1
|
Zhang Y, Yu Y, Yuan L, Zhang B. EZH2 Promotes Glioma Cell Proliferation, Invasion, and Migration via Mir-142-3p/KCNQ1OT1/HMGB3 Axis : Running Title: EZH2 Promotes Glioma cell Malignant Behaviors. Mol Neurobiol 2024; 61:8668-8687. [PMID: 38556567 DOI: 10.1007/s12035-024-04080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
This study investigates the role and molecular mechanism of EZH2 in glioma cell proliferation, invasion, and migration. EZH2, miR-142-3p, lncRNA KCNQ1OT1, LIN28B, and HMGB3 expressions in glioma tissues and cells were determined using qRT-PCR or Western blot, followed by CCK-8 assay detection of cell viability, Transwell detection of invasion and migration, ChIP analysis of the enrichment of EZH2 and H3K27me3 on miR-142-3p promoter, dual-luciferase reporter assay and RIP validation of the binding of miR-142-3p-KCNQ1OT1 and KCNQ1OT1-LIN28B, and actinomycin D detection of KCNQ1OT1 and HMGB3 mRNA stability. A nude mouse xenograft model and a lung metastasis model were established. EZH2, KCNQ1OT1, LIN28B, and HMGB3 were highly expressed while miR-142-3p was poorly expressed in gliomas. EZH2 silencing restrained glioma cell proliferation, invasion, and migration. EZH2 repressed miR-142-3p expression by elevating the H3K27me3 level. miR-142-3p targeted KCNQ1OT1 expression, and KCNQ1OT1 bound to LIN28B to stabilize HMGB3 mRNA, thereby promoting its protein expression. EZH2 silencing depressed tumor growth and metastasis in nude mice via the miR-142-3p/KCNQ1OT1/HMGB3 axis. In conclusion, EZH2 curbed miR-142-3p expression, thereby relieving the inhibition of KCNQ1OT1 expression by miR-142-3p, enhancing the binding of KCNQ1OT1 to LIN28B, elevating HMGB3 expression, and ultimately accelerating glioma cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Yong Yu
- Epilepsy Center, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Lei Yuan
- Department of Neurosurgery, PLA Rocket Force Characteristic Medical Center, No. 16, Xin Jie Kou Wai Street, Beijing, 100088, China.
| | - Baozhong Zhang
- Department of Neurosurgery, He Bei Hua Ao Hospital, No. 11, the Changcheng West Street, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
2
|
Shokry D, Khan MW, Powell C, Johnson S, Rennels BC, Boyd RI, Sun Z, Fazal Z, Freemantle SJ, Parker MH, Vieson MD, Samuelson JP, Spinella MJ, Singh R. Refractory testicular germ cell tumors are highly sensitive to the targeting of polycomb pathway demethylases KDM6A and KDM6B. Cell Commun Signal 2024; 22:528. [PMID: 39482699 PMCID: PMC11529429 DOI: 10.1186/s12964-024-01912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure. In contrast to genetic alterations, recent evidence suggests that epigenetics is a major driving factor for TGCT formation, progression, and response to chemotherapy. Hence, targeting epigenetic pathways with "epidrugs" is one potential relatively unexplored strategy to advance TGCT treatment beyond cisplatin. In this report, we demonstrate for the first time that targeting polycomb demethylases KDM6A and KDM6B with epidrug GSK-J4 can treat both cisplatin-sensitive and -resistant TGCTs. While GSK-J4 had minimal effects alone on TGCT tumor growth in vivo, it dramatically sensitized cisplatin-sensitive and -resistant TGCTs to cisplatin. We validated KDM6A/KDM6B as the target of GSK-J4 since KDM6A/KDM6B genetic depletion had a similar effect to GSK-J4 on cisplatin-mediated anti-tumor activity and transcriptome alterations. Pharmacologic and genetic targeting of KDM6A/KDM6B potentiated or primed the p53-dominant transcriptional response to cisplatin, with also evidence for basal activation of p53. Further, several chromatin modifier genes, including BRD4, lysine demethylases, chromodomain helicase DNA binding proteins, and lysine methyltransferases, were repressed with cisplatin only in KDM6A/KDM6B-targeted cells, implying that KDM6A/KDM6B inhibition sets the stage for extensive chromatin remodeling of TGCT cells upon cisplatin treatment. Our findings demonstrate that targeting polycomb demethylases is a new potent pharmacologic strategy for treating cisplatin resistant TGCTs that warrants clinical development.
Collapse
Affiliation(s)
- Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Department of Anatomy and Embryology, Alexandria University, Alexandria, Egypt
| | - Mehwish W Khan
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Christine Powell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Samantha Johnson
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Brayden C Rennels
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Maryanna H Parker
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Miranda D Vieson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jonathan P Samuelson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
| |
Collapse
|
3
|
Shokry D, Khan MW, Powell C, Johnson S, Rennels BC, Boyd RI, Sun Z, Fazal Z, Freemantle SJ, Parker MH, Vieson MD, Samuelson JP, Spinella MJ, Singh R. Refractory testicular germ cell tumors are highly sensitive to the targeting of polycomb pathway demethylases KDM6A and KDM6B. RESEARCH SQUARE 2024:rs.3.rs-4986186. [PMID: 39483904 PMCID: PMC11527238 DOI: 10.21203/rs.3.rs-4986186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure. In contrast to genetic alterations, recent evidence suggests that epigenetics is a major driving factor for TGCT formation, progression, and response to chemotherapy. Hence, targeting epigenetic pathways with "epidrugs" is one potential relatively unexplored strategy to advance TGCT treatment beyond cisplatin. In this report, we demonstrate for the first time that targeting polycomb demethylases KDM6A and KDM6B with epidrug GSK-J4 can treat both cisplatin-sensitive and -resistant TGCTs. While GSK-J4 had minimal effects alone on TGCT tumor growth in vivo, it dramatically sensitized cisplatin-sensitive and -resistant TGCTs to cisplatin. We validated KDM6A/KDM6B as the target of GSK-J4 since KDM6A/KDM6B genetic depletion had a similar effect to GSK-J4 on cisplatin-mediated anti-tumor activity and transcriptome alterations. Pharmacologic and genetic targeting of KDM6A/KDM6B potentiated or primed the p53-dominant transcriptional response to cisplatin, with also evidence for basal activation of p53. Further, several chromatin modifier genes, including BRD4, lysine demethylases, chromodomain helicase DNA binding proteins, and lysine methyltransferases, were repressed with cisplatin only in KDM6A/KDM6B-targeted cells, implying that KDM6A/KDM6B inhibition sets the stage for extensive chromatin remodeling of TGCT cells upon cisplatin treatment. Our findings demonstrate that targeting polycomb demethylases is a new potent pharmacologic strategy for treating cisplatin resistant TGCTs that warrants clinical development.
Collapse
|
4
|
Haase S, Carney S, Varela ML, Mukherji D, Zhu Z, Li Y, Nuñez FJ, Lowenstein PR, Castro MG. Epigenetic reprogramming in pediatric gliomas: from molecular mechanisms to therapeutic implications. Trends Cancer 2024:S2405-8033(24)00196-1. [PMID: 39394009 DOI: 10.1016/j.trecan.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devarshi Mukherji
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Felipe J Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
6
|
Cassim A, Dun MD, Gallego-Ortega D, Valdes-Mora F. EZHIP's role in diffuse midline glioma: echoes of oncohistones? Trends Cancer 2024:S2405-8033(24)00191-2. [PMID: 39343635 DOI: 10.1016/j.trecan.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
The enhancer of zeste inhibitory protein (EZHIP) is typically expressed during germ cell development and has been classified as a cancer-testis antigen (CTA) in various cancers. In 2020, 4% of diffuse midline gliomas (DMGs) were shown to aberrantly express EZHIP, mirroring the DMG hallmark histone H3 K27M (H3K27M) oncohistone mutation. Similar to H3K27M, EZHIP is a negative regulator of polycomb repressive complex 2 (PRC2), leading to global epigenomic remodeling. In this opinion, we explore the similarities and disparities between H3K27M- and EZHIP-DMGs with a focus on their shared functional hallmark of PRC2 inhibition, their genetic and epigenomic landscapes, plausible differences in the cell of origin, and therapeutic avenues. Upcoming research on EZHIP will help better understand its role in gliomagenesis and DMG therapy.
Collapse
Affiliation(s)
- Afraah Cassim
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
7
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
8
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
9
|
Sad K, Jones CY, Fawwal DV, Hill EJ, Skinner K, Lustenberger S, Lee RS, Elayavalli SR, Farhi J, Lemon LD, Fasken MB, Hong AL, Sloan SA, Corbett AH, Spangle JM. Histone H3 E50K mutation confers oncogenic activity and supports an EMT phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561775. [PMID: 37873162 PMCID: PMC10592736 DOI: 10.1101/2023.10.11.561775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequencing of human patient tumors has identified recurrent missense mutations in genes encoding core histones. We report that mutations that convert histone H3 amino acid 50 from a glutamate to a lysine (H3E50K) support an oncogenic phenotype in human cells. Expression of H3E50K is sufficient to transform human cells as evidenced by a dramatic increase in cell migration and invasion, and a statistically significant increase in proliferation and clonogenicity. H3E50K also increases the invasive phenotype in the context of co-occurring BRAF mutations, which are present in patient tumors characterized by H3E50K. H3E50 lies on the globular domain surface in a region that contacts H4 within the nucleosome. We find that H3E50K perturbs proximal H3 post-translational modifications globally and dysregulates gene expression, activating the epithelial to mesenchymal transition. Functional studies using S. cerevisiae reveal that, while yeast cells that express H3E50K as the sole copy of histone H3 show sensitivity to cellular stressors, including caffeine, H3E50K cells display some genetic interactions that are distinct from the characterized H3K36M oncohistone yeast model. Taken together, these data suggest that additional histone H3 mutations have the potential to be oncogenic drivers and function through distinct mechanisms that dysregulate gene expression.
Collapse
|
10
|
Jiang L, Huang L, Jiang W. H3K27me3-mediated epigenetic regulation in pluripotency maintenance and lineage differentiation. CELL INSIGHT 2024; 3:100180. [PMID: 39072246 PMCID: PMC11278802 DOI: 10.1016/j.cellin.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Cell fate determination is an intricate process which is orchestrated by multiple regulatory layers including signal pathways, transcriptional factors, epigenetic modifications, and metabolic rewiring. Among the sophisticated epigenetic modulations, the repressive mark H3K27me3, deposited by PRC2 (polycomb repressive complex 2) and removed by demethylase KDM6, plays a pivotal role in mediating the cellular identity transition through its dynamic and precise alterations. Herein, we overview and discuss how H3K27me3 and its modifiers regulate pluripotency maintenance and early lineage differentiation. We primarily highlight the following four aspects: 1) the two subcomplexes PRC2.1 and PRC2.2 and the distribution of genomic H3K27 methylation; 2) PRC2 as a critical regulator in pluripotency maintenance and exit; 3) the emerging role of the eraser KDM6 in early differentiation; 4) newly identified additional factors influencing H3K27me3. We present a comprehensive insight into the molecular principles of the dynamic regulation of H3K27me3, as well as how this epigenetic mark participates in pluripotent stem cell-centered cell fate determination.
Collapse
Affiliation(s)
- Liwen Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Linfeng Huang
- Wang-Cai Biochemistry Lab, Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| |
Collapse
|
11
|
Tanaka Y, Natsumeda M, Ohashi M, Saito R, Higa N, Akahane T, Hashidate H, Ito J, Fujii S, Sasaki A, Tanimoto A, Hanaya R, Watanabe K, Oishi M, Kawashima H, Kakita A. Primary spinal cord gliomas: Pathologic features associated with prognosis. J Neuropathol Exp Neurol 2024:nlae084. [PMID: 39074166 DOI: 10.1093/jnen/nlae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Primary spinal cord gliomas are rare and are associated with high mortality. Unlike brain tumors, the clinicopathological features of spinal cord gliomas are not well defined. We analyzed clinical, histopathology, and immunohistochemical features and overall survival (OS) of 25 patients with primary spinal cord gliomas treated between 1994 and 2023 at 4 institutions. IDH1 R132H, H3K27M, and p53 were assessed by immunohistochemistry (IHC). Four (16%), 5 (20%), 2 (8%), and 13 (52%) patients were diagnosed as having grades 1, 2, 3, and 4 gliomas according to the World Health Organization (WHO) 2021 classification, respectively. One case (4%), with a circumscribed diffuse midline glioma, H3K27-altered, had a rare molecular profile and could not be graded. IHC demonstrated H3K27M positivity, indicative of H3F3A K27M or HIST1H3B K27M mutation, in 9 (36%) patients. H3K27me3-loss was evident in 13 (52%) patients. In one patient with a grade 1 tumor that showed negative staining for H3K27M and H3K27me3 loss, numbers of EZHIP-positive cells were increased, suggesting diffuse midline glioma, H3K27-altered (WHO grade 4). H3K27me3 loss, frequency of p53 positive cells (≥10%), MIB-1 index (≥10%), and high histopathological grades significantly correlated with poor OS. These results indicate the pathological and immunohistochemical characteristics of primary spinal cord gliomas that impact prognosis.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masayuki Ohashi
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rie Saito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Hideki Hashidate
- Department of Pathology, Niigata City General Hospital, Niigata, Japan
| | - Junko Ito
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Satoshi Fujii
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kei Watanabe
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
12
|
Furst LM, Roussel EM, Leung RF, George AM, Best SA, Whittle JR, Firestein R, Faux MC, Eisenstat DD. The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. BIOLOGY 2024; 13:424. [PMID: 38927304 PMCID: PMC11200883 DOI: 10.3390/biology13060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Liam M. Furst
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Enola M. Roussel
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan F. Leung
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Ankita M. George
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Sarah A. Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James R. Whittle
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ron Firestein
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree C. Faux
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia
| | - David D. Eisenstat
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
14
|
Bhattarai S, Hakkim FL, Day CA, Grigore F, Langfald A, Entin I, Hinchcliffe EH, Robinson JP. H3F3A K27M Mutations Drives a Repressive Transcriptome by Modulating Chromatin Accessibility, Independent of H3K27me3 in Diffuse Midline Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594522. [PMID: 38798502 PMCID: PMC11118475 DOI: 10.1101/2024.05.16.594522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase complex, leading to a global reduction and redistributing of the repressive H3 lysine 27 tri-methylation. This rewiring of the epigenome is thought to promote gliomagenesis. Methods We established novel, isogenic DMG patient-derived cell lines that have been CRISPR-Cas9 edited to H3.3 WT or H3.3K27M alone and in combination with EZH2 and EZH1 co-deletion, inactivating PRC2 methyltransferase activity of PRC2 and eliminating H3K27me3. Results RNA-seq and ATAC-seq analysis of these cells revealed that K27M has a novel epigenetic effect that appears entirely independent of its effects on PRC2 function. While the loss of the PRC2 complex led to a systemic induction of gene expression (including HOX gene clusters) and upregulation of biological pathways, K27M led to a balanced gene deregulation but having an overall repressive effect on the biological pathways. Importantly, the genes uniquely deregulated by the K27M mutation, independent of methylation loss, are closely associated with changes in chromatin accessibility, with upregulated genes becoming more accessible. Notably, the PRC2- independent function of K27M appears necessary for tumorigenesis as xenografts of our H3.3K27M/EZH1/2 WT cells developed into tumors, while H3.3/EZH1/2 KO cells did not. Conclusion We demonstrate that K27M mutation alters chromatin accessibility and uniquely deregulates genes, independent of K27 methylation. We further show the mutation's role in altering biological pathways and its necessity for tumor development. Key Points We revealed genes regulated by H3.3K27M mutation and PRC2 in DMG.H3.3K27M mutation alters chromosome accessibility independent of H3K27me3.PRC2-independent effects of K27M mutation are crucial for tumor development. Importance of the Study This study is the first to demonstrate that H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independently of H3K27 trimethylation in Diffuse Midline Glioma (DMG). By isolating the effects of H3.3 K27me3 loss from those of the K27M mutation, we identified common and unique genes and pathways affected by each. We found that genes uniquely deregulated by K27M showed increased chromatin accessibility and upregulated gene expression, unlike other gene subsets affected by PRC2 knockout. Importantly, we determined the PRC2-independent function of K27M is also essential for tumorigenesis, as xenografts of H3.3 K27M/PRC2 WT cell lines formed tumors, while H3.3WT/PRC2 WT and K27M/PRC2 knockout cells did not. This research builds upon and advances prior studies, such as those identifying EZH2 as a therapeutic target in H3.3K27M DMGs, by revealing critical new pathways for gliomagenesis. The translational significance lies in identifying novel therapeutic targets against this aggressive pediatric cancer.
Collapse
|
15
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Jackson ER, Persson ML, Fish CJ, Findlay IJ, Mueller S, Nazarian J, Hulleman E, van der Lugt J, Duchatel RJ, Dun MD. A review of current therapeutics targeting the mitochondrial protease ClpP in diffuse midline glioma, H3 K27-altered. Neuro Oncol 2024; 26:S136-S154. [PMID: 37589388 PMCID: PMC11066926 DOI: 10.1093/neuonc/noad144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein. In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic DMG, H3 K27-altered, showed a remarkable clinical and radiological response to dordaviprone (ONC201). This response in an H3 K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA identifying the mitochondrial protease "ClpP" as a biomarker of response, and discuss other ClpP agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP agonists, and their immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patient response.
Collapse
Affiliation(s)
- Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Cameron J Fish
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Sabine Mueller
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, UCSF, San Francisco, California, USA
| | - Javad Nazarian
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
17
|
Saratsis AM, Knowles T, Petrovic A, Nazarian J. H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol 2024; 26:S92-S100. [PMID: 37818718 PMCID: PMC11066930 DOI: 10.1093/neuonc/noad164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 10/12/2023] Open
Abstract
High-grade glioma (HGG) is the most common cause of cancer death in children and the most common primary central nervous system tumor in adults. While pediatric HGG was once thought to be biologically similar to the adult form of disease, research has shown these malignancies to be significantly molecularly distinct, necessitating distinct approaches to their clinical management. However, emerging data have shown shared molecular events in pediatric and adult HGG including the histone H3K27M mutation. This somatic missense mutation occurs in genes encoding one of two isoforms of the Histone H3 protein, H3F3A (H3.3), or HIST1H3B (H3.1), and is detected in up to 80% of pediatric diffuse midline gliomas and in up to 60% of adult diffuse gliomas. Importantly, the H3K27M mutation is associated with poorer overall survival and response to therapy compared to patients with H3 wild-type tumors. Here, we review the clinical features and biological underpinnings of pediatric and adult H3K27M mutant glioma, offering a groundwork for understanding current research and clinical approaches for the care of patients suffering with this challenging disease.
Collapse
Affiliation(s)
| | | | - Antonela Petrovic
- DMG Research Center, Department of Oncology, University Children’s Hospital, University of Zürich, Zürich, Switzerland
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
18
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024:S0962-8924(24)00052-7. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Xin DE, Liao Y, Rao R, Ogurek S, Sengupta S, Xin M, Bayat AE, Seibel WL, Graham RT, Koschmann C, Lu QR. Chaetocin-mediated SUV39H1 inhibition targets stemness and oncogenic networks of diffuse midline gliomas and synergizes with ONC201. Neuro Oncol 2024; 26:735-748. [PMID: 38011799 PMCID: PMC10995509 DOI: 10.1093/neuonc/noad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.
Collapse
Affiliation(s)
- Dazhuan Eric Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yunfei Liao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Arman Esshaghi Bayat
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - William L Seibel
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Richard T Graham
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Luo Y, Li L, Hu Q, Zhang Z, Liu F, Peng Y, Zou Y, Chen L. Iron overload increases the sensitivity of endometriosis stromal cells to ferroptosis via a PRC2-independent function of EZH2. Int J Biochem Cell Biol 2024; 169:106553. [PMID: 38417568 DOI: 10.1016/j.biocel.2024.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Given the high concentration of iron in the micro-environment of ovarian endometriosis, it is plausible to hypothesize that ectopic endometrial cells may be more susceptible to undergoing ferroptosis. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. In this study, we examined the impact on ectopic endometrial stromal cells (EESCs) of iron overload and an inducer of ferroptosis. We found that the iron concentration in the ovarian endometriosis was much higher than control samples. Treatment of cultured EESCs with ferric ammonium citrate (FAC) increase the sensitivity to undergo ferroptosis. By analyzing the RNA-seq results, it was discovered that zeste 2 polycomb repressive complex 2 subunit (EZH2) was significantly downregulated in ferroptosis induced EESCs. Moreover, overexpression of EZH2 effectively prevented the induction of ferroptosis. In addition, the activity or expression of EZH2 is directly and specifically inhibited by the methyltransferase inhibitor GSK343, which raises the sensitivity of stromal cells to ferroptosis. Taken together, our findings revealed that EZH2 act as a suppressor in the induced cell ferroptosis through a PRC2-independent methyltransferase mechanism. Therefore, blocking EZH2 expression and inducing ferroptosis may be effective treatment approaches for ovarian endometriosis.
Collapse
Affiliation(s)
- Yong Luo
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Liping Li
- Prenatal Diagnosis Center, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Qiwen Hu
- School of Medicine, Nanchang University, Nanchang, China
| | - Ziyu Zhang
- Department of pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Faying Liu
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China; Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yongbao Peng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yang Zou
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China; Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
21
|
Gao Y, Vakoc CR. Therapeutic index of targeting select chromatin complexes in human cancer patients. Curr Opin Genet Dev 2024; 85:102162. [PMID: 38401489 PMCID: PMC11072572 DOI: 10.1016/j.gde.2024.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Aberrant chromatin regulation can promote the initiation and progression of human cancer. An improved understanding of such mechanisms has resulted in the identification of cancers with an enhanced dependency on specific chromatin regulatory proteins relative to nonmalignant cell types. Hence, targeting of such complexes with small molecules has significant therapeutic potential in oncology. In recent years, several drugs have been developed and evaluated in human cancer patients, which can influence tumor biology by reprogramming of chromatin structure. In this review, we summarize several of the known mechanisms that endow cancer cells with a powerful dependency on chromatin regulation that exceeds the requirements for normal tissue homeostasis. We also summarize the remarkable small-molecule inhibitors that exploit chromatin regulator dependencies with a clear therapeutic benefit in human cancer patients.
Collapse
Affiliation(s)
- Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. https://twitter.com/@yuangao_yg
| | | |
Collapse
|
22
|
Kim H, Lebeau B, Papadopoli D, Jovanovic P, Russo M, Avizonis D, Morita M, Afzali F, Ursini-Siegel J, Postovit LM, Witcher M, Topisirovic I. MTOR modulation induces selective perturbations in histone methylation which influence the anti-proliferative effects of mTOR inhibitors. iScience 2024; 27:109188. [PMID: 38433910 PMCID: PMC10904987 DOI: 10.1016/j.isci.2024.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Emerging data suggest a significant cross-talk between metabolic and epigenetic programs. However, the relationship between the mechanistic target of rapamycin (mTOR), which is a pivotal metabolic regulator, and epigenetic modifications remains poorly understood. Our results show that mTORC1 activation caused by the abrogation of its negative regulator tuberous sclerosis complex 2 (TSC2) coincides with increased levels of the histone modification H3K27me3 but not H3K4me3 or H3K9me3. This selective H3K27me3 induction was mediated via 4E-BP-dependent increase in EZH2 protein levels. Surprisingly, mTOR inhibition also selectively induced H3K27me3. This was independent of TSC2, and was paralleled by reduced EZH2 and increased EZH1 protein levels. Notably, the ability of mTOR inhibitors to induce H3K27me3 levels was positively correlated with their anti-proliferative effects. Collectively, our findings demonstrate that both activation and inhibition of mTOR selectively increase H3K27me3 by distinct mechanisms, whereby the induction of H3K27me3 may potentiate the anti-proliferative effects of mTOR inhibitors.
Collapse
Affiliation(s)
- HaEun Kim
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
| | - Benjamin Lebeau
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - David Papadopoli
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Predrag Jovanovic
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
| | - Mariana Russo
- Goodman Cancer Research Centre, Montréal, QC H3A 1A3, Canada
| | - Daina Avizonis
- Goodman Cancer Research Centre, Montréal, QC H3A 1A3, Canada
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Farzaneh Afzali
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Josie Ursini-Siegel
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Michael Witcher
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Ivan Topisirovic
- Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
23
|
Frederico SC, Sharma N, Darling C, Taori S, Dubinsky AC, Zhang X, Raphael I, Kohanbash G. Myeloid cells as potential targets for immunotherapy in pediatric gliomas. Front Pediatr 2024; 12:1346493. [PMID: 38523840 PMCID: PMC10960498 DOI: 10.3389/fped.2024.1346493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) including pediatric glioblastoma (pGBM) are highly aggressive pediatric central nervous system (CNS) malignancies. pGBM comprises approximately 3% of all pediatric CNS malignancies and has a 5-year survival rate of approximately 20%. Surgical resection and chemoradiation are often the standard of care for pGBM and pHGG, however, even with these interventions, survival for children diagnosed with pGBM and pHGG remains poor. Due to shortcomings associated with the standard of care, many efforts have been made to create novel immunotherapeutic approaches targeted to these malignancies. These efforts include the use of vaccines, cell-based therapies, and immune-checkpoint inhibitors. However, it is believed that in many pediatric glioma patients an immunosuppressive tumor microenvironment (TME) possess barriers that limit the efficacy of immune-based therapies. One of these barriers includes the presence of immunosuppressive myeloid cells. In this review we will discuss the various types of myeloid cells present in the glioma TME, including macrophages and microglia, myeloid-derived suppressor cells, and dendritic cells, as well as the specific mechanisms these cells can employ to enable immunosuppression. Finally, we will highlight therapeutic strategies targeted to these cells that are aimed at impeding myeloid-cell derived immunosuppression.
Collapse
Affiliation(s)
- Stephen C. Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nikhil Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Corbin Darling
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Suchet Taori
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY, United States
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Wang D, Yan K, Yu H, Li H, Zhou W, Hong Y, Guo S, Wang Y, Xu C, Pan C, Tang Y, Liu N, Wu W, Zhang L, Xi Q. Fimepinostat Impairs NF-κB and PI3K/AKT Signaling and Enhances Gemcitabine Efficacy in H3.3K27M-Diffuse Intrinsic Pontine Glioma. Cancer Res 2024; 84:598-615. [PMID: 38095539 DOI: 10.1158/0008-5472.can-23-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/26/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most aggressive pediatric brain tumor, and the oncohistone H3.3K27M mutation is associated with significantly worse clinical outcomes. Despite extensive research efforts, effective approaches for treating DIPG are lacking. Through drug screening, we identified the combination of gemcitabine and fimepinostat as a potent therapeutic intervention for H3.3K27M DIPG. H3.3K27M facilitated gemcitabine-induced apoptosis in DIPG, and gemcitabine stabilized and activated p53, including increasing chromatin accessibility for p53 at apoptosis-related loci. Gemcitabine simultaneously induced a prosurvival program in DIPG through activation of RELB-mediated NF-κB signaling. Specifically, gemcitabine induced the transcription of long terminal repeat elements, activated cGAS-STING signaling, and stimulated noncanonical NF-κB signaling. A drug screen in gemcitabine-treated DIPG cells revealed that fimepinostat, a dual inhibitor of HDAC and PI3K, effectively suppressed the gemcitabine-induced NF-κB signaling in addition to blocking PI3K/AKT activation. Combination therapy comprising gemcitabine and fimepinostat elicited synergistic antitumor effects in vitro and in orthotopic H3.3K27M DIPG xenograft models. Collectively, p53 activation using gemcitabine and suppression of RELB-mediated NF-κB activation and PI3K/AKT signaling using fimepinostat is a potential therapeutic strategy for treating H3.3K27M DIPG. SIGNIFICANCE Gemcitabine activates p53 and induces apoptosis to elicit antitumor effects in H3.3K27M DIPG, which can be enhanced by blocking NF-κB and PI3K/AKT signaling with fimepinostat, providing a synergistic combination therapy for DIPG.
Collapse
Affiliation(s)
- Dan Wang
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongxing Yu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haocheng Li
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Zhou
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqiang Hong
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuning Guo
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nian Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
26
|
Yu X, Zhao H, Wang R, Chen Y, Ouyang X, Li W, Sun Y, Peng A. Cancer epigenetics: from laboratory studies and clinical trials to precision medicine. Cell Death Discov 2024; 10:28. [PMID: 38225241 PMCID: PMC10789753 DOI: 10.1038/s41420-024-01803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Epigenetic dysregulation is a common feature of a myriad of human diseases, particularly cancer. Defining the epigenetic defects associated with malignant tumors has become a focus of cancer research resulting in the gradual elucidation of cancer cell epigenetic regulation. In fact, most stages of tumor progression, including tumorigenesis, promotion, progression, and recurrence are accompanied by epigenetic alterations, some of which can be reversed by epigenetic drugs. The main objective of epigenetic therapy in the era of personalized precision medicine is to detect cancer biomarkers to improve risk assessment, diagnosis, and targeted treatment interventions. Rapid technological advancements streamlining the characterization of molecular epigenetic changes associated with cancers have propelled epigenetic drug research and development. This review summarizes the main mechanisms of epigenetic dysregulation and discusses past and present examples of epigenetic inhibitors in cancer diagnosis and treatment, with an emphasis on the development of epigenetic enzyme inhibitors or drugs. In the final part, the prospect of precise diagnosis and treatment is considered based on a better understanding of epigenetic abnormalities in cancer.
Collapse
Affiliation(s)
- Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Hao Zhao
- Department of Spinal Surgery, Yichang Central People's Hospital Affiliated with China Three Gorges University, Yichang, Hubei, 443000, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, 519000, China
| | - Yingyin Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Xumei Ouyang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China
| | - Yihao Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| | - Anghui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, (Zhuhai People's Hospital Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, China.
| |
Collapse
|
27
|
Su R, Cao W, Ma G, Li W, Li Z, Liu Y, Chen L, Chen Z, Li X, Cui P, Huang G. Cyclohexene oxide CA, a derivative of zeylenone, exhibits anti-cancer activity in glioblastoma by inducing G0/G1 phase arrest through interference with EZH2. Front Pharmacol 2024; 14:1326245. [PMID: 38264522 PMCID: PMC10803536 DOI: 10.3389/fphar.2023.1326245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction: Due to its highly aggressiveness and malignancy, glioblastoma (GBM) urgently requires a safe and effective treatment strategy. Zeylenone, a natural polyoxygenated cyclohexenes compound isolated from Uvaria grandiflora, has exhibited potential biological activities in various human diseases, including tumors. Methods: We designed and synthesized a series of (+)-Zeylenone analogues and evaluated their anti-GBM roles through structural-activity analysis. Cell Counting Kit-8, TUNEL, transwell and flow cytometry were employed for investigating the anticancer effects of CA on GBM cells. Western blotting, molecular docking, qRT-PCR and ChIP assays were performed to reveal the underlying mechanisms by which CA regulates the GBM cell cycle. The nude mouse xenograft model, HE staining, immunohistochemistry and was used to evaluate the anticancer effect of CA in vivo. Results: We identified CA ((1R, 2R, 3S)-3-p-fluorobenzoyl-zeylenone) as having the lowest IC50 value in GBM cells. CA treatment significantly inhibited the malignant behaviors of GBM cells and induced G0/G1 phase arrest in vitro. Furthermore, we validated the molecular mechanism by which CA interferes with EZH2, attenuating the down-regulation of cyclin-dependent kinase inhibitors p27 and p16 by the PRC2 complex. By establishing orthotopic nude mice models, we further validated the inhibitory role of CA on tumorigenesis of GBM cells in vivo and its potential values to synergistically potentiate the anti-tumor effects of EZH2 inhibitors. Conclusion: Overall, this paper elucidated the anti-GBM effects and potential mechanisms of CA, and may provide a therapeutic drug candidate for GBM treatment.
Collapse
Affiliation(s)
- Rui Su
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weiwei Cao
- Institute of Pharmacy, Shenzhen University Medical School, Shenzhen, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yongpei Liu
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zebin Chen
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xuejuan Li
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ping Cui
- Department of Pharmacy, Shenzhen Children’s Hospital, Shenzhen, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
28
|
Stitzlein LM, Adams JT, Stitzlein EN, Dudley RW, Chandra J. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks. J Exp Clin Cancer Res 2024; 43:12. [PMID: 38183103 PMCID: PMC10768151 DOI: 10.1186/s13046-023-02923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Targeted therapies, including small molecule inhibitors directed against aberrant kinase signaling and chromatin regulators, are emerging treatment options for high-grade gliomas (HGG). However, when translating these inhibitors into the clinic, their efficacy is generally limited to partial and transient responses. Recent studies in models of high-grade gliomas reveal a convergence of epigenetic regulators and kinase signaling networks that often cooperate to promote malignant properties and drug resistance. This review examines the interplay between five well-characterized groups of chromatin regulators, including the histone deacetylase (HDAC) family, bromodomain and extraterminal (BET)-containing proteins, protein arginine methyltransferase (PRMT) family, Enhancer of zeste homolog 2 (EZH2), and lysine-specific demethylase 1 (LSD1), and various signaling pathways essential for cancer cell growth and progression. These specific epigenetic regulators were chosen for review due to their targetability via pharmacological intervention and clinical relevance. Several studies have demonstrated improved efficacy from the dual inhibition of the epigenetic regulators and signaling kinases. Overall, the interactions between epigenetic regulators and kinase signaling pathways are likely influenced by several factors, including individual glioma subtypes, preexisting mutations, and overlapping/interdependent functions of the chromatin regulators. The insights gained by understanding how the genome and epigenome cooperate in high-grade gliomas will guide the design of future therapeutic strategies that utilize dual inhibition with improved efficacy and overall survival.
Collapse
Affiliation(s)
- Lea M Stitzlein
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jack T Adams
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Richard W Dudley
- Department of Pharmaceutical Sciences, University of Findlay, Findlay, OH, USA
| | - Joya Chandra
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
29
|
Brown EJ, Balaguer-Lluna L, Cribbs AP, Philpott M, Campo L, Browne M, Wong JF, Oppermann U, Carcaboso ÁM, Bullock AN, Farnie G. PRMT5 inhibition shows in vitro efficacy against H3K27M-altered diffuse midline glioma, but does not extend survival in vivo. Sci Rep 2024; 14:328. [PMID: 38172189 PMCID: PMC10764357 DOI: 10.1038/s41598-023-48652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments.
Collapse
Affiliation(s)
- Elizabeth J Brown
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Adam P Cribbs
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Martin Philpott
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Leticia Campo
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Molly Browne
- Department of Oncology, Experimental Cancer Medicine Centre, University of Oxford, Oxford, UK
| | - Jong Fu Wong
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Ángel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Alex N Bullock
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Gillian Farnie
- Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK.
- Cancer Research Horizons, The Francis Crick Institute, London, UK.
| |
Collapse
|
30
|
Martinez PJ, Green AL, Borden MA. Targeting diffuse midline gliomas: The promise of focused ultrasound-mediated blood-brain barrier opening. J Control Release 2024; 365:412-421. [PMID: 38000663 PMCID: PMC10842695 DOI: 10.1016/j.jconrel.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of DMGs.
Collapse
Affiliation(s)
- Payton J Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, United States; Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, United States.
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Mark A Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, United States; Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| |
Collapse
|
31
|
Pang F, Zhang L, Li M, Yi X, Wang Y, Yang P, Wen B, Jiang J, Teng Y, Yang X, Chen L, Xu J, Wang L. Ribosomal S6 protein kinase 4 promotes resistance to EZH2 inhibitors in glioblastoma. Cancer Gene Ther 2023; 30:1636-1648. [PMID: 37726387 DOI: 10.1038/s41417-023-00666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Glioblastoma (GBM) is a highly malignant type of brain tumor with limited treatment options. Recent research has focused on epigenetic regulatory factors, such as Enhancer of Zeste Homolog 2 (EZH2), which plays a role in gene expression through epigenetic modifications. EZH2 inhibitors have been developed as potential therapeutic agents for GBM, but resistance to these inhibitors remains a considerable challenge. This study aimed to investigate the role of ribosomal S6 protein kinase 4 (RSK4) in GBM and its association with resistance to EZH2 inhibitors. We first induced drug resistance in primary GBM cell lines by treatment with an EZH2 inhibitor and observed increases in the expression of stemness markers associated with glioblastoma stem cells (GSCs) in the drug-resistant cells. We also found high expression of RSK4 in GBM patient samples and identified the correlation of high RSK4 expression with poor prognosis and GSC marker expression. Further experiments showed that knocking down RSK4 in drug-resistant GBM cells restored their sensitivity to EZH2 inhibitors and decreased the expression of GSC markers, thus reducing their self-renewal capacity. From a mechanistic perspective, we discovered that RSK4 directly phosphorylates EZH2, activating the EZH2/STAT3 pathway and promoting resistance to EZH2 inhibitors in GBM. We also found that combining EZH2 inhibitors with an RSK4 inhibitor called BI-D1870 had better inhibitory effects on GBM occurrence and progression in both in vitro and in vivo experiments. In conclusion, this study demonstrates that RSK4 enhances cancer stemness and mediates resistance to EZH2 inhibitors in GBM. Combination treatment with EZH2 inhibitors and RSK4 inhibitors is a promising potential therapeutic strategy for GBM. Collectively, our results strongly demonstrate that RSK4 regulates the EZH2/STAT3 pathway to promote GSC maintenance and EZH2i resistance in a PRC2-independent manner, indicating that RSK4 is a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Fangning Pang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xicai Yi
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yu Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peng Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bin Wen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jinquan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunpeng Teng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
32
|
Krug B, Hu B, Chen H, Ptack A, Chen X, Gretarsson KH, Deshmukh S, Kabir N, Andrade AF, Jabbour E, Harutyunyan AS, Lee JJY, Hulswit M, Faury D, Russo C, Xu X, Johnston MJ, Baguette A, Dahl NA, Weil AG, Ellezam B, Dali R, Blanchette M, Wilson K, Garcia BA, Soni RK, Gallo M, Taylor MD, Kleinman CL, Majewski J, Jabado N, Lu C. H3K27me3 spreading organizes canonical PRC1 chromatin architecture to regulate developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.567931. [PMID: 38116029 PMCID: PMC10729739 DOI: 10.1101/2023.11.28.567931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.
Collapse
|
33
|
Erez N, Furth N, Fedyuk V, Wadden J, Aittaleb R, Schwark K, Niculcea M, Miclea M, Mody R, Franson A, Eze A, Nourmohammadi N, Nazarian J, Venneti S, Koschmann C, Shema E. Single-molecule systems for detection and monitoring of plasma circulating nucleosomes and oncoproteins in Diffuse Midline Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568019. [PMID: 38045418 PMCID: PMC10690213 DOI: 10.1101/2023.11.21.568019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The analysis of cell-free tumor DNA (ctDNA) and proteins in the blood of cancer patients potentiates a new generation of non-invasive diagnostics and treatment monitoring approaches. However, confident detection of these tumor-originating markers is challenging, especially in the context of brain tumors, in which extremely low amounts of these analytes circulate in the patient's plasma. Here, we applied a sensitive single-molecule technology to profile multiple histone modifications on millions of individual nucleosomes from the plasma of Diffuse Midline Glioma (DMG) patients. The system reveals epigenetic patterns that are unique to DMG, significantly differentiating this group of patients from healthy subjects or individuals diagnosed with other cancer types. We further develop a method to directly capture and quantify the tumor-originating oncoproteins, H3-K27M and mutant p53, from the plasma of children diagnosed with DMG. This single-molecule system allows for accurate molecular classification of patients, utilizing less than 1ml of liquid-biopsy material. Furthermore, we show that our simple and rapid detection strategy correlates with MRI measurements and droplet-digital PCR (ddPCR) measurements of ctDNA, highlighting the utility of this approach for non-invasive treatment monitoring of DMG patients. This work underscores the clinical potential of single-molecule-based, multi-parametric assays for DMG diagnosis and treatment monitoring.
Collapse
|
34
|
Galvin RT, Jena S, Maeser D, Gruener R, Huang RS. Revealing Pan-Histology Immunomodulatory Targets in Pediatric Central Nervous System Tumors. Cancers (Basel) 2023; 15:5455. [PMID: 38001715 PMCID: PMC10670190 DOI: 10.3390/cancers15225455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The application of immunotherapy for pediatric CNS malignancies has been limited by the poorly understood immune landscape in this context. The aim of this study was to uncover the mechanisms of immune suppression common among pediatric brain tumors. METHODS We apply an immunologic clustering algorithm validated by The Cancer Genome Atlas Project to an independent pediatric CNS transcriptomic dataset. Within the clusters, the mechanisms of immunosuppression are explored via tumor microenvironment deconvolution and survival analyses to identify relevant immunosuppressive genes with translational relevance. RESULTS High-grade diseases fall predominantly within an immunosuppressive subtype (C4) that independently lowers overall survival time and where common immune checkpoints (e.g., PDL1, CTLA4) are less relevant. Instead, we identify several alternative immunomodulatory targets with relevance across histologic diseases. Specifically, we show how the mechanism of EZH2 inhibition to enhance tumor immunogenicity in vitro via the upregulation of MHC class 1 is applicable to a pediatric CNS oncologic context. Meanwhile, we identify that the C3 (inflammatory) immune subtype is more common in low-grade diseases and find that immune checkpoint inhibition may be an effective way to curb progression for this subset. CONCLUSIONS Three predominant immunologic clusters are identified across pediatric brain tumors. Among high-risk diseases, the predominant immune cluster is associated with recurrent immunomodulatory genes that influence immune infiltrate, including a subset that impacts survival across histologies.
Collapse
Affiliation(s)
- Robert T. Galvin
- Division of Pediatric Hematology & Oncology and Bone Marrow Transplant, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sampreeti Jena
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (S.J.); (R.G.)
| | - Danielle Maeser
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Robert Gruener
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (S.J.); (R.G.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (S.J.); (R.G.)
| |
Collapse
|
35
|
Venneti S, Kawakibi AR, Ji S, Waszak SM, Sweha SR, Mota M, Pun M, Deogharkar A, Chung C, Tarapore RS, Ramage S, Chi A, Wen PY, Arrillaga-Romany I, Batchelor TT, Butowski NA, Sumrall A, Shonka N, Harrison RA, de Groot J, Mehta M, Hall MD, Daghistani D, Cloughesy TF, Ellingson BM, Beccaria K, Varlet P, Kim MM, Umemura Y, Garton H, Franson A, Schwartz J, Jain R, Kachman M, Baum H, Burant CF, Mottl SL, Cartaxo RT, John V, Messinger D, Qin T, Peterson E, Sajjakulnukit P, Ravi K, Waugh A, Walling D, Ding Y, Xia Z, Schwendeman A, Hawes D, Yang F, Judkins AR, Wahl D, Lyssiotis CA, de la Nava D, Alonso MM, Eze A, Spitzer J, Schmidt SV, Duchatel RJ, Dun MD, Cain JE, Jiang L, Stopka SA, Baquer G, Regan MS, Filbin MG, Agar NY, Zhao L, Kumar-Sinha C, Mody R, Chinnaiyan A, Kurokawa R, Pratt D, Yadav VN, Grill J, Kline C, Mueller S, Resnick A, Nazarian J, Allen JE, Odia Y, Gardner SL, Koschmann C. Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways. Cancer Discov 2023; 13:2370-2393. [PMID: 37584601 PMCID: PMC10618742 DOI: 10.1158/2159-8290.cd-23-0131] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
| | | | - Sunjong Ji
- University of Michigan, Ann Arbor, Michigan
| | - Sebastian M. Waszak
- University of California, San Francisco, San Francisco, California
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan R. Sweha
- University of Michigan, Ann Arbor, Michigan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Chan Chung
- University of Michigan, Ann Arbor, Michigan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | | | | | | | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | | | | | | | | | | | | | - John de Groot
- University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | - Kevin Beccaria
- Department of Neurosurgery, Necker Sick Children's University Hospital and Paris Descartes University, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital and Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | - Heidi Baum
- University of Michigan, Ann Arbor, Michigan
| | | | - Sophie L. Mottl
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | - Yujie Ding
- University of Michigan, Ann Arbor, Michigan
| | - Ziyun Xia
- University of Michigan, Ann Arbor, Michigan
| | | | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Augustine Eze
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Jasper Spitzer
- Institute of Innate Immunity, AG Immunogenomics, University Hospital Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, AG Immunmonitoring and Genomics, University Hospital Bonn, Bonn, Germany
| | - Susanne V. Schmidt
- Institute of Innate Immunity, AG Immunogenomics, University Hospital Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, AG Immunmonitoring and Genomics, University Hospital Bonn, Bonn, Germany
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, NSW, Australia
| | - Jason E. Cain
- Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mariella G. Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nathalie Y.R. Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lili Zhao
- University of Michigan, Ann Arbor, Michigan
| | | | - Rajen Mody
- University of Michigan, Ann Arbor, Michigan
| | | | - Ryo Kurokawa
- University of Michigan, Ann Arbor, Michigan
- The University of Tokyo, Tokyo, Japan
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Viveka N. Yadav
- Department of Pediatrics at Children's Mercy Research Institute, Kansas City, Missouri
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Cassie Kline
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sabine Mueller
- University of California, San Francisco, San Francisco, California
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Adam Resnick
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Javad Nazarian
- Department of Pediatrics, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children's National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | |
Collapse
|
36
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
37
|
Espinoza Pereira KN, Shan J, Licht JD, Bennett RL. Histone mutations in cancer. Biochem Soc Trans 2023; 51:1749-1763. [PMID: 37721138 PMCID: PMC10657182 DOI: 10.1042/bst20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Genes encoding histone proteins are recurrently mutated in tumor samples, and these mutations may impact nucleosome stability, histone post-translational modification, or chromatin dynamics. The prevalence of histone mutations across diverse cancer types suggest that normal chromatin structure is a barrier to tumorigenesis. Oncohistone mutations disrupt chromatin structure and gene regulatory mechanisms, resulting in aberrant gene expression and the development of cancer phenotypes. Examples of oncohistones include the histone H3 K27M mutation found in pediatric brain cancers that blocks post-translational modification of the H3 N-terminal tail and the histone H2B E76K mutation found in some solid tumors that disrupts nucleosome stability. Oncohistones may comprise a limited fraction of the total histone pool yet cause global effects on chromatin structure and drive cancer phenotypes. Here, we survey histone mutations in cancer and review their function and role in tumorigenesis.
Collapse
Affiliation(s)
| | - Jixiu Shan
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Jonathan D. Licht
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| | - Richard L. Bennett
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, U.S.A
| |
Collapse
|
38
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
39
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2023:10.1038/s41418-023-01227-9. [PMID: 37828086 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
40
|
Freire NH, Jaeger MDC, de Farias CB, Nör C, Souza BK, Gregianin L, Brunetto AT, Roesler R. Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Mol Cell Biochem 2023; 478:2241-2255. [PMID: 36637615 DOI: 10.1007/s11010-022-04655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil.
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Sharma M, Barravecchia I, Magnuson B, Ferris SF, Apfelbaum A, Mbah NE, Cruz J, Krishnamoorthy V, Teis R, Kauss M, Koschmann C, Lyssiotis CA, Ljungman M, Galban S. Histone H3 K27M-mediated regulation of cancer cell stemness and differentiation in diffuse midline glioma. Neoplasia 2023; 44:100931. [PMID: 37647805 PMCID: PMC10474232 DOI: 10.1016/j.neo.2023.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Therapeutic resistance remains a major obstacle to preventing progression of H3K27M-altered Diffuse Midline Glioma (DMG). Resistance is driven in part by ALDH-positive cancer stem cells (CSC), with high ALDH1A3 expression observed in H3K27M-mutant DMG biopsies. We hypothesized that ALDH-mediated stemness and resistance may in part be driven by the oncohistone itself. Upon deletion of H3K27M, ALDH1A3 expression decreased dramatically and was accompanied by a gain in astrocytic marker expression and a loss of neurosphere forming potential, indicative of differentiation. Here we show that the oncohistone regulates histone acetylation through ALDH1A3 in a Wnt-dependent manner and that loss of H3K27M expression results in sensitization of DMGs to radiotherapy. The observed elevated Wnt signaling in H3K27M-altered DMG likely stems from a dramatic suppression of mRNA and protein expression of the Wnt inhibitor EYA4 driven by the oncohistone. Thus, our findings identify EYA4 as a bona fide tumor suppressor in DMG that upon suppression, results in aberrant Wnt signaling to orchestrate stemness and differentiation. Future studies will explore whether overexpression of EYA4 in DMG can impede growth and invasion. In summary, we have gained mechanistic insight into H3K27M-mediated regulation of cancer stemness and differentiation, which provides rationale for exploring new therapeutic targets for DMG.
Collapse
Affiliation(s)
- Monika Sharma
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ivana Barravecchia
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Brian Magnuson
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, School of Public Health, The University of Michigan, Ann Arbor, MI 48109, United States
| | - Sarah F Ferris
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - April Apfelbaum
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Nneka E Mbah
- Department of Molecular & Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jeanette Cruz
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Varunkumar Krishnamoorthy
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Robert Teis
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - McKenzie Kauss
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Carl Koschmann
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Costas A Lyssiotis
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Molecular & Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Mats Ljungman
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI 48109, United States
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
42
|
Al Sharie S, Abu Laban D, Nazzal J, Iqneibi S, Ghnaimat S, Al-Ani A, Al-Hussaini M. Midline Gliomas: A Retrospective Study from a Cancer Center in the Middle East. Cancers (Basel) 2023; 15:4545. [PMID: 37760513 PMCID: PMC10527416 DOI: 10.3390/cancers15184545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Midline gliomas are tumors that occur in midline structures and can be circumscribed or diffuse. Classical midline structures include the thalamus, brainstem, and spinal cord. Other midline structures include the corpus callosum, basal ganglia, ventricles, paraventricular structures, and cerebellum. Diffuse midline glioma (DMG) is a diffuse glioma that occurs in the classical midline structures, characterized by a specific genetic alteration, and associated with grim outcome. This study was conducted at King Hussein Cancer Center and reviewed the medical records of 104 patients with circumscribed and diffuse gliomas involving midline structures that underwent biopsy between 2005 and 2022. We included a final cohort of 104 patients characterized by a median age of 23 years and a male-to-female ratio of 1.59-to-1. Diffuse high-grade glioma (DHGG) was the most common pathological variant (41.4%), followed by DMG (28.9%). GFAP was positive in most cases (71.2%). Common positive mutations/alterations detected by surrogate immunostains included H3 K27me3 (28.9%), p53 (25.0%), and H3 K27M (20.2%). Age group, type of treatment, and immunohistochemistry were significantly associated with both the location of the tumor and tumor variant (all; p < 0.05). DMGs were predominantly found in the thalamus, whereas circumscribed gliomas were most commonly observed in the spinal cord. None of the diffuse gliomas outside the classical location, or circumscribed gliomas harbored the defining DMG mutations. The median overall survival (OS) for the entire cohort was 10.6 months. Only the tumor variant (i.e., circumscribed gliomas) and radiotherapy were independent prognosticators on multivariate analysis.
Collapse
Affiliation(s)
- Sarah Al Sharie
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Jamil Nazzal
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Shahad Iqneibi
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Sura Ghnaimat
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
43
|
Reich TJ, Lewis PW. A goldilocks amount of H3K27me3. Nat Chem Biol 2023; 19:1046-1047. [PMID: 36973441 PMCID: PMC11250990 DOI: 10.1038/s41589-023-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Affiliation(s)
- Tyler J Reich
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
44
|
Hoetker MS, Yagi M, Di Stefano B, Langerman J, Cristea S, Wong LP, Huebner AJ, Charlton J, Deng W, Haggerty C, Sadreyev RI, Meissner A, Michor F, Plath K, Hochedlinger K. H3K36 methylation maintains cell identity by regulating opposing lineage programmes. Nat Cell Biol 2023; 25:1121-1134. [PMID: 37460697 PMCID: PMC10896483 DOI: 10.1038/s41556-023-01191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFβ signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.
Collapse
Affiliation(s)
- Michael S Hoetker
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masaki Yagi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Justin Langerman
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Weixian Deng
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Chuck Haggerty
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franziska Michor
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
- The Ludwig Center at Harvard, Boston, MA, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
45
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
46
|
El Malki K, Wehling P, Alt F, Sandhoff R, Zahnreich S, Ustjanzew A, Wilzius C, Brockmann MA, Wingerter A, Russo A, Beck O, Sommer C, Ottenhausen M, Frauenknecht KBM, Paret C, Faber J. Glucosylceramide Synthase Inhibitors Induce Ceramide Accumulation and Sensitize H3K27 Mutant Diffuse Midline Glioma to Irradiation. Int J Mol Sci 2023; 24:9905. [PMID: 37373053 DOI: 10.3390/ijms24129905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
H3K27M mutant (mut) diffuse midline glioma (DMG) is a lethal cancer with no effective cure. The glycosphingolipids (GSL) metabolism is altered in these tumors and could be exploited to develop new therapies. We tested the effect of the glucosylceramide synthase inhibitors (GSI) miglustat and eliglustat on cell proliferation, alone or in combination with temozolomide or ionizing radiation. Miglustat was included in the therapy protocol of two pediatric patients. The effect of H3.3K27 trimethylation on GSL composition was analyzed in ependymoma. GSI reduced the expression of the ganglioside GD2 in a concentration and time-dependent manner and increased the expression of ceramide, ceramide 1-phosphate, sphingosine, and sphingomyelin but not of sphingosine 1-phosphate. Miglustat significantly increased the efficacy of irradiation. Treatment with miglustat according to dose recommendations for patients with Niemann-Pick disease was well tolerated with manageable toxicities. One patient showed a mixed response. In ependymoma, a high concentration of GD2 was found only in the presence of the loss of H3.3K27 trimethylation. In conclusion, treatment with miglustat and, in general, targeting GSL metabolism may offer a new therapeutic opportunity and can be administered in close proximity to radiation therapy. Alterations in H3K27 could be useful to identify patients with a deregulated GSL metabolism.
Collapse
Affiliation(s)
- Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Pia Wehling
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Francesca Alt
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Carolin Wilzius
- Lipid Pathobiochemistry, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Olaf Beck
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Malte Ottenhausen
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Katrin B M Frauenknecht
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- National Center of Pathology (NCP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Research Center of Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Diffuse intrinsic pontine glioma: Insights into oncogenesis and opportunities for targeted therapy. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
48
|
Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ. Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 2023; 42:367-388. [PMID: 37119408 PMCID: PMC10441521 DOI: 10.1007/s10555-023-10105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.
Collapse
Affiliation(s)
- Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA
- College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jared M Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, USA.
| |
Collapse
|
49
|
Andrade AF, Chen CCL, Jabado N. Oncohistones in brain tumors: the soil and seed. Trends Cancer 2023; 9:444-455. [PMID: 36933956 PMCID: PMC11075889 DOI: 10.1016/j.trecan.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Recurrent somatic mutations in histone 3 (H3) variants (termed 'oncohistones') have been identified in high-grade gliomas (HGGs) in children and young adults and induce tumorigenesis through disruption of chromatin states. Oncohistones occur with exquisite neuroanatomical specificity and are associated with specific age distribution and epigenome landscapes. Here, we review the known intrinsic ('seed') and the extrinsic ('soil') factors needed for their optimal oncogenic effect and highlight the many unresolved questions regarding their effects on development and crosstalk with the tumor microenvironment. The 'seed and soil' analogy, used to explain tumor metastatic niches, also applies to oncohistones, which mainly thrive and flourish in specific chromatin states during very narrow windows of development, creating exquisite vulnerabilities, which could provide effective therapies for these deadly cancers.
Collapse
Affiliation(s)
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Pediatrics, McGill University, Montreal, QC, H3A 0C7, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
50
|
Lyu Y, Guo Y, Okeoma CM, Yan Z, Hu N, Li Z, Zhou S, Zhao X, Li J, Wang X. Engineered extracellular vesicles (EVs): Promising diagnostic/therapeutic tools for pediatric high-grade glioma. Biomed Pharmacother 2023; 163:114630. [PMID: 37094548 DOI: 10.1016/j.biopha.2023.114630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly malignant brain tumor that mainly occurs in children with extremely low overall survival. Traditional therapeutic strategies, such as surgical resection and chemotherapy, are not feasible mostly due to the special location and highly diffused features. Radiotherapy turns out to be the standard treatment method but with limited benefits of overall survival. A broad search for novel and targeted therapies is in the progress of both preclinical investigations and clinical trials. Extracellular vesicles (EVs) emerged as a promising diagnostic and therapeutic candidate due to their distinct biocompatibility, excellent cargo-loading-delivery capacity, high biological barrier penetration efficiency, and ease of modification. The utilization of EVs in various diseases as biomarker diagnoses or therapeutic agents is revolutionizing modern medical research and practice. In this review, we will briefly talk about the research development of DIPG, and present a detailed description of EVs in medical applications, with a discussion on the application of engineered peptides on EVs. The possibility of applying EVs as a diagnostic tool and drug delivery system in DIPG is also discussed.
Collapse
Affiliation(s)
- Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yupei Guo
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Zhaoyue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Nan Hu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zian Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shaolong Zhou
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinjun Wang
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|