited more pronounced microglia activation, greater NLRP3 inflammasome activation, more severe autophagy dysfunction, and more pronounced motor dysfunction after LPS injection compared to wild-type mice. Notably, the use of MCC950 in Parkin ± mice did not ameliorate NLRP3 inflammasome activation, autophagy dysfunction, or α-synuclein aggregation. Thus, MCC950 can only exert its effects in the presence of Parkin/PINK1, and targeting Parkin-mediated NLRP3 inflammasome activation is expected to be a potential therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Ao Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Guangshang Zhong
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Mengjiao Ying
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Zhuling Fang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Ying Chen
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Haojie Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Chunjing Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Changqing Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| | - Yu Guo
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
35
|
Lavillegrand JR, Al-Rifai R, Thietart S, Guyon T, Vandestienne M, Cohen R, Duval V, Zhong X, Yen D, Ozturk M, Negishi Y, Konkel J, Pinteaux E, Lenoir O, Vilar J, Laurans L, Esposito B, Bredon M, Sokol H, Diedisheim M, Saliba AE, Zernecke A, Cochain C, Haub J, Tedgui A, Speck NA, Taleb S, Mhlanga MM, Schlitzer A, Riksen NP, Ait-Oufella H. Alternating high-fat diet enhances atherosclerosis by neutrophil reprogramming. Nature 2024; 634:447-456. [PMID: 39232165 DOI: 10.1038/s41586-024-07693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/07/2024] [Indexed: 09/06/2024]
Abstract
Systemic immune responses caused by chronic hypercholesterolaemia contribute to atherosclerosis initiation, progression and complications1. However, individuals often change their dietary habits over time2, and the effects of an alternating high-fat diet (HFD) on atherosclerosis remain unclear. Here, to address this relevant issue, we developed a protocol using atherosclerosis-prone mice to compare an alternating versus continuous HFD while maintaining similar overall exposure periods. We found that an alternating HFD accelerated atherosclerosis in Ldlr-/- and Apoe-/- mice compared with a continuous HFD. This pro-atherogenic effect of the alternating HFD was also observed in Apoe-/-Rag2-/- mice lacking T, B and natural killer T cells, ruling out the role of the adaptive immune system in the observed phenotype. Discontinuing the HFD in the alternating HFD group downregulated RUNX13, promoting inflammatory signalling in bone marrow myeloid progenitors. After re-exposure to an HFD, these cells produced IL-1β, leading to emergency myelopoiesis and increased neutrophil levels in blood. Neutrophils infiltrated plaques and released neutrophil extracellular traps, exacerbating atherosclerosis. Specific depletion of neutrophils or inhibition of IL-1β pathways abolished emergency myelopoiesis and reversed the pro-atherogenic effects of the alternating HFD. This study highlights the role of IL-1β-dependent neutrophil progenitor reprogramming in accelerated atherosclerosis induced by alternating HFD.
Collapse
Affiliation(s)
| | - Rida Al-Rifai
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Sara Thietart
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
- Geriatrics Department, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié Salpêtrière, Paris, France
| | - Théo Guyon
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Marie Vandestienne
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Raphael Cohen
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Vincent Duval
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Xiaodan Zhong
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Daniel Yen
- Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mumin Ozturk
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University FNWI, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University FNWI, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanne Konkel
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Olivia Lenoir
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Jose Vilar
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Ludivine Laurans
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Bruno Esposito
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Marius Bredon
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), Saint-Cyr-sur-Loire, France
- IMMEDIAB Laboratory, INSERM U1151, Necker Enfants Malades (INEM), Paris, France
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Jessica Haub
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Alain Tedgui
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Nancy A Speck
- Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Soraya Taleb
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France
| | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University FNWI, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hafid Ait-Oufella
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM U970, Paris, France.
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|
36
|
Raizada S, Obukhov AG, Bharti S, Wadhonkar K, Baig MS. Pharmacological targeting of adaptor proteins in chronic inflammation. Inflamm Res 2024; 73:1645-1656. [PMID: 39052063 DOI: 10.1007/s00011-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Inflammation, a biological response of the immune system, can be triggered by various factors such as pathogens, damaged cells, and toxic compounds. These factors can lead to chronic inflammatory responses, potentially causing tissue damage or disease. Both infectious and non-infectious agents, as well as cell damage, activate inflammatory cells and trigger common inflammatory signalling pathways, including NF-κB, MAPK, and JAK-STAT pathways. These pathways are activated through adaptor proteins, which possess distinct protein binding domains that connect corresponding interacting molecules to facilitate downstream signalling. Adaptor molecules have gained widespread attention in recent years due to their key role in chronic inflammatory diseases. METHODS In this review, we explore potential pharmacological agents that can be used to target adaptor molecules in chronic inflammatory responses. A comprehensive analysis of published studies was performed to obtain information on pharmacological agents. CONCLUSION This review highlights the therapeutic strategies involving small molecule inhibitors, antisense oligonucleotide therapy, and traditional medicinal compounds that have been found to inhibit the inflammatory response and pro-inflammatory cytokine production. These strategies primarily block the protein-protein interactions in the inflammatory signaling cascade. Nevertheless, extensive preclinical studies and risk assessment methodologies are necessary to ensure their safety.
Collapse
Affiliation(s)
- Shubhi Raizada
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India.
| |
Collapse
|
37
|
Grabiec M, Sobstyl M, Skirecki T. Nod-like receptors: The relevant elements of glioblastoma`s prognostic puzzle. Pharmacol Res 2024; 208:107411. [PMID: 39270948 DOI: 10.1016/j.phrs.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Despite considerable improvements in understanding the biology of glioblastoma (GB), it still remains the most lethal type of brain tumor in adults. The role of innate immune cells in the development of GB was recently described. In particular, the tumor-immune cell interactions are thought to be critical in enabling tumor tolerance and even protection against therapeutics. Interestingly, the GB cells express proteins belonging to the family of intracellular pattern-recognition receptors, namely the NOD-like receptors (NLRs). Their activation may trigger the formation of the inflammasome complex leading to the secretion of mature IL-1β and IL-18 and thus resulting in cell death. Intrudingly, the expression of most NLRs was found to be correlated with tumor progression and poor prognosis. We speculate that recognizing the role of NOD-like receptors in GB has the potential to improve the effectiveness of diagnostic tools and prognosis, while also encouraging the development of novel precision medicine-based therapies.
Collapse
Affiliation(s)
- Marta Grabiec
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
38
|
Dino P, Giuffrè MR, Buscetta M, Di Vincenzo S, La Mensa A, Cristaldi M, Bucchieri F, Lo Iacono G, Bertani A, Pace E, Cipollina C. Release of IL-1β and IL-18 in human primary bronchial epithelial cells exposed to cigarette smoke is independent of NLRP3. Eur J Immunol 2024; 54:e2451053. [PMID: 39072707 DOI: 10.1002/eji.202451053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Cigarette smoke (CS) is a major risk factor for chronic lung diseases and promotes activation of pattern recognition receptors in the bronchial epithelium. NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a pattern recognition receptor whose activation leads to caspase-1 cleavage, maturation/release of IL-1β and IL-18, and eventually pyroptosis. Whether the NLRP3 inflammasome participates in CS-induced inflammation in bronchial epithelial cells is still unclear. Herein, we evaluated the involvement of NLRP3 in CS-induced inflammatory responses in human primary bronchial epithelial cells. To this purpose, human primary bronchial epithelial cells were stimulated with CS extracts (CSE) and lytic cell death, caspase activation (-1, -8, -3/7), cytokine release (IL-1β, IL-18, and IL-8), NLRP3, pro-IL-1β/pro-IL-18 mRNA, and protein expression were measured. The impact of inhibitors of NLRP3 (MCC950), caspases, and the effect of the antioxidant N-acetyl cysteine were evaluated. We found that CSE increased pro-IL-1β expression and induced activation of caspase-1 and release of IL-1β and IL-18. These events were independent of NLRP3 and we found that NLRP3 was not expressed. N-acetyl cysteine reverted CSE-induced caspase-1 activation. Overall, our findings support that the bronchial epithelium may play a central role in the release of IL-1 family cytokines independently of NLRP3 in the lungs of smokers.
Collapse
Affiliation(s)
- Paola Dino
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Ospedale Civile di Venezia SS. Giovanni e Paolo, Venezia, Italy
| | | | | | | | - Agnese La Mensa
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | | | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| | - Chiara Cipollina
- Ri.MED Foundation, Palermo, Italy
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| |
Collapse
|
39
|
Almeida-da-Silva CLC, Moreira-Souza ACDA, Ojcius DM. Traditional approaches and recent tools for studying inflammasome activity. J Immunol Methods 2024; 533:113744. [PMID: 39147232 DOI: 10.1016/j.jim.2024.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Inflammasomes play a major role in the immune response to infection, development of autoimmune disease, and control of cancer. Western blots were originally used in the early 2000s to characterize inflammasome activation. Since then, a panoply of techniques has been developed to characterize and visualize inflammasome activation in cells, tissues, and animals. This review article describes the most common techniques used by researchers in the inflammasome field and proposes that cell-specific characterization of inflammasome activation in tissues or animals may soon be commonly reported.
Collapse
Affiliation(s)
| | | | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni, School of Dentistry, San Francisco, CA 94103, USA.
| |
Collapse
|
40
|
Jha D, Bakker ENTP, Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer's disease. J Neurochem 2024; 168:3574-3598. [PMID: 36802053 DOI: 10.1111/jnc.15788] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1β and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Dhanshree Jha
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Gonçalves NDN, Caldas HC, Marzochi LL, Baptista MASF, Correia CDJ, Faloppa ACB, Moreira LFP, Abbud-Filho M. Targeting Kidney Inflammation After Brain Death and Cold Storage: Investigating the Potential of an NLRP3 Inflammasome Inhibitor (MCC950) for Preconditioning Donor Kidneys. Transplantation 2024:00007890-990000000-00879. [PMID: 39344015 DOI: 10.1097/tp.0000000000005211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Brain death (BD) and cold storage (CS) are critical factors that induce inflammation in donor kidneys, compromising organ quality. We investigated whether treating kidneys from BD rats with an inflammasome Nod-like receptor family pyrin domain containing 3 (NLRP3) inhibitor (MCC950) followed by CS could reduce kidney inflammation. METHODS BD rats were assigned to MCC950-treated or nontreated (NT) groups. Kidneys were evaluated immediately before CS (T0) and after 12 h (T12) and 24 h (T24) of CS. Mean arterial pressure, serum creatinine, gene/protein expression, and histology were evaluated. RESULTS At T0, MCC950 treatment did not affect mean arterial pressure but tended to reduce serum creatinine and ameliorated the histological score of acute tubular necrosis. However, MCC950 reduced NLRP3, caspase-1, interleukin (IL)-1β, IL-6, Kim-1, nuclear factor kappa B, tumor necrosis factor alpha, and caspase-3 gene expression while increasing IL-10 cytokine gene expression. After 12 h of CS, only the expression of the NLRP3 and caspase-1 genes decreased, and after 24 h of CS, no further changes in the gene expression profile were observed. The levels of the inflammasome proteins NLRP3, caspase-1, and IL-1β consistently decreased across all time points (T0, T12, and T24). CONCLUSIONS These findings suggest that MCC950 treatment holds promise for mitigating the proinflammatory state observed in kidneys after BD and CS.
Collapse
Affiliation(s)
- Naiane do Nascimento Gonçalves
- Department of Medicine I, Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Heloisa Cristina Caldas
- Department of Medicine I, Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
- Department of Transplant, Organ Transplantation Center, Hospital de Base, FUNFARME, São José do Rio Preto, SP, Brazil
| | - Ludimila Leite Marzochi
- Department of Medicine I, Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Maria Alice Sperto Ferreira Baptista
- Department of Medicine I, Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
- Department of Transplant, Organ Transplantation Center, Hospital de Base, FUNFARME, São José do Rio Preto, SP, Brazil
| | - Cristiano de Jesus Correia
- Departamento Cárdio-Pneumologia, Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana Cristina Breithaupt Faloppa
- Departamento Cárdio-Pneumologia, Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Departamento Cárdio-Pneumologia, Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Mario Abbud-Filho
- Department of Medicine I, Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
- Department of Transplant, Organ Transplantation Center, Hospital de Base, FUNFARME, São José do Rio Preto, SP, Brazil
| |
Collapse
|
42
|
Stocks H, De Leeuw E, Lambrecht BN, Vandekerckhove L, van Loo G, Wullaert A. Development of human innate immune responses in a humanized mouse model expressing four human myelopoiesis transgenes. Front Immunol 2024; 15:1419117. [PMID: 39399507 PMCID: PMC11466769 DOI: 10.3389/fimmu.2024.1419117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background Dysregulated innate immune responses underlie multiple inflammatory diseases, but clinical translation of preclinical innate immunity research in mice is hampered by the difficulty of studying human inflammatory reactions in an in vivo context. We therefore sought to establish in vivo human inflammatory responses in NSG-QUAD mice that express four human myelopoiesis transgenes to improve engraftment of a human innate immune system. Methods We reconstituted NSG-QUAD mice with human hematopoietic stem and progenitor cells (HSPCs), after which we evaluated human myeloid cell development and subsequent human responses to systemic and local lipopolysaccharide (LPS) challenges. Results NSG-QUAD mice already displayed engraftment of human monocytes, dendritic cells and granulocytes in peripheral blood, spleen and liver at 6 weeks after HSPC reconstitution, in which both classical, intermediate and non-classical monocytes were present. These huNSG-QUAD mice responded to intraperitoneal and intranasal LPS challenges with production of NF-κB-dependent human cytokines, a human type I interferon response, as well as inflammasome-mediated production of human IL-1β and IL-18. The latter were specifically abrogated by the NLRP3 inhibitor MCC950, while LPS-induced human monocyte death was not altered. Besides providing proof-of-principle for small molecule testing of human inflammatory reactions in huNSG-QUAD mice, this observation suggests that LPS-induced in vivo release of human NLRP3 inflammasome-generated cytokines occurs in a cell death-independent manner. Conclusion HuNSG-QUAD mice are competent for the NF-κB, interferon and inflammasome effectors of human innate immunity, and can thus be utilized to investigate signaling mechanisms and pharmacological targeting of human inflammatory responses in an in vivo setting.
Collapse
Affiliation(s)
- Hannah Stocks
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- HIV Cure and Research Center (HCRC), Ghent, Belgium
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Cell Death Signaling Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Huang J, Wang Y, Jia X, Zhao C, Zhang M, Bao M, Fu P, Cheng C, Shi R, Zhang X, Cui J, Wan G, Xu A. The human disease-associated gene ZNFX1 controls inflammation through inhibition of the NLRP3 inflammasome. EMBO J 2024:10.1038/s44318-024-00236-9. [PMID: 39333773 DOI: 10.1038/s44318-024-00236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited deficiency of zinc finger NFX1-type containing 1 (ZNFX1), a dsRNA virus sensor, is associated with severe familial immunodeficiency, multisystem inflammatory disease, increased susceptibility to viruses, and early mortality. However, limited treatments for patients with pathological variants of ZNFX1 exist due to an incomplete understanding of the diseases resulting from ZNFX1 mutations. Here, we demonstrate that ZNFX1 specifically inhibits the activation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in response to NLRP3 activators both in vitro and in vivo. ZNFX1 retains NLRP3 in the cytoplasm and prevents its accumulation in the TGN38 + /TGN46+ vesicles in the resting state. Upon NLRP3 inflammasome activation, ZNFX1 is cleaved by caspase-1, establishing a feed-forward loop that promotes NLRP3 accumulation in the trans-Golgi network (TGN) and amplifies the activity of the downstream cascade. Expression of wild-type ZNFX1, but not of ZNFX1 with human pathogenic mutations, rescues the impairment of NLRP3 inflammasome inhibition. Our findings reveal a dual role of ZNFX1 in virus sensing and suppression of inflammation, which may become valuable for the development of treatments for ZNFX1 mutation-related diseases.
Collapse
Affiliation(s)
- Jing Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yao Wang
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xin Jia
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changfeng Zhao
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Meiqi Zhang
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Bao
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Pan Fu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Cuiqin Cheng
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, China
| | - Jun Cui
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Gang Wan
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Anlong Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
44
|
Zhang Z, Wu H, Yin K, Zheng X, Cao Z, Guo W, Zhao C, Gu X. Design, Synthesis, and Bioevaluation of Novel NLRP3 Inhibitor with IBD Immunotherapy from the Virtual Screen. J Med Chem 2024; 67:16612-16634. [PMID: 39269610 DOI: 10.1021/acs.jmedchem.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
NLRP3, a crucial member of the NLRP family, plays a pivotal role in immune regulation and inflammatory modulation. Here, we report a potent and specific NLRP3 inhibitor Z48 obtained though docking-based virtual screening and structure-activity relationship studies with an IC50 of 0.26 μM in THP-1 cells and 0.21 μM in mouse bone marrow-derived macrophages. Mechanistic studies indicated that Z48 could bind directly to the NLRP3 protein (KD = 1.05 μM), effectively blocking the assembly and activation of the NLRP3 inflammasome, consequently manifesting anti-inflammatory properties. Crucially, with acceptable mouse pharmacokinetic profiles, Z48 demonstrated notable therapeutic efficacy in a mouse model of DSS-induced ulcerative colitis, while displaying no significant therapeutic impact on NLRP3KO mice. In conclusion, this study provided a promising NLRP3 inflammasome inhibitor with novel molecular scaffold, poised for further development as a therapeutic candidate in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Hongyu Wu
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Kai Yin
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Xinru Zheng
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Zhonglian Cao
- Department of Biopharmaceuticals, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xianfeng Gu
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| |
Collapse
|
45
|
Noureldeen ME, Shahin NN, Amin HAA, El-Sawalhi MM, Ghaiad HR. Parthenolide ameliorates 3-nitropropionic acid-induced Huntington's disease-like aberrations via modulating NLRP3 inflammasome, reducing microglial activation and inducing astrocyte shifting. Mol Med 2024; 30:158. [PMID: 39327568 PMCID: PMC11425901 DOI: 10.1186/s10020-024-00917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disease that causes motor, cognitive, and psychiatric abnormalities, with no satisfying disease-modifying therapy so far. 3-nitropropionic acid (3NP) induces behavioural deficits, together with biochemical and histological alterations in animals' striata that mimic HD. The role of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in HD pathogenesis remains largely uncharacterized. Parthenolide (PTL), a naturally occurring nuclear factor kappa B (NF-κB) inhibitor, is also known to inhibit NLRP3 inflammasome. Whether PTL is beneficial in HD has not been established yet. AIM This study evaluated the possible neuroprotective effects of PTL against 3NP-induced behavioural abnormalities, striatal biochemical derangements, and histological aberrations. METHODS Male Wistar rats received PTL (0.5 mg/kg/day, i.p) for 3 weeks and 3NP (10 mg/kg/day, i.p) was administered alongside for the latter 2 weeks to induce HD. Finally, animals were subjected to open-field, Morris water maze and rotarod tests. Rat striata were examined histologically, striatal protein expression levels of glial fibrillary acidic protein (GFAP), cluster of differentiation 45 (CD45) and neuron-specific enolase (NSE) were evaluated immunohistochemically, while those of interleukin (IL)-1β, IL-18, ionized calcium-binding adapter molecule-1 (Iba1) and glutamate were determined by ELISA. Striatal nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein (Keap1), NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, S100 calcium-binding protein A10 (S100A10) and complement-3 (C3) were assessed by gene expression analysis. RESULTS PTL improved motor, locomotor, cognitive and anxiety-like behaviours, restored neuronal integrity, upregulated Nrf2, and inhibited NLRP3 inflammasome, NF-κB and microglial activation. Additionally, PTL induced astrocyte shifting towards the neuroprotective A2 phenotype. CONCLUSION PTL exhibits neuroprotection against 3NP-induced HD, that might be ascribed, at least in part, to its modulatory effects on Keap1/Nrf2 and NF-κB/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Mona E Noureldeen
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Maha M El-Sawalhi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy St., Cairo, 11562, Egypt.
| |
Collapse
|
46
|
Wan X, Fang Y, Qin M, Zheng Q, Yang Q, Peng M, Hao M, Wang K, Zhao R, Shi Y, Han X, Sang X, Cao G. Protective effect of MP-40 mitigates BDL-induced hepatic fibrosis by inhibiting the NLRP3-mediated pyroptosis. Front Pharmacol 2024; 15:1479503. [PMID: 39372196 PMCID: PMC11449770 DOI: 10.3389/fphar.2024.1479503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Background Hepatic fibrosis and its associated consequences continue to pose a substantial global health challenge. Developing novel approaches to hepatic fibrosis management and prevention is critically necessary. Radix Paeoniae Alba (RPA) is widely used in Traditional Chinese Medicine (TCM) to treat various diseases. Our earlier research found that a bioactive component of RPA had a dose-dependent effect on anti-allergic asthma. RPA reduces allergic asthma by slowing the hepatic wind, according to "Treatise on Febrile Diseases". However, this bioactive fraction's pharmacological effects and mechanisms on the liver are unknown. Aim This study examined the bioactive fraction MP-40, the methanol extract of RPA (MRPA), on bile duct ligation (BDL) for its anti-hepatic fibrosis activity and potential mechanisms. Methods First, the effectiveness of MP-40 in treating BDL-induced hepatic fibrosis in mice and rats was evaluated through survival rates, ALT, AST HYP, and pathological changes. Molecular assays were performed using in vitro cultures of HSC-T6 activation. The expression of α-SMA and Collagen I evaluated fibro-tropic factors with HSC activation. Furthermore, the levels of pyroptosis were assessed by examining the expression of the pyroptosis-related proteins, including NLRP3, Cleaved Caspase-1, GSDMD-N, and 1L-1β. Additionally, the effective constituents of MP-40 were identified by extraction, separation, and identification. Finally, PF and TGG, as the delegate compounds of MP-40, were tested to confirm their inhibition effects on HSC-T6 activation. Results The findings demonstrated that MP-40 and MRPA could lower ALT, AST, and HYP levels, boost survival rates, and reduce liver damage in BDL mice and rats. Furthermore, MP-40 outperforms MRPA. MP-40 was proven to drastically diminish fibrotic α-SMA and Collagen I. The expression of pyroptosis-related proteins NLRP3, Cleaved Caspase-1, TGF-β1, GSDMD-N, and 1L-1β decreased. MP-40 inhibited the synthesis of pyroptosis-related proteins more effectively than MCC950 (an NLRP3-specific inhibitor). Monoterpene glycosides and tannins were shown to be the most potent MP-40 components. Finally, the delegate compounds MP-40, PF, and TGG were shown to have substantial inhibitory effects on HSC-T6 activation. Conclusion The results proved that MP-40 alleviates BDL-induced cholestatic hepatic fibrosis by inhibiting NLRP3-mediated pyroptosis. PF and TGG play a role in treating BDL-induced cholestatic hepatic fibrosis in MP-40.
Collapse
Affiliation(s)
- Xuedong Wan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
- Songyang Institute, Zhejiang Chinese Medical University, Lishui, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruihua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqing Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia’nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
- Songyang Institute, Zhejiang Chinese Medical University, Lishui, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
47
|
Mondal S, Sati R, Hashim M, Dash R, Nishad CS, Banerjee B. Metal-Free Synthesis of Pharmaceutically Relevant Sulfonylureas via Direct Reaction of Sulfonamides with Amides. J Org Chem 2024; 89:13179-13191. [PMID: 39196632 DOI: 10.1021/acs.joc.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A metal-free process has been developed for the sustainable synthesis of medicinally important sulfonylureas in one pot via the direct reaction of sulfonamides with amides in green solvent (DMC). The reaction proceeded efficiently at room temperature, and the products were obtained in good to excellent yields. The use of readily accessible, inexpensive, and environmentally benign starting materials and reagents, metal-free mild reaction conditions, wide substrate scope, tolerance to air and moisture, operational simplicity, and good atom economy are the salient features of this reaction protocol. Gram-scale synthesis of antidiabetic drugs tolbutamide and chlorpropamide in excellent yields further revealed the practical utility of this procedure. Additionally, the synthetic value of this straightforward method is showcased by the late-stage modification of drug molecules, including drug-drug conjugation with good yields. Preliminary mechanistic studies indicated the in situ generation of an isocyanate intermediate, which further reacts with sulfonamide to form sulfonylurea. As compared to other related methods reported for sulfonylurea synthesis, the current method obviates the requirement of traditional multistep protocols involving isolation of hazardous isocyanates and avoids the use of toxic phosgene.
Collapse
Affiliation(s)
- Sahil Mondal
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rakhi Sati
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Muhammed Hashim
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rageshree Dash
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | | | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
48
|
Davidson CB, El Sabbagh DES, Machado AK, Pappis L, Sagrillo MR, Somacal S, Emanuelli T, Schultz JV, Augusto Pereira da Rocha J, Santos AFD, Fagan SB, Silva IZD, Andreazza AC, Machado AK. Euterpe oleracea Mart. Bioactive Molecules: Promising Agents to Modulate the NLRP3 Inflammasome. BIOLOGY 2024; 13:729. [PMID: 39336156 PMCID: PMC11428631 DOI: 10.3390/biology13090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Inflammation is a vital mechanism that defends the organism against infections and restores homeostasis. However, when inflammation becomes uncontrolled, it leads to chronic inflammation. The NLRP3 inflammasome is crucial in chronic inflammatory responses and has become a focal point in research for new anti-inflammatory therapies. Flavonoids like catechin, apigenin, and epicatechin are known for their bioactive properties (antioxidant, anti-inflammatory, etc.), but the mechanisms behind their anti-inflammatory actions remain unclear. This study aimed to explore the ability of various flavonoids (isolated and combined) to modulate the NLRP3 inflammasome using in silico and in vitro models. Computer simulations, such as molecular docking, molecular dynamics, and MM/GBSA calculations examined the interactions between bioactive molecules and NLRP3 PYD. THP1 cells were treated with LPS + nigericin to activate NLRP3, followed by flavonoid treatment at different concentrations. THP1-derived macrophages were also treated following NLRP3 activation protocols. The assays included colorimetric, fluorometric, microscopic, and molecular techniques. The results showed that catechin, apigenin, and epicatechin had high binding affinity to NLRP3 PYD, similar to the known NLRP3 inhibitor MCC950. These flavonoids, particularly at 1 µg/mL, 0.1 µg/mL, and 0.01 µg/mL, respectively, significantly reduced LPS + nigericin effects in both cell types and decreased pro-inflammatory cytokine, caspase-1, and NLRP3 gene expression, suggesting their potential as anti-inflammatory agents through NLRP3 modulation.
Collapse
Affiliation(s)
- Carolina Bordin Davidson
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | | | - Amanda Kolinski Machado
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Lauren Pappis
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | | | - Sabrina Somacal
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Tatiana Emanuelli
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Júlia Vaz Schultz
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - João Augusto Pereira da Rocha
- Federal Institute of Pará, Bragança Campus, Computational Chemistry and Modeling Laboratory, Bragança 68600-000, PA, Brazil
| | | | - Solange Binotto Fagan
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ivana Zanella da Silva
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Alencar Kolinski Machado
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| |
Collapse
|
49
|
Weiss FD, Alvarez Y, Shakeri F, Sahu A, Leka P, Dernst A, Rollheiser J, Vasconcelos M, Geraci A, Duthie F, Stahl R, Lee HE, Gellner AK, Buness A, Latz E, Meissner F. Retention of ES cell-derived 129S genome drives NLRP1 hypersensitivity and transcriptional deregulation in Nlrp3 tm1Flv mice. Cell Death Differ 2024:10.1038/s41418-024-01379-2. [PMID: 39289506 DOI: 10.1038/s41418-024-01379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Immune response genes are highly polymorphic in humans and mice, with heterogeneity amongst loci driving strain-specific host defence responses. The inadvertent retention of polymorphic loci can introduce confounding phenotypes, leading to erroneous conclusions, and impeding scientific advancement. In this study, we employ a combination of RNAseq and variant calling analyses to identify a substantial region of 129S genome, including the highly polymorphic Nlrp1 locus, proximal to Nlrp3, in one of the most commonly used mouse models of NLRP3 deficiency (Nlrp3tm1Flv). We show that the presence of the Nlrp1129S locus leads to an increase in NLRP1B protein expression, and a sensitising of Nlrp3tm1Flv macrophages to NLRP1 inflammasome activation, independent of NLRP3 deficiency. Retention of 129S genome further leads to protein sequence differences and altered gene regulation across multiple cell types, including of the key tissue-resident macrophage marker, TIM4. Using alternative models of NLRP3 deficiency, including a previously undescribed conditional Nlrp3 allele enabling precise temporal and cell-type specific control over Nlrp3 deletion, we further show that NLRP3 contributes to Talabostat-driven IL-1β release. Our study also establishes a generic framework to identify functionally relevant SNPs and assess genomic contamination in transgenic mice using RNAseq data. This allows for unambiguous attribution of phenotypes to the target gene and advances the precision and reliability of research in the field of host defence responses.
Collapse
Affiliation(s)
- Felix D Weiss
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Yubell Alvarez
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anshupa Sahu
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Petro Leka
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alesja Dernst
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jessika Rollheiser
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matilde Vasconcelos
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Adriana Geraci
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Rainer Stahl
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hye Eun Lee
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Department for Innate Immunity & Metaflammation, Medical Faculty, University of Bonn, Bonn, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
50
|
Mirshekari Jahangiri H, Moradi A, Nazarinia D, Aboutaleb N. 4-methylumbilliferon (4-MU) as a Potential Treatment Against Cerebral ischemia and Reperfusion Injury in Rats; An Experimental Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 13:e8. [PMID: 39465056 PMCID: PMC11512716 DOI: 10.22037/aaem.v13i1.2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Introduction Ischemic stroke (IS) is one of the three main fatal disorders and is a major health challenge. 4-methylumbelliferone (4-MU) is one of the coumarin derivatives (7-hydroxy-4-methylcoumarin) with antioxidant and anti-inflammatory impact. This study was conducted to elucidate the neuroprotective effects and anti-inflammatory impact of 4-MU in a rodent model of IS. Methods The IS model was induced by middle cerebral artery occlusion (MCAO) for 1 hour and reperfusion was established for 24 hours. 44 Male Wistar rats were divided into four groups: 1) Sham, 2) MCAO, 3) MCAO + Vehicle, and 4) MCAO + 4-MU (25 mg/kg). Evaluation of neurological deficit was performed using Garcia's score. 2,3,5-triphenoyl-2H-tetrazolium chloride (TTC) staining was employed to measure infarct size. Nissl staining was applied to determine neuronal loss. Moreover, western blotting was utilized to detect the expression of the proteins relevant to the TLR4/NF-κB/NLRP3 axis (p-NF-κB p65, TLR4, NLRP3, IL-1β, IL-10, IL-18, ASC, and Caspase-1). Results It was observed that MCAO caused neurological deficit (P<0.0001), infarct (P<0.0001), and neuronal loss (P<0.002); up-regulated NLRP3 (P<0.0001), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0005), IL-1β (P<0.0014), IL-18 (P<0.0001), ASC (P<0.0027), and Caspase-1 (P<0.0052); and reduced IL-10 concentrations (P<0.0024). Administration of 4-MU (25 mg/kg) quickly after reperfusion reduced neurological deficit (P<0.0001), infarct size (P<0.0001), neuronal loss (P<0.0058), and down-regulated NLRP3 (P<0.0257), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0075), IL-1β (P<0.0106), IL-18 (P<0.0005), ASC (P<0.0072), and Caspase-1 (P<0.0315), and increased IL-10 concentrations (P<0.0215). Conclusion These results indicate that 4-MU can attenuate injury after MCAO by suppressing the TLR4/NF-κB/NLRP3 axis. Our findings show that 4-MU can be considered a novel therapeutic compound to cure IS.
Collapse
Affiliation(s)
- Hamzeh Mirshekari Jahangiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|