1
|
Mohammed CM, Al-Habib OAM. Molecular mechanisms of angiotensin type 2 receptor-mediated nitric oxide pathway in angiotensin II-induced vasorelaxation: Roles of potassium channels. Tissue Cell 2025; 93:102761. [PMID: 39893740 DOI: 10.1016/j.tice.2025.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
A variety of biological functions is attributed to the renin-angiotensin system (RAS). One of them is regulating vascular tone through its final effector Angiotensin II (Ang II). Ang II action is mediated by the Angiotensin type 1 receptor (AT1-R) which plays a role in vasoconstriction, and Angiotensin type 2 receptor (AT2-R) which may result in vascular relaxation through the releasing of endothelium mediates relaxation factors such as Nitric Oxide (NO). Therefore, this study investigated the role of AT2-R in vasodilation after blocking the effect of AT1-R in the rat aorta. Furthermore, it is to determine whether or not Ang II through NO has a role in rat aorta dilation via using valsartan. For control isolated aortic rings were preincubated with Valsartan (AT1- R inhibitor) and then stimulated with angiotensin II dose-dependent. For treating aortic rings different blockers and inhibitors were used. Pd123177 (AT2- R inhibitor) (20 µM), an inhibitor of PKA H-89 (10 µM), eNOS inhibitor L-NAME (0.3 mM), with group of K channel blockers such as TEA (1 mM), 4-AP (1 mM), BaCl2 (1 mM), clotrimazole (0.03 mM) and GLIB (0.01 mM). Our analysis demonstrates vasodilation in aortic rings induced by Ang II after blocking ATI-R and this response was highly reliant on PKA/eNOS and cyclic guanosine monophosphate (cGMP). The data from this investigation provided evidence that Ca2 + activated K+ channels (KCa) and Voltage-dependent K channel (KV) mediated Ang II vasorelaxation. Finally, these results indicate that angiotensin II primarily induces dilatation AT2-R after inhibiting the angiotensin AT1 receptor through a cascade of signaling pathways involving many enzymes and plasma membrane protein channels.
Collapse
Affiliation(s)
- Chinar M Mohammed
- Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq.
| | - Omar A M Al-Habib
- College of Science, Nawroz University, Duhok, Kurdistan Region, Iraq.
| |
Collapse
|
2
|
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies. Curr Hypertens Rep 2024; 26:483-495. [PMID: 39093387 PMCID: PMC11455731 DOI: 10.1007/s11906-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin-angiotensin-aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia. RECENT FINDINGS The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice. In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia.
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia.
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia.
| |
Collapse
|
3
|
Cevheroğlu O, Demirbaş B, Öğütcü D, Murat M. ADGRG1, an adhesion G protein-coupled receptor, forms oligomers. FEBS J 2024; 291:2461-2478. [PMID: 38468592 DOI: 10.1111/febs.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
G protein-coupled receptor (GPCR) oligomerization is a highly debated topic in the field. While initially believed to function as monomers, current literature increasingly suggests that these cell surface receptors, spanning almost all GPCR families, function as homo- or hetero-oligomers. Yet, the functional consequences of these oligomeric complexes remain largely unknown. Adhesion GPCRs (aGPCRs) present an intriguing family of receptors characterized by their large and multi-domain N-terminal fragments (NTFs), intricate activation mechanisms, and the prevalence of numerous splice variants in almost all family members. In the present study, bioluminescence energy transfer (BRET) and Förster resonance energy transfer (FRET) were used to study the homo-oligomerization of adhesion G protein-coupled receptor G1 (ADGRG1; also known as GPR56) and to assess the involvement of NTFs in these receptor complexes. Based on the results presented herein, we propose that ADGRG1 forms 7-transmembrane-driven homo-oligomers on the plasma membrane. Additionally, Stachel motif interactions appear to influence the conformation of these receptor complexes.
Collapse
Affiliation(s)
| | - Berkay Demirbaş
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Dilara Öğütcü
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Merve Murat
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| |
Collapse
|
4
|
Gironacci MM, Bruna-Haupt E. Unraveling the crosstalk between renin-angiotensin system receptors. Acta Physiol (Oxf) 2024; 240:e14134. [PMID: 38488216 DOI: 10.1111/apha.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/24/2024]
Abstract
The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Bruna-Haupt
- INTEQUI (CONICET), Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
5
|
Mathieu NM, Nakagawa P, Grobe JL, Sigmund CD. Insights Into the Role of Angiotensin-II AT 1 Receptor-Dependent β-Arrestin Signaling in Cardiovascular Disease. Hypertension 2024; 81:6-16. [PMID: 37449411 PMCID: PMC10787814 DOI: 10.1161/hypertensionaha.123.19419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
β-arrestins are a family of intracellular signaling proteins that play a key role in regulating the activity of G protein-coupled receptors. The angiotensin-II type 1 receptor is an important G protein-coupled receptor involved in the regulation of cardiovascular function and has been implicated in the progression of cardiovascular diseases. In addition to canonical G protein signaling, G protein-coupled receptors including the angiotensin-II type 1 receptor can signal via β-arrestin. Dysregulation of β-arrestin signaling has been linked to several cardiovascular diseases including hypertension, atherosclerosis, and heart failure. Understanding the role of β-arrestins in these conditions is critical to provide new therapeutic targets for the treatment of cardiovascular disease. In this review, we will discuss the beneficial and maladaptive physiological outcomes of angiotensin-II type 1 receptor-dependent β-arrestin activation in different cardiovascular diseases.
Collapse
Affiliation(s)
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
6
|
Alves-Silva T, Húngaro TG, Freitas-Lima LC, de Melo Arthur G, Arruda AC, Santos RB, Oyama LM, Mori MA, Bader M, Araujo RC. Kinin B1 receptor controls maternal adiponectin levels and influences offspring weight gain. iScience 2023; 26:108409. [PMID: 38058311 PMCID: PMC10696114 DOI: 10.1016/j.isci.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Given the importance of the kinin B1 receptor in insulin and leptin hormonal regulation, which in turn is crucial in maternal adaptations to ensure nutrient supply to the fetus, we investigated the role of this receptor in maternal metabolism and fetoplacental development. Wild-type and kinin B1 receptor-deficient (B1KO) female mice were mated with male mice of the opposite genotype. Consequently, the entire litter was heterozygous for kinin B1 receptor, ensuring that there would be no influence of offspring genotype on the maternal phenotype. Maternal kinin B1 receptor blockade reduces adiponectin secretion by adipose tissue ex vivo, consistent with lower adiponectin levels in pregnant B1KO mice. Furthermore, fasting insulinemia also increased, which was associated with placental insulin resistance, reduced placental glycogen accumulation, and heavier offspring. Therefore, we propose the combination of chronic hyperinsulinemia and reduced adiponectin secretion in B1KO female mice create a maternal obesogenic environment that results in heavier pups.
Collapse
Affiliation(s)
- Thaís Alves-Silva
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Talita G.R. Húngaro
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Leandro C. Freitas-Lima
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Gabriel de Melo Arthur
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Adriano C. Arruda
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Raisa B. Santos
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Lila M. Oyama
- Laboratory of Nutrition and Endocrine Physiology, Physiology Department, Federal University of São Paulo (UNIFESP), São Paulo 04023-901, Brazil
| | - Marcelo A.S. Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Ronaldo C. Araujo
- Laboratory of Genetics and Exercise Metabolism, Molecular Biology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
- Laboratory of Genetics and Exercise Metabolism, Nephrology Program, Biophysics Department, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| |
Collapse
|
7
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Cosarderelioglu C, Kreimer S, Plaza‐Rodriguez AI, Iglesias PA, Talbot CC, Siragy HM, Carey RM, Ubaida‐Mohien C, O'Rourke B, Ferrucci L, Bennett DA, Walston J, Abadir P. Decoding Angiotensin Receptors: TOMAHAQ-Based Detection and Quantification of Angiotensin Type-1 and Type-2 Receptors. J Am Heart Assoc 2023; 12:e030791. [PMID: 37681524 PMCID: PMC10547273 DOI: 10.1161/jaha.123.030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
Background The renin-angiotensin system plays a crucial role in human physiology, and its main hormone, angiotensin, activates 2 G-protein-coupled receptors, the angiotensin type-1 and type-2 receptors, in almost every organ. However, controversy exists about the location, distribution, and expression levels of these receptors. Concerns have been raised over the low sensitivity, low specificity, and large variability between lots of commercially available antibodies for angiotensin type-1 and type-2 receptors, which makes it difficult to reconciliate results of different studies. Here, we describe the first non-antibody-based sensitive and specific targeted quantitative mass spectrometry assay for angiotensin receptors. Methods and Results Using a technique that allows targeted analysis of multiple peptides across multiple samples in a single mass spectrometry analysis, known as TOMAHAQ (triggered by offset, multiplexed, accurate mass, high resolution, and absolute quantification), we have identified and validated specific human tryptic peptides that permit identification and quantification of angiotensin type-1 and type-2 receptors in biological samples. Several peptide sequences are conserved in rodents, making these mass spectrometry assays amenable to both preclinical and clinical studies. We have used this method to quantify angiotensin type-1 and type-2 receptors in postmortem frontal cortex samples of older adults (n=28) with Alzheimer dementia. We correlated levels of angiotensin receptors to biomarkers classically linked to renin-angiotensin system activation, including oxidative stress, inflammation, amyloid-β load, and paired helical filament-tau tangle burden. Conclusions These robust high-throughput assays will not only catalyze novel mechanistic studies in the angiotensin research field but may also help to identify patients with an unbalanced angiotensin receptor distribution who would benefit from angiotensin receptor blocker treatment.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatric Medicine and GerontologyJohns Hopkins University School of MedicineBaltimoreMD
- Division of Geriatrics, Department of Internal MedicineAnkara University School of MedicineAnkaraTurkey
| | - Simion Kreimer
- The Mass Spectrometry and Proteomics FacilityJohns Hopkins University School of MedicineBaltimoreMD
| | | | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Whiting School of EngineeringJohns Hopkins UniversityBaltimoreMD
| | - C. Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of MedicineBaltimoreMD
| | - Helmy M. Siragy
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of VirginiaCharlottesvilleVA
| | | | - Brian O'Rourke
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMD
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of HealthBaltimoreMD
| | - David A. Bennett
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
| | - Jeremy Walston
- Division of Geriatric Medicine and GerontologyJohns Hopkins University School of MedicineBaltimoreMD
| | - Peter Abadir
- Division of Geriatric Medicine and GerontologyJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
9
|
Waker CA, Hwang AE, Bowman-Gibson S, Chandiramani CH, Linkous B, Stone ML, Keoni CI, Kaufman MR, Brown TL. Mouse models of preeclampsia with preexisting comorbidities. Front Physiol 2023; 14:1137058. [PMID: 37089425 PMCID: PMC10117893 DOI: 10.3389/fphys.2023.1137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.
Collapse
Affiliation(s)
- Christopher A. Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amy E. Hwang
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chandni H. Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryce Linkous
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Madison L. Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chanel I. Keoni
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R. Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- *Correspondence: Thomas L. Brown,
| |
Collapse
|
10
|
Bono F, Fiorentini C, Mutti V, Tomasoni Z, Sbrini G, Trebesova H, Marchi M, Grilli M, Missale C. Central nervous system interaction and crosstalk between nAChRs and other ionotropic and metabotropic neurotransmitter receptors. Pharmacol Res 2023; 190:106711. [PMID: 36854367 DOI: 10.1016/j.phrs.2023.106711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in both the peripheral and the central nervous systems. nAChRs exert a crucial modulatory influence on several brain biological processes; they are involved in a variety of neuronal diseases including Parkinson's disease, Alzheimer's disease, epilepsy, and nicotine addiction. The influence of nAChRs on brain function depends on the activity of other neurotransmitter receptors that co-exist with nAChRs on neurons. In fact, the crosstalk between receptors is an important mechanism of neurotransmission modulation and plasticity. This may be due to converging intracellular pathways but also occurs at the membrane level, because of direct physical interactions between receptors. In this line, this review is dedicated to summarizing how nAChRs and other ionotropic and metabotropic receptors interact and the relevance of nAChRs cross-talks in modulating various neuronal processes ranging from the classical modulation of neurotransmitter release to neuron plasticity and neuroprotection.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giulia Sbrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Hanna Trebesova
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy.
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
11
|
Aljishi M, Isbel NM, Jegatheesan D, Johnson DW, Cho Y, Campbell SB, Hawley CM, Thornton A, Gillis D, Johnstone K. Rejection and graft outcomes in kidney transplant recipients with and without angiotensin II receptor type 1 antibodies. Transpl Immunol 2023; 76:101756. [PMID: 36460263 DOI: 10.1016/j.trim.2022.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022]
Abstract
AIM Angiotensin II type 1 receptor antibody (AT1R Ab) is a non-Human Leucocyte Antigen (HLA) antibody that is maybe associated with early severe kidney transplant rejection and worse graft outcomes. This study aimed to assess the association between AT1R Ab and kidney transplant rejection and graft outcomes. METHODS We performed a retrospective analysis of all adult kidney transplant recipients in an Australian centre who had an AT1R Ab test between 1 January 2015 to 30 June 2020. AT1R Ab positive patients were compared to AT1R Ab negative patients. Primary outcomes were rejection risk, type and histopathological severity scores. Secondary outcomes were 8-week graft function and graft loss. RESULTS Of 965 kidney transplants that were performed during the study period, 73 patients had AT1R Ab tested; 16 (22%) were positive and 57(78%) were negative. Positive patients were on average younger and had higher level of donor-specific HLA antibodies. Rejection occurred in 13 (81%) positive patients and 41 (72%) negative patients (P = 0.45). No significant differences in rejection type or severity were found. HLA mismatch and peak panel reactive antibody ≥80%, but not AT1R Ab, independently predicted rejection. Average (132 vs. 177 mmol/L, P = 0.302) and graft loss were not significantly different between groups. CONCLUSION The study found no evidence that AT1R Ab is associated with rejection type, severity or worse graft function. Future studies should assess its relationship with graft outcomes to help complement immunological risk assessment and potentially provide therapeutic options to alter outcomes.
Collapse
Affiliation(s)
- Manaf Aljishi
- Nephrology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | - Nicole M Isbel
- Nephrology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Dev Jegatheesan
- Nephrology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David W Johnson
- Nephrology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Yeoungjee Cho
- Nephrology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Scott B Campbell
- Nephrology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Carmel M Hawley
- Nephrology Department, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | - David Gillis
- Pathology Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
12
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Doan TNA, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction 2022; 164:R87-R99. [PMID: 36018774 DOI: 10.1530/rep-21-0428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
In brief There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation. Abstract During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus. This results in changes to the function of the maternal cardiovascular system. There is also a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular health/function. Additionally, there is evidence that the effects of maternal vascular vasodilation are maintained post-partum, which may reduce the risk of developing high blood pressure in the next pregnancy and reduce cardiovascular risk later in life. At both non-pregnant and pregnant stages, vascular endothelial cells produce a number of vasodilators and vasoconstrictors, which transduce signals to the contractile vascular smooth muscle cells to control the dilation and constriction of blood vessels. These vascular cells are also targets of other vasoactive factors, including angiotensin II (Ang II) and relaxin. The binding of Ang II to its receptors activates different pathways to regulate the blood vessel vasoconstriction/vasodilation, and relaxin can interact with some of these pathways to induce vasodilation. Based on the available literature, this review outlines the cardiovascular changes that occur in a healthy human pregnancy, supplemented by studies in rodents. A specific focus is placed on vasodilation of blood vessels during pregnancy; the role of endothelial cells and endothelium-derived vasodilators will also be discussed. Additionally, different pathways that are activated by Ang II and relaxin that result in blood vessel dilation will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Parry
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review. Pregnancy Hypertens 2022; 28:15-20. [DOI: 10.1016/j.preghy.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
|
15
|
He L, Ma S, Zuo Q, Zhang G, Wang Z, Zhang T, Zhai J, Guo Y. An Effective Sodium-Dependent Glucose Transporter 2 Inhibition, Canagliflozin, Prevents Development of Hypertensive Heart Failure in Dahl Salt-Sensitive Rats. Front Pharmacol 2022; 13:856386. [PMID: 35370704 PMCID: PMC8964360 DOI: 10.3389/fphar.2022.856386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The aim of the study was to investigate the protective effect of canagliflozin (CANA) on myocardial metabolism and heart under stress overload and to further explore its possible molecular mechanism. Methods: High-salt diet was used to induce heart failure with preserved ejection fraction (HFpEF), and then, the physical and physiological indicators were measured. The cardiac function was evaluated by echocardiography and related indicators. Masson trichrome staining, wheat germ agglutinin, and immunohistochemical staining were conducted for histology analysis. Meanwhile, oxidative stress and cardiac ATP production were also determined. PCR and Western blotting were used for quantitative detection of related genes and proteins. Comprehensive metabolomics and proteomics were employed for metabolic analysis and protein expression analysis. Results: In this study, CANA showed diuretic, hypotensive, weight loss, and increased intake of food and water. Dahl salt-sensitive (DSS) rats fed with a diet containing 8% NaCl AIN-76A developed left ventricular remodeling and diastolic dysfunction caused by hypertension. After CANA treatment, cardiac hypertrophy and fibrosis were reduced, and the left ventricular diastolic function was improved. Metabolomics and proteomics data confirmed that CANA reduced myocardial glucose metabolism and increased fatty acid metabolism and ketogenesis in DSS rats, normalizing myocardial metabolism and reducing the myocardial oxidative stress. Mechanistically, CANA upregulated p-adenosine 5′-monophosphate-activated protein kinase (p-AMPK) and sirtuin 1 (SIRT1) and significantly induced the expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a). Conclusion: CANA can improve myocardial hypertrophy, fibrosis, and left ventricular diastolic dysfunction induced by hypertension in DSS rats, possibly through the activation of the AMPK/SIRT1/PGC-1a pathway to regulate energy metabolism and oxidative stress.
Collapse
Affiliation(s)
- Lili He
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Sai Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Guorui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
16
|
Abstract
Circulating blood is filtered across the glomerular barrier to form an ultrafiltrate of plasma in the Bowman's space. The volume of glomerular filtration adjusted by time is defined as the glomerular filtration rate (GFR), and the total GFR is the sum of all single-nephron GFRs. Thus, when the single-nephron GFR is increased in the context of a normal number of functioning nephrons, single glomerular hyperfiltration results in 'absolute' hyperfiltration in the kidney. 'Absolute' hyperfiltration can occur in healthy people after high protein intake, during pregnancy and in patients with diabetes, obesity or autosomal-dominant polycystic kidney disease. When the number of functioning nephrons is reduced, single-nephron glomerular hyperfiltration can result in a GFR that is within or below the normal range. This 'relative' hyperfiltration can occur in patients with a congenitally reduced nephron number or with an acquired reduction in nephron mass consequent to surgery or kidney disease. Improved understanding of the mechanisms that underlie 'absolute' and 'relative' glomerular hyperfiltration in different clinical settings, and of whether and how the single-nephron haemodynamic and related biomechanical forces that underlie glomerular hyperfiltration promote glomerular injury, will pave the way toward the development of novel therapeutic interventions that attenuate glomerular hyperfiltration and potentially prevent or limit consequent progressive kidney injury and loss of function.
Collapse
|
17
|
Ayala-Ramírez P, González M, Escudero C, Quintero-Arciniegas L, Giachini FR, Alves de Freitas R, Damiano AE, García-Robles R. Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Pregnancy. A Non-systematic Review of Clinical Presentation, Potential Effects of Physiological Adaptations in Pregnancy, and Placental Vascular Alterations. Front Physiol 2022; 13:785274. [PMID: 35431989 PMCID: PMC9005899 DOI: 10.3389/fphys.2022.785274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
In December 2019, the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) rapidly spread to become a pandemic. To date, increasing evidence has described the potential negative impact of SARS-CoV-2 infection on pregnant women. Although the pathophysiology of coronavirus disease 2019 (COVID-19) is not entirely understood, there is emerging evidence that it causes a severe systemic inflammatory response associated with vascular alterations that could be of special interest considering some physiological changes in pregnancy. Additionally, these alterations may affect the physiology of the placenta and are associated with pregnancy complications and abnormal histologic findings. On the other hand, data about the vaccine against SARS-CoV-2 are limited, but the risks of administering COVID-19 vaccines during pregnancy appear to be minimal. This review summarizes the current literature on SARSCoV2 virus infection, the development of COVID-19 and its relationship with physiological changes, and angiotensin-converting enzyme 2 (ACE2) function during pregnancy. We have particularly emphasized evidence coming from Latin American countries.
Collapse
Affiliation(s)
- Paola Ayala-Ramírez
- School of Medicine, Human Genetics Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Paola Ayala-Ramírez,
| | - Marcelo González
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Marcelo González,
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
- Laboratory of Vascular Physiology, Department of Basic Sciences, Faculty of Sciences, Universidad del Bio-Bio, Chillan, Chile
| | - Laura Quintero-Arciniegas
- Perinatal Medicine Seedbed, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Physiological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernanda R. Giachini
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | | | - Alicia E. Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)- CONICET- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Reggie García-Robles
- Department of Physiological Sciences, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
18
|
SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166321. [PMID: 34920081 PMCID: PMC8668602 DOI: 10.1016/j.bbadis.2021.166321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) also in pregnant women. Infection in pregnancy leads to maternal and placental functional alterations. Pregnant women with vascular defects such as preeclampsia show high susceptibility to SARS-CoV-2 infection by undefined mechanisms. Pregnant women infected with SARS-CoV-2 show higher rates of preterm birth and caesarean delivery, and their placentas show signs of vasculopathy and inflammation. It is still unclear whether the foetus is affected by the maternal infection with this virus and whether maternal infection associates with postnatal affections. The SARS-CoV-2 infection causes oxidative stress and activation of the immune system leading to cytokine storm and next tissue damage as seen in the lung. The angiotensin-converting-enzyme 2 expression is determinant for these alterations in the lung. Since this enzyme is expressed in the human placenta, SARS-CoV-2 could infect the placenta tissue, although reported to be of low frequency compared with maternal lung tissue. Early-onset preeclampsia (eoPE) shows higher expression of ADAM17 (a disintegrin and metalloproteinase 17) causing an imbalanced renin-angiotensin system and endothelial dysfunction. A similar mechanism seems to potentially account for SARS-CoV-2 infection. This review highlights the potentially common characteristics of pregnant women with eoPE with those with COVID-19. A better understanding of the mechanisms of SARS-CoV-2 infection and its impact on the placenta function is determinant since eoPE/COVID-19 association may result in maternal metabolic alterations that might lead to a potential worsening of the foetal programming of diseases in the neonate, young, and adult.
Collapse
|
19
|
Bono F, Mutti V, Tomasoni Z, Sbrini G, Missale C, Fiorentini C. Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor-Receptor Interaction and Striatal Function. Curr Top Behav Neurosci 2022; 60:47-72. [PMID: 35505059 DOI: 10.1007/7854_2022_353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCR) heterodimers represent new entities with unique pharmacological, signalling, and trafficking properties, with specific distribution restricted to those cells where the two interacting receptors are co-expressed. Like other GPCR, dopamine D3 receptors (D3R) directly interact with various receptors to form heterodimers: data showing the D3R physical interaction with both GPCR and non-GPCR receptors have been provided including D3R interaction with other dopamine receptors. The aim of this chapter is to summarize current knowledge of the distinct roles of heterodimers involving D3R, focusing on the D3R interaction with the dopamine D1 receptor (D1R): the D1R-D3R heteromer, in fact, has been postulated in both ventral and motor striatum. Interestingly, since both D1R and D3R have been implicated in several pathological conditions, including schizophrenia, motor dysfunctions, and substance use disorders, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zaira Tomasoni
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Sbrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
20
|
Johnstone EKM, Ayoub MA, Hertzman RJ, See HB, Abhayawardana RS, Seeber RM, Pfleger KDG. Novel Pharmacology Following Heteromerization of the Angiotensin II Type 2 Receptor and the Bradykinin Type 2 Receptor. Front Endocrinol (Lausanne) 2022; 13:848816. [PMID: 35721749 PMCID: PMC9204302 DOI: 10.3389/fendo.2022.848816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 01/18/2023] Open
Abstract
The angiotensin type 2 (AT2) receptor and the bradykinin type 2 (B2) receptor are G protein-coupled receptors (GPCRs) that have major roles in the cardiovascular system. The two receptors are known to functionally interact at various levels, and there is some evidence that the observed crosstalk may occur as a result of heteromerization. We investigated evidence for heteromerization of the AT2 receptor and the B2 receptor in HEK293FT cells using various bioluminescence resonance energy transfer (BRET)-proximity based assays, including the Receptor Heteromer Investigation Technology (Receptor-HIT) and the NanoBRET ligand-binding assay. The Receptor-HIT assay showed that Gαq, GRK2 and β-arrestin2 recruitment proximal to AT2 receptors only occurred upon B2 receptor coexpression and activation, all of which is indicative of AT2-B2 receptor heteromerization. Additionally, we also observed specific coupling of the B2 receptor with the Gαz protein, and this was found only in cells coexpressing both receptors and stimulated with bradykinin. The recruitment of Gαz, Gαq, GRK2 and β-arrestin2 was inhibited by B2 receptor but not AT2 receptor antagonism, indicating the importance of B2 receptor activation within AT2-B2 heteromers. The close proximity between the AT2 receptor and B2 receptor at the cell surface was also demonstrated with the NanoBRET ligand-binding assay. Together, our data demonstrate functional interaction between the AT2 receptor and B2 receptor in HEK293FT cells, resulting in novel pharmacology for both receptors with regard to Gαq/GRK2/β-arrestin2 recruitment (AT2 receptor) and Gαz protein coupling (B2 receptor). Our study has revealed a new mechanism for the enigmatic and poorly characterized AT2 receptor to be functionally active within cells, further illustrating the role of heteromerization in the diversity of GPCR pharmacology and signaling.
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| | - Mohammed Akli Ayoub
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rebecca J. Hertzman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Heng B. See
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Rekhati S. Abhayawardana
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Ruth M. Seeber
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Kevin D. G. Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| |
Collapse
|
21
|
Lin M, Roth RA, Kozel BA, Mecham RP, Halabi CM. Loss of Angiotensin II Type 2 Receptor Improves Blood Pressure in Elastin Insufficiency. Front Cardiovasc Med 2021; 8:782138. [PMID: 34790711 PMCID: PMC8591102 DOI: 10.3389/fcvm.2021.782138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
There is ample evidence supporting a role for angiotensin II type 2 receptor (AT2R) in counterbalancing the effects of angiotensin II (ang II) through the angiotensin II type 1 receptor by promoting vasodilation and having anti-inflammatory effects. Elastin insufficiency in both humans and mice results in large artery stiffness and systolic hypertension. Unexpectedly, mesenteric arteries from elastin insufficient (Eln+/−) mice were shown to have significant vasoconstriction to AT2R agonism in vitro suggesting that AT2R may have vasoconstrictor effects in elastin insufficiency. Given the potential promise for the use of AT2R agonists clinically, the goal of this study was to determine whether AT2R has vasoconstrictive effects in elastin insufficiency in vivo. To avoid off-target effects of agonists and antagonists, mice lacking AT2R (Agtr2−/Y) were bred to Eln+/− mice and cardiovascular parameters were assessed in wild-type (WT), Agtr2−/Y, Eln+/−, and Agtr2−/Y;Eln+/− littermates. As previously published, Agtr2−/Y mice were normotensive at baseline and had no large artery stiffness, while Eln+/− mice exhibited systolic hypertension and large artery stiffness. Loss of AT2R in Eln+/− mice did not affect large artery stiffness or arterial structure but resulted in significant reduction of both systolic and diastolic blood pressure. These data support a potential vasocontractile role for AT2R in elastin insufficiency. Careful consideration and investigation are necessary to determine the patient population that might benefit from the use of AT2R agonists.
Collapse
Affiliation(s)
- Michelle Lin
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robyn A Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Beth A Kozel
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Carmen M Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
22
|
Pathological AT1R-B2R Protein Aggregation and Preeclampsia. Cells 2021; 10:cells10102609. [PMID: 34685589 PMCID: PMC8533718 DOI: 10.3390/cells10102609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
Preeclampsia is one of the most frequent and severe complications of pregnancy. Symptoms of preeclampsia usually occur after 20 weeks of pregnancy and include hypertension and kidney dysfunction with proteinuria. Up to now, delivery of the infant has been the most effective and life-saving treatment to alleviate symptoms of preeclampsia because a causative treatment does not exist, which could prolong a pregnancy complicated with preeclampsia. Preeclampsia is a complex medical condition, which is attributed to a variety of different risk factors and causes. Risk factors account for insufficient placentation and impaired vasculogenesis and finally culminate in this life-threatening condition of pregnancy. Despite progress, many pathomechanisms and causes of preeclampsia are still incompletely understood. In recent years, it was found that excessive protein complex formation between G-protein-coupled receptors is a common sign of preeclampsia. Specifically, the aberrant heteromerization of two vasoactive G-protein-coupled receptors (GPCRs), the angiotensin II AT1 receptor and the bradykinin B2 receptor, is a causative factor of preeclampsia symptoms. Based on this knowledge, inhibition of abnormal GPCR protein complex formation is an experimental treatment approach of preeclampsia. This review summarizes the impact of pathological GPCR protein aggregation on symptoms of preeclampsia and delineates potential new therapeutic targets.
Collapse
|
23
|
Azinheira Nobrega Cruz N, Stoll D, Casarini D, Bertagnolli M. Role of ACE2 in pregnancy and potential implications for COVID-19 susceptibility. Clin Sci (Lond) 2021; 135:1805-1824. [PMID: 34338772 PMCID: PMC8329853 DOI: 10.1042/cs20210284] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
In times of coronavirus disease 2019 (COVID-19), the impact of severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 infection on pregnancy is still unclear. The presence of angiotensin-converting enzyme (ACE) 2 (ACE2), the main receptor for SARS-CoV-2, in human placentas indicates that this organ can be vulnerable for viral infection during pregnancy. However, for this to happen, additional molecular processes are critical to allow viral entry in cells, its replication and disease manifestation, particularly in the placenta and/or feto-maternal circulation. Beyond the risk of vertical transmission, COVID-19 is also proposed to deplete ACE2 protein and its biological actions in the placenta. It is postulated that such effects may impair essential processes during placentation and maternal hemodynamic adaptations in COVID-19 pregnancy, features also observed in several disorders of pregnancy. This review gathers information indicating risks and protective features related to ACE2 changes in COVID-19 pregnancies. First, we describe the mechanisms of SARS-CoV-2 infection having ACE2 as a main entry door and current evidence of viral infection in the placenta. Further, we discuss the central role of ACE2 in physiological systems such as the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), both active during placentation and hemodynamic adaptations of pregnancy. Significant knowledge gaps are also identified and should be urgently filled to better understand the fate of ACE2 in COVID-19 pregnancies and the potential associated risks. Emerging knowledge will be able to improve the early stratification of high-risk pregnancies with COVID-19 exposure as well as to guide better management and follow-up of these mothers and their children.
Collapse
Affiliation(s)
- Nayara Azinheira Nobrega Cruz
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
- Research Center of the Hospital Sacré-Coeur, CIUSSS Nord-de-l’Île-de-Montréal, Montréal, Canada
| | - Danielle Stoll
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | - Mariane Bertagnolli
- Research Center of the Hospital Sacré-Coeur, CIUSSS Nord-de-l’Île-de-Montréal, Montréal, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montréal, Canada
| |
Collapse
|
24
|
Bang G, Ghil S. BRET analysis reveals interaction between the lysophosphatidic acid receptor LPA2 and the lysophosphatidylinositol receptor GPR55 in live cells. FEBS Lett 2021; 595:1806-1818. [PMID: 33959968 DOI: 10.1002/1873-3468.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
Lysophosphatidic acid (LPA) and lysophosphatidylinositol bind to the G protein-coupled receptors (GPCRs) LPA and GPR55, respectively. LPA2 , a type 2 LPA receptor, and GPR55 are highly expressed in colon cancer and involved in cancer progression. However, crosstalk between the two receptors and potential effects on cellular physiology are not fully understood. Here, using BRET analysis, we found that LPA2 and GPR55 interact in live cells. In the presence of both receptors, LPA2 and/or GPR55 activation facilitated co-internalization, and activation of GPR55, uncoupled with Gαi , induced reduction of intracellular cAMP. Notably, co-activation of receptors synergistically triggered further decline in the cAMP level, promoted cell proliferation, and increased the expression of cancer progression-related genes, suggesting that physical and functional crosstalk between LPA2 and GRR55 is involved in cancer progression.
Collapse
Affiliation(s)
- Gwantae Bang
- Department of Life Science, Kyonggi University, Suwon, Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Korea
| |
Collapse
|
25
|
Hormonal Effects on Urticaria and Angioedema Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2209-2219. [PMID: 33895364 DOI: 10.1016/j.jaip.2021.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Women appear to be more frequently affected with urticaria and angioedema. Sex hormones are believed to have an important mechanistic role in regulating pathways involved in these conditions. This effect is likely nonspecific for chronic spontaneous urticaria (CSU) or many forms of angioedema (AE), because many other chronic diseases such as asthma are also affected by sex hormones. The role of sex hormones has been better elucidated for hereditary AE, because they have been shown to have multiple effects including upregulation of FXII, an important activator of the kallikrein pathway. However, their role in the underlying pathogenesis for CSU is less clear. Autoimmunity is clearly linked to CSU, which is more common in women. This suggests that sex hormones could act as adjuvants in activating or upregulating autoimmune pathways. The purpose of this review is to discuss in detail the role of sex hormones in CSU and AE and how a better understanding of the impact hormones has on these conditions might lead to new treatment advancements with better clinical outcomes.
Collapse
|
26
|
Shin YY, An SM, Jeong JS, Yang SY, Lee GS, Hong EJ, Jeung EB, Kim SC, An BS. Comparison of steroid hormones in three different preeclamptic models. Mol Med Rep 2021; 23:252. [PMID: 33537808 PMCID: PMC7893799 DOI: 10.3892/mmr.2021.11891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia (PE) is a complication of pregnancy and is characterized by hypertension and proteinuria, threatening both the mother and the fetus. However, the etiology of PE has not yet been fully understood. Since the imbalance of steroid hormones is associated with the pathogenesis of PE, investigating steroidogenic mechanisms under various PE conditions is essential to understand the entire spectrum of pregnancy disorders. Therefore, the current study established three PE in vitro and in vivo models, and compared the levels of steroid hormones and steroidogenic enzymes within them. In cellular PE models induced by hypoxia, N‑nitro‑L‑arginine methyl ester hydrocholride (L‑NAME) and catechol‑o‑methyltransferase inhibitor, the levels of steroid hormones, including pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA) and testosterone tended to decrease during steroidogenesis. Injection of L‑NAME in pregnant rats led to a reduction in the levels of estradiol and P4 through regulation of cholesterol side‑chain cleavage enzyme (CYP11A1) and 3β‑hydroxysteroid dehydrogenase/δ5 4‑isomerase type 1 (HSD3B1), whereas rats treated with COMT‑I exhibited elevated levels of P5 and DHEA by regulation of the CYP11A1 and aromatase cytochrome P450 (CYP19A1) in the placenta and plasma. The reduced uterine perfusion pressure operation decreased CYP11A1 and increased CYP19A1 expression in placental tissues, whereas steroid hormone levels were not altered. In conclusion, the results of the present study suggest that the induction of PE conditions dysregulates the steroid hormones via regulation of steroidogenic enzymes, depending on specific PE symptoms. These findings can contribute to the development of novel diagnostic and therapeutic modalities for PE, by monitoring and supplying appropriate levels of steroid hormones.
Collapse
Affiliation(s)
- Ye Young Shin
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Sung-Min An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| |
Collapse
|
27
|
Haase N, Foster DJ, Cunningham MW, Bercher J, Nguyen T, Shulga-Morskaya S, Milstein S, Shaikh S, Rollins J, Golic M, Herse F, Kräker K, Bendix I, Serdar M, Napieczynska H, Heuser A, Gellhaus A, Thiele K, Wallukat G, Müller DN, LaMarca B, Dechend R. RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models. J Clin Invest 2021; 130:2928-2942. [PMID: 32338644 DOI: 10.1172/jci99417] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Nadine Haase
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Julia Bercher
- Experimental and Clinical Research Center, Berlin, Germany
| | - Tuyen Nguyen
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | | - Jeff Rollins
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Michaela Golic
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Herse
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Kristin Kräker
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ivo Bendix
- Department of Pediatrics I Neonatology and Experimental Perinatal Neurosciences and
| | - Meray Serdar
- Department of Pediatrics I Neonatology and Experimental Perinatal Neurosciences and
| | - Hanna Napieczynska
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Arnd Heuser
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kristin Thiele
- Department of Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerd Wallukat
- Experimental and Clinical Research Center, Berlin, Germany
| | - Dominik N Müller
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ralf Dechend
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Germany.,Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,HELIOS-Klinikum, Berlin, Germany.Preeclampsia, with the hallmark features of new-onset hypertension and proteinuria after 20 weeks of gestation, is a major cause of fetal and maternal morbidity and mortality. Studies have demonstrated a role for the renin-angiotensin system (RAS) in its pathogenesis; however, small-molecule RAS blockers are contraindicated because of fetal toxicity. We evaluated whether siRNA targeting maternal hepatic angiotensinogen (Agt, ) could ameliorate symptoms of preeclampsia without adverse placental or fetal effects in 2 rodent models. The first model used a cross of females expressing human Agt, with males expressing human renin, resulting in upregulation of the circulating and uteroplacental RAS. The second model induced ischemia/reperfusion injury and subsequent local and systemic inflammation by surgically reducing placental blood flow mid-gestation (reduced uterine perfusion pressure [RUPP]). These models featured hypertension, proteinuria, and fetal growth restriction, with altered biomarkers. siRNA treatment ameliorated the preeclamptic phenotype in both models, reduced blood pressure, and improved intrauterine growth restriction, with no observed deleterious effects on the fetus. Treatment also improved the angiogenic balance and proteinuria in the transgenic model, and it reduced angiotensin receptor activating antibodies in both. Thus, an RNAi therapeutic targeting Agt, ameliorated the clinical sequelae and improved fetal outcomes in 2 rodent models of preeclampsia
| |
Collapse
|
28
|
Parchem JG, Kanasaki K, Lee SB, Kanasaki M, Yang JL, Xu Y, Earl KM, Keuls RA, Gattone VH, Kalluri R. STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects. JCI Insight 2021; 6:141588. [PMID: 33301424 PMCID: PMC7934881 DOI: 10.1172/jci.insight.141588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of preeclampsia and other hypertensive disorders of pregnancy remains poorly defined despite the substantial burden of maternal and neonatal morbidity associated with these conditions. In particular, the role of genetic variants as determinants of disease susceptibility is understudied. Storkhead-box protein 1 (STOX1) was first identified as a preeclampsia risk gene through family-based genetic linkage studies in which loss-of-function variants were proposed to underlie increased preeclampsia susceptibility. We generated a genetic Stox1 loss-of-function mouse model (Stox1 KO) to evaluate whether STOX1 regulates blood pressure in pregnancy. Pregnant Stox1-KO mice developed gestational hypertension evidenced by a significant increase in blood pressure compared with WT by E17.5. While severe renal, placental, or fetal growth abnormalities were not observed, the Stox1-KO phenotype was associated with placental vascular and extracellular matrix abnormalities. Mechanistically, we found that gestational hypertension in Stox1-KO mice resulted from activation of the uteroplacental renin-angiotensin system. This mechanism was supported by showing that treatment of pregnant Stox1-KO mice with an angiotensin II receptor blocker rescued the phenotype. Our study demonstrates the utility of genetic mouse models for uncovering links between genetic variants and effector pathways implicated in the pathogenesis of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Jacqueline G Parchem
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Soo Bong Lee
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Megumi Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce L Yang
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Xu
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kadeshia M Earl
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel A Keuls
- Development, Disease Models & Therapeutics Graduate Program, Center for Cell and Gene Therapy, and Stem Cells and Regenerative Medicine Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Vincent H Gattone
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
30
|
Egom EEA, Kamgang R, Binoun A Egom C, Moyou-Somo R, Essame Oyono JL. Pregnancy and breastfeeding during COVID-19 pandemic. Ther Adv Reprod Health 2020; 14:2633494120962526. [PMID: 33111061 PMCID: PMC7557642 DOI: 10.1177/2633494120962526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Emmanuel Eroume-A Egom
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), BP 13033, Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | | | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
31
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
32
|
Rivas-Santisteban R, Rodriguez-Perez AI, Muñoz A, Reyes-Resina I, Labandeira-García JL, Navarro G, Franco R. Angiotensin AT 1 and AT 2 receptor heteromer expression in the hemilesioned rat model of Parkinson's disease that increases with levodopa-induced dyskinesia. J Neuroinflammation 2020; 17:243. [PMID: 32807174 PMCID: PMC7430099 DOI: 10.1186/s12974-020-01908-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS The renin-angiotensin system (RAS) is altered in Parkinson's disease (PD), a disease due to substantia nigra neurodegeneration and whose dopamine-replacement therapy, using the precursor levodopa, leads to dyskinesias as the main side effect. Angiotensin AT1 and AT2 receptors, mainly known for their role in regulating water homeostasis and blood pressure and able to form heterodimers (AT1/2Hets), are present in the central nervous system. We assessed the functionality and expression of AT1/2Hets in Parkinson disease (PD). METHODS Immunocytochemistry was used to analyze the colocalization between angiotensin receptors; bioluminescence resonance energy transfer was used to detect AT1/2Hets. Calcium and cAMP determination, MAPK activation, and label-free assays were performed to characterize signaling in homologous and heterologous systems. Proximity ligation assays were used to quantify receptor expression in mouse primary cultures and in rat striatal sections. RESULTS We confirmed that AT1 and AT2 receptors form AT1/2Hets that are expressed in cells of the central nervous system. AT1/2Hets are novel functional units with particular signaling properties. Importantly, the coactivation of the two receptors in the heteromer reduces the signaling output of angiotensin. Remarkably, AT1/2Hets that are expressed in both striatal neurons and microglia make possible that candesartan, the antagonist of AT1, increases the effect of AT2 receptor agonists. In addition, the level of striatal expression increased in the unilateral 6-OH-dopamine lesioned rat PD model and was markedly higher in parkinsonian-like animals that did not become dyskinetic upon levodopa chronic administration if compared with expression in those that became dyskinetic. CONCLUSION The results indicate that boosting the action of neuroprotective AT2 receptors using an AT1 receptor antagonist constitutes a promising therapeutic strategy in PD.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Rodriguez-Perez
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Muñoz
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Current adress: RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - José Luis Labandeira-García
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain. .,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.
| | - Rafael Franco
- Centro de Investigación en Red, enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, Madrid, Spain. .,School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Gouda AS, Mégarbane B. Snake venom-derived bradykinin-potentiating peptides: A promising therapy for COVID-19? Drug Dev Res 2020; 82:38-48. [PMID: 32761647 PMCID: PMC7436322 DOI: 10.1002/ddr.21732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus‐2 (SARS‐COV‐2), a novel coronavirus responsible for the recent infectious pandemic, is known to downregulate angiotensin‐converting enzyme‐2 (ACE2). Most current investigations focused on SARS‐COV‐2‐related effects on the renin–angiotensin system and especially the resultant increase in angiotensin II, neglecting its effects on the kinin–kallikrein system. SARS‐COV‐2‐induced ACE2 inhibition leads to the augmentation of bradykinin 1‐receptor effects, as ACE2 inactivates des‐Arg9‐bradykinin, a bradykinin metabolite. SARS‐COV‐2 also decreases bradykinin 2‐receptor effects as it affects bradykinin synthesis by inhibiting cathepsin L, a kininogenase present at the site of infection and involved in bradykinin production. The physiologies of both the renin–angiotensin and kinin–kallikrein system are functionally related suggesting that any intervention aiming to treat SARS‐COV‐2‐infected patients by triggering one system but ignoring the other may not be adequately effective. Interestingly, the snake‐derived bradykinin‐potentiating peptide (BPP‐10c) acts on both systems. BPP‐10c strongly decreases angiotensin II by inhibiting ACE, increasing bradykinin‐related effects on the bradykinin 2‐receptor and increasing nitric oxide‐mediated effects. Based on a narrative review of the literature, we suggest that BPP‐10c could be an optimally effective option to consider when aiming at developing an anti‐SARS‐COV‐2 drug.
Collapse
Affiliation(s)
- Ahmed S Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, University of Cairo, Cairo, Egypt
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
34
|
Franco R, Rivas-Santisteban R, Serrano-Marín J, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G. SARS-CoV-2 as a Factor to Disbalance the Renin–Angiotensin System: A Suspect in the Case of Exacerbated IL-6 Production. THE JOURNAL OF IMMUNOLOGY 2020; 205:1198-1206. [DOI: 10.4049/jimmunol.2000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
|
35
|
Zelinka T, Petrák O, Rosa J, Holaj R, Štrauch B, Widimský J. Primary Aldosteronism and Pregnancy. Kidney Blood Press Res 2020; 45:275-285. [PMID: 32114578 DOI: 10.1159/000506287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Primary aldosteronism (PA) may present at younger age and may thus complicate pregnancy. Our aim was to identify female patients in whom PA was diagnosed after pregnancy complicated with hypertension and to analyze possible hypertension-related complications during pregnancy. METHODS We performed retrospective analysis of female patients with PA diagnosed and treated at our Department who were pregnant before the diagnosis of PA. RESULTS We found 14 patients with PA (age at diagnosis 32.2 ± 4.2 years, hypertension duration 5.4 ± 3.6 years) suffering from hypertension 3 (IQR 0, 4) years before pregnancy (6 patients had hypertension diagnosed during pregnancy). Three subjects were pregnant twice, and 1 patient had been pregnant three times before the final diagnosis of PA was made. Ten subjects delivered by Caesarean section (in 3 cases due to early-onset preeclampsia and 2 subjects due to significantly increased blood pressure), and 9 cases spontaneously (1 subject complicated twice due to late-onset preeclampsia). Preterm delivery occurred in 5 cases - the earliest one in the sixth month of gestation. Subsequent diagnosis of PA (sometimes with a long delay up to a maximum of 12 years) was made on the basis of significantly low potassium values (2.7 ± 0.4 mmol/L; 2 subjects even suffered from muscle cramps) and hypertension (mostly moderate), elevated plasma/serum aldosterone (54.1 ± 20.2 ng/dL) and suppressed plasma renin activity (0.4 ± 0.2 ng/mL/h) or plasma renin (1.9 ± 1.6 ng/L). Thirteen subjects underwent laparoscopic adrenalectomy (in all but 2 cases, diagnosis of a large cortical adenoma [16 ± 5.9 mm] was made), and 1 subject was classified with bilateral hyperplasia according to adrenal venous sampling. Operation normalized BP in 10 subjects and improved BP control in the remaining 3 subjects. Two patients became pregnant after adrenalectomy, and their pregnancies were uneventful. CONCLUSION PA is associated with a high rate of pregnancy-related complications. The most frequent complication is preeclampsia, in some cases leading to preterm delivery. The optimal prevention of these complications is early diagnosis of PA, and in these particular hypertensive cases, the awareness of hypokalemia.
Collapse
Affiliation(s)
- Tomáš Zelinka
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia,
| | - Ondřej Petrák
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ján Rosa
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Robert Holaj
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Branislav Štrauch
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Jiří Widimský
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
36
|
Hitzerd E, Broekhuizen M, Neuman RI, Colafella KMM, Merkus D, Schoenmakers S, Simons SHP, Reiss IKM, Danser AHJ. Human Placental Vascular Reactivity in Health and Disease: Implications for the Treatment of Pre-eclampsia. Curr Pharm Des 2020; 25:505-527. [PMID: 30950346 DOI: 10.2174/1381612825666190405145228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Adequate development of the placenta is essential for optimal pregnancy outcome. Pre-eclampsia (PE) is increasingly recognized to be a consequence of placental dysfunction and can cause serious maternal and fetal complications during pregnancy. Furthermore, PE increases the risk of neonatal problems and has been shown to be a risk factor for cardiovascular disease of the mother later in life. Currently, there is no adequate treatment for PE, mainly because its multifactorial pathophysiology remains incompletely understood. It originates in early pregnancy with abnormal placentation and involves a cascade of dysregulated systems in the placental vasculature. To investigate therapeutic strategies it is essential to understand the regulation of vascular reactivity and remodeling of blood vessels in the placenta. Techniques using human tissue such as the ex vivo placental perfusion model provide insight in the vasoactive profile of the placenta, and are essential to study the effects of drugs on the fetal vasculature. This approach highlights the different pathways that are involved in the vascular regulation of the human placenta, changes that occur during PE and the importance of focusing on restoring these dysfunctional systems when studying treatment strategies for PE.
Collapse
Affiliation(s)
- Emilie Hitzerd
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Michelle Broekhuizen
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Cardiology; Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Rugina I Neuman
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Gynecology and Obstetrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Katrina M Mirabito Colafella
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Melbourne, Australia
| | - Daphne Merkus
- Department of Cardiology; Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sam Schoenmakers
- Department of Gynecology and Obstetrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sinno H P Simons
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
37
|
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020; 49:1545-1568. [DOI: 10.1039/c9cs00473d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nongenetic strategies for regulating receptor oligomerization in living cells based on DNA, protein, small molecules and physical stimuli.
Collapse
Affiliation(s)
- Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Jinmiao Tian
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Zhilan Zhou
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| |
Collapse
|
38
|
Integrated structural modeling and super-resolution imaging resolve GPCR oligomers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 169:151-179. [PMID: 31952685 DOI: 10.1016/bs.pmbts.2019.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Formation of G protein-coupled receptors (GPCRs) dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. For the Class A/rhodopsin subfamily of glycoprotein hormone receptors (GpHRs), di/oligomerization has been demonstrated to play a significant role in regulating its signaling activity at a cellular and physiological level and even pathophysiologically. Here we will describe and discuss the developments in our understanding of GPCR oligomerization, in both health and disease, from the study of this unique and complex subfamily of GPCRs with light on the luteinizing hormone receptor (LHR). Focus will be put on the results of an approach relying on the combination of atomistic modeling by protein-protein docking with super-resolution imaging. The latter could resolve single LHR molecules to ~8nm resolution in functional asymmetric dimers and oligomers, using dual-color photoactivatable dyes and localization microscopy (PD-PALM). Structural modeling of functionally asymmetric LHR trimers and tetramers strongly aligned with PD-PALM-imaged spatial arrangements, identifying multiple possible helix interfaces mediating inter-protomer associations. Diverse spatial and structural assemblies mediating GPCR oligomerization may acutely fine-tune the cellular signaling profile.
Collapse
|
39
|
Sinphitukkul K, Manotham K, Eiam-Ong S, Eiam-Ong S. Aldosterone nongenomically induces angiotensin II receptor dimerization in rat kidney: role of mineralocorticoid receptor and NADPH oxidase. Arch Med Sci 2019; 15:1589-1598. [PMID: 31749889 PMCID: PMC6855162 DOI: 10.5114/aoms.2019.87135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Previous in vitro studies demonstrated that aldosterone nongenomically induces transglutaminase (TG) and reactive oxygen species (ROS), which enhanced angiotensin II receptor (ATR) dimerization. There are no in vivo data in the kidney. MATERIAL AND METHODS Male Wistar rats were intraperitoneally injected with normal saline solution, or aldosterone (Aldo: 150 μg/kg BW); or received pretreatment with eplerenone (mineralocorticoid receptor (MR) blocker, Ep. + Aldo), or with apocynin (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, Apo. + Aldo) 30 min before aldosterone. Thirty minutes after aldosterone injection, protein abundances of dimeric and monomeric forms of AT1R and AT2R, and protein abundances and localizations of TG2 and p47phox, a cytosolic subunit of NADPH oxidase, were determined by Western blot analysis and immunohistochemistry, respectively. RESULTS Protein abundances of dimeric forms of AT1R and AT2R were enhanced by 170% and 70%, respectively. Apocynin could block dimeric forms of both receptors while eplerenone inhibited only AT2R. Monomeric protein levels of both receptors were maintained. Aldosterone significantly enhanced TG2 and p47phox protein abundances, which were blunted by eplerenone or apocynin. Aldosterone stimulated p47phox protein expression in both the cortex and the medulla while TG2 was induced mostly in the medulla. Eplerenone or apocynin normalized the immunoreactivity of both TG2 and p47phox. CONCLUSIONS This is the first in vivo study demonstrating that aldosterone nongenomically increases renal TG2 and p47phox protein expression and then activates AT1R and AT2R dimerizations. Aldosterone-stimulated AT1R and AT2R dimerizations are mediated through activation of NADPH oxidase. Aldosterone-induced AT1R dimer formation is an MR-independent pathway, whereas the formation of AT2R dimer is modulated in an MR-dependent manner.
Collapse
Affiliation(s)
| | - Krissanapong Manotham
- Molecular and Cell Biology Unit, Department of Medicine, Lerdsin General Hospital, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Department of Medicine, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchit Eiam-Ong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
40
|
Gyselaers W, Thilaganathan B. Preeclampsia: a gestational cardiorenal syndrome. J Physiol 2019; 597:4695-4714. [PMID: 31343740 DOI: 10.1113/jp274893] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
It is generally accepted today that there are two different types of preeclampsia: an early-onset or placental type and a late-onset or maternal type. In the latent phase, the first one presents with a low output/high resistance circulation eventually leading in the late second or early third trimester to an intense and acutely aggravating systemic disorder with an important impact on maternal and neonatal mortality and morbidity; the other type presents initially as a high volume/low resistance circulation, gradually evolving to a state of circulatory decompensation usually in the later stages of pregnancy, with a less severe impact on maternal and neonatal outcome. For both processes, numerous dysfunctions of the heart, kidneys, arteries, veins and interconnecting systems are reported, most of them presenting earlier and more severely in early- than in late-onset preeclampsia; however, some very specific dysfunctions exist for either type. Experimental, clinical and epidemiological observations before, during and after pregnancy are consistent with gestation-induced worsening of subclinical pre-existing chronic cardiovascular dysfunction in early-onset preeclampsia, and thus sharing the pathophysiology of cardiorenal syndrome type II, and with acute volume overload decompensation of the maternal circulation in late-onset preeclampsia, thus sharing the pathophysiology of cardiorenal syndrome type 1. Cardiorenal syndrome type V is consistent with the process of preeclampsia superimposed upon clinical cardiovascular and/or renal disease, alone or as part of a systemic disorder. This review focuses on the specific differences in haemodynamic dysfunctions between the two types of preeclampsia, with special emphasis on the interorgan interactions between heart and kidneys, introducing the theoretical concept that the pathophysiological processes of preeclampsia can be regarded as the gestational manifestations of cardiorenal syndromes.
Collapse
Affiliation(s)
- Wilfried Gyselaers
- Department of Obstetrics & Gynaecology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium.,Department Physiology, Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| | - Basky Thilaganathan
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, UK.,Molecular and Clinical Sciences Research Institute, St George's University of London, UK
| |
Collapse
|
41
|
Mesquita TRR, Miguel-dos-Santos R, Jesus ICGD, de Almeida GKM, Fernandes VA, Gomes AAL, Guatimosim S, Martins-Silva L, Ferreira AJ, Capettini LDSA, Pesquero JL, Lauton-Santos S. Ablation of B1- and B2-kinin receptors causes cardiac dysfunction through redox-nitroso unbalance. Life Sci 2019; 228:121-127. [DOI: 10.1016/j.lfs.2019.04.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023]
|
42
|
Luminescence- and Fluorescence-Based Complementation Assays to Screen for GPCR Oligomerization: Current State of the Art. Int J Mol Sci 2019; 20:ijms20122958. [PMID: 31213021 PMCID: PMC6627893 DOI: 10.3390/ijms20122958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 01/22/2023] Open
Abstract
G protein-coupled receptors (GPCRs) have the propensity to form homo- and heterodimers. Dysfunction of these dimers has been associated with multiple diseases, e.g., pre-eclampsia, schizophrenia, and depression, among others. Over the past two decades, considerable efforts have been made towards the development of screening assays for studying these GPCR dimer complexes in living cells. As a first step, a robust in vitro assay in an overexpression system is essential to identify and characterize specific GPCR–GPCR interactions, followed by methodologies to demonstrate association at endogenous levels and eventually in vivo. This review focuses on protein complementation assays (PCAs) which have been utilized to study GPCR oligomerization. These approaches are typically fluorescence- and luminescence-based, making identification and localization of protein–protein interactions feasible. The GPCRs of interest are fused to complementary fluorescent or luminescent fragments that, upon GPCR di- or oligomerization, may reconstitute to a functional reporter, of which the activity can be measured. Various protein complementation assays have the disadvantage that the interaction between the reconstituted split fragments is irreversible, which can lead to false positive read-outs. Reversible systems offer several advantages, as they do not only allow to follow the kinetics of GPCR–GPCR interactions, but also allow evaluation of receptor complex modulation by ligands (either agonists or antagonists). Protein complementation assays may be used for high throughput screenings as well, which is highly relevant given the growing interest and effort to identify small molecule drugs that could potentially target disease-relevant dimers. In addition to providing an overview on how PCAs have allowed to gain better insights into GPCR–GPCR interactions, this review also aims at providing practical guidance on how to perform PCA-based assays.
Collapse
|
43
|
Anton EL, Fernandes D, Assreuy J, da Silva-Santos JE. Bradykinin increases BP in endotoxemic rat: functional and biochemical evidence of angiotensin II AT 1 /bradykinin B 2 receptor heterodimerization. Br J Pharmacol 2019; 176:2608-2626. [PMID: 30945263 DOI: 10.1111/bph.14685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Bradykinin may induce vasoconstriction in selected vessels or under specific experimental conditions. We hypothesized that inflammatory stimuli, such as endotoxin challenge, may induce the dimerization of AT1 /B2 receptors, altering the vascular effects of bradykinin. EXPERIMENTAL APPROACH Wistar rats received LPS (1 mg·kg-1 , i.p.) and were anaesthetized for assessment of BP. Mesenteric resistance arteries were used in organ baths and subjected to co-immunoprecipitation and Western blot analyses. KEY RESULTS At 24 and 48 hr after LPS, bradykinin-induced hypotension was followed by a sustained increase in BP, which was not found in non-endotoxemic animals. The B2 receptor antagonist Hoe-140 fully blocked the responses to bradykinin. The pressor effect of bradykinin was not prevented by prazosin, an α1 -adrenoceptor antagonist, but it was inhibited by the AT1 receptor antagonist losartan or the Rho-kinase inhibitor Y-27632. Endotoxemic rats also displayed enhanced pressor responses to angiotensin II, which were blocked by Hoe-140. Co-immunoprecipitation isolated using anti-B2 or anti-AT1 receptor antibodies showed that resistance arteries presented augmented levels of the AT1 /B2 receptor complexes at 24 hr after LPS injection. The presence of AT1 /B2 receptor heterodimers did correlate with the development of losartan-sensitive contractile responses to bradykinin and potentiation of angiotensin II-induced contraction, which was prevented by Hoe-140. CONCLUSIONS AND IMPLICATIONS Endotoxin challenge is a stimulus for AT1 /B2 receptor heterodimerization in native vessels and shifts the B2 receptor-dependent vascular effect of bradykinin to a more complex pathway, which also depends on AT1 receptors and their intracellular signalling pathways.
Collapse
Affiliation(s)
- Elaine Leocádia Anton
- Department of Pharmacology, Laboratory of Cardiovascular Biology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Fernandes
- Department of Pharmacology, Laboratory of Cardiovascular Biology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Laboratory of Cardiovascular Biology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José Eduardo da Silva-Santos
- Department of Pharmacology, Laboratory of Cardiovascular Biology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
44
|
Planes N, Digman MA, Vanderheyden PP, Gratton E, Caballero-George C. Number and brightness analysis to study spatio-temporal distribution of the angiotensin II AT1 and the endothelin-1 ETA receptors: Influence of ligand binding. Biochim Biophys Acta Gen Subj 2019; 1863:917-924. [DOI: 10.1016/j.bbagen.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 02/04/2023]
|
45
|
Maternal Venous Hemodynamic Dysfunction in Proteinuric Gestational Hypertension: Evidence and Implications. J Clin Med 2019; 8:jcm8030335. [PMID: 30862007 PMCID: PMC6462953 DOI: 10.3390/jcm8030335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 01/21/2023] Open
Abstract
This review summarizes current knowledge from experimental and clinical studies on renal function and venous hemodynamics in normal pregnancy, in gestational hypertension (GH) and in two types of preeclampsia: placental or early-onset preeclampsia (EPE) and maternal or late-onset (LPE) preeclampsia, presenting at <34 weeks and ≥34 weeks respectively. In addition, data from maternal venous Doppler studies are summarized, showing evidence for (1) the maternal circulation functioning closer to the upper limits of capacitance than in non-pregnant conditions, with intrinsic risks for volume overload, (2) abnormal venous Doppler measurements obtainable in preeclampsia, more pronounced in EPE than LPE, however not observed in GH, and (3) abnormal venous hemodynamic function installing gradually from first to third trimester within unique pathways of general circulatory deterioration in GH, EPE and LPE. These associations have important clinical implications in terms of screening, diagnosis, prevention and management of gestational hypertensive diseases. They invite for further hypothesis-driven research on the role of retrograde venous congestion in the etiology of preeclampsia-related organ dysfunctions and their absence in GH, and also challenge the generally accepted view of abnormal placentation as the primary cause of preeclampsia. The striking similarity between abnormal maternal venous Doppler flow patterns and those observed at the ductus venosus and other abdominal veins of the intra-uterine growth restricted fetus, also invites to explore the role of venous congestion in the intra-uterine programming of some adult diseases.
Collapse
|
46
|
Ni R, Kindler DR, Waag R, Rouault M, Ravikumar P, Nitsch R, Rudin M, Camici GG, Liberale L, Kulic L, Klohs J. fMRI Reveals Mitigation of Cerebrovascular Dysfunction by Bradykinin Receptors 1 and 2 Inhibitor Noscapine in a Mouse Model of Cerebral Amyloidosis. Front Aging Neurosci 2019; 11:27. [PMID: 30890928 PMCID: PMC6413713 DOI: 10.3389/fnagi.2019.00027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/30/2019] [Indexed: 11/28/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) techniques can be used to assess cerebrovascular dysfunction in Alzheimer’s disease, an important and early contributor to pathology. We hypothesized that bradykinin receptor inhibition alleviates the vascular dysfunction in a transgenic arcAβ mouse model of cerebral amyloidosis and that fMRI techniques can be used to monitor the treatment response. Transgenic arcAβ mice, and non-transgenic littermates of 14 months-of-age were either treated with the bradykinin receptors 1 and 2 blocker noscapine or received normal drinking water as control over 3 months (n = 8–11/group) and all mice were assessed using fMRI at the end of the treatment period. Perfusion MRI using an arterial spin labeling technique showed regional hypoperfusion in arcAβ compared to non-transgenic controls, which was alleviated by noscapine treatment. Similarly, measuring cerebral blood volume changes upon pharmacological stimulation using vessel dilator acetazolamide revealed recovery of regional impairment of cerebral vascular reactivity in arcAβ mice upon noscapine treatment. In addition, we assessed with immunohistochemistry beta-amyloid (Aβ) and inflammation levels in brain sections. Immunohistological stainings for Aβ deposition (6E10) and related microgliosis (Iba1) in the cortex and hippocampus were found comparable between noscapine-treated and untreated arcAβ mice. In addition, levels of soluble and insoluble Aβ38, Aβ40, Aβ42 were found to be similar in brain tissue homogenates of noscapine-treated and untreated arcAβ mice using electro-chemiluminescent based immunoassay. In summary, bradykinin receptors blockade recovered cerebral vascular dysfunction in a mouse model of cerebral amyloidosis. fMRI methods revealed the functional deficit in disease condition and were useful tools to monitor the treatment response.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zürich, Switzerland.,Zurich Neuroscience Center, Zürich, Switzerland
| | - Diana Rita Kindler
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Rebecca Waag
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Marie Rouault
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zürich, Switzerland.,Zurich Neuroscience Center, Zürich, Switzerland
| | - Priyanka Ravikumar
- Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
| | - Roger Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Giovanni G Camici
- Zurich Neuroscience Center, Zürich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zürich, Switzerland
| | - Luca Liberale
- Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland.,Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luka Kulic
- Zurich Neuroscience Center, Zürich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zürich, Switzerland.,Zurich Neuroscience Center, Zürich, Switzerland
| |
Collapse
|
47
|
Franco R, Villa M, Morales P, Reyes-Resina I, Gutiérrez-Rodríguez A, Jiménez J, Jagerovic N, Martínez-Orgado J, Navarro G. Increased expression of cannabinoid CB 2 and serotonin 5-HT 1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2019; 152:58-66. [PMID: 30738036 DOI: 10.1016/j.neuropharm.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2 (CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical sections were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.
| | - María Villa
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Irene Reyes-Resina
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Ana Gutiérrez-Rodríguez
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Physiology. Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
48
|
Jacques D, Provost C, Normand A, Abou Abdallah N, Al-Khoury J, Bkaily G. Angiotensin II induces apoptosis of human right and left ventricular endocardial endothelial cells by activating the AT 2 receptor 1. Can J Physiol Pharmacol 2019; 97:581-588. [PMID: 30730762 DOI: 10.1139/cjpp-2018-0592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endocardial endothelial cells (EECs) form a monolayer lining the ventricular cavities. Studies from our laboratory and the literature have shown differences between EECs isolated from the right and left ventricles (EECRs and EECLs, respectively). Angiotensin II (Ang II) was shown to induce apoptosis of different cell types mainly via AT1 receptor activation. In this study, we verified whether Ang II induces apoptosis of human EECRs and EECLs (hEECRs and hEECLs, respectively) and via which type of receptor. Using the annexin V labeling and in situ TUNEL assays, our results showed that Ang II induced apoptosis of both hEECRs and hEECLs in a concentration-dependent manner. Our results using specific AT1 and AT2 receptor antagonists showed that the Ang-II-induced apoptosis in both hEECRs and hEECLs is mediated mainly via the AT2 receptor. However, AT1 receptor blockade partially prevented Ang-II-induced apoptosis, particularly in hEECRs. Hence, our results suggest that mainly AT2 receptors mediate Ang-II-induced apoptosis of hEECRs and hEECLs. The damage of EECs would affect their function as a physical barrier between the blood and cardiomyocytes, thus affecting cardiomyocyte functions.
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Chantale Provost
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Normand
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nadia Abou Abdallah
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
49
|
Quitterer U, AbdAlla S. Discovery of Pathologic GPCR Aggregation. Front Med (Lausanne) 2019; 6:9. [PMID: 30761305 PMCID: PMC6363654 DOI: 10.3389/fmed.2019.00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023] Open
Abstract
The family of G-protein-coupled receptors (GPCRs) is one of the most important drug targets. Mechanisms underlying GPCR activation and signaling are therefore of great pharmacologic interest. It was long thought that GPCRs exist and function as monomers. This feature was considered to distinguish GPCRs from other membrane receptors such as receptor tyrosine kinases or cytokine receptors, which signal from dimeric receptor complexes. But during the last two decades it was increasingly recognized that GPCRs can undergo aggregation to form dimers and higher order oligomers, resulting in homomeric and/or heteromeric protein complexes with different stoichiometries. Moreover, this protein complex formation could modify GPCR signaling and function. We contributed to this paradigm shift in GPCR pharmacology by the discovery of the first pathologic GPCR aggregation, which is the protein complex formation between the angiotensin II AT1 receptor and the bradykinin B2 receptor. Increased AT1-B2 heteromerization accounts for the angiotensin II hypersensitivity of pregnant women with preeclampsia hypertension. Since the discovery of AT1-B2, other pathologic GPCR aggregates were found, which contribute to atherosclerosis, neurodegeneration and Alzheimer's disease. As a result of our findings, pathologic GPCR aggregation appears as an independent and disease-specific process, which is increasingly considered as a novel target for pharmacologic intervention.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.,Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Said AbdAlla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, Nihoyannopoulos P, Tousoulis D, Makris T. MicroRNAs in Preeclampsia. Microrna 2019; 8:28-35. [PMID: 30101723 DOI: 10.2174/2211536607666180813123303] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) continues to represent a worldwide problem and challenge for both clinicians and laboratory-based doctors. Despite many efforts, the knowledge acquired regarding its pathogenesis and pathophysiology does not allow us to treat it efficiently. It is not possible to arrest its progressive nature, and the available therapies are limited to symptomatic treatment. Furthermore, both the diagnosis and prognosis are frequently uncertain, whilst the ability to predict its occurrence is very limited. MicroRNAs are small non-coding RNAs discovered two decades ago, and present great interest given their ability to regulate almost every aspect of the cell function. A lot of evidence regarding the role of miRNAs in pre-eclampsia has been accumulated in the last 10 years. Differentially expressed miRNAs are characteristic of both mild and severe PE. In many cases they target signaling pathway-related genes that result in altered processes which are directly involved in PE. Immune system, angiogenesis and trophoblast proliferation and invasion, all fundamental aspects of placentation, are controlled in various degrees by miRNAs which are up- or downregulated. Finally, miRNAs represent a potential therapeutic target and a diagnostic tool.
Collapse
Affiliation(s)
- Georgios Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Vasiliki Katsi
- Cardiology Department, Hippokration Hospital, National Health System, Athens, Greece
| | - Antigoni Miliou
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - Georgia Vamvakou
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| |
Collapse
|