1
|
Masson W, Barbagelata L, Nogueira JP. Aspirin use in patients with elevated lipoprotein(a): Impact on cardiovascular events and bleeding. Curr Probl Cardiol 2024; 49:102827. [PMID: 39191359 DOI: 10.1016/j.cpcardiol.2024.102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
The role of aspirin in cardiovascular primary prevention remains controversial. There are physiological reasons to explore its potential benefits in patients with high levels of lipoprotein(a) [Lp(a)], mainly due to its antifibrinolytic properties and interactions with platelets. The primary objective of this systematic review was to evaluate the cardiovascular benefits and bleeding risks associated with aspirin use in patients who have elevated Lp(a) levels but no history of cardiovascular disease. This systematic review was conducted following PRISMA guidelines. We performed a literature search to identify studies assessing the cardiovascular benefits and bleeding risks of aspirin use in patients with elevated Lp(a) levels (or a related genetic variant) who have no history of cardiovascular disease. Five studies (49,871 individuals) were considered for this systematic review. Three studies assessed the impact of aspirin use in relation to genetic variants associated with elevated Lp(a) levels (SNP rs379822), while the remaining two studies directly measured plasma levels of Lp(a). The endpoints evaluated varied among the studies. Overall, the findings consistently show that carriers of the apolipoprotein(a) variant or patients with Lp(a) levels > 50 mg/dL experience a reduction in cardiovascular risk with aspirin use. No significant bleeding issues were observed, although such events were reported in only two studies. This systematic review suggests that aspirin use in patients with elevated Lp(a) levels and no prior cardiovascular history may reduce cardiovascular risk. The available data on bleeding risk is insufficient.
Collapse
Affiliation(s)
- Walter Masson
- Department of Cardiology. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Barbagelata
- Department of Cardiology. Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Juan Patricio Nogueira
- Endocrinology, Nutrition and Metabolism Research Center, Faculty of Health Sciences, Universidad Nacional de Formosa, Argentina.
| |
Collapse
|
2
|
Mahmoud AK, Farina JM, Awad K, Ali NB, Pereyra M, Scalia IG, Abbas MT, Allam MN, Kamal MA, Abu Rmilah AA, Chao CJ, Timothy B, Alsidawi S, Lester SJ, Pollack PM, Alkhouli MA, Lee KS, Yang EH, Lee RW, Sweeney JP, Fortuin DF, Ayoub C, Arsanjani R. Lipoprotein(a) and Long-term In-stent Restenosis after Percutaneous Coronary Intervention. Eur J Prev Cardiol 2024:zwae212. [PMID: 38916491 DOI: 10.1093/eurjpc/zwae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
AIM Lipoprotein(a) [Lp(a)] has demonstrated its association with atherosclerosis and myocardial infarction. However, its role in the development of in-stent restenosis (ISR) after percutaneous coronary intervention (PCI) is not clearly established. The aim of this study is to investigate the association between Lp(a) and ISR. METHODS A retrospective study of adult patients who underwent successful PCI between January 2006 and December 2017 at the three Mayo Clinic sites and had a preprocedural Lp(a) measurement was conducted. Patients were divided into two groups according to the serum Lp(a) concentration (high Lp(a) ≥50 mg/dl and low Lp(a) <50 mg/dl). Univariable and multivariable analyses were performed to compare risk of ISR between patients with high Lp(a) versus those with low Lp(a). RESULTS A total of 1209 patients were included, with mean age 65.9 ±11.7 years and 71.8% were male. Median follow-up after baseline PCI was 8.8 (IQR 7.4) years. Restenosis was observed in 162 (13.4%) patients. Median serum levels of Lp(a) were significantly higher in patients affected by ISR versus non-affected cases: 27 (IQR 73.8) vs. 20 (IQR 57.5) mg/dL, p=0.008. The rate of ISR was significantly higher among patients with high Lp(a) versus patients with low Lp(a) values (17.0% vs 11.6%, p=0.010). High Lp(a) values were independently associated with ISR events (HR 1.67, 95%CI 1.18 to 2.37, p=0.004), and this association was more prominent after the first year following the PCI. CONCLUSION Lipoprotein(a) is an independent predictor for long-term in-stent restenosis and should be considered in the evaluation of patients undergoing PCI.
Collapse
Affiliation(s)
- Ahmed K Mahmoud
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Juan M Farina
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Kamal Awad
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Nima Baba Ali
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Isabel G Scalia
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Mohamed N Allam
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Moaz A Kamal
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Anan A Abu Rmilah
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Chieh-Ju Chao
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Barry Timothy
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Said Alsidawi
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Steven J Lester
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Peter M Pollack
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Mohamed A Alkhouli
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kwan S Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Eric H Yang
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Richard W Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - John P Sweeney
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - David F Fortuin
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Bhatia HS, Becker RC, Leibundgut G, Patel M, Lacaze P, Tonkin A, Narula J, Tsimikas S. Lipoprotein(a), platelet function and cardiovascular disease. Nat Rev Cardiol 2024; 21:299-311. [PMID: 37938756 PMCID: PMC11216952 DOI: 10.1038/s41569-023-00947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Lipoprotein(a) (Lp(a)) is associated with atherothrombosis through several mechanisms, including putative antifibrinolytic properties. However, genetic association studies have not demonstrated an association between high plasma levels of Lp(a) and the risk of venous thromboembolism, and studies in patients with highly elevated Lp(a) levels have shown that Lp(a) lowering does not modify the clotting properties of plasma ex vivo. Lp(a) can interact with several platelet receptors, providing biological plausibility for a pro-aggregatory effect. Observational clinical studies suggest that elevated plasma Lp(a) concentrations are associated with worse long-term outcomes in patients undergoing revascularization. Furthermore, in these patients, those with elevated plasma Lp(a) levels derive more benefit from prolonged dual antiplatelet therapy than those with normal Lp(a) levels. The ASPREE trial in healthy older individuals treated with aspirin showed a reduction in ischaemic events in those who had a single-nucleotide polymorphism in LPA that is associated with elevated Lp(a) levels in plasma, without an increase in bleeding events. In this Review, we re-examine the role of Lp(a) in the regulation of platelet function and suggest areas of research to define further the clinical relevance to cardiovascular disease of the observed associations between Lp(a) and platelet function.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregor Leibundgut
- Division of Cardiology, University Hospital of Basel, Basel, Switzerland
| | - Mitul Patel
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Tonkin
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Yuen T, Mancini GJ, Hegele RA, Pearson GJ. Consideration and Application of Lipoprotein(a) in the Risk Assessment of Atherosclerotic Cardiovascular Disease Risk in Adults. CJC Open 2024; 6:597-606. [PMID: 38559332 PMCID: PMC10980900 DOI: 10.1016/j.cjco.2023.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 04/04/2024] Open
Abstract
Lipoprotein(a) (Lp[a]) is an low-density lipoprotein (LDL)-like particle in which apolipoprotein (apo) B is covalently bound to a plasminogen-like molecule called apo(a). A High level of Lp(a) has been demonstrated to be an independent, causal, and prevalent risk factor for atherosclerotic cardiovascular disease (ASCVD), as well as aortic valve disease, through mechanisms that promote atherogenesis, inflammation, and thrombosis. With reliable and accessible assays, Lp(a) level has been established to be associated linearly with the risk for ASCVD. The 2021 Canadian Cardiovascular Society Dyslipidemia Guidelines recommend measuring an Lp(a) level once in a person's lifetime as part of the initial lipid screening. The aim of this review is to provide an update and overview of the utility and application of Lp(a) level in the assessment and treatment of adults at risk for ASCVD, consistent with this guideline recommendation.
Collapse
Affiliation(s)
- Tiffany Yuen
- Faculty of Medicine & Dentistry, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - G.B. John Mancini
- University of British Columbia, Department of Medicine, Division of Cardiology, Vancouver, British Columbia, Canada
| | - Robert A. Hegele
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Glen J. Pearson
- Faculty of Medicine & Dentistry, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Bhatia HS. Aspirin and lipoprotein(a) in primary prevention. Curr Opin Lipidol 2023; 34:214-220. [PMID: 37527183 PMCID: PMC11216950 DOI: 10.1097/mol.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Lipoprotein(a) [Lp(a)] is causally associated with cardiovascular diseases, and elevated levels are highly prevalent. However, there is a lack of available therapies to address Lp(a)-mediated risk. Though aspirin has progressively fallen out of favor for primary prevention, individuals with high Lp(a) may represent a high-risk group that derives a net benefit. RECENT FINDINGS Aspirin has been demonstrated to have a clear benefit in secondary prevention of cardiovascular disease, but recent primary prevention trials have at best demonstrated a small benefit. However, individuals with elevated Lp(a) may be of high risk enough to benefit, particularly given interactions between Lp(a) and the fibrinolytic system / platelets, and the lack of available targeted medical therapies. In secondary analyses of the Women's Health Study (WHS) and the Aspirin in Reducing Events in the Elderly (ASPREE) trial, aspirin use was associated with a significant reduction in cardiovascular events in carriers of genetic polymorphisms associated with elevated Lp(a) levels. Further studies are needed, however, as these studies focused on narrower subsets of the overall population and genetic markers. SUMMARY Individuals with elevated Lp(a) may benefit from aspirin therapy in primary prevention, but further study with plasma Lp(a) levels, broader populations, and randomization of aspirin are needed.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Abstract
Cardiometabolic diseases, including cardiovascular disease and diabetes, are major causes of morbidity and mortality worldwide. Despite progress in prevention and treatment, recent trends show a stalling in the reduction of cardiovascular disease morbidity and mortality, paralleled by increasing rates of cardiometabolic disease risk factors in young adults, underscoring the importance of risk assessments in this population. This review highlights the evidence for molecular biomarkers for early risk assessment in young individuals. We examine the utility of traditional biomarkers in young individuals and discuss novel, nontraditional biomarkers specific to pathways contributing to early cardiometabolic disease risk. Additionally, we explore emerging omic technologies and analytical approaches that could enhance risk assessment for cardiometabolic disease.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
7
|
Torres M, Schenk A. Lipoprotein (a): Does It Play a Role in Pediatric Ischemic Stroke and Thrombosis? Curr Atheroscler Rep 2023:10.1007/s11883-023-01102-5. [PMID: 37160656 DOI: 10.1007/s11883-023-01102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE OF REVIEW The goal of this paper is to describe the current understanding of lipoprotein (a) (Lp(a)), clinical practice guidelines, and the potential pathophysiological mechanisms that appear to increase the risk of cardiovascular and thromboembolic events, specifically within the pediatric population. RECENT FINDINGS The proatherogenic and pro-thrombotic properties of Lp(a) may increase the risk of atherothrombotic disease. In adults, atherosclerotic plaques increase thrombotic risk, but antifibrinolytic and proinflammatory properties appear to have an important role in children. Although it is not well established in neonates, recent studies indicate the risk of incident thrombosis and ischemic stroke are approximately fourfold higher in children with elevated Lp(a) which also increases their risk of recurrent events. Despite this higher risk, Pediatric Lp(a) screening guidelines continue to vary among different medical societies and countries. The inconsistency is likely related to inconclusive evidence outside of observational studies and the lack of specific therapies for children with elevated levels. Additional research is needed to improve understanding of the pro-thrombotic mechanisms of Lp(a), appropriate screening guidelines for Lp(a) in the pediatric population, and to elucidate the short and long term effects of elevated Lp(a) on the risk of pediatric thrombosis and stroke.
Collapse
Affiliation(s)
- Marcela Torres
- Department of Hematology and Oncology, Cook Children's Medical Center, 1500 Cooper St, Fort Worth, TX, 76104, USA.
| | - Allyson Schenk
- Department of Research Data Science and Analytics, Cook Children's Medical Center, 801 Seventh Avenue, Fort Worth, TX, 76104, USA
| |
Collapse
|
8
|
Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:molecules28030969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
|
9
|
Abstract
Lipid disorders involving derangements in serum cholesterol, triglycerides, or both are commonly encountered in clinical practice and often have implications for cardiovascular risk and overall health. Recent advances in knowledge, recommendations, and treatment options have necessitated an updated approach to these disorders. Older classification schemes have outlived their usefulness, yielding to an approach based on the primary lipid disturbance identified on a routine lipid panel as a practical starting point. Although monogenic dyslipidemias exist and are important to identify, most individuals with lipid disorders have polygenic predisposition, often in the context of secondary factors such as obesity and type 2 diabetes. With regard to cardiovascular disease, elevated low-density lipoprotein cholesterol is essentially causal, and clinical practice guidelines worldwide have recommended treatment thresholds and targets for this variable. Furthermore, recent studies have established elevated triglycerides as a cardiovascular risk factor, whereas depressed high-density lipoprotein cholesterol now appears less contributory than was previously believed. An updated approach to diagnosis and risk assessment may include measurement of secondary lipid variables such as apolipoprotein B and lipoprotein(a), together with selective use of genetic testing to diagnose rare monogenic dyslipidemias such as familial hypercholesterolemia or familial chylomicronemia syndrome. The ongoing development of new agents-especially antisense RNA and monoclonal antibodies-targeting dyslipidemias will provide additional management options, which in turn motivates discussion on how best to incorporate them into current treatment algorithms.
Collapse
Affiliation(s)
- Amanda J Berberich
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| | - Robert A Hegele
- Department of Medicine; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5C1.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada, N6A 5B7
| |
Collapse
|
10
|
Boffa MB. Beyond fibrinolysis: The confounding role of Lp(a) in thrombosis. Atherosclerosis 2022; 349:72-81. [DOI: 10.1016/j.atherosclerosis.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022]
|
11
|
Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review. Cardiovasc Drugs Ther 2022; 37:585-598. [PMID: 35022949 DOI: 10.1007/s10557-021-07293-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.
Collapse
|
12
|
Kyaw K, Sabnam S, Cheing M, Davalos F, Gramuglia M. Elevated lipoprotein A in acute on chronic CTEPH with cardiogenic shock: a case report. J Community Hosp Intern Med Perspect 2021; 11:682-685. [PMID: 34567464 PMCID: PMC8462869 DOI: 10.1080/20009666.2021.1955450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The natural history of most thrombi undergoes total or near total resolution, but the thrombi in chronic thromboembolic pulmonary hypertension (CTEPH) do not resolve completely and subsequently increase the pulmonary vascular resistance. We hypothesised that the elevated lipoprotein A in acute pulmonary embolism could lessen the autoresorption of the emboli and ultimately lead to CTEPH.
Collapse
Affiliation(s)
- Kyaw Kyaw
- Department of Medicine, Columbia University Medical Center Harlem Hospital, New York, USA
| | - Shakya Sabnam
- Department of Medicine, Columbia University Medical Center Harlem Hospital, New York, USA
| | - Melanie Cheing
- Pulmonology Medicine, Department of Medicine, Columbia University Medical Center Harlem Hospital, New York, USA
| | - Fidencio Davalos
- Pulmonology Medicine, Department of Medicine, Columbia University Medical Center Harlem Hospital, New York, USA
| | - Michael Gramuglia
- Department of Medicine, Columbia University Medical Center Harlem Hospital, New York, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Genetic, epidemiological, and translational data indicate that Lipoprotein (a) [Lp(a)] is likely in the causal pathway for atherosclerotic cardiovascular diseases as well as calcification of the aortic valves. RECENT FINDINGS Lp(a) is structurally similar to low-density lipoprotein, but in addition to apolipoprotein B-100, it has a glycoprotein apolipoprotein(a) [apo(a)], which is attached to the apolipoprotein B-100. Several distinctive properties of Lp(a) can be attributed to the presence of apo(a). This review discusses the current state of literature on pathophysiological and clinical aspects of Lp(a). After five decades of research, the understanding of Lp(a) structure, biochemistry, and pathophysiology of its cardiovascular manifestations still remains less than fully understood. Universally, Lp(a) elevation may be the most predominant monogenetic lipid disorder with approximate prevalence of Lp(a)>50 mg/dL among estimated >1.4 billion people. This makes a compelling rationale for diagnosing and managing Lp(a)-mediated risk. In addition to discussing various cardiovascular phenotypes of Lp(a) and associated morbidity, we also outline current and emerging therapies aimed at identifying a definitive treatment for elevated Lp(a) levels.
Collapse
Affiliation(s)
- Anum Saeed
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Sina Kinoush
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX USA
| | - Salim S. Virani
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX USA
- Health Policy, Quality & Informatics Program, Michael E. DeBakey Veterans Affairs Medical Center Health Services Research and Development Center for Innovations, Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, 2002 Holcombe Blvd, Houston, TX 77030 USA
- Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX USA
| |
Collapse
|
14
|
Shi Z, Zhang M, Dong X, Xu J. Serum Lipoprotein (a) on Postoperative Day 3: A Strong Predictor of Portal and/or Splenic Vein Thrombosis in Cirrhotic Patients With Splenectomy. Clin Appl Thromb Hemost 2021; 26:1076029620912020. [PMID: 32530710 PMCID: PMC7427013 DOI: 10.1177/1076029620912020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Elevated lipoprotein (a) [Lp(a)] is related to the incidence of lower limb deep vein thrombosis and pulmonary embolism. Its role in portal and/or splenic vein thrombosis (PSVT) is not established. A total of 77 consecutive patients who underwent splenectomy for cirrhotic portal hypertension were prospectively studied between 2014 and 2017. The impact of Lp(a) on preoperative day 1 and postoperative days (PODs) 1, 3, 5, 7, and 14 was analyzed. Color Doppler ultrasound examination was performed for the diagnosis of PSVT. The median interval between surgery and postoperative PSVT was 6 days (range: 2-13 days). The levels of Lp(a) were highly increased in patients with PSVT and significant intergroup differences (vs non-PSVT) were found until day 3 and day 5 after operation, respectively. On POD 3, at a threshold of 309.06 mg/L, Lp(a) was a better predictor of PSVT (area under the curve [AUC] = 0.872) compared to the levels on PODs 1, 5, and 7 (AUC = 0.775, 0.796, and 0.791, respectively). The median Lp(a) values peaked at 382.5 mg/L on POD 5 for patients without PSVT. After POD 5, the Lp(a) decreased with values at 347.4 mg/L on POD 7 and 150.7 mg/L on POD 14. For the first time, Lp(a) was shown to be abnormal in patients with PSVT following splenectomy. Monitoring of serum Lp(a) levels on POD 3 might represent a valuable tool to predict early PSVT after splenectomy in cirrhotic patients.
Collapse
Affiliation(s)
- Zhiyong Shi
- Shanxi Medical University, Yingze District, Taiyuan, Shanxi, People's Republic of China.,Department of General Surgery, Shanxi Provincial People's Hospital, Yingze District, Taiyuan, Shanxi, People's Republic of China
| | - Mingxia Zhang
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Jun Xu
- Shanxi Medical University, Yingze District, Taiyuan, Shanxi, People's Republic of China.,Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
15
|
Liu T, Yoon WS, Lee SR. Recent Updates of Lipoprotein(a) and Cardiovascular Disease. Chonnam Med J 2021; 57:36-43. [PMID: 33537217 PMCID: PMC7840349 DOI: 10.4068/cmj.2021.57.1.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, epidemiological studies, genome-wide association studies, and Mendelian randomization studies have shown a strong association between increased levels of lipoproteins and increased risks of coronary heart disease and cardiovascular disease (CVD). Although lipoprotein(a) [Lp(a)] was an independent risk factor for ASCVD, the latest international clinical guidelines do not recommend direct reduction of plasma Lp(a) concentrations. The main reason was that there is no effective clinical medicine that directly lowers plasma Lp(a) concentrations. However, recent clinical trials have shown that proprotein convertase subtilisin/kexin-type 9 inhibitors (PCSK9) and second-generation antisense oligonucleotides can effectively reduce plasma Lp(a) levels. This review will present the structure, pathogenicity, prognostic evidences, and recent advances in therapeutic drugs for Lp(a).
Collapse
Affiliation(s)
- Taili Liu
- Division of Cardiology, Department of Internal Medicine, Chonbuk National University Hospital, Jeonju, Korea
| | - Won-Sik Yoon
- Division of Cardiology, Department of Internal Medicine, Chonbuk National University Hospital, Jeonju, Korea
| | - Sang-Rok Lee
- Division of Cardiology, Department of Internal Medicine, Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
16
|
Relation of High Lipoprotein (a) Concentrations to Platelet Reactivity in Individuals with and Without Coronary Artery Disease. Adv Ther 2020; 37:4568-4584. [PMID: 32889667 PMCID: PMC7547998 DOI: 10.1007/s12325-020-01483-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lipoprotein (a) [Lp(a)] is a risk factor for coronary artery disease (CAD). To the best of our knowledge, this is the first study addressing the relationship between Lp(a) and platelet reactivity in primary and secondary prevention. METHODS Lp(a) was evaluated in 396 individuals with (82.3%) and without (17.7%) obstructive CAD. The population was divided into two groups according to Lp(a) concentrations with a cutoff value of 50 mg/dL. The primary objective was to evaluate the association between Lp(a) and adenosine diphosphate (ADP)-induced platelet reactivity using the VerifyNow™ P2Y12 assay. Platelet reactivity was also induced by arachidonic acid and collagen-epinephrine (C-EPI) and assessed by Multiplate™, platelet function analyzer™ 100 (PFA-100), and light transmission aggregometry (LTA) assays. Secondary objectives included the assessment of the primary endpoint in individuals with or without CAD. RESULTS Overall, 294 (74.2%) individuals had Lp(a) < 50 mg/dL [median (IQR) 13.2 (5.8-27.9) mg/dL] and 102 (25.8%) had Lp(a) ≥ 50 mg/dL [82.5 (67.6-114.5) mg/dL], P < 0.001. Univariate analysis in the entire population revealed no differences in ADP-induced platelet reactivity between individuals with Lp(a) ≥ 50 mg/dL (249.4 ± 43.8 PRU) versus Lp(a) < 50 mg/dL (243.1 ± 52.2 PRU), P = 0.277. Similar findings were present in individuals with (P = 0.228) and without (P = 0.669) CAD, and regardless of the agonist used or method of analysis (all P > 0.05). Finally, multivariable analysis did not show a significant association between ADP-induced platelet reactivity and Lp(a) ≥ 50 mg/dL [adjusted OR = 1.00 [(95% CI 0.99-1.01), P = 0.590]. CONCLUSION In individuals with or without CAD, Lp(a) ≥ 50 mg/dL was not associated with higher platelet reactivity.
Collapse
|
17
|
Emanuele E, Carlin MV, D'Angelo A, Peros E, Barale F, Geroldi D, Politi P. Elevated plasma levels of lipoprotein(a) in psychiatric patients: a possible contribution to increased vascular risk. Eur Psychiatry 2020; 21:129-33. [PMID: 16516110 DOI: 10.1016/j.eurpsy.2004.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 10/29/2004] [Indexed: 11/19/2022] Open
Abstract
AbstractAn increased incidence of adverse cardiovascular events has been reported in psychiatric patients, but the exact mechanisms underlying this association are still uncertain. Elevated plasma level of lipoprotein(a) [Lp(a)] is an independent risk factor for atherothrombotic disease in the general population. To study the implications of Lp(a) in psychiatric patients, we measured the plasma levels of Lp(a) in 74 patients with psychiatric disorders (39 schizophrenia, 10 major depression, 13 bipolar disorder and 12 personality disorder) and 74 healthy controls. The Lp(a) levels of the patient groups with schizophrenia, major depression and bipolar disorder were significantly higher than that of the control group. The median Lp(a) value of these diagnostic groups was comparable with those reported in patients with prior atherothrombotic events. On the other hand, no differences were found among personality disorder and controls. Our findings suggest that the elevation of plasma Lp(a) may contribute to increased cardiovascular risk in several patients with psychiatric disorders.
Collapse
Affiliation(s)
- Enzo Emanuele
- Molecular Medicine Laboratory, Clinica Medica 2, IRCCS Policlinico San Matteo, University of Pavia, Piazzale Golgi, 2, 27100 Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sandmark J, Tigerström A, Akerud T, Althage M, Antonsson T, Blaho S, Bodin C, Boström J, Chen Y, Dahlén A, Eriksson PO, Evertsson E, Fex T, Fjellström O, Gustafsson D, Herslöf M, Hicks R, Jarkvist E, Johansson C, Kalies I, Karlsson Svalstedt B, Kartberg F, Legnehed A, Martinsson S, Moberg A, Ridderström M, Rosengren B, Sabirsh A, Thelin A, Vinblad J, Wellner AU, Xu B, Östlund-Lindqvist AM, Knecht W. Identification and analyses of inhibitors targeting apolipoprotein(a) kringle domains KIV-7, KIV-10, and KV provide insight into kringle domain function. J Biol Chem 2020; 295:5136-5151. [PMID: 32132173 DOI: 10.1074/jbc.ra119.011251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/17/2020] [Indexed: 11/06/2022] Open
Abstract
Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 μm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).
Collapse
Affiliation(s)
- Jenny Sandmark
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Tigerström
- Precision Medicine BioPharmaceuticals, Precision Medicine, Oncology R&D, AstraZeneca, Gothenburg, Sweden
| | - Tomas Akerud
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Translational Science and Experimental Medicine, Early CVRM Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Antonsson
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefan Blaho
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Cristian Bodin
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonas Boström
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Yantao Chen
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per-Olof Eriksson
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Evertsson
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tomas Fex
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ola Fjellström
- Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - David Gustafsson
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Margareta Herslöf
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emelie Jarkvist
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carina Johansson
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inge Kalies
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Birgitta Karlsson Svalstedt
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Kartberg
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne Legnehed
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sofia Martinsson
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andreas Moberg
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianne Ridderström
- Drug Metabolism and Pharmacokinetics, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Birgitta Rosengren
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Thelin
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johanna Vinblad
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika U Wellner
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bingze Xu
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ann-Margret Östlund-Lindqvist
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Wolfgang Knecht
- Bioscience Cardiovascular, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
19
|
Boffa MB, Marar TT, Yeang C, Viney NJ, Xia S, Witztum JL, Koschinsky ML, Tsimikas S. Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does not affect ex vivo fibrinolysis. J Lipid Res 2019; 60:2082-2089. [PMID: 31551368 DOI: 10.1194/jlr.p094763] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
It is postulated that lipoprotein (a) [Lp(a)] inhibits fibrinolysis, but this hypothesis has not been tested in humans due to the lack of specific Lp(a) lowering agents. Patients with elevated Lp(a) were randomized to antisense oligonucleotide [IONIS-APO(a)Rx] directed to apo(a) (n = 7) or placebo (n = 10). Ex vivo plasma lysis times and antigen concentrations of plasminogen, factor XI, plasminogen activator inhibitor 1, thrombin activatable fibrinolysis inhibitor, and fibrinogen at baseline, day 85/92/99 (peak drug effect), and day 190 (3 months off drug) were measured. The mean ± SD baseline Lp(a) levels were 477.3 ± 55.9 nmol/l in IONIS-APO(a)Rx and 362.1 ± 89.9 nmol/l in placebo. The mean± SD percentage change in Lp(a) for IONIS-APO(a)Rx was -69.3 ± 12.2% versus -5.4 ± 6.9% placebo (P < 0.0010) at day 85/92/99 and -15.6 ± 8.9% versus 3.2 ± 12.2% (P = 0.003) at day 190. Clot lysis times and coagulation/fibrinolysis-related biomarkers showed no significant differences between IONIS-APO(a)Rx and placebo at all time points. Clot lysis times were not affected by exogenously added Lp(a) at concentrations up to 200 nmol/l to plasma with very low (12.5 nmol/l) Lp(a) levels, whereas recombinant apo(a) had a potent antifibrinolytic effect. In conclusion, potent reductions of Lp(a) in patients with highly elevated Lp(a) levels do not affect ex vivo measures of fibrinolysis; the relevance of any putative antifibrinolytic effects of Lp(a) in vivo needs further study.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Biochemistry Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Tanya T Marar
- Department of Biochemistry Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Calvin Yeang
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA
| | | | | | - Joseph L Witztum
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Sotirios Tsimikas
- Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA .,Ionis Pharmaceuticals, Carlsbad, CA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To review the current recommendations for lipoprotein(a) (Lp(a)) screening, the evidence behind the thresholds for increased cardiovascular disease (CVD) risk, and the available data supporting Lp(a) lowering. RECENT FINDINGS Lp(a) is almost entirely genetically determined and has an independent causal association with CVD. Measurement of Lp(a) is challenging given the structural heterogeneity of apolipoprotein a (apo(a)), for which isoform-insensitive immunoassays should be used. Current guidelines do not recommend treatment to lower Lp(a) but rather focus on intensified preventive measures including low-density lipoprotein cholesterol (LDL-C) lowering in patients with high Lp(a). Evidence suggests that levels higher than 50 mg/dL (125 nmol/L) identify significantly increased CVD risk. Mendelian randomization studies suggest that in order to have a clinically significant reduction in coronary heart disease, Lp(a) levels should be reduced by at least 60-70 mg/dL to attain a significant benefit. Ongoing studies of targeted therapy with antisense oligonucleotides (ASO) have shown promising reductions in Lp(a) up to 80%, but a cardiovascular outcomes trial is needed. There is unquestionably an increased risk for CVD in patients with elevated Lp(a); however, measurement assay issues and the lack of Lp(a)-targeted therapies with proven outcome reduction limit the clinical utility of this important risk factor. Available evidence suggesting specific thresholds for clinically significant CVD risk are based on European or Caucasian populations, not accounting for important racial differences. Novel Lp(a)-targeted emerging therapies may need to account for an expected reduction of at least 60-70 mg/dL to achieve a clinically significant benefit.
Collapse
|
21
|
Zhang J, Du R, Peng K, Wu X, Hu C, Li M, Xu Y, Xu M, Wang S, Bi Y, Wang W, Lu J, Chen Y. Serum lipoprotein (a) is associated with increased risk of stroke in Chinese adults: A prospective study. Atherosclerosis 2019; 289:8-13. [PMID: 31437611 DOI: 10.1016/j.atherosclerosis.2019.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Epidemiological evidence on the association between elevated lipoprotein (a) (Lp (a)) with risk of stroke remains inconsistent. We aimed to investigate the association between serum Lp (a) level and the risk of stroke among middle-aged and elderly Chinese. METHODS A community-based prospective cohort study of 8500 participants aged 40 years or older was conducted in Jiading district, Shanghai, China, in 2010. The incident strokes were documented at follow-up visit during 2014-2015. RESULTS During a mean follow-up of 5.1 years, 444 incident cases of stroke occurred. The incidences of stroke were 4.44%, 5.14% and 6.14% from the lowest to the highest serum Lp (a) tertile, respectively. A significant association between serum Lp (a) tertile and the risk of incident stroke was observed (p for trend<0.05). Compared with individuals in the lowest tertile of serum Lp (a), the multivariable adjusted hazards ratio (HR) and 95% confidence interval (CI) for incident stroke in Lp (a) tertile 3 were 1.34 (1.06-1.70). CONCLUSIONS Serum Lp (a) concentration was associated with increased risk of incident stroke in Chinese adults.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital North, Shanghai Jiao-Tong University School of Medicine, 999 Xi Wang Road, Shanghai, 201801, China; National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Rui Du
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Kui Peng
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Xueyan Wu
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Chunyan Hu
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Mian Li
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yu Xu
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Min Xu
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Shuangyuan Wang
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yufang Bi
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Weiqing Wang
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Jieli Lu
- National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital North, Shanghai Jiao-Tong University School of Medicine, 999 Xi Wang Road, Shanghai, 201801, China; National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
22
|
Tada H, Takamura M, Kawashiri MA. Lipoprotein(a) as an Old and New Causal Risk Factor of Atherosclerotic Cardiovascular Disease. J Atheroscler Thromb 2019; 26:583-591. [PMID: 31061262 PMCID: PMC6629747 DOI: 10.5551/jat.rv17034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lipoprotein(a) [Lp(a)], discovered in 1963, has been associated with atherosclerotic cardiovascular disease (ASCVD) independent of other traditional risk factors, including LDL cholesterol. Lp(a) is an apolipoprotein B (apoB)-containing lipoprotein, which contains an LDL-like particle. Unlike LDL, which is a primary therapeutic target to decrease ASCVD, current guidelines recommend measuring Lp(a) for risk assessments because there is no clear evidence demonstrating the clinical benefit of decreasing Lp(a) using classical drugs such as niacin. However, recent Mendelian randomization studies indicate that Lp(a) causally correlates with ASCVD. In addition, novel drugs, including PCSK9 inhibitors, as well as antisense oligonucleotide for apo(a), have exhibited efficacy in decreasing Lp(a) substantially, invigorating a discussion whether Lp(a) could be a novel therapeutic target for further ASCVD risk reduction. This review aims to provide current understanding, and future perspectives, of Lp(a), which is currently considered a mere biomarker but may emerge as a novel therapeutic target in future clinical settings.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masa-aki Kawashiri
- Department of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
23
|
Levinsky Y, Zeharia A, Yacobovich J, Eidlitz-Markus T. Thrombophilia Testing in High Pediatric Migraine Risk Children With Migraine. J Child Neurol 2019; 34:121-127. [PMID: 30486734 DOI: 10.1177/0883073818811545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study sought to investigate the need for thrombophilia screening in pediatric migraineurs. The cohort included 45/824 children (5.5%) aged 3-18 years with migraine who were tested for thrombophilia at a tertiary pediatric headache clinic. Results were analyzed by background factors and indications for screening. Rates of thrombotic factors were compared with a healthy historical control group. At least 1 thrombotic factor was positive in 19/45 patients (42%). The total thrombophilia risk rate was higher in patients with aura (n = 32). Lipoprotein(a) was the factor most often abnormal in the thrombophilia group of all factors tested (8/19, 42%), regardless of migraine type or gender. It was the only factor with a significantly higher prevalence in the migraine than the historical control group. Full thrombophilia testing in migraine in pediatric headache clinics does not seem to be justified. The high prevalence of elevated lipoprotein(a) in children with migraine warrants further investigation.
Collapse
Affiliation(s)
- Yoel Levinsky
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Zeharia
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Eidlitz-Markus
- Pediatric Headache Clinic, Day Hospitalization Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen on the surface of vascular endothelial and smooth muscle cells. Thromb Res 2018; 169:1-7. [DOI: 10.1016/j.thromres.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/31/2018] [Accepted: 07/03/2018] [Indexed: 11/24/2022]
|
25
|
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2017; 55:33-54. [PMID: 29262744 DOI: 10.1080/10408363.2017.1415866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.
Collapse
Affiliation(s)
- Corey A Scipione
- a Department of Advanced Diagnostics , Toronto General Hospital Research Institute, UHN , Toronto , Canada
| | - Marlys L Koschinsky
- b Robarts Research Institute , Western University , London , Canada.,c Department of Physiology & Pharmacology , Schulich School of Medicine & Dentistry, Western University , London , Canada
| | - Michael B Boffa
- d Department of Biochemistry , Western University , London , Canada
| |
Collapse
|
26
|
Lakshminarayan D, Elajami TK, Devabhaktuni S, Welty FK. Ischemic stroke in a young adult with extremely elevated lipoprotein(a): A case report and review of literature. J Clin Lipidol 2016; 10:1266-71. [PMID: 27678446 DOI: 10.1016/j.jacl.2016.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/16/2022]
Abstract
Lipoprotein(a) [Lp(a)] is an apolipoprotein(a) molecule bound to 1 apolipoprotein B-100. Elevated levels of Lp(a) are thought to be an independent risk factor for atherosclerosis and to promote thrombosis through incompletely understood mechanisms. We report a 34-year-old man with an ischemic stroke in the setting of an extremely high Lp(a) level-212 mg/dL. He developed severe carotid artery stenosis over a 6-year period and had thrombus formation post-carotid endarterectomy. To our knowledge, this case is unique because the Lp(a) is the highest reported level in a patient without renal disease. Moreover, this is the first reported case of the youngest individual with a stroke presumably related to development of carotid plaque over a 6-year period. The thrombotic complication after endarterectomy may have been related to the prothrombotic properties of Lp(a). Of note, the Lp(a) level did not respond to atorvastatin but did decrease 15% after aspirin 325 mg was added although his Lp(a) levels were variable, and it is not clear that this was cause and effect. This case highlights the need to better understand the relation between Lp(a) and vascular disease and the need to screen family members for elevated Lp(a). We also review treatment options to lower Lp(a) and ongoing clinical trials of newer lipid-lowering drugs that can also lower Lp(a).
Collapse
Affiliation(s)
- Dharshan Lakshminarayan
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Tarec K Elajami
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Suresh Devabhaktuni
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Francine K Welty
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
An Increased Serum Level of Lipoprotein(a) Is a Predictor for Deep Vein Thrombosis in Patients with Spinal Cord Injuries. World Neurosurg 2016; 87:607-12. [DOI: 10.1016/j.wneu.2015.10.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
|
28
|
Boffa MB, Koschinsky ML. Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? J Lipid Res 2015; 57:745-57. [PMID: 26647358 DOI: 10.1194/jlr.r060582] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 01/13/2023] Open
Abstract
Elevated plasma concentrations of lipoprotein (a) [Lp(a)] have been determined to be a causal risk factor for coronary heart disease, and may similarly play a role in other atherothrombotic disorders. Lp(a) consists of a lipoprotein moiety indistinguishable from LDL, as well as the plasminogen-related glycoprotein, apo(a). Therefore, the pathogenic role for Lp(a) has traditionally been considered to reflect a dual function of its similarity to LDL, causing atherosclerosis, and its similarity to plasminogen, causing thrombosis through inhibition of fibrinolysis. This postulate remains highly speculative, however, because it has been difficult to separate the prothrombotic/antifibrinolytic functions of Lp(a) from its proatherosclerotic functions. This review surveys the current landscape surrounding these issues: the biochemical basis for procoagulant and antifibrinolytic effects of Lp(a) is summarized and the evidence addressing the role of Lp(a) in both arterial and venous thrombosis is discussed. While elevated Lp(a) appears to be primarily predisposing to thrombotic events in the arterial tree, the fact that most of these are precipitated by underlying atherosclerosis continues to confound our understanding of the true pathogenic roles of Lp(a) and, therefore, the most appropriate therapeutic target through which to mitigate the harmful effects of this lipoprotein.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada Robarts Research Institute, Western University, London, ON, Canada
| |
Collapse
|
29
|
Bérard AM, Bedel A, Le Trequesser R, Freyburger G, Nurden A, Colomer S, Guérin V, Vergnes MC, Becker F, Camelot G, Bressolette L, Lacroix P, Cambou JP, Bura-Rivière A, Emmerich J, Darmon M, Deletraz AM, Mesli S, Colombies B, Vanbrugghe V, Conri C, Constans J. Novel risk factors for premature peripheral arterial occlusive disease in non-diabetic patients: a case-control study. PLoS One 2013; 8:e37882. [PMID: 23533563 PMCID: PMC3606168 DOI: 10.1371/journal.pone.0037882] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background This study aimed to determine the prevalence of genetic and environmental vascular risk factors in non diabetic patients with premature peripheral arterial disease, either peripheral arterial occlusive disease or thromboangiitis obliterans, the two main entities of peripheral arterial disease, and to established whether some of them are specifically associated with one or another of the premature peripheral arterial disease subgroups. Methods and Results This study included 113 non diabetic patients with premature peripheral arterial disease (diagnosis <45-year old) presenting either a peripheral arterial occlusive disease (N = 64) or a thromboangiitis obliterans (N = 49), and 241 controls matched for age and gender. Both patient groups demonstrated common traits including cigarette smoking, low physical activity, decreased levels of HDL-cholesterol, apolipoprotein A–I, pyridoxal 5′-phosphate (active form of B6 vitamin) and zinc. Premature peripheral arterial occlusive disease was characterized by the presence of a family history of peripheral arterial and carotid artery diseases (OR 2.3 and 5.8 respectively, 95% CI), high lipoprotein (a) levels above 300 mg/L (OR 2.3, 95% CI), the presence of the factor V Leiden (OR 5.1, 95% CI) and the glycoprotein Ia807T,837T,873A allele (OR 2.3, 95% CI). In thromboangiitis obliterans group, more patients were regular consumers of cannabis (OR 3.5, 95% CI) and higher levels in plasma copper has been shown (OR 6.5, 95% CI). Conclusions According to our results from a non exhaustive list of study parameters, we might hypothesize for 1) a genetic basis for premature peripheral arterial occlusive disease development and 2) the prevalence of environmental factors in the development of thromboangiitis obliterans (tobacco and cannabis). Moreover, for the first time, we demonstrated that the 807T/837T/873A allele of platelet glycoprotein Ia may confer an additional risk for development of peripheral atherosclerosis in premature peripheral arterial occlusive disease.
Collapse
|
30
|
Abstract
Plasma lipoprotein(a) [Lp(a)] is a quantitative genetic trait with a very broad and skewed distribution, which is largely controlled by genetic variants at the LPA locus on chromosome 6q27. Based on genetic evidence provided by studies conducted over the last two decades, Lp(a) is currently considered to be the strongest genetic risk factor for coronary heart disease (CHD). The copy number variation of kringle IV in the LPA gene has been strongly associated with both Lp(a) levels in plasma and risk of CHD, thereby fulfilling the main criterion for causality in a Mendelian randomization approach. Alleles with a low kringle IV copy number that together have a population frequency of 25-35% are associated with a doubling of the relative risk for outcomes, which is exceptional in the field of complex genetic phenotypes. The recently identified binding of oxidized phospholipids to Lp(a) is considered as one of the possible mechanisms that may explain the pathogenicity of Lp(a). Drugs that have been shown to lower Lp(a) have pleiotropic effects on other CHD risk factors, and an improvement of cardiovascular endpoints is up to now lacking. However, it has been established in a proof of principle study that lowering of very high Lp(a) by apheresis in high-risk patients with already maximally reduced low-density lipoprotein cholesterol levels can dramatically reduce major coronary events.
Collapse
Affiliation(s)
- F Kronenberg
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
31
|
|
32
|
Serum lipoprotein (a) levels in patients with first unprovoked venous thromboembolism is not associated with subsequent risk of recurrent VTE. Thromb Res 2010; 126:222-6. [PMID: 20580413 DOI: 10.1016/j.thromres.2010.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/26/2010] [Accepted: 06/03/2010] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Case-control studies suggest that elevated lipoprotein (a) (Lp(a)) is a risk factor for first venous thromboembolism (VTE). Lp(a) has not been prospectively investigated as a possible risk factor for recurrent VTE in first unprovoked VTE patients. We sought to determine if serum Lp(a) levels in patients with unprovoked VTE who discontinue anticoagulants after 5 to 7 months of therapy predict VTE recurrence in a prospective cohort study. MATERIALS AND METHODS Serum Lp(a) measurements were obtained from 510 first unprovoked VTE patients treated for 5 -7 months with anticoagulants in a 12 center study. Patients were subsequently followed for a mean of 16.9 months (SD+/-11.2) for symptomatic VTE recurrence which was independently adjudicated with reference to baseline imaging. RESULTS There was no significant association between Lp(a) as a continuous variable and recurrent VTE nor in gender stratified subgroups. No statistically significant differences were observed in the median Lp(a) concentrations between patients who recurred and those who did not recur (median (interquartile range): 0.09 g/L (0.17) versus 0.06 g/L (0.11) respectively; p=0.15). The Lp(a) cut-off point of 0.3g/L was not significantly associated with recurrent VTE for the overall population nor in gender stratified subgroups. CONCLUSIONS Elevated serum Lp(a) does not appear to be associated with recurrent VTE in patients with history of first unprovoked VTE and may not play a role in identifying patients with unprovoked VTE at high risk of recurrence. There was no optimal predictive threshold for the overall population or for sex sub-groups and Lp(a)>or=0.3 g/L was not a significant predictor of recurrent VTE.
Collapse
|
33
|
Kamstrup PR. Lipoprotein(a) and ischemic heart disease--a causal association? A review. Atherosclerosis 2010; 211:15-23. [PMID: 20106478 DOI: 10.1016/j.atherosclerosis.2009.12.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/29/2009] [Accepted: 12/31/2009] [Indexed: 01/18/2023]
Abstract
The aim of this review is to summarize present evidence of a causal association of lipoprotein(a) with risk of ischemic heart disease (IHD). Evidence for causality includes reproducible associations of a proposed risk factor with risk of disease in epidemiological studies, evidence from in vitro and animal studies in support of pathophysiological effects of the risk factor, and preferably evidence from randomized clinical trials documenting reduced morbidity in response to interventions targeting the risk factor. Elevated and in particular extreme lipoprotein(a) levels have in prospective studies repeatedly been associated with increased risk of IHD, although results from early studies are inconsistent. Data from in vitro and animal studies implicate lipoprotein(a), consisting of a low density lipoprotein particle covalently bound to the plasminogen-like glycoprotein apolipoprotein(a), in both atherosclerosis and thrombosis, including accumulation of lipoprotein(a) in atherosclerotic plaques and attenuation of t-PA mediated plasminogen activation. No randomized clinical trial of the effect of lowering lipoprotein(a) levels on IHD prevention has ever been conducted. Lacking evidence from randomized clinical trials, genetic studies, such as Mendelian randomization studies, can also support claims of causality. Levels of lipoprotein(a) are primarily determined by variation in the LPA gene coding for the apolipoprotein(a) moiety of lipoprotein(a), and genetic epidemiologic studies have documented association of LPA copy number variants, influencing levels of lipoprotein(a), with risk of IHD. In conclusion, results from epidemiologic, in vitro, animal, and genetic epidemiologic studies support a causal association of lipoprotein(a) with risk of IHD, while results from randomized clinical trials are presently lacking.
Collapse
Affiliation(s)
- Pia R Kamstrup
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| |
Collapse
|
34
|
Yamashita A, Matsuda S, Matsumoto T, Moriguchi-Goto S, Takahashi M, Sugita C, Sumi T, Imamura T, Shima M, Kitamura K, Asada Y. Thrombin generation by intimal tissue factor contributes to thrombus formation on macrophage-rich neointima but not normal intima of hyperlipidemic rabbits. Atherosclerosis 2009; 206:418-26. [DOI: 10.1016/j.atherosclerosis.2009.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 03/02/2009] [Accepted: 03/15/2009] [Indexed: 11/25/2022]
|
35
|
Napoli C, De Nigris F, Pignalosa O, Lerman A, Sica G, Fiorito C, Sica V, Chade A, Lerman LO. In vivo veritas: Thrombosis mechanisms in animal models. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 66:407-27. [PMID: 16901851 DOI: 10.1080/00365510600763319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental models have enhanced our understanding of atherothrombosis pathophysiology and have played a major role in the search for adequate therapeutic interventions. Various animal models have been developed to simulate thrombosis and to study in vivo parameters related to hemodynamics and rheology that lead to thrombogenesis. Although no model completely mimics the human condition, much can be learned from existing models about specific biologic processes in disease causation and therapeutic intervention. In general, large animals such as pigs and monkeys have been better suited to study atherosclerosis and arterial and venous thrombosis than smaller species such as rats, rabbits, and dogs. On the other hand, mouse models of arterial and venous thrombosis have attracted increasing interest over the past two decades, owing to direct availability of a growing number of genetically modified mice, improved technical feasibility, standardization of new models of local thrombosis, and low maintenance costs. To simulate rupture of an atherosclerotic plaque, models of arterial thrombosis often involve vascular injury, which can be achieved by several means. There is no animal model that is sufficiently tall, that can mimic the ability of humans to walk upright, and that possesses the calf muscle pump that plays an important role in human venous hemodynamics. A number of spontaneous or genetically engineered animals with overexpression or deletion of various elements in the coagulation, platelet, and fibrinolysis pathways are now available. These animal models can replicate important aspects of thrombosis in humans, and provide a valuable resource in the development of novel concepts of disease mechanisms in human patients.
Collapse
Affiliation(s)
- C Napoli
- Department of General Pathology, Division of Clinical Pathology and Excellence Research Center on Cardiovascular Diseases, II University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Feric NT, Boffa MB, Johnston SM, Koschinsky ML. Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen: a novel mechanism for lipoprotein(a)-mediated inhibition of plasminogen activation. J Thromb Haemost 2008; 6:2113-20. [PMID: 18983515 DOI: 10.1111/j.1538-7836.2008.03183.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Elevated plasma concentrations of lipoprotein(a) [Lp(a)] are associated with an increased risk for thrombotic disorders. Lp(a) is a unique lipoprotein consisting of a low-density lipoprotein-like moiety covalently linked to apolipoprotein(a) [apo(a)], a homologue of the fibrinolytic proenzyme plasminogen. Several in vitro and in vivo studies have shown that Lp(a)/apo(a) can inhibit tissue-type plasminogen activator-mediated plasminogen activation on fibrin surfaces, although the mechanism of inhibition by apo(a) remains controversial. Essential to fibrin clot lysis are a number of plasmin-dependent positive feedback reactions that enhance the efficiency of plasminogen activation, including the plasmin-mediated conversion of Glu-plasminogen to Lys-plasminogen. OBJECTIVE Using acid-urea gel electrophoresis to resolve the two forms of radiolabeled plasminogen, we determined whether apo(a) is able to inhibit Glu-plasminogen to Lys-plasminogen conversion. METHODS The assays were performed in the absence or presence of different recombinant apo(a) species, including point mutants, deletion mutants and variants that represent greater than 90% of the known apo(a) isoform sizes. RESULTS Apo(a) substantially suppressed Glu-plasminogen conversion. Critical roles were identified for the kringle IV types 5-9 and kringle V; contributory roles for sequences within the amino-terminal half of the molecule were also observed. Additionally, with the exception of the smallest naturally-occurring isoform of apo(a), isoform size was found not to contribute to the inhibitory capacity of apo(a). CONCLUSION These findings underscore a novel contribution to the understanding of Lp(a)/apo(a)-mediated inhibition of plasminogen activation: the ability of the apo(a) component of Lp(a) to inhibit the key positive feedback step of plasmin-mediated Glu-plasminogen to Lys-plasminogen conversion.
Collapse
Affiliation(s)
- N T Feric
- Department of Biochemistry, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
37
|
Abstract
There are a myriad of options on where and how to perform thrombosis studies in mice. Models have been developed for systemic thrombosis, larger and smaller vessels of both the arterial and venous systems as well as several different microvascular beds. However, there are important differences between the models and investigators need to be careful and thoughtful when they choose which model to use.
Collapse
Affiliation(s)
- Herbert C Whinna
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, NC 27599-7035, USA.
| |
Collapse
|
38
|
Hoover-Plow J, Hart E, Gong Y, Shchurin A, Schneeman T. A physiological function for apolipoprotein(a): a natural regulator of the inflammatory response. Exp Biol Med (Maywood) 2008; 234:28-34. [PMID: 18997104 DOI: 10.3181/0804-rm-136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Structural similarities between apolipoprotein(a) (apo(a)), the unique apoprotein of lipoprotein(a), and plasminogen, the zymogen of plasmin, can interfere with functions of plasmin (ogen) in vitro. The purpose of this study was to evaluate the role of apo(a) in inflammation in vivo using apo(a) transgenic mice and to determine if effects are plasminogen-dependent using backgrounds that are either plasminogen-replete or plasminogen-deficient. After administration of peritoneal inflammatory stimuli, thioglycollate, bioimplants or lipopolysaccharide, the number of responding peritoneal neutrophils and macrophages were quantified. Apo(a), in either wild-type or plasminogen deficient backgrounds, inhibited neutrophil recruitment but had no effect on plasminogen-dependent macrophage recruitment. Macrophage-inflammatory protein-2, a neutrophil chemokine, was reduced in apo(a) mice, and injection of this chemokine prior to thioglycollate restored neutrophil recruitment in apo(a) transgenic mice. In the lipopolysaccharide model, mice with apo(a), unlike mice without apo(a), did not increase neutrophil recruitment in response to the stimulus. In the bioimplant model, neutrophil recruitment and neutrophil cytokines were reduced in apo(a)tg mice but only in a plasminogen-deficient background. These results indicate for the first time that apo(a), independent of plasminogen interaction, inhibits neutrophil recruitment in vivo in diverse peritoneal inflammatory models. Hence, apo(a) may function as a cell specific suppressor of the inflammatory response.
Collapse
Affiliation(s)
- Jane Hoover-Plow
- Department of Molecular Cardiology, NB50, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
39
|
Kim JW, Seo HS, Suh SY, Choi CU, Kim EJ, Rha SW, Park CG, Oh DJ. Relationship between lipoprotein(a) and spontaneous recanalization of infarct-related arteries in the early phase of acute myocardial infarction. Clin Cardiol 2008; 31:211-6. [PMID: 18473375 PMCID: PMC6653200 DOI: 10.1002/clc.20143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/22/2007] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Lipoprotein(a) (Lp[a]) is known to inhibit the fibrinolysis system and promote thrombus formation. HYPOTHESIS We retrospectively investigated the influences of Lp(a) on infarct-related artery patency in the early phase of acute myocardial infarction (AMI). METHODS In 144 patients with ST-segment elevation, myocardial, coronary angiography (CAG) was performed within 12 h of the onset of symptoms. Subjects were divided into 2 groups according to the thrombolysis in myocardial infarction (TIMI) grade, Group I (TIMI 0-1, n = 94) versus Group II (TIMI 2-3, n = 50). The Gensini score and 0- to 3-vessel disease score estimated the severity and extent of coronary artery disease (CAD), respectively. Lp(a), lipid profile and c-reactive protein (CRP) were measured before any medications including thrombolytics were given. RESULTS The Lp(a) level was higher in Group I than in Group II. There was a weak correlation between Lp(a) level and Gensini score. By multivariate logistic regression analysis, a Lp(a) level was a predictor of infarct-related artery patency in the early phase of AMI. There were no significant differences in the location of the infarct-related arteries, extent of CAD, time from pain to CAG, number of risk factors, and hs-CRP values between the 2 groups. CONCLUSION The Lp(a) level was significantly higher in patients with persistent occlusion compared with those with spontaneous recanalization of infarct-related arteries in the early phase of AMI.
Collapse
Affiliation(s)
- Jin Won Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dieplinger B, Lingenhel A, Baumgartner N, Poelz W, Dieplinger H, Haltmayer M, Kronenberg F, Mueller T. Increased serum lipoprotein(a) concentrations and low molecular weight phenotypes of apolipoprotein(a) are associated with symptomatic peripheral arterial disease. Clin Chem 2007; 53:1298-305. [PMID: 17525104 DOI: 10.1373/clinchem.2007.088013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Increased concentrations of lipoprotein(a) [Lp(a)] have been considered a genetically determined risk factor for coronary artery and cerebrovascular disease. Only 2 small and conflicting studies have investigated the possibility of an association of peripheral arterial disease (PAD) with high serum Lp(a) concentrations and low molecular weight (LMW) phenotypes of apolipoprotein(a) [apo(a)]. METHODS We measured serum concentrations of Lp(a) and apo(a) phenotypes in 213 patients with symptomatic PAD and 213 controls matched for sex, age (within 2 years), and presence of diabetes. RESULTS Patients with PAD showed significantly higher median serum concentrations of Lp(a) (76 vs 47 mg/L; P = 0.003) and a higher frequency of LMW apo(a) phenotypes (41% vs 26%; P = 0.002) than controls. After adjustment for several potential confounders, increased Lp(a) concentrations (>195 mg/L, i.e., 75th percentile of the entire study sample) and LMW apo(a) phenotypes were significant predictors of PAD, with odds ratios of 3.73 (95% CI 2.08-6.67; P <0.001) and 2.21 (95% CI 1.33-3.67; P = 0.002), respectively. CONCLUSIONS In this study sample, both increased serum concentrations of Lp(a) and the presence of LMW apo(a) phenotypes were associated with the presence of symptomatic PAD independent of traditional and nontraditional cardiovascular risk factors. Because PAD is considered an indicator of systemic atherosclerotic disease, our results suggest a possible role of Lp(a) as a genetically determined marker for systemic atherosclerosis.
Collapse
Affiliation(s)
- Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz, Linz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
41
|
MURPHY BG. Lipoprotein (a) and the kidney. Nephrology (Carlton) 2007. [DOI: 10.1111/j.1440-1797.1997.tb00205.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Anuurad E, Boffa MB, Koschinsky ML, Berglund L. Lipoprotein(a): A Unique Risk Factor for Cardiovascular Disease. Clin Lab Med 2006; 26:751-72. [PMID: 17110238 DOI: 10.1016/j.cll.2006.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipoprotein(a) (Lp(a)) is present in humans and primates. It has many properties in common with low-density lipoprotein, but contains a unique protein moiety designated apo(a), which is linked to apolipoprotein B-100 by a single disulfide bond. International standards for Lp(a) measurement and optimized Lp(a) assays insensitive to isoform size are not yet widely available. Lp(a) is a risk factor for coronary artery disease, and smaller size apo(a) is associated with coronary artery disease. The physiologic role of Lp(a) is unknown.
Collapse
Affiliation(s)
- Erdembileg Anuurad
- Department of Medicine, VA Northern California Health Care System, UCD Medical Center, University of California-Davis, 4150 V Street, Suite G400, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
43
|
Enas EA, Chacko V, Senthilkumar A, Puthumana N, Mohan V. Elevated lipoprotein(a)--a genetic risk factor for premature vascular disease in people with and without standard risk factors: a review. Dis Mon 2006; 52:5-50. [PMID: 16549089 DOI: 10.1016/j.disamonth.2006.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Enas A Enas
- CADI Research Foundation, Lisle, Illinois, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- J Hoover-Plow
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
45
|
Sha J, McCullough B, Hart E, Nassir F, Davidson NO, Hoover-Plow J. Apo(a) promotes thrombosis in a vascular injury model by a mechanism independent of plasminogen. J Thromb Haemost 2005; 3:2281-9. [PMID: 16150044 DOI: 10.1111/j.1538-7836.2005.01540.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Structural similarity between apolipoprotein(a) [apo(a)], the unique apoprotein of lipoprotein(a), and plasminogen (Plg), the zymogen for plasmin, results in inhibition of functions of Plg by apo(a) in vitro. The objective of this study was to evaluate the interaction of Plg and apo(a) in vivo. METHODS AND RESULTS Vascular injury was induced in the carotid artery with a perivascular cuff in: (i) wild-type (WT); (ii) Plg deficient (Plg-/-); (iii) apo(a) (6 KIV construct) transgenic [apo(a)tg]; and (iv) apo(a) transgenic and Plg deficient [apo(a):Plg-/-] mice. At 10 days after cuff placement, the media and adventitia area were increased in the injured carotids compared with the uninjured carotids, and collagen deposition was greater in apo(a)tg, Plg-/- and apo(a):Plg-/- mice compared with WT mice. The incidence of a thrombus was greater (P < 0.05) in apo(a):Plg-/- mice (83%) than WT (20%), Plg-/- (12%), and apo(a)tg mice (9%). In the thrombi from apo(a)tg and apo(a):Plg-/- mice, P-selectin and von Willebrand factor immunostaining, indicating a platelet-rich thrombi, was greater than in WT and Plg-/- mice. The presence of fibrin(ogen) in the thrombi was greater in Plg-/- and apo(a):Plg-/- mice than apo(a)tg and WT mice. Of the four genotypes, only the apo(a):Plg-/- mice had both increased platelet and increased fibrin(ogen) deposition. CONCLUSIONS The major finding of this study is the high incidence of thrombosis after vascular injury in apo(a)transgenic mice in a Plg deficient background, providing strong evidence for a prothrombotic role of apo(a) independent of Plg in vivo.
Collapse
Affiliation(s)
- J Sha
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, The Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
46
|
Shai I, Rimm EB, Hankinson SE, Cannuscio C, Curhan G, Manson JE, Rifai N, Stampfer MJ, Ma J. Lipoprotein (a) and coronary heart disease among women: beyond a cholesterol carrier? Eur Heart J 2005; 26:1633-9. [PMID: 15824077 DOI: 10.1093/eurheartj/ehi222] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS With its homology with plasminogen, lipoprotein(a) [Lp(a)] may be related to thrombosis and inflammation. We assessed the role of Lp(a) in coronary heart diseases (CHD) by a recently developed assay that is not affected by the plasminogen-like Kringle-type-2 repeats. METHODS AND RESULTS Of 32 826 women from the Nurses' Health Study, who provided blood at baseline, we documented 228 CHD events during 8 years of follow-up. Each case was compared with two matched controls. In a multivariable model adjusted for body mass index, family history, hypertension, diabetes, post-menopausal hormone use, physical activity, blood drawing characteristics, and alcohol intake, the odd ratio (OR) for Lp(a) levels > or =30 mg/dL was 1.9(95% CI: 1.3-3.0) when compared with those with Lp(a)<30 mg/dL. Women with high levels of both Lp(a) (> or =30 mg/dL) and fibrinogen (> or =400 mg/dL) had an OR of 3.2(95% CI: 1.6-6.5) for CHD, when compared with the combination of low levels (P interaction=0.05). Women with high levels of both Lp(a) and C-reactive protein (> or =3 mg/L) had an OR of 3.67(95% CI: 2.03-6.64) for CHD, when compared with the combination of low levels (P interaction=0.06). CONCLUSION Lp(a) levels >30 mg/dL are associated with twice the risk of CHD events among women and may be related to thrombosis and inflammation.
Collapse
Affiliation(s)
- Iris Shai
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yazici M, Demircan S, Durna K, Sahin M. Lipoprotein(a) levels in patients with unstable angina and their relationship with atherothrombosis and myocardial damage. Int J Clin Pract 2005; 59:150-5. [PMID: 15854189 DOI: 10.1111/j.1742-1241.2005.00442.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The aim of the study was to compare lipoprotein(a) [Lp(a)] levels in patients with cTroponin-I (cTn-I)-positive or -negative unstable angina and to investigate their relationship with atherothrombosis. A total of 202 consecutive patients were enrolled in the study. Lp(a), fibrinogen, plasminogen, PAI-1 and t-PA levels were measured and C-reactive protein (CRP) assays were performed on admission for all patients, and venous blood samples were drawn 12 and 24 h later for cTn-I measurements. The patients were divided into cTn-I-negative (cTn-I < 1 ng/ml) and -positive (cTn-I > or = 1 ng/ml) unstable angina groups. Lp(a) levels of the cTn-I-positive patients were higher than those of the cTn-I-negative patients (52.9 +/- 6.0 and 15.7 +/- 2.5 mg/dl, p < 0.0001). There was a positive correlation between Lp(a) and cTn-I levels (r = 0.692; p = 0.0001). Increase in coagulation activity and impairment in fibrinolytic activity were significant in the cTn-I-positive patients. Elevated Lp(a) levels may have a role in the development of myocardial damage in patients with unstable angina.
Collapse
Affiliation(s)
- M Yazici
- Department of Cardiology, Ondokuz Mayis University, School of Medicine, Samsun, Turkey.
| | | | | | | |
Collapse
|
48
|
Goldenberg NA, Hathaway WE, Jacobson L, Manco-Johnson MJ. A new global assay of coagulation and fibrinolysis. Thromb Res 2005; 116:345-56. [PMID: 16038720 DOI: 10.1016/j.thromres.2004.12.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/14/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Global clotting assays may reflect an individual's net hemostatic balance and could contribute to prothrombotic and hemorrhagic risk assessment. In this research, a global assay that measures both coagulation and fibrinolytic capacities was developed and investigated. MATERIALS AND METHODS In the Clot Formation and Lysis (CloFAL) assay, a buffered reactant solution containing trace amounts of calcium, tissue factor, and tissue-type plasminogen activator is added to plasma samples on a 96-well microplate in an automated, thermoregulated (37 degrees C) spectrophotometer. Clot formation and lysis are monitored as continuous changes in absorbance over the course of 3 h. Measurements include maximum amplitude (MA), times to maximum absorbance (T1) and completion of the first phase of decline in absorbance (T2), and area under the curve (AUC), from which a coagulation index (CI) and various fibrinolytic indices (FI) may be calculated. RESULTS AND CONCLUSIONS MA, T1, and CI were principally influenced by fibrinogen and procoagulant factors. FI was found to be altered by inhibiting activation of plasminogen or thrombin activatable fibrinolytic inhibitor. Median CI was significantly decreased, while FI was markedly increased, in term neonates as compared to healthy adults (CI: 58% vs. 115%, FI: 210% vs. 90%; P<0.001 for each). By contrast, median CI was notably increased, and FI decreased, in healthy pregnant women when compared to adults (CI: 239% vs. 115%, FI: 59% vs. 90%; P<0.001 for each). The CloFAL global assay is analytically sensitive to several key components in the coagulation and fibrinolytic systems, as well as to physiologic alterations in hemostasis.
Collapse
Affiliation(s)
- Neil A Goldenberg
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado Health Sciences Center/The Children's Hospital, Denver, CO, USA.
| | | | | | | |
Collapse
|
49
|
Boffa MB, Marcovina SM, Koschinsky ML. Lipoprotein(a) as a risk factor for atherosclerosis and thrombosis: mechanistic insights from animal models. Clin Biochem 2004; 37:333-43. [PMID: 15087247 DOI: 10.1016/j.clinbiochem.2003.12.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 02/05/2023]
Abstract
Evidence continues to accumulate from epidemiological studies that elevated plasma concentrations of lipoprotein(a) [Lp(a)] are a risk factor for a variety of atherosclerotic and thrombotic disorders. Lp(a) is a unique lipoprotein particle consisting of a moiety identical to low-density lipoprotein to which the glycoprotein apolipoprotein(a) [apo(a)] that is homologous to plasminogen is covalently attached. These features have suggested that Lp(a) may contribute to both proatherogenic and prothrombotic/antifibrinolytic processes and in vitro studies have identified many such candidate mechanisms. Despite intensive research, however, definition of the molecular mechanisms underlying the epidemiological data has proven elusive. Moreover, an effective and well-tolerated regimen to lower Lp(a) levels has yet to be developed. The use of animal models holds great promise for resolving these questions. Establishment of animal models for Lp(a) has been hampered by the absence of this lipoprotein from common small laboratory animals. Transgenic mice and rabbits expressing human apo(a) have been developed and these have been used to: (i) examine regulation of apo(a) gene expression; (ii) study the mechanism and molecular determinants of Lp(a) assembly from LDL and apo(a); (iii) demonstrate that apo(a)/Lp(a) are indeed proatherogenic and antifibrinolytic; and (iv) identify structural domains in apo(a) that mediate its pathogenic effects. The recent construction of transgenic apo(a) rabbits is a particularly promising development in view of the excellent utility of the rabbit as a model of advanced atherosclerosis.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
50
|
Abstract
Lipoprotein (a) [Lp(a)], is present only in humans, Old World nonhuman primates, and the European hedgehog. Lp(a) has many properties in common with low-density lipoprotein (LDL) but contains a unique protein, apo(a), which is structurally different from other apolipoproteins. The size of the apo(a) gene is highly variable, resulting in the protein molecular weight ranging from 300 to 800 kDa; this large variation may be caused by neutral evolution in the absence of any selection advantage. Apo(a) influences to a major extent metabolic and physicochemical properties of Lp(a), and the size polymorphism of the apo(a) gene contributes to the pronounced heterogeneity of Lp(a). There is an inverse relationship between apo(a) size and Lp(a) levels; however, this pattern is complex. For a given apo(a) size, there is a considerable variation in Lp(a) levels across individuals, underscoring the importance to assess allele-specific Lp(a) levels. Further, Lp(a) levels differ between populations, and blacks have generally higher levels than Asians and whites, adjusting for apo(a) sizes. In addition to the apo(a) size polymorphism, an upstream pentanucleotide repeat (TTTTA(n)) affects Lp(a) levels. Several meta-analyses have provided support for an association between Lp(a) and coronary artery disease, and the levels of Lp(a) carried in particles with smaller size apo(a) isoforms are associated with cardiovascular disease or with preclinical vascular changes. Further, there is an interaction between Lp(a) and other risk factors for cardiovascular disease. The physiological role of Lp(a) is unknown, although a majority of studies implicate Lp(a) as a risk factor.
Collapse
Affiliation(s)
- Lars Berglund
- Department of Medicine, University of California, Davis, UCD Medical Center, 4150 V Street, Suite G400, Sacramento, CA 95817, USA.
| | | |
Collapse
|