1
|
Garg M, Verma M, Khan AS, Yadav P, Rahman SS, Ali A, Kamthan M. Cadmium-induced augmentation of fungal translocation promotes systemic infection in mice via gut barrier disruption and immune dysfunction. Life Sci 2025; 362:123368. [PMID: 39756275 DOI: 10.1016/j.lfs.2025.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Cadmium (Cd) disrupts the immune system and intestinal barrier, increasing infection risk and gut dysbiosis. Its impact on intestinal fungi, particularly the opportunistic pathogen Candida albicans, which can cause systemic infections in immunocompromised patients, is not well understood. Our study revealed that C. albicans exhibited high tolerance and maintained its morphogenetic switching in response to Cd. As C. albicans is not naturally found in the mouse gut, we attempted intestinal colonization of C. albicans-SC5314 strain using standard procedures. However, the intestinal fungal load decreased and was undetectable by 15th day. To assess the effects of sub-chronic Cd exposure, both oral and intravenous methods were used. Oral exposure to C. albicans (105 CFU/ml) resulted in a 10-fold increase in intestinal translocation in Cd-exposed mice (0.98 mg/kg) compared to controls. Cd exposure also downregulated intestinal tight junction proteins and increased FITC-dextran permeability, indicating that Cd disrupts the intestinal barrier and facilitates C. albicans translocation. Moreover, Cd-exposed mice showed significant morbidity and higher fungal loads in organs after intravenous non-lethal dose of C. albicans, along with a subdued cytokine response. These findings highlight the significant impact of Cd on fungal pathogenicity and immune response, pointing to the broader health risks of Cd exposure.
Collapse
Affiliation(s)
- Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
2
|
Liu HY, Li S, Ogamune KJ, Ahmed AA, Kim IH, Zhang Y, Cai D. Fungi in the Gut Microbiota: Interactions, Homeostasis, and Host Physiology. Microorganisms 2025; 13:70. [PMID: 39858841 PMCID: PMC11767893 DOI: 10.3390/microorganisms13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The mammalian gastrointestinal tract is a stage for dynamic inter-kingdom interactions among bacteria, fungi, viruses, and protozoa, which collectively shape the gut micro-ecology and influence host physiology. Despite being a modest fraction, the fungal community, also referred to as mycobiota, represents a critical component of the gut microbiota. Emerging evidence suggests that fungi act as early colonizers of the intestine, exerting a lasting influence on gut development. Meanwhile, the composition of the mycobiota is influenced by multiple factors, with diet, nutrition, drug use (e.g., antimicrobials), and physical condition standing as primary drivers. During its establishment, the mycobiota forms both antagonistic and synergistic relationships with bacterial communities within the host. For instance, intestinal fungi can inhibit bacterial colonization by producing alcohol, while certain bacterial pathogens exploit fungal iron carriers to enhance their growth. However, the regulatory mechanisms governing these complex interactions remain poorly understood. In this review, we first introduce the methodologies for studying the microbiota, then address the significance of the mycobiota in the mammalian intestine, especially during weaning when all 'primary drivers' change, and, finally, discuss interactions between fungi and bacteria under various influencing factors. Our review aims to shed light on the complex inter-kingdom dynamics between fungi and bacteria in gut homeostasis and provide insights into how they can be better understood and managed to improve host health and disease outcomes.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kennedy Jerry Ogamune
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Science, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone P.O. Box 100, Botswana;
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, 119 Dandero, Donnamgu Cheonan, Cheonan-si 31116, Republic of Korea;
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China;
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Zhang J, Jia C, Dong J, Wu J, Liu M, Zhang H, Zhao C. The role of sodium butyrate in modulating growth, intestinal health, and antimicrobial efficacy in turbot (Scophthalmus maximus L.) fed high soy diets. Sci Rep 2024; 14:32033. [PMID: 39739006 PMCID: PMC11685986 DOI: 10.1038/s41598-024-83704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Butyrate is one of the most abundant short-chain fatty acids (SCFAs), which are important metabolites of dietary fiber by fermentation of gut commensals, and has been shown to be vital in maintaining host health. The present study mainly investigated how sodium butyrate (NaB) supplementation in the diet with high proportion of soybean meal (SBM) affected turbot. Four experimental diets were formulated: (1) fish meal (FM) based diet (control group), (2) SBM protein replacing 45% FM protein in the diet (high SBM group), (3) 0.2% NaB supplementation in the high SBM diet (high SBM + 0.2% NaB group), and (4) 0.5% NaB supplementation in the high SBM diet (high SBM + 0.5% NaB group). The fish were fed four different diets for 8 weeks. The results showed that the high SBM diet significantly suppressed growth performance, induced typical enteritis symptoms and decreased resistance to bacterial infection. However, inclusion of 0.2% and 0.5% NaB in the high SBM diet both effectively increased the growth performance of turbot. Meanwhile, dietary NaB protected the intestinal morphology, and regulated the gene expression of inflammatory cytokines to relieve the inflammation of turbot, such as TNFα, IL-1β, NFκB and IL-10. Moreover, supplementation with NaB in the high SBM diet activated HIF-1α/IL-22/Lysozyme signaling pathway to against Edwardsiella tarda (E. tarda) infection, especially 0.5% NaB supplementation exerted more effectively to defence bacterial infection under inflammatory state. In conclusion, dietary NaB significantly promoted growth and gut health of turbot. Besides, it enhanced the resistance of fish to bacterial infection, especially dietary 0.5% NaB supplementation.
Collapse
Affiliation(s)
- Jinjin Zhang
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China.
| | - Cuijing Jia
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Jinping Dong
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Jingliang Wu
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Minggang Liu
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Hansong Zhang
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| | - Chengshuo Zhao
- Weifang University of Science and Technology, Jinguang Road No. 1299, Weifang City, Shandong Province, China
| |
Collapse
|
4
|
Yang X, Wang X, Zhang M, Shen Y, Teng Y, Li M, Pan H. Gut Mycobiota of Three Rhinopithecus Species Provide New Insights Into the Association Between Diet and Environment. Integr Zool 2024. [PMID: 39690132 DOI: 10.1111/1749-4877.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Gut mycobiota are part of the gut microbiome, typically derived from the host diet and living environment. In this study, we examined the gut mycobiota of three snub-nosed monkeys: Rhinopithecus roxellana, R. bieti, and R. strykeri using next-generation amplicon sequencing targeting the fungal internal transcribed spacer. The alpha diversity indexes of gut mycobiota in R. bieti were significantly higher than R. roxellana and R. strykeri, the beta diversity indicated that R. roxellana and R. bieti had more similar feeding habits. Core mycobiota demonstrated commonalities among the three species and potentially associated with feeding habits. Mycobiota displaying significant differences exhibited the respective characteristics of the host, likely associated with the hosts' living environment. Among them, animal and plant pathogenic fungi and lichen parasites are potential threats to the survival of snub-nosed monkeys for their pathogenicity to both monkeys and their food plants. Functionally, fungal trophic modes and functional guilds revealed a strong association between gut mycobiota and host diet. We found a higher abundance and more significant correlations with lichen parasitic fungi in R. strykeri than the other two species, indicating potential threats to their foods. Accordingly, this study revealed the basic structures of gut mycobiota of three wild Rhinopithecus species and highlighted the associations between gut mycobiota and their feeding habits and living environments. Furthermore, due to the close connection between fungi and the environment, animals could ingest fungi from their diet; thus, we speculate that gut mycobiota may serve a role in environmental monitoring for wildlife.
Collapse
Affiliation(s)
- Xuanyi Yang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingyi Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Wang Q, Hermannsson K, Másson E, Bergman P, Guðmundsson GH. Host-directed therapies modulating innate immunity against infection in hematologic malignancies. Blood Rev 2024:101255. [PMID: 39690006 DOI: 10.1016/j.blre.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Patients with hematologic malignancies (HM) are highly susceptible to bloodstream infection (BSI), particularly those undergoing treatments such as chemotherapy. A common and debilitating side effect of chemotherapy is oral and intestinal mucositis. These Patients are also at high risk of developing sepsis, which can arise from mucosal barrier injuries and significantly increases mortality in these patients. While conventional antibiotics are effective, their use can lead to antimicrobial resistance (AMR) and disrupt the gut microbiota (dysbiosis). In this review, we discuss utilizing host defense peptides (HDPs), key components of the innate immune system, and immune system inducers (ISIs) to maintain mucosal barrier integrity against infection, an underexplored host-directed therapy (HDT) approach to prevent BSI and sepsis. We advocate for the discovery of potent and safe ISIs for clinical use and call for further research into the mechanisms by which these ISIs induce HDPs and strengthen mucosal barriers.
Collapse
Affiliation(s)
- Qiong Wang
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Kristján Hermannsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Egill Másson
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland.
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
6
|
Chen P, Sebastian EA, Karna SLR, Leung KP. Development of a Stringent Ex Vivo-Burned Porcine Skin Wound Model to Screen Topical Antimicrobial Agents. Antibiotics (Basel) 2024; 13:1159. [PMID: 39766550 PMCID: PMC11672622 DOI: 10.3390/antibiotics13121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Due to rising antibiotic-resistant microorganisms, there is a pressing need to screen approved drugs for repurposing and to develop new antibiotics for controlling infections. Current in vitro and ex vivo models have mostly been unsuccessful in establishing in vivo relevance. In this study, we developed a stringent ex vivo-burned porcine skin model with high in vivo relevance to screen topical antimicrobials. Methods: A 3 cm-diameter thermal injury was created on non-sterilized porcine skin using a pressure-monitored and temperature-controlled burn device. Commensals were determined pre- and post-burn. The burn wound was inoculated with a target pathogen, and efficacies of Silvadene, Flammacerium, Sulfamylon, and Mupirocin were determined. The in vivo relevance of this platform was evaluated by comparing the ex vivo treatment effects to available in vivo treatment outcomes (from our laboratory and published reports) against selective burn pathogens. Results: Approximately 1% of the commensals survived the skin burn, and these commensals in the burn wounds affected the treatment outcomes in the ex vivo screening platform. When tested against six pathogens, both Silvadene and Flammacerium treatment exhibited ~1-3 log reduction in viable counts. Sulfamylon and Mupirocin exhibited higher efficacy than both Silvadene and Flammacerium against Pseudomonas and Staphylococcus, respectively. The ex vivo treatment outcomes of Silvadene and Flammacerium against Pseudomonas were highly comparable to the outcomes of the in vivo (rats). Conclusions: The ex vivo model developed in our lab is a stringent and effective platform for antimicrobial activity screening. The outcome obtained from this ex vivo model is highly relevant to in vivo.
Collapse
Affiliation(s)
| | | | | | - Kai P. Leung
- Combat Wound Care Group, CRT 4, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA; (P.C.); (E.A.S.); (S.L.R.K.)
| |
Collapse
|
7
|
Liao Y, Gao IH, Kusakabe T, Lin WY, Grier A, Pan X, Morzhanaeva O, Shea TP, Yano H, Karo-Atar D, Olsen KA, Oh JH, Vandegrift KJ, King IL, Cuomo CA, Artis D, Rehermann B, Lipman N, Iliev ID. Fungal symbiont transmitted by free-living mice promotes type 2 immunity. Nature 2024; 636:697-704. [PMID: 39604728 PMCID: PMC11733984 DOI: 10.1038/s41586-024-08213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
The gut mycobiota is crucial for intestinal homeostasis and immune function1. Yet its variability and inconsistent fungal colonization of laboratory mice hinders the study of the evolutionary and immune processes that underpin commensalism2,3. Here, we show that Kazachstania pintolopesii is a fungal commensal in wild urban and rural mice, with an exceptional ability to colonize the mouse gastrointestinal tract and dominate the gut mycobiome. Kazachstania pintolopesii colonization occurs in a bacteria-independent manner, results in enhanced colonization resistance to other fungi and is shielded from host immune surveillance, allowing commensal presence. Following changes in the mucosal environment, K. pintolopesii colonization triggers a type 2 immune response in mice and induces gastrointestinal eosinophilia. Mechanistically, we determined that K. pintolopesii activates type 2 immunity via the induction of epithelial IL-33 and downstream IL-33-ST2 signalling during mucus fluctuations. Kazachstania pintolopesii-induced type 2 immunity enhanced resistance to helminth infections or aggravated gastrointestinal allergy in a context-dependent manner. Our findings indicate that K. pintolopesii is a mouse commensal and serves as a valuable model organism for studying gut fungal commensalism and immunity in its native host. Its unnoticed presence in mouse facilities highlights the need to evaluate its influence on experimental outcomes and phenotypes.
Collapse
Affiliation(s)
- Yun Liao
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Iris H Gao
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Takato Kusakabe
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Woan-Yu Lin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Grier
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Xiangyu Pan
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olga Morzhanaeva
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Terrance P Shea
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hiroshi Yano
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| | - Danielle Karo-Atar
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, McGill University, Montreal, Quebec, Canada
| | - Kaitlin A Olsen
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, McGill University, Montreal, Quebec, Canada
| | - Ji Hoon Oh
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Kurt J Vandegrift
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Irah L King
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, McGill University, Montreal, Quebec, Canada
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Neil Lipman
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
8
|
Wang W, Li Z, Liu C, Yu H, Sun Y. Application of Drug Delivery System Based on Nanozyme Cascade Technology in Chronic Wound. Adv Healthc Mater 2024; 13:e2402559. [PMID: 39400523 DOI: 10.1002/adhm.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Chronic wounds are characterized by long-term inflammation, including diabetic ulcers, traumatic ulcers, etc., which provide an optimal environment for bacterial proliferation. At present, antibiotics are the main clinical treatment method for chronic wound infections. However, the overuse of antibiotics may accelerate the emergence of drug-resistant bacteria, which poses a significant threat to human health. Therefore, there is an urgent need to develop new therapeutic strategies for bacterial infections. Nanozyme-based antimicrobial therapy (NABT) is an emerging antimicrobial strategy with broad-spectrum activity and low drug resistance compared to traditional antibiotics. NABT has shown great potential as an emerging antimicrobial strategy by catalyzing the generation of reactive oxygen species (ROS) with its enzyme-like catalytic properties, producing a powerful bactericidal effect without developing drug resistance. Nanozyme-based cascade antimicrobial technology offers a new approach to infection control, effectively improving antimicrobial efficacy by activating cascades against bacterial cell membranes and intracellular DNA while minimizing potential side effects. However, it is worth noting that this technology is still in the early stages of research. This article comprehensively reviews wound classification, current methods for the treatment of wound infection, different types of nanozymes, the application of nanozyme cascade reaction technology in antimicrobial therapy, and future challenges and prospects.
Collapse
Affiliation(s)
- Wenyu Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hongli Yu
- Qingdao Women's and Children's Hospital, Qingdao, 266034, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
9
|
McCrory C, Lenardon M, Traven A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol 2024; 32:1106-1118. [PMID: 38729839 DOI: 10.1016/j.tim.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The human gastrointestinal microbiome encompasses bacteria, fungi, and viruses forming complex bionetworks which, for organismal health, must be in a state of homeostasis. An important homeostatic mechanism derives from microbial competition, which maintains the relative abundance of microbial species in a healthy balance. Microbes compete for nutrients and secrete metabolites that inhibit other microbes. Short-chain fatty acids (SCFAs) are one such class of metabolites made by gut bacteria to very high levels. SCFAs are metabolised by microbes and host cells and have multiple roles in regulating cell physiology. Here, we review the mechanisms by which SCFAs regulate the fungal gut commensal Candida albicans. We discuss SCFA's ability to inhibit fungal growth, limit invasive behaviours and modulate cell surface antigens recognised by immune cells. We review the mechanisms underlying these roles: regulation of gene expression, metabolism, signalling and SCFA-driven post-translational protein modifications by acylation, which contribute to changes in acylome dynamics of C. albicans with potentially large consequences for cell physiology. Given that the gut mycobiome is a reservoir for systemic disease and has also been implicated in inflammatory bowel disease, understanding the mechanisms by which bacterial metabolites, such as SCFAs, control the mycobiome might provide therapeutic avenues.
Collapse
Affiliation(s)
- Christopher McCrory
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia
| | - Megan Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; Centre to Impact AMR, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
10
|
Nie HY, Ge J, Huang GX, Liu KG, Yue Y, Li H, Lin HG, Zhang T, Yan HF, Xu BX, Sun HW, Yang JW, Si SY, Zhou JL, Cui Y. New insights into the intestinal barrier through "gut-organ" axes and a glimpse of the microgravity's effects on intestinal barrier. Front Physiol 2024; 15:1465649. [PMID: 39450142 PMCID: PMC11499591 DOI: 10.3389/fphys.2024.1465649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024] Open
Abstract
Gut serves as the largest interface between humans and the environment, playing a crucial role in nutrient absorption and protection against harmful substances. The intestinal barrier acts as the initial defense mechanism against non-specific infections, with its integrity directly impacting the homeostasis and health of the human body. The primary factor attributed to the impairment of the intestinal barrier in previous studies has always centered on the gastrointestinal tract itself. In recent years, the concept of the "gut-organ" axis has gained significant popularity, revealing a profound interconnection between the gut and other organs. It speculates that disruption of these axes plays a crucial role in the pathogenesis and progression of intestinal barrier damage. The evaluation of intestinal barrier function and detection of enterogenic endotoxins can serve as "detecting agents" for identifying early functional alterations in the heart, kidney, and liver, thereby facilitating timely intervention in the disorders. Simultaneously, consolidating intestinal barrier integrity may also present a potential therapeutic approach to attenuate damage in other organs. Studies have demonstrated that diverse signaling pathways and their corresponding key molecules are extensively involved in the pathophysiological regulation of the intestinal barrier. Aberrant activation of these signaling pathways and dysregulated expression of key molecules play a pivotal role in the process of intestinal barrier impairment. Microgravity, being the predominant characteristic of space, can potentially exert a significant influence on diverse intestinal barriers. We will discuss the interaction between the "gut-organ" axes and intestinal barrier damage, further elucidate the signaling pathways underlying intestinal barrier damage, and summarize alterations in various components of the intestinal barrier under microgravity. This review aims to offer a novel perspective for comprehending the etiology and molecular mechanisms of intestinal barrier injury as well as the prevention and management of intestinal barrier injury under microgravity environment.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Ge
- Clinical laboratory, The Ninth Medical Center of the PLA General Hospital, Beijing, China
| | - Guo-Xing Huang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
| | - Kai-Ge Liu
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Yue
- Department of Disease Control and Prevention, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Li
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hai-Guan Lin
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Zhang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Feng Yan
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Bing-Xin Xu
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Wei Sun
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jian-Wu Yang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Shao-Yan Si
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jin-Lian Zhou
- Department of Pathology, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cui
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Meneghello S, Bernabè G, Di Pietra G, Di Sopra S, Del Vecchio C, Cattelan AM, Castagliuolo I, Brun P. Prevalence, Species Distribution and Resistance of Candidemia in Pediatric and Adult Patients in a Northeast Italy University Hospital. J Fungi (Basel) 2024; 10:707. [PMID: 39452659 PMCID: PMC11508697 DOI: 10.3390/jof10100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Candidemia and invasive candidiasis (IC) are causes of morbidity and mortality in healthcare settings, with notable differences between children and adults. Understanding the species distribution and antimicrobial susceptibility profiles of clinical isolates can guide empiric therapy in patients at risk of IC. This study investigated the incidence and antifungal susceptibility patterns of yeasts involved in IC in pediatric and adult patients from 2019 to 2023. The average incidence of IC was 0.715 per 1000 patients, increasing over the study period; infants had the highest incidence rates. Over half of the IC episodes occurred in intensive care units (ICUs). Non-albicans Candida (NAC) species represented the most frequently isolated species in adults and children (55.96% and 50.0%, respectively), with the prevalence of C. parapsilosis (26.45% and 14.7%, respectively), N. glabratus (14.97% and 8.82%, respectively) and C. tropicalis (4.36% and 2.94%, respectively). C. lusitaniae was identified in 14.7% of pediatric IC cases. In NAC species, antifungal resistance has also increased over the five years of the study: 69.12% were resistant to azoles and 7.35% were resistant to micafungin. Resistance was higher in pediatric patients. Our study highlights differences in IC characteristics between pediatric and adult populations and emphasizes the importance of targeted antifungal stewardship in ICU patients with NAC invasive infections.
Collapse
Affiliation(s)
- Silvia Meneghello
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
| | - Giulia Bernabè
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| | - Giuseppe Di Pietra
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
| | - Sarah Di Sopra
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
| | - Claudia Del Vecchio
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| | - Anna Maria Cattelan
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
- Infectious Diseases Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy
| | - Ignazio Castagliuolo
- Microbiology and Virology Unit, Padova University Hospital, Via Giustiniani 2, 35128 Padua, Italy; (S.M.); (G.D.P.); (S.D.S.); (C.D.V.); (I.C.)
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| | - Paola Brun
- Department of Molecular Medicine, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35127 Padova, Italy; (G.B.); (A.M.C.)
| |
Collapse
|
12
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
13
|
Iliev ID, Brown GD, Bacher P, Gaffen SL, Heitman J, Klein BS, Lionakis MS. Focus on fungi. Cell 2024; 187:5121-5127. [PMID: 39303681 PMCID: PMC11722117 DOI: 10.1016/j.cell.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
Fungi play critical roles in the homeostasis of ecosystems globally and have emerged as significant causes of an expanding repertoire of devastating diseases in plants, animals, and humans. In this Commentary, we highlight the importance of fungal pathogens and argue for concerted research efforts to enhance understanding of fungal virulence, antifungal immunity, novel drug targets, antifungal resistance, and the mycobiota to improve human health.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, The Jill Roberts Institute for Research in Inflammatory Bowel Disease, and Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Petra Bacher
- Institute of Immunology and Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Bruce S Klein
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Jensen O, Trujillo E, Hanson L, Ost KS. Controlling Candida: immune regulation of commensal fungi in the gut. Infect Immun 2024; 92:e0051623. [PMID: 38647290 PMCID: PMC11385159 DOI: 10.1128/iai.00516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.
Collapse
Affiliation(s)
- Owen Jensen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma Trujillo
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Hanson
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kyla S. Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Herrera-Quintana L, Vázquez-Lorente H, Lopez-Garzon M, Cortés-Martín A, Plaza-Diaz J. Cancer and the Microbiome of the Human Body. Nutrients 2024; 16:2790. [PMID: 39203926 PMCID: PMC11357655 DOI: 10.3390/nu16162790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer remains a public health concern worldwide, with its incidence increasing worldwide and expected to continue growing during the next decades. The microbiome has emerged as a central factor in human health and disease, demonstrating an intricate relationship between the microbiome and cancer. Although some microbiomes present within local tissues have been shown to restrict cancer development, mainly by interacting with cancer cells or the host immune system, some microorganisms are harmful to human health and risk factors for cancer development. This review summarizes the recent evidence concerning the microbiome and some of the most common cancer types (i.e., lung, head and neck, breast, gastric, colorectal, prostate, and cervix cancers), providing a general overview of future clinical approaches and perspectives.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physical Therapy, Health Sciences Faculty, University of Granada, 18171 Granada, Spain;
| | - Adrián Cortés-Martín
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, 18016 Granada, Spain;
- APC Microbiome Ireland, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
16
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
17
|
Marsaux B, Moens F, Vandevijver G, Marzorati M, van de Wiele T. Candida species-specific colonization in the healthy and impaired human gastrointestinal tract as simulated using the Mucosal Ileum-SHIME® model. FEMS Microbiol Ecol 2024; 100:fiae113. [PMID: 39169462 DOI: 10.1093/femsec/fiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
Candida species primarily exist as harmless commensals in the gastrointestinal tract of warm-blooded animals. However, they can also cause life-threatening infections, which are often associated with gut microbial dysbiosis. Identifying the microbial actors that restrict Candida to commensalism remains a significant challenge. In vitro models could enable a mechanistic study of the interactions between Candida and simulated colon microbiomes. Therefore, this study aimed to elucidate the spatial and temporal colonization kinetics of specific Candida, including C. albicans, C. tropicalis, and C. parapsilosis, and their relative Nakaseomyces glabratus, by using an adapted SHIME® model, simulating the ileum, and proximal and distal colons. We monitored fungal and bacterial colonization kinetics under conditions of eubiosis (commensal lifestyle) and antibiotic-induced dysbiosis (pathogenic lifestyle). Our findings highlighted the variability in the colonization potential of Candida species across different intestinal regions. The ileum compartment proved to be the most favourable environment for C. albicans and C. parapsilosis under conditions of eubiosis. Antibiotic-induced dysbiosis resulted in resurgence of opportunistic Candida species, especially C. tropicalis and C. albicans. Future research should focus on identifying specific bacterial species influencing Candida colonization resistance and explore the long-term effects of antibiotics on the mycobiome and bacteriome.
Collapse
Affiliation(s)
- Benoît Marsaux
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | | | | | - Massimo Marzorati
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| | - Tom van de Wiele
- ProDigest B.V., 9052 Ghent, Belgium
- CMET, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Chen Y, Xiao L, Zhou M, Zhang H. The microbiota: a crucial mediator in gut homeostasis and colonization resistance. Front Microbiol 2024; 15:1417864. [PMID: 39165572 PMCID: PMC11333231 DOI: 10.3389/fmicb.2024.1417864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
The gut microbiota is a complex and diverse community of microorganisms that colonizes the human gastrointestinal tract and influences various aspects of human health. These microbes are closely related to enteric infections. As a foreign entity for the host, commensal microbiota is restricted and regulated by the barrier and immune system in the gut and contributes to gut homeostasis. Commensals also effectively resist the colonization of pathogens and the overgrowth of indigenous pathobionts by utilizing a variety of mechanisms, while pathogens have developed strategies to subvert colonization resistance. Dysbiosis of the microbial community can lead to enteric infections. The microbiota acts as a pivotal mediator in establishing a harmonious mutualistic symbiosis with the host and shielding the host against pathogens. This review aims to provide a comprehensive overview of the mechanisms underlying host-microbiome and microbiome-pathogen interactions, highlighting the multi-faceted roles of the gut microbiota in preventing enteric infections. We also discuss the applications of manipulating the microbiota to treat infectious diseases in the gut.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Ling Xiao
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Min Zhou
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Mills KAM, Aufiero MA, Hohl TM. Epithelial responses to fungal pathogens. Curr Opin Microbiol 2024; 80:102508. [PMID: 38986398 PMCID: PMC11331878 DOI: 10.1016/j.mib.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Epithelial cells orchestrate immune responses against fungal pathogens. This review highlights advances in integrating epithelial cells in immune responses against inhaled molds and dimorphic fungi, and against Candida species that colonize mucosal surfaces. In the lung, epithelial cells respond to interleukin-1 (IL-1) and interferon signaling to regulate effector cell influx and fungal killing. In the alimentary and vulvovaginal tracts, epithelial cells modulate fungal commensalism, invasive growth, and local immune tone, in part by responding to damage caused by candidalysin, a C. albicans peptide toxin, and through IL-17-dependent release of antimicrobial peptides that contribute to Candida colonization resistance. Understanding fungal-epithelial interactions in mammalian models of disease is critical to predict vulnerabilities and to identify opportunities for immune-based strategies to treat fungal infections.
Collapse
Affiliation(s)
- Kathleen A M Mills
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Mariano A Aufiero
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias M Hohl
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Wang X, Wang Q, Wang J, Wang X, Yin L, Wang C, Fan G, Pan J. A Novel Lipopeptide-Functionalized Metal-Organic Framework for Periodontitis Therapy through the Htra1/FAK/YAP Pathway. Biomater Res 2024; 28:0057. [PMID: 39076893 PMCID: PMC11283871 DOI: 10.34133/bmr.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by plaque accumulation, resulting in immune microenvironment disorders and resorption of alveolar bone. To promote bone healing under inflammatory environments, a functional biomaterial based on disease pathophysiology is designed. A novel fatty acid C10-modified polypeptide, C10-KR8, is discovered to have excellent abilities in modulating macrophage repolarization and promoting bone regeneration in periodontitis. To build a multifunctional material localized drug delivery system, C10-KR8@ZIF-8 (C10-KR8-loaded zeolitic imidazolate framework-8) nanoparticles are constructed to sustainedly release the C10-KR8 peptide and Zn elements. By synergistic effects of providing a dynamic immuno-modulatory environment and promoting osteogenesis under pathological conditions, the obtained pH-responsive nanoparticles display excellent bone regeneration capability. Furthermore, coimmunoprecipitation/liquid chromatography-tandem mass spectrometry analysis and proteomics analysis revealed that the C10-KR8 peptide directly interacts with the high-temperature requirement protein A1 (Htra1), and C10-KR8@ZIF-8 nanoparticles promote the osteogenic differentiation of bone mesenchymal stem cells by activating the focal adhesion kinase (FAK)/phosphatidylinositide 3-kinase (PI3K)/AKT pathway and enhancing the nuclear localization of Yes-associated protein (YAP). Taken together, this study demonstrates C10-KR8 peptide regulate osteoimmunology and bone regeneration by Htra1/FAK/YAP pathway and that ZIF-8-based peptide loading platform is a promising strategy for periodontitis.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Stomatology, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Qing Wang
- Department of Stomatology, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jian Wang
- Department of General Dentistry, Shanghai Ninth People’s Hospital, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology,
Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xuan Wang
- Department of Stomatology, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Linling Yin
- Department of Stomatology, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Changping Wang
- Department of Orthopaedics, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jinsong Pan
- Department of Stomatology, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| |
Collapse
|
21
|
Mishra AA, Koh AY. Breathe and bloom: Gut hypoxia limits C. albicans growth. Cell Host Microbe 2024; 32:1041-1043. [PMID: 38991499 DOI: 10.1016/j.chom.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Multiple host and microbial factors dictate whether Candida albicans can colonize the mammalian gastrointestinal tract. In this issue of Cell Host & Microbe, Savage et al. demonstrate that restoration of intestinal epithelial hypoxia is sufficient to restore Candida albicans colonization resistance, even when other Candida inhibitory effectors remain depleted.
Collapse
Affiliation(s)
- Animesh A Mishra
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Savage HP, Bays DJ, Tiffany CR, Gonzalez MAF, Bejarano EJ, Carvalho TP, Luo Z, Masson HLP, Nguyen H, Santos RL, Reagan KL, Thompson GR, Bäumler AJ. Epithelial hypoxia maintains colonization resistance against Candida albicans. Cell Host Microbe 2024; 32:1103-1113.e6. [PMID: 38838675 PMCID: PMC11239274 DOI: 10.1016/j.chom.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Antibiotic treatment promotes the outgrowth of intestinal Candida albicans, but the mechanisms driving this fungal bloom remain incompletely understood. We identify oxygen as a resource required for post-antibiotic C. albicans expansion. C. albicans depleted simple sugars in the ceca of gnotobiotic mice but required oxygen to grow on these resources in vitro, pointing to anaerobiosis as a potential factor limiting growth in the gut. Clostridia species limit oxygen availability in the large intestine by producing butyrate, which activates peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling to maintain epithelial hypoxia. Streptomycin treatment depleted Clostridia-derived butyrate to increase epithelial oxygenation, but the PPAR-γ agonist 5-aminosalicylic acid (5-ASA) functionally replaced Clostridia species to restore epithelial hypoxia and colonization resistance against C. albicans. Additionally, probiotic Escherichia coli required oxygen respiration to prevent a post-antibiotic bloom of C. albicans, further supporting the role of oxygen in colonization resistance. We conclude that limited access to oxygen maintains colonization resistance against C. albicans.
Collapse
Affiliation(s)
- Hannah P Savage
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Mariela A F Gonzalez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Eli J Bejarano
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Thaynara P Carvalho
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; Departamento de Clinica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Belo Horizonte, MG, Brazil
| | - Zheng Luo
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Hugo L P Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Henry Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Renato L Santos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; Departamento de Clinica e Cirurgia Veterinárias, Escola de Veterinária da Universidade Federal de Minas Gerais, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 Belo Horizonte, MG, Brazil
| | - Krystle L Reagan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95615, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Chow EW, Pang LM, Wang Y. The impact of the host microbiota on Candida albicans infection. Curr Opin Microbiol 2024; 80:102507. [PMID: 38955050 DOI: 10.1016/j.mib.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The human microbiota is a complex microbial ecosystem populated by bacteria, fungi, viruses, protists, and archaea. The coexistence of fungi alongside with many billions of bacteria, especially in the gut, involves complex interactions, ranging from antagonistic to beneficial, between the members of these two kingdoms. Bacteria can impact fungi through various means, such as physical interactions, secretion of metabolites, or alteration of the host immune response, thereby affecting fungal growth and virulence. This review summarizes recent progress in this field, delving into the latest understandings of bacterial-fungal-immune interactions and innovative therapeutic approaches addressing the challenges of treating fungal infections associated with microbiota imbalances.
Collapse
Affiliation(s)
- Eve Wl Chow
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Li M Pang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Yue Wang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
24
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
25
|
Kavaliauskas P, Gu Y, Hasin N, Graf KT, Alqarihi A, Shetty AC, McCracken C, Walsh TJ, Ibrahim AS, Bruno VM. Multiple roles for hypoxia inducible factor 1-alpha in airway epithelial cells during mucormycosis. Nat Commun 2024; 15:5282. [PMID: 38902255 PMCID: PMC11190229 DOI: 10.1038/s41467-024-49637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
During pulmonary mucormycosis, inhaled sporangiospores adhere to, germinate, and invade airway epithelial cells to establish infection. We provide evidence that HIF1α plays dual roles in airway epithelial cells during Mucorales infection. We observed an increase in HIF1α protein accumulation and increased expression of many known HIF1α-responsive genes during in vitro infection, indicating that HIF1α signaling is activated by Mucorales infection. Inhibition of HIF1α signaling led to a substantial decrease in the ability of R. delemar to invade cultured airway epithelial cells. Transcriptome analysis revealed that R. delemar infection induces the expression of many pro-inflammatory genes whose expression was significantly reduced by HIF1α inhibition. Importantly, pharmacological inhibition of HIF1α increased survival in a mouse model of pulmonary mucormycosis without reducing fungal burden. These results suggest that HIF1α plays two opposing roles during mucormycosis: one that facilitates the ability of Mucorales to invade the host cells and one that facilitates the ability of the host to mount an innate immune response.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yiyou Gu
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Naushaba Hasin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Millipore Sigma, 9900 Blackwell Road, Rockville, MD, 20850, USA
| | - Karen T Graf
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Abdullah Alqarihi
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Thomas J Walsh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Innovative Therapeutics and Diagnostics, 6641 West Broad St., Room 100, Richmond, VA, 23220, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90502, USA
| | - Vincent M Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
Wang X, Zhou S, Hu X, Ye C, Nie Q, Wang K, Yan S, Lin J, Xu F, Li M, Wu Q, Sun L, Liu B, Zhang Y, Yun C, Wang X, Liu H, Yin WB, Zhao D, Hang J, Zhang S, Jiang C, Pang Y. Candida albicans accelerates atherosclerosis by activating intestinal hypoxia-inducible factor2α signaling. Cell Host Microbe 2024; 32:964-979.e7. [PMID: 38754418 DOI: 10.1016/j.chom.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The gut microbiota is closely linked to atherosclerosis. However, the role of intestinal fungi, essential members of the complex microbial community, in atherosclerosis is poorly understood. Herein, we show that gut fungi dysbiosis is implicated in patients with dyslipidemia, characterized by higher levels of Candida albicans (C. albicans), which are positively correlated with plasma total cholesterol and low-density lipoprotein-cholesterol (LDL-C) levels. Furthermore, C. albicans colonization aggravates atherosclerosis progression in a mouse model of the disease. Through gain- and loss-of-function studies, we show that an intestinal hypoxia-inducible factor 2α (HIF-2α)-ceramide pathway mediates the effect of C. albicans. Mechanistically, formyl-methionine, a metabolite of C. albicans, activates intestinal HIF-2α signaling, which drives increased ceramide synthesis to accelerate atherosclerosis. Administration of the HIF-2α selective antagonist PT2385 alleviates atherosclerosis in mice by reducing ceramide levels. Our findings identify a role for intestinal fungi in atherosclerosis progression and highlight the intestinal HIF-2α-ceramide pathway as a target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuang Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chuan Ye
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qixing Nie
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jun Lin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Feng Xu
- Clinical Pharmacology and Pharmacometrics, Janssen China Research & Development, Beijing, China
| | - Meng Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qing Wu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lulu Sun
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of General Surgery, Cancer Center, Peking University Third Hospital, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongyu Zhao
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Shuyang Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Changtao Jiang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
27
|
Drummond RA. One in, one out: Commensal fungus protects against infection. J Exp Med 2024; 221:e20240220. [PMID: 38497818 PMCID: PMC10949072 DOI: 10.1084/jem.20240220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Gut-resident fungi have a broad influence over health and disease. In this issue of JEM, Sekeresova Kralova et al. (https://doi.org/10.1084/jem.20231686) identify a commensal yeast that displaced fungal pathogen Candida albicans and protected against subsequent invasive infections that originate from the gut.
Collapse
Affiliation(s)
- Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Sekeresova Kralova J, Donic C, Dassa B, Livyatan I, Jansen PM, Ben-Dor S, Fidel L, Trzebanski S, Narunsky-Haziza L, Asraf O, Brenner O, Dafni H, Jona G, Boura-Halfon S, Stettner N, Segal E, Brunke S, Pilpel Y, Straussman R, Zeevi D, Bacher P, Hube B, Shlezinger N, Jung S. Competitive fungal commensalism mitigates candidiasis pathology. J Exp Med 2024; 221:e20231686. [PMID: 38497819 PMCID: PMC10949073 DOI: 10.1084/jem.20231686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. heterogenica or K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans-mediated diseases.
Collapse
Affiliation(s)
| | - Catalina Donic
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Livyatan
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Mathias Jansen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Lena Fidel
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sébastien Trzebanski
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Omer Asraf
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Dafni
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ghil Jona
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sigalit Boura-Halfon
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Yitzhak Pilpel
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Straussman
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Zeevi
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht-University of Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Kiel, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neta Shlezinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem, Rehovot, Israel
| | - Steffen Jung
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Galloway-Peña J, Iliev ID, McAllister F. Fungi in cancer. Nat Rev Cancer 2024; 24:295-298. [PMID: 38347100 PMCID: PMC11648847 DOI: 10.1038/s41568-024-00665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 02/18/2024]
Abstract
Both the gut and the tumour microbiome are now established as crucial regulators of cancer phenotypes and have been implicated in cancer initiation, progression and therapy response. Although the role of bacteria in these processes is beginning to be unravelled, the relevance of fungi is only just emerging. In this Viewpoint, we asked experts to discuss the current knowledge on the mycobiome–cancer connection and share their opinion on how to best solve open questions.
Collapse
Affiliation(s)
- Jessica Galloway-Peña
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Iliyan D Iliev
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Austin, TX, USA.
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Austin, TX, USA.
- Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Austin, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Austin, TX, USA.
| |
Collapse
|
30
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mech Dis 2024; 16:e1641. [PMID: 38228159 DOI: 10.1002/wsbm.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
31
|
Cheng W, Li F, Gao Y, Yang R. Fungi and tumors: The role of fungi in tumorigenesis (Review). Int J Oncol 2024; 64:52. [PMID: 38551162 PMCID: PMC10997370 DOI: 10.3892/ijo.2024.5640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Fungi inhabit different anatomic sites in the human body. Advances in omics analyses of host‑microbiome interactions have tremendously improved our understanding of the effects of fungi on human health and diseases such as tumors. Due to the significant enrichment of specific fungi in patients with malignant tumors, the associations between fungi and human cancer have attracted an increasing attention in recent years. Indeed, cancer type‑specific fungal profiles have been found in different tumor tissues. Importantly, fungi also influence tumorigenesis through multiple factors, such as host immunity and bioactive metabolites. Microbiome interactions, host factors and fungal genetic and epigenetic factors could be involved in fungal enrichment in tumor tissues and/or in the conversion from a commensal fungus to a pathogenic fungus. Exploration of the interactions of fungi with the bacterial microbiome and the host may enable them to be a target for cancer diagnosis and treatment. In the present review, the associations between fungi and human cancer, cancer type‑specific fungal profiles and the mechanisms by which fungi cause tumorigenesis were discussed. In addition, possible factors that can lead to the enrichment of fungi in tumor tissues and/or the conversion of commensal fungi to pathogenic fungi, as well as potential therapeutic and preventive strategies for tumors based on intratumoral fungi were summarized.
Collapse
Affiliation(s)
- Wenyue Cheng
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Fan Li
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
32
|
Ruan H, Zhang Q, Zhang YP, Li SS, Ran X. Unraveling the role of HIF-1α in sepsis: from pathophysiology to potential therapeutics-a narrative review. Crit Care 2024; 28:100. [PMID: 38539163 PMCID: PMC10976824 DOI: 10.1186/s13054-024-04885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You-Ping Zhang
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
d'Humières C, Delavy M, Alla L, Ichou F, Gauliard E, Ghozlane A, Levenez F, Galleron N, Quinquis B, Pons N, Mullaert J, Bridier-Nahmias A, Condamine B, Touchon M, Rainteau D, Lamazière A, Lesnik P, Ponnaiah M, Lhomme M, Sertour N, Devente S, Docquier JD, Bougnoux ME, Tenaillon O, Magnan M, Ruppé E, Grall N, Duval X, Ehrlich D, Mentré F, Denamur E, Rocha EPC, Le Chatelier E, Burdet C. Perturbation and resilience of the gut microbiome up to 3 months after β-lactams exposure in healthy volunteers suggest an important role of microbial β-lactamases. MICROBIOME 2024; 12:50. [PMID: 38468305 DOI: 10.1186/s40168-023-01746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/20/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the β-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of β-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the β-lactamase activity of the microbiota. The level of β-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous β-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.
Collapse
Affiliation(s)
- Camille d'Humières
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Margot Delavy
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
| | - Laurie Alla
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Farid Ichou
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Emilie Gauliard
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Amine Ghozlane
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, F-75015, France
| | - Florence Levenez
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Nathalie Galleron
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Benoit Quinquis
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Nicolas Pons
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Jimmy Mullaert
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France
| | | | | | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Dominique Rainteau
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Antonin Lamazière
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Philippe Lesnik
- INSERM UMR-S 1166, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Maharajah Ponnaiah
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Marie Lhomme
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
| | - Savannah Devente
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
- AP-HP, Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Paris, F-75015, France
| | | | - Mélanie Magnan
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
| | - Etienne Ruppé
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, F-75018, France
| | - Nathalie Grall
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, F-75018, France
| | - Xavier Duval
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Centre d'Investigation Clinique, INSERM CIC 1425, Hôpital Bichat, Paris, F-75018, France
| | - Dusko Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
- University College London, Institute for Neurology, London, UK
| | - France Mentré
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France
| | - Erick Denamur
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, F-75018, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | | | - Charles Burdet
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France.
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France.
| |
Collapse
|
34
|
Liang SH, Sircaik S, Dainis J, Kakade P, Penumutchu S, McDonough LD, Chen YH, Frazer C, Schille TB, Allert S, Elshafee O, Hänel M, Mogavero S, Vaishnava S, Cadwell K, Belenky P, Perez JC, Hube B, Ene IV, Bennett RJ. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 2024; 627:620-627. [PMID: 38448595 PMCID: PMC11230112 DOI: 10.1038/s41586-024-07142-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.
Collapse
Affiliation(s)
- Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Shabnam Sircaik
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Joseph Dainis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Liam D McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ying-Han Chen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Osama Elshafee
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Maria Hänel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Shipra Vaishnava
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ken Cadwell
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - J Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| | - Iuliana V Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Ji H, Feng S, Liu Y, Cao Y, Lou H, Li Z. Effect of GVHD on the gut and intestinal microflora. Transpl Immunol 2024; 82:101977. [PMID: 38184214 DOI: 10.1016/j.trim.2023.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Graft-versus-host disease (GVHD) is one of the most important cause of death in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). The gastrointestinal tract is one of the most common sites affected by GVHD. However, there is no gold standard clinical practice for diagnosing gastrointestinal GVHD (GI-GVHD), and it is mainly diagnosed by the patient's clinical symptoms and related histological changes. Additionally, GI-GVHD causes intestinal immune system disorders, damages intestinal epithelial tissue such as intestinal epithelial cells((IEC), goblet, Paneth, and intestinal stem cells, and disrupts the intestinal epithelium's physical and chemical mucosal barriers. The use of antibiotics and diet alterations significantly reduces intestinal microbial diversity, further reducing bacterial metabolites such as short-chain fatty acids and indole, aggravating infection, and GI-GVHD. gut microbe diversity can be restored by fecal microbiota transplantation (FMT) to treat refractory GI-GVHD. This review article focuses on the clinical diagnosis of GI-GVHD and the effect of GVHD on intestinal flora and its metabolites.
Collapse
Affiliation(s)
- Hao Ji
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Feng
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yuan Liu
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - HuiQuan Lou
- Department of Oral and maxillofacial surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
36
|
Yan JY, Lin TH, Jong YT, Hsueh JW, Wu SH, Lo HJ, Chen YC, Pan CH. Microbiota signatures associated with invasive Candida albicans infection in the gastrointestinal tract of immunodeficient mice. Front Cell Infect Microbiol 2024; 13:1278600. [PMID: 38298919 PMCID: PMC10828038 DOI: 10.3389/fcimb.2023.1278600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Candida albicans is a commensal microorganism in the human gut but occasionally causes invasive C. albicans infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (Rag2-/-il2γc-/-) mouse model to investigate the gut microbiota alterations caused by C. albicans throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of Firmicutes, particularly Lachnospiraceae and Ruminococcaceae, as well as a significant decrease in the abundance of Candidatus Arthromitus in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant (cph1/cph1 efg1/efg1) HLC54 strain of C. albicans. However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed Bacteroides vulgatus as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the B. vulgatus abundance and fungal load was found, and the negative correlation between the Candidatus Arthromitus abundance and fungal load after exposure to C. albicans suggested that C. albicans might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic C. albicans on the gut microbiota and identify the abundance of B. vulgatus as a microbiota signature associated with ICA in an immunodeficient mouse model.
Collapse
Affiliation(s)
- Jia-Ying Yan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Han Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Tang Jong
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jun-Wei Hsueh
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Sze-Hsien Wu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Yee-Chun Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Park G, Munley JA, Kelly LS, Kannan KB, Mankowski RT, Sharma A, Upchurch G, Casadesus G, Chakrabarty P, Wallet SM, Maile R, Bible LE, Wang B, Moldawer LL, Mohr AM, Efron PA, Nagpal R. Gut mycobiome dysbiosis after sepsis and trauma. Crit Care 2024; 28:18. [PMID: 38212826 PMCID: PMC10785534 DOI: 10.1186/s13054-023-04780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. METHODS We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. RESULTS We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. CONCLUSIONS The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.
Collapse
Affiliation(s)
- Gwoncheol Park
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Jennifer A Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Kolenkode B Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ashish Sharma
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Gilbert Upchurch
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, 32611, USA
| | - Robert Maile
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Letitia E Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Lyle L Moldawer
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Alicia M Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Philip A Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
38
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
39
|
Li L, Huang X, Chen H. Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes 2024; 16:2328868. [PMID: 38485702 PMCID: PMC10950292 DOI: 10.1080/19490976.2024.2328868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.
Collapse
Affiliation(s)
- Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
40
|
Buttar J, Kon E, Lee A, Kaur G, Lunken G. Effect of diet on the gut mycobiome and potential implications in inflammatory bowel disease. Gut Microbes 2024; 16:2399360. [PMID: 39287010 PMCID: PMC11409510 DOI: 10.1080/19490976.2024.2399360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.
Collapse
Affiliation(s)
- J Buttar
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - E Kon
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - A Lee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - G Kaur
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - G Lunken
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
41
|
Delavy M, Sertour N, d'Enfert C, Bougnoux ME. Metagenomics and metabolomics approaches in the study of Candida albicans colonization of host niches: a framework for finding microbiome-based antifungal strategies. Trends Microbiol 2023; 31:1276-1286. [PMID: 37652786 DOI: 10.1016/j.tim.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
In silico and experimental approaches have allowed an ever-growing understanding of the interactions within the microbiota. For instance, recently acquired data have increased knowledge of the mechanisms that support, in the gut and vaginal microbiota, the resistance to colonization by Candida albicans, an opportunistic fungal pathogen whose overgrowth can initiate severe infections in immunocompromised patients. Here, we review how bacteria from the microbiota interact with C. albicans. We show how recent OMICs-based pipelines, using metagenomics and/or metabolomics, have identified bacterial species and metabolites modulating C. albicans growth. We finally discuss how the combined use of cutting-edge OMICs-based and experimental approaches could provide new means to control C. albicans overgrowth within the microbiota and prevent its consequences.
Collapse
Affiliation(s)
- Margot Delavy
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France; Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Necker-Enfants-Malades, Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Paris, France.
| |
Collapse
|
42
|
Eichelberger KR, Paul S, Peters BM, Cassat JE. Candida-bacterial cross-kingdom interactions. Trends Microbiol 2023; 31:1287-1299. [PMID: 37640601 PMCID: PMC10843858 DOI: 10.1016/j.tim.2023.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
While the fungus Candida albicans is a common colonizer of healthy humans, it is also responsible for mucosal infections and severe invasive disease. Understanding the mechanisms that allow C. albicans to exist as both a benign commensal and as an invasive pathogen have been the focus of numerous studies, and recent findings indicate an important role for cross-kingdom interactions on C. albicans biology. This review highlights how C. albicans-bacteria interactions influence healthy polymicrobial community structure, host immune responses, microbial pathogenesis, and how dysbiosis may lead to C. albicans infection. Finally, we discuss how cross-kingdom interactions represent an opportunity to identify new antivirulence compounds that target fungal infections.
Collapse
Affiliation(s)
- Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
43
|
Delavy M, Sertour N, Patin E, Le Chatelier E, Cole N, Dubois F, Xie Z, Saint-André V, Manichanh C, Walker AW, Quintana-Murci L, Duffy D, d’Enfert C, Bougnoux ME, Consortium MI. Unveiling Candida albicans intestinal carriage in healthy volunteers: the role of micro- and mycobiota, diet, host genetics and immune response. Gut Microbes 2023; 15:2287618. [PMID: 38017705 PMCID: PMC10732203 DOI: 10.1080/19490976.2023.2287618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Candida albicans is a commensal yeast present in the gut of most healthy individuals but with highly variable concentrations. However, little is known about the host factors that influence colonization densities. We investigated how microbiota, host lifestyle factors, and genetics could shape C. albicans intestinal carriage in 695 healthy individuals from the Milieu Intérieur cohort. C. albicans intestinal carriage was detected in 82.9% of the subjects using quantitative PCR. Using linear mixed models and multiway-ANOVA, we explored C. albicans intestinal levels with regard to gut microbiota composition and lifestyle factors including diet. By analyzing shotgun metagenomics data and C. albicans qPCR data, we showed that Intestinimonas butyriciproducens was the only gut microbiota species whose relative abundance was negatively correlated with C. albicans concentration. Diet is also linked to C. albicans growth, with eating between meals and a low-sodium diet being associated with higher C. albicans levels. Furthermore, by Genome-Wide Association Study, we identified 26 single nucleotide polymorphisms suggestively associated with C. albicans colonization. In addition, we found that the intestinal levels of C. albicans might influence the host immune response, specifically in response to fungal challenge. We analyzed the transcriptional levels of 546 immune genes and the concentration of 13 cytokines after whole blood stimulation with C. albicans cells and showed positive associations between the extent of C. albicans intestinal levels and NLRP3 expression, as well as secreted IL-2 and CXCL5 concentrations. Taken together, these findings open the way for potential new interventional strategies to curb C. albicans intestinal overgrowth.
Collapse
Affiliation(s)
- Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Natacha Sertour
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | | | - Nathaniel Cole
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Florian Dubois
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Zixuan Xie
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
| | - Violaine Saint-André
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Chaysavanh Manichanh
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
| | - Alan W. Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
- APHP, Hôpital Necker-Enfants-Malades, Service de Microbiologie Clinique, Unité de Parasitologie-Mycologie, Paris, France
| | - Milieu Intérieur Consortium
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université Paris Cité INRAE, Paris, France
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy-en-Josas, France
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Gut Microbiome Group, Barcelona, Spain
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris, France
- APHP, Hôpital Necker-Enfants-Malades, Service de Microbiologie Clinique, Unité de Parasitologie-Mycologie, Paris, France
| |
Collapse
|
44
|
He S, Sun Y, Sun W, Tang M, Meng B, Liu Y, Kong Q, Li Y, Yu J, Li J. Oral microbiota disorder in GC patients revealed by 2b-RAD-M. J Transl Med 2023; 21:831. [PMID: 37980457 PMCID: PMC10656981 DOI: 10.1186/s12967-023-04599-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/06/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Microbiota alterations are linked with gastric cancer (GC). However, the relationship between the oral microbiota (especially oral fungi) and GC is not known. In this study, we aimed to apply 2b-RAD sequencing for Microbiome (2b-RAD-M) to characterize the oral microbiota in patients with GC. METHODS We performed 2b-RAD-M analysis on the saliva and tongue coating of GC patients and healthy controls. We carried out diversity, relative abundance, and composition analyses of saliva and tongue coating bacteria and fungi in the two groups. In addition, indicator analysis, the Gini index, and the mean decrease accuracy were used to identify oral fungal indicators of GC. RESULTS In this study, fungal imbalance in the saliva and tongue coating was observed in the GC group. At the species level, enriched Malassezia globosa (M. globosa) and decreased Saccharomyces cerevisiae (S. cerevisiae) were observed in saliva and tongue coating samples of the GC group. Random forest analysis indicated that M. globosa in saliva and tongue coating samples could serve as biomarkers to diagnose GC. The Gini index and mean decreases in accuracy for M. globosa in saliva and tongue coating samples were the largest. In addition, M. globosa in saliva and tongue coating samples classified GC from the control with areas under the receiver operating curve (AUCs) of 0.976 and 0.846, respectively. Further ecological analysis revealed correlations between oral bacteria and fungi. CONCLUSION For the first time, our data suggested that changes in oral fungi between GC patients and controls may help deepen our understanding of the complex spectrum of the different microbiotas involved in GC development. Although the cohort size was small, this study is the first to use 2b-RAD-M to reveal that oral M. globosa can be a fungal biomarker for detecting GC.
Collapse
Affiliation(s)
- Shengfu He
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yating Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingyang Tang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bao Meng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Qinxiang Kong
- Department of Infectious Diseases, Chaohu Hospital of Anhui MedicalUniversity, Hefei, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Jiawen Yu
- Department of Oncology, Anqing First People's Hospital of Anhui Medical University/Anqing First People's Hospital of Anhui Province, Anqing, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China.
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China.
- Department of Infectious Diseases, Chaohu Hospital of Anhui MedicalUniversity, Hefei, Anhui, China.
| |
Collapse
|
45
|
Yang J, Yang H, Li Y. The triple interactions between gut microbiota, mycobiota and host immunity. Crit Rev Food Sci Nutr 2023; 63:11604-11624. [PMID: 35776086 DOI: 10.1080/10408398.2022.2094888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiome is mainly composed of microbiota and mycobiota, both of which play important roles in the development of the host immune system, metabolic regulation, and maintenance of intestinal homeostasis. With the increasing awareness of the pathogenic essence of infectious, immunodeficiency, and tumor-related diseases, the interactions between gut bacteria, fungi, and host immunity have been shown to directly influence the disease process or final therapeutic outcome, and collaborative and antagonistic relationships are commonly found between bacteria and fungi. Interventions represented by probiotics, prebiotics, engineered probiotics, fecal microbiota transplantation (FMT), and drugs can effectively modulate the triple interactions. In particular, traditional probiotics represented by Bifidobacterium and Lactobacillus and next-generation probiotics represented by Akkermansia muciniphila and Faecalibacterium prausnitzii showed a high enrichment trend in the gut of patients with a high response to inflammation remission and tumor immunotherapy, which predicts the potential medicinal value of these beneficial microbial formulations. However, there are bottlenecks in all these interventions that need to be broken. Meanwhile, further unraveling the underlying mechanisms of the "triple interactions" model can guide precise interventions and ultimately improve the efficiency of interventions on the host gut microbiome and immune modulation, thus directly or indirectly improving anti-inflammatory and tumor immunotherapy effects.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
46
|
Abstract
The microbiota is known to influence several facets of mammalian development, digestion and disease. Most studies of the microbiota have focused on the bacterial component, but the importance of commensal fungi in health and disease is becoming increasingly clear. Although fungi account for a smaller proportion of the microbiota than bacteria by number, they are much larger and therefore account for a substantial proportion of the biomass. Moreover, as fungi are eukaryotes, their metabolic pathways are complex and unique. In this Review, we discuss the evidence for involvement of specific members of the mycobiota in intestinal diseases, including inflammatory bowel disease, colorectal cancer and pancreatic cancer. We also highlight the importance of fungal interactions with intestinal bacteria and with the immune system. Although most studies of commensal fungi have focused on their role in disease, we also consider the beneficial effects of fungal colonies in the gut. The evidence highlights potential opportunities to target fungi and their interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Kyla S Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA.
| | - June L Round
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
47
|
Liu W, Fan X, Jian B, Wen D, Wang H, Liu Z, Li B. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis. Front Microbiol 2023; 14:1289102. [PMID: 37965556 PMCID: PMC10641782 DOI: 10.3389/fmicb.2023.1289102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
48
|
Wei W, Wang G, Zhang H, Bao X, An S, Luo Q, He J, Chen L, Ning C, Lai J, Yuan Z, Chen R, Jiang J, Ye L, Liang H. Talaromyces marneffei suppresses macrophage inflammation by regulating host alternative splicing. Commun Biol 2023; 6:1046. [PMID: 37845378 PMCID: PMC10579421 DOI: 10.1038/s42003-023-05409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Talaromyces marneffei (T. marneffei) immune escape is essential in the pathogenesis of talaromycosis. It is currently known that T. marneffei achieves immune escape through various strategies. However, the role of cellular alternative splicing (AS) in immune escape remains unclear. Here, we depict the AS landscape in macrophages upon T. marneffei infection via high-throughput RNA sequencing and detect a truncated protein of NCOR2 / SMRT, named NCOR2-013, which is significantly upregulated after T. marneffei infection. Mechanistic analysis indicates that NCOR2-013 forms a co-repression complex with TBL1XR1 / TBLR1 and HDAC3, thereby inhibiting JunB-mediated transcriptional activation of pro-inflammatory cytokines via the inhibition of histone acetylation. Furthermore, we identify TUT1 as the AS regulator that regulates NCOR2-013 production and promotes T. marneffei immune evasion. Collectively, these findings indicate that T. marneffei escapes macrophage killing through TUT1-mediated alternative splicing of NCOR2 / SMRT, providing insight into the molecular mechanisms of T. marneffei immune evasion and potential targets for talaromycosis therapy.
Collapse
Affiliation(s)
- Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Zhang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Bao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiang Luo
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinhao He
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lixiang Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanyi Ning
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Nursing College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingzhen Lai
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
49
|
Thompson GR, Jenks JD, Baddley JW, Lewis JS, Egger M, Schwartz IS, Boyer J, Patterson TF, Chen SCA, Pappas PG, Hoenigl M. Fungal Endocarditis: Pathophysiology, Epidemiology, Clinical Presentation, Diagnosis, and Management. Clin Microbiol Rev 2023; 36:e0001923. [PMID: 37439685 PMCID: PMC10512793 DOI: 10.1128/cmr.00019-23] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Fungal endocarditis accounts for 1% to 3% of all infective endocarditis cases, is associated with high morbidity and mortality (>70%), and presents numerous challenges during clinical care. Candida spp. are the most common causes of fungal endocarditis, implicated in over 50% of cases, followed by Aspergillus and Histoplasma spp. Important risk factors for fungal endocarditis include prosthetic valves, prior heart surgery, and injection drug use. The signs and symptoms of fungal endocarditis are nonspecific, and a high degree of clinical suspicion coupled with the judicious use of diagnostic tests is required for diagnosis. In addition to microbiological diagnostics (e.g., blood culture for Candida spp. or galactomannan testing and PCR for Aspergillus spp.), echocardiography remains critical for evaluation of potential infective endocarditis, although radionuclide imaging modalities such as 18F-fluorodeoxyglucose positron emission tomography/computed tomography are increasingly being used. A multimodal treatment approach is necessary: surgery is usually required and should be accompanied by long-term systemic antifungal therapy, such as echinocandin therapy for Candida endocarditis or voriconazole therapy for Aspergillus endocarditis.
Collapse
Affiliation(s)
- George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| | - Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - John W. Baddley
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James S. Lewis
- Department of Pharmacy, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Ilan S. Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Johannes Boyer
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Thomas F. Patterson
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter G. Pappas
- Department of Medicine Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
50
|
Puerner C, Vellanki S, Strauch JL, Cramer RA. Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression. Annu Rev Microbiol 2023; 77:403-425. [PMID: 37713457 PMCID: PMC11034785 DOI: 10.1146/annurev-micro-032521-021745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Fungal-mediated disease progression and antifungal drug efficacy are significantly impacted by the dynamic infection microenvironment. At the site of infection, oxygen often becomes limiting and induces a hypoxia response in both the fungal pathogen and host cells. The fungal hypoxia response impacts several important aspects of fungal biology that contribute to pathogenesis, virulence, antifungal drug susceptibility, and ultimately infection outcomes. In this review, we summarize recent advances in understanding the molecular mechanisms of the hypoxia response in the most common human fungal pathogens, discuss potential therapeutic opportunities, and highlight important areas for future research.
Collapse
Affiliation(s)
- Charles Puerner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Sandeep Vellanki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| | - Julianne L Strauch
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
- Department of Biology, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA;
| |
Collapse
|