1
|
Thomas BL, Montero‐Melendez T, Oggero S, Kaneva MK, Chambers D, Pinto AL, Nerviani A, Lucchesi D, Austin‐Williams S, Hussain MT, Pitzalis C, Allen B, Malcangio M, Dell'Accio F, Norling LV, Perretti M. Molecular Determinants of Neutrophil Extracellular Vesicles That Drive Cartilage Regeneration in Inflammatory Arthritis. Arthritis Rheumatol 2024; 76:1705-1718. [PMID: 39041647 PMCID: PMC11605269 DOI: 10.1002/art.42958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE This study was undertaken to establish the potential therapeutic profile of neutrophil-derived extracellular vesicles (EVs) in experimental inflammatory arthritis and associate pharmacological activity with specific EV components, focusing on microRNAs. METHODS Neutrophil EVs were administered intra-articularly through a prophylactic or therapeutic protocol to male C57BL/6 mice undergoing serum-transfer-induced inflammatory arthritis. Transcriptomic analysis of knees was performed on joints following EV administration, naive and arthritic mice (untreated; n = 4/group) and EV-treated diseased mice (intra-articular administration) with contralateral (vehicle-treated; n = 8/group). Comparison of healthy donor and patients with rheumatoid arthritis (RA) neutrophil EVs was performed. RESULTS EVs afforded cartilage protection with an increase in collagen-II and reduced collagen-X expression within the joint. To gain mechanistic insights, RNA sequencing of the arthritic joints was conducted. A total of 5,231 genes were differentially expressed (P < 0.05), with 257 unique to EV treatment. EVs affected key regenerative pathways involved in joint development, including Wnt and Notch signaling. This wealth of genomic alteration prompted to identify microRNAs in EVs, 10 of which are associated with RA. As a proof of concept, we focused on miR-455-3p, which was detected in both healthy donor and RA EVs. EV addition to chondrocyte cultures elevated miR-455-3p and exerted anticatabolic effects upon interleukin-1β stimulation; these effects were blocked by actinomycin or miR-455-3p antagomir. CONCLUSION Neutrophils from patients with RA yielded EVs with composition, efficacy, and miR-455-3p content similar to those of healthy volunteers, suggesting that neutrophil EVs could be developed as an autologous treatment to protect and repair joint tissue of patients affected by inflammatory arthritides.
Collapse
Affiliation(s)
| | | | - Silvia Oggero
- Queen Mary University of London and Kings College London, Guys’ CampusLondonUnited Kingdom
| | | | | | - Andreia L. Pinto
- Royal Brompton & Harefield NHS Foundation TrustLondonUnited Kingdom
| | - Alessandra Nerviani
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research CentreLondonUnited Kingdom
| | | | | | | | - Costantino Pitzalis
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research CentreLondonUnited Kingdom
| | | | | | - Francesco Dell'Accio
- Queen Mary University of London, Barts Health NHS Trust, and National Institute for Health and Care Research Barts Biomedical Research CentreLondonUnited Kingdom
| | | | | |
Collapse
|
2
|
Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. JOURNAL OF INTENSIVE MEDICINE 2024; 4:417-432. [PMID: 39310055 PMCID: PMC11411438 DOI: 10.1016/j.jointm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS represents a major global public health burden, and the management of ARDS continues to challenge healthcare systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions regarding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exogenous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in ARDS, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Rolas L, Stein M, Barkaway A, Reglero-Real N, Sciacca E, Yaseen M, Wang H, Vazquez-Martinez L, Golding M, Blacksell IA, Giblin MJ, Jaworska E, Bishop CL, Voisin MB, Gaston-Massuet C, Fossati-Jimack L, Pitzalis C, Cooper D, Nightingale TD, Lopez-Otin C, Lewis MJ, Nourshargh S. Senescent endothelial cells promote pathogenic neutrophil trafficking in inflamed tissues. EMBO Rep 2024; 25:3842-3869. [PMID: 38918502 PMCID: PMC11387759 DOI: 10.1038/s44319-024-00182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Collapse
Affiliation(s)
- Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Monja Stein
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elisabetta Sciacca
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammed Yaseen
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haitao Wang
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Vazquez-Martinez
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meredith J Giblin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edyta Jaworska
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Myles J Lewis
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Yan Q, Jia S, Li D, Yang J. The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: From the activation to becoming potential biomarkers. Biomed Pharmacother 2023; 169:115821. [PMID: 37952355 DOI: 10.1016/j.biopha.2023.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, have emerged as critical mediators in the communication between the human microbiota and its host. As the first responder to the inflammatory site, neutrophils play an important role in protecting the host against bacterial infections. Recent investigations revealed that SCFAs generated from microbiota influence various neutrophil activities, including activation, migration, and generation of mediators of inflammatory processes. SCFAs have also been demonstrated to exhibit potential therapeutic benefits in a variety of disorders related to neutrophil dysfunction, including inflammatory bowel disease, viral infectious disorders, and cancer. This study aims to examine the molecular processes behind the complicated link between SCFAs and neutrophils, as well as their influence on neutrophil-driven inflammatory disorders. In addition, we will also provide an in-depth review of current research on the diagnostic and therapeutic value of SCFAs as possible biomarkers for neutrophil-related diseases.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
5
|
Tanaka F, Mazzardo G, Salm DC, de Oliveira BH, Joaquim L, Machado RS, Cidreira T, Petronilho FC, Bittencourt EB, Bianco G, Bobinski F, Piovezan AP, Srbely JZ, Shah JP, Moré AOO, Mazzardo-Martins L, Martins DF. Peripheral Activation of Formyl Peptide Receptor 2/ALX by Electroacupuncture Alleviates Inflammatory Pain by Increasing Interleukin-10 Levels and Catalase Activity in Mice. Neuroscience 2023; 529:1-15. [PMID: 37572879 DOI: 10.1016/j.neuroscience.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
In the context of the electroacupuncture (EA) neurobiological mechanisms, we have previously demonstrated the involvement of formyl peptide receptor 2 (FPR2/ALX) in the antihyperalgesic effect of EA. The present study investigated the involvement of peripheral FPR2/ALX in the antihyperalgesic effect of EA on inflammatory cytokines levels, oxidative stress markers and antioxidant enzymes in an animal model of persistent inflammatory pain. Male Swiss mice underwent intraplantar (i.pl.) injection with complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed with von Frey monofilaments. Animals were treated with EA (2/10 Hz, ST36-SP6, 20 minutes) for 4 consecutive days. From the first to the fourth day after CFA injection, animals received i.pl. WRW4 (FPR2/ALX antagonist) or saline before EA. Levels of inflammatory cytokines (TNF, IL-6, IL-4 and IL-10), antioxidant enzymes (catalase and superoxide dismutase), oxidative stress markers (TBARS, protein carbonyl, nitrite/nitrate ratio), and myeloperoxidase activity were measured in paw tissue samples. As previously demonstrated, i.pl. injection of the FPR2/ALX antagonist prevented the antihyperalgesic effect induced by EA. Furthermore, animals treated with EA showed higher levels of IL-10 and catalase activity in the inflamed paw, and these effects were prevented by the antagonist WRW4. EA did not change levels of TNF and IL-6, SOD and MPO activity, and oxidative stress markers. Our work demonstrates that the antihyperalgesic effect of EA on CFA-induced inflammatory pain could be partially associated with higher IL-10 levels and catalase activity, and that these effects may be dependent, at least in part, on the activation of peripheral FPR2/ALX.
Collapse
Affiliation(s)
- Fernanda Tanaka
- Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Gustavo Mazzardo
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Faculty of Medicine, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Richard S Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Thaina Cidreira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Fabrícia C Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Postgraduate Program in Health Science, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Italy; Istituto di Formazione in Agopuntura e Neuromodulazione IFAN, Roma, Italy
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - John Z Srbely
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Jay P Shah
- Rehabilitation Medicine Department, National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Ari O O Moré
- Integrative Medicine and Acupuncture Service, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Caxaria S, Bharde S, Fuller AM, Evans R, Thomas B, Celik P, Dell’Accio F, Yona S, Gilroy D, Voisin MB, Wood JN, Sikandar S. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc Natl Acad Sci U S A 2023; 120:e2211631120. [PMID: 37071676 PMCID: PMC10151464 DOI: 10.1073/pnas.2211631120] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/05/2023] [Indexed: 04/19/2023] Open
Abstract
Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.
Collapse
Affiliation(s)
- Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Sabah Bharde
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Alice M. Fuller
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Romy Evans
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Bethan Thomas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Petek Celik
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Francesco Dell’Accio
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - Simon Yona
- Institute of Biomedical and Oral Research, Hebrew University, 9112102Jerusalem, Israel
| | - Derek Gilroy
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| | - John N. Wood
- Division of Medicine, Molecular Nociception Group, Wolfson Institute of Biomedical Research, University College London, WC1E 6BTLondon, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQLondon, United Kingdom
| |
Collapse
|
7
|
Méndez-Barbero N, San Sebastian-Jaraba I, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins and cardiovascular diseases: Beyond membrane trafficking and repair. Front Cell Dev Biol 2022; 10:1000760. [PMID: 36313572 PMCID: PMC9614170 DOI: 10.3389/fcell.2022.1000760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. The main cause underlying CVD is associated with the pathological remodeling of the vascular wall, involving several cell types, including endothelial cells, vascular smooth muscle cells, and leukocytes. Vascular remodeling is often related with the development of atherosclerotic plaques leading to narrowing of the arteries and reduced blood flow. Atherosclerosis is known to be triggered by high blood cholesterol levels, which in the presence of a dysfunctional endothelium, results in the retention of lipoproteins in the artery wall, leading to an immune-inflammatory response. Continued hypercholesterolemia and inflammation aggravate the progression of atherosclerotic plaque over time, which is often complicated by thrombus development, leading to the possibility of CV events such as myocardial infarction or stroke. Annexins are a family of proteins with high structural homology that bind phospholipids in a calcium-dependent manner. These proteins are involved in several biological functions, from cell structural organization to growth regulation and vesicle trafficking. In vitro gain- or loss-of-function experiments have demonstrated the implication of annexins with a wide variety of cellular processes independent of calcium signaling such as immune-inflammatory response, cell proliferation, migration, differentiation, apoptosis, and membrane repair. In the last years, the use of mice deficient for different annexins has provided insight into additional functions of these proteins in vivo, and their involvement in different pathologies. This review will focus in the role of annexins in CVD, highlighting the mechanisms involved and the potential therapeutic effects of these proteins.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | | | - Rafael Blázquez-Serra
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Jose L. Martín-Ventura
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- Autonoma University of Madrid, Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- *Correspondence: Luis M. Blanco-Colio,
| |
Collapse
|
8
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Sajid S, Zariwala MG, Mackenzie R, Turner M, Nell T, Bellary S, Renshaw D. Suppression of Anti-Inflammatory Mediators in Metabolic Disease May Be Driven by Overwhelming Pro-Inflammatory Drivers. Nutrients 2022; 14:2360. [PMID: 35684160 PMCID: PMC9182642 DOI: 10.3390/nu14112360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Obesity is a multifactorial disease and is associated with an increased risk of developing metabolic syndrome and co-morbidities. Dysregulated expansion of the adipose tissue during obesity induces local tissue hypoxia, altered secretory profile of adipokines, cytokines and chemokines, altered profile of local tissue inflammatory cells leading to the development of low-grade chronic inflammation. Low grade chronic inflammation is considered to be the underlying mechanism that increases the risk of developing obesity associated comorbidities. The glucocorticoid induced protein annexin A1 and its N-terminal peptides are anti-inflammatory mediators involved in resolving inflammation. The aim of the current study was to investigate the role of annexin A1 in obesity and associated inflammation. To achieve this aim, the current study analysed data from two feasibility studies in clinical populations: (1) bariatric surgery patients (Pre- and 3 months post-surgery) and (2) Lipodystrophy patients. Plasma annexin A1 levels were increased at 3-months post-surgery compared to pre-surgery (1.2 ± 0.1 ng/mL, n = 19 vs. 1.6 ± 0.1 ng/mL, n = 9, p = 0.009) and positively correlated with adiponectin (p = 0.009, r = 0.468, n = 25). Plasma annexin A1 levels were decreased in patients with lipodystrophy compared to BMI matched controls (0.2 ± 0.1 ng/mL, n = 9 vs. 0.97 ± 0.1 ng/mL, n = 30, p = 0.008), whereas CRP levels were significantly elevated (3.3 ± 1.0 µg/mL, n = 9 vs. 1.4 ± 0.3 µg/mL, n = 31, p = 0.0074). The roles of annexin A1 were explored using an in vitro cell based model (SGBS cells) mimicking the inflammatory status that is observed in obesity. Acute treatment with the annexin A1 N-terminal peptide, AC2-26 differentially regulated gene expression (including PPARA (2.8 ± 0.7-fold, p = 0.0303, n = 3), ADIPOQ (2.0 ± 0.3-fold, p = 0.0073, n = 3), LEP (0.6 ± 0.2-fold, p = 0.0400, n = 3), NAMPT (0.4 ± 0.1-fold, p = 0.0039, n = 3) and RETN (0.1 ± 0.03-fold, p < 0.0001, n = 3) in mature obesogenic adipocytes indicating that annexin A1 may play a protective role in obesity and inflammation. However, this effect may be overshadowed by the continued increase in systemic inflammation associated with rapid tissue expansion in obesity.
Collapse
Affiliation(s)
- Sehar Sajid
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Richard Mackenzie
- School of Life & Health Sciences, University of Roehampton, London SW15 4DJ, UK;
| | - Mark Turner
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Theo Nell
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University Main Campus, Stellenbosch 7600, South Africa;
| | - Srikanth Bellary
- The Diabetes Centre, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK;
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| |
Collapse
|
10
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
11
|
Man F, Nadkarni S, Kanabar V, E-Lacerda RR, Gomes Ferreira S, Federici Canova D, Perretti M, Page CP, Riffo-Vasquez Y. A peptide derived from chaperonin 60.1, IRL201104, inhibits LPS-induced acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L803-L813. [PMID: 34431396 DOI: 10.1152/ajplung.00155.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chaperonin 60.1 (Cpn60.1) is a protein derived from Mycobacterium tuberculosis that has been shown, along with its peptide fragment IRL201104, to have beneficial effects in models of allergic inflammation. To further investigate the anti-inflammatory properties of Cpn60.1 and IRL201104, we have investigated these molecules in a model of nonallergic lung inflammation. Mice were treated with Cpn60.1 (0.5-5,000 ng/kg) or IRL201104 (0.00025-2.5 ng/kg), immediately before intranasal instillation of bacterial lipopolysaccharide (LPS). Cytokine levels and cell numbers in mouse bronchoalveolar lavage (BAL) fluid were measured 4 h after LPS administration. In some experiments, mice were depleted of lung-resident phagocytes. Cells from BAL fluid were analyzed for inflammasome function. Human umbilical vein endothelial cells (HUVECs) were analyzed for adhesion molecule expression. Human neutrophils were analyzed for integrin expression, chemotaxis, and cell polarization. Cpn60.1 and IRL201104 significantly inhibited neutrophil migration into the airways, independently of route of administration. This effect of the peptide was absent in TLR4 and annexin A1 knockout mice. Intravital microscopy revealed that IRL201104 reduced leukocyte adhesion and migration into inflamed tissues. However, IRL201104 did not significantly affect adhesion molecule expression in HUVECs or integrin expression, chemotaxis, or polarization of human neutrophils at the studied concentrations. In phagocyte-depleted animals, the anti-inflammatory effect of IRL201104 was not significant. IRL201104 significantly reduced IL-1β and NLRP3 expression and increased A20 expression in BAL cells. This study shows that Cpn60.1 and IRL201104 potently inhibit LPS-induced neutrophil infiltration in mouse lungs by a mechanism dependent on tissue-resident phagocytes and to a much lesser extent, the proresolving factor annexin A1.
Collapse
Affiliation(s)
- Francis Man
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Suchita Nadkarni
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Rodrigo R E-Lacerda
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Sueli Gomes Ferreira
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Donata Federici Canova
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Kinoshita M, Ogawa Y, Hama N, Ujiie I, Hasegawa A, Nakajima S, Nomura T, Adachi J, Sato T, Koizumi S, Shimada S, Fujita Y, Takahashi H, Mizukawa Y, Tomonaga T, Nagao K, Abe R, Kawamura T. Neutrophils initiate and exacerbate Stevens-Johnson syndrome and toxic epidermal necrolysis. Sci Transl Med 2021; 13:13/600/eaax2398. [PMID: 34193610 DOI: 10.1126/scitranslmed.aax2398] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 12/13/2020] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening mucocutaneous adverse drug reactions characterized by massive epidermal detachment. Cytotoxic T cells and associated effector molecules are known to drive SJS/TEN pathophysiology, but the contribution of innate immune responses is not well understood. We describe a mechanism by which neutrophils triggered inflammation during early phases of SJS/TEN. Skin-infiltrating CD8+ T cells produced lipocalin-2 in a drug-specific manner, which triggered the formation of neutrophil extracellular traps (NETs) in early lesional skin. Neutrophils undergoing NETosis released LL-37, an antimicrobial peptide, which induced formyl peptide receptor 1 (FPR1) expression by keratinocytes. FPR1 expression caused keratinocytes to be vulnerable to necroptosis that caused further release of LL-37 by necroptotic keratinocytes and induced FPR1 expression on surrounding keratinocytes, which likely amplified the necroptotic response. The NETs-necroptosis axis was not observed in less severe cutaneous adverse drug reactions, autoimmune diseases, or neutrophil-associated disorders, suggesting that this was a process specific to SJS/TEN. Initiation and progression of SJS/TEN keratinocyte necroptosis appear to involve a cascade of events mediated by innate and adaptive immune responses, and understanding these responses may contribute to the identification of diagnostic markers or therapeutic targets for these adverse drug reactions.
Collapse
Affiliation(s)
- Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Natsumi Hama
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Inkin Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takuya Sato
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiko Mizukawa
- Department of Dermatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
13
|
Morad H, Luqman S, Tan CH, Swann V, McNaughton PA. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide. Sci Rep 2021; 11:9339. [PMID: 33927223 PMCID: PMC8085234 DOI: 10.1038/s41598-021-88224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Neutrophils must navigate accurately towards pathogens in order to destroy invaders and thus defend our bodies against infection. Here we show that hydrogen peroxide, a potent neutrophil chemoattractant, guides chemotaxis by activating calcium-permeable TRPM2 ion channels and generating an intracellular leading-edge calcium "pulse". The thermal sensitivity of TRPM2 activation means that chemotaxis towards hydrogen peroxide is strongly promoted by small temperature elevations, suggesting that an important function of fever may be to enhance neutrophil chemotaxis by facilitating calcium influx through TRPM2. Chemotaxis towards conventional chemoattractants such as LPS, CXCL2 and C5a does not depend on TRPM2 but is driven in a similar way by leading-edge calcium pulses. Other proposed initiators of neutrophil movement, such as PI3K, Rac and lyn, influence chemotaxis by modulating the amplitude of calcium pulses. We propose that intracellular leading-edge calcium pulses are universal drivers of the motile machinery involved in neutrophil chemotaxis.
Collapse
Affiliation(s)
- Hassan Morad
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Suaib Luqman
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- CSIR-Central Institute of Medicinal and Aromatic Plants, Uttar Pradesh, Lucknow, 226015, India
| | - Chun-Hsiang Tan
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- Department of Neurology, Kaohsiung Medical University Hospital, and Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Victoria Swann
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK.
| |
Collapse
|
14
|
Wu L, Liu C, Chang DY, Zhan R, Sun J, Cui SH, Eddy S, Nair V, Tanner E, Brosius FC, Looker HC, Nelson RG, Kretzler M, Wang JC, Xu M, Ju W, Zhao MH, Chen M, Zheng L. Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney Int 2021; 100:107-121. [PMID: 33675846 DOI: 10.1016/j.kint.2021.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Since failed resolution of inflammation is a major contributor to the progression of diabetic nephropathy, identifying endogenously generated molecules that promote the physiological resolution of inflammation may be a promising therapeutic approach for this disease. Annexin A1 (ANXA1), as an endogenous mediator, plays an important role in resolving inflammation. Whether ANXA1 could affect established diabetic nephropathy through modulating inflammatory states remains largely unknown. In the current study, we found that in patients with diabetic nephropathy, the levels of ANXA1 were upregulated in kidneys, and correlated with kidney function as well as kidney outcomes. Therefore, the role of endogenous ANXA1 in mouse models of diabetic nephropathy was further evaluated. ANXA1 deficiency exacerbated kidney injuries, exhibiting more severe albuminuria, mesangial matrix expansion, tubulointerstitial lesions, kidney inflammation and fibrosis in high fat diet/streptozotocin-induced-diabetic mice. Consistently, ANXA1 overexpression ameliorated kidney injuries in mice with diabetic nephropathy. Additionally, we found Ac2-26 (an ANXA1 mimetic peptide) had therapeutic potential for alleviating kidney injuries in db/db mice and diabetic Anxa1 knockout mice. Mechanistic studies demonstrated that intracellular ANXA1 bound to the transcription factor NF-κB p65 subunit, inhibiting its activation thereby modulating the inflammatory state. Thus, our data indicate that ANXA1 may be a promising therapeutic approach to treating and reversing diabetic nephropathy.
Collapse
Affiliation(s)
- Liang Wu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Changjie Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jing Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shi-He Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Tanner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank C Brosius
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Helen C Looker
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Méndez-Barbero N, Gutiérrez-Muñoz C, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins: Involvement in cholesterol homeostasis, inflammatory response and atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33:206-216. [PMID: 33622609 DOI: 10.1016/j.arteri.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
The annexin superfamily consists of 12 proteins with a highly structural homology that binds to phospholipids depending on the availability of Ca2+-dependent. Different studies of overexpression, inhibition, or using recombinant proteins have linked the main function of these proteins to their dynamic and reversible binding to membranes. Annexins are found in multiple cellular compartments, regulating different functions, such as membrane trafficking, anchoring to the cell cytoskeleton, ion channel regulation, as well as pro- or anti-inflammatory and anticoagulant activities. The use of animals deficient in any of these annexins has established their possible functions in vivo, demonstrating that annexins can participate in relevant functions independent of Ca2+ signalling. This review will focus mainly on the role of different annexins in the pathological vascular remodelling that underlies the formation of the atherosclerotic lesion, as well as in the control of cholesterol homeostasis.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Carmen Gutiérrez-Muñoz
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | | | - José Luis Martín-Ventura
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España.
| |
Collapse
|
16
|
Sanches JM, Correia-Silva RD, Duarte GHB, Fernandes AMAP, Sánchez-Vinces S, Carvalho PO, Oliani SM, Bortoluci KR, Moreira V, Gil CD. Role of Annexin A1 in NLRP3 Inflammasome Activation in Murine Neutrophils. Cells 2021; 10:121. [PMID: 33440601 PMCID: PMC7827236 DOI: 10.3390/cells10010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the role of endogenous and exogenous annexin A1 (AnxA1) in the activation of the NLRP3 inflammasome in isolated peritoneal neutrophils. C57BL/6 wild-type (WT) and AnxA1 knockout mice (AnxA1-/-) received 0.3% carrageenan intraperitoneally and, after 3 h, the peritoneal exudate was collected. WT and AnxA1-/- neutrophils were then stimulated with lipopolysaccharide, followed by the NLRP3 agonists nigericin or ATP. To determine the exogenous effect of AnxA1, the neutrophils were pretreated with the AnxA1-derived peptide Ac2-26 followed by the NLRP3 agonists. Ac2-26 administration reduced NLRP3-derived IL-1β production by WT neutrophils after nigericin and ATP stimulation. However, IL-1β release was impaired in AnxA1-/- neutrophils stimulated by both agonists, and there was no further impairment in IL-1β release with Ac2-26 treatment before stimulation. Despite this, ATP- and nigericin-stimulated AnxA1-/- neutrophils had increased levels of cleaved caspase-1. The lipidomics of supernatants from nigericin-stimulated WT and AnxA1-/- neutrophils showed potential lipid biomarkers of cell stress and activation, including specific sphingolipids and glycerophospholipids. AnxA1 peptidomimetic treatment also increased the concentration of phosphatidylserines and oxidized phosphocholines, which are lipid biomarkers related to the inflammatory resolution pathway. Together, our results indicate that exogenous AnxA1 negatively regulates NLRP3-derived IL-1β production by neutrophils, while endogenous AnxA1 is required for the activation of the NLRP3 machinery.
Collapse
Affiliation(s)
- José Marcos Sanches
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
| | - Rebeca D. Correia-Silva
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
| | - Gustavo H. B. Duarte
- Instituto de Química, Universidade Estadual de Campinas, Campinas 13083-862, São Paulo, Brazil;
| | - Anna Maria A. P. Fernandes
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Salvador Sánchez-Vinces
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Patrícia O. Carvalho
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Sonia M. Oliani
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
- Programa de Pós-Graduação em Biociências, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto 15054-000, São Paulo, Brazil
| | - Karina R. Bortoluci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo 04044-010, Brazil;
| | - Vanessa Moreira
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil;
| | - Cristiane D. Gil
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
- Programa de Pós-Graduação em Biociências, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto 15054-000, São Paulo, Brazil
| |
Collapse
|
17
|
Fu Z, Zhang S, Wang B, Huang W, Zheng L, Cheng A. Annexin A1: A double-edged sword as novel cancer biomarker. Clin Chim Acta 2020; 504:36-42. [DOI: 10.1016/j.cca.2020.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
18
|
Bai F, Zhang P, Fu Y, Chen H, Zhang M, Huang Q, Li D, Li B, Wu K. Targeting ANXA1 abrogates Treg-mediated immune suppression in triple-negative breast cancer. J Immunother Cancer 2020; 8:e000169. [PMID: 32300050 PMCID: PMC7204868 DOI: 10.1136/jitc-2019-000169] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells play a negative role in anti-tumor immunity against triple-negative breast cancer, so it is of great significance to find the potential therapeutic target of Treg cells. METHODS First, Annexin A1 (ANXA1) expression and survival of patients with breast cancer were analyzed using TCGA data. Then plasma ANXA1 levels in patients with malignant and benign breast tumors were detected by ELISA. Next, the effect of ANXA1 on Treg cells was studied through suppressive assays, and how ANXA1 regulates the function of Treg cells was detected by RNA sequencing. Finally, the in vivo experiment in balb/c mice was conducted to test whether the ANXA1 blocker Boc1 could shrink tumors and affect the function of Treg cells. RESULTS Our data suggest that ANXA1 expression is associated with lower survival and a higher risk of breast malignancy. Suppressive assays show that ANXA1 can enhance the inhibition function of Treg cells. RNA-Sequencing results indicate that Boc1 could reduce the expression of granzyme A mRNA in Treg cells. Animal experiments have been done to show that Boc1 can reduce tumor size and down regulate Treg cell function. CONCLUSIONS ANXA1 can enhance the function of Treg cells and reduce the survival rate of patients with breast cancer. Targeting ANXA1 can reduce Treg cell function and shrink breast tumors.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Annexin A1/antagonists & inhibitors
- Annexin A1/genetics
- Annexin A1/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/immunology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Movement
- Cell Proliferation
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Prognosis
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Survival Rate
- T-Lymphocytes, Regulatory/immunology
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fang Bai
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Peng Zhang
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yipeng Fu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hongliang Chen
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Mingdi Zhang
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qianru Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kejin Wu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Ingawale DK, Mandlik SK. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol Immunotoxicol 2020; 42:59-73. [PMID: 32070175 DOI: 10.1080/08923973.2020.1728765] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological intrinsic host response to injury meant for removal of noxious stimuli and maintenance of homeostasis. It is a defensive body mechanism that involves immune cells, blood vessels and molecular mediators of inflammation. Glucocorticoids (GCs) are steroidal hormones responsible for regulation of homeostatic and metabolic functions of body. Synthetic GCs are the most useful anti-inflammatory drugs used for the treatment of chronic inflammatory diseases such as asthma, chronic obstructive pulmonary disease (COPD), allergies, multiple sclerosis, tendinitis, lupus, atopic dermatitis, ulcerative colitis, rheumatoid arthritis and osteoarthritis whereas, the long term use of GCs are associated with many side effects. The anti-inflammatory and immunosuppressive (desired) effects of GCs are usually mediated by transrepression mechanism whereas; the metabolic and toxic (undesired) effects are usually manifested by transactivation mechanism. Though GCs are most potent anti-inflammatory and immunosuppressive drugs, the common problem associated with their use is GC resistance. Several research studies are rising to comprehend these mechanisms, which would be helpful in improving the GC resistance in asthma and COPD patients. This review aims to focus on identification of new drug targets in inflammation which will be helpful in the resolution of inflammation. The ample understanding of GC mechanisms of action helps in the development of novel anti-inflammatory drugs for the treatment of inflammatory and autoimmune disease with reduced side effects and minimal toxicity.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Satish K Mandlik
- Department of Pharmacology, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
20
|
Colamatteo A, Maggioli E, Azevedo Loiola R, Hamid Sheikh M, Calì G, Bruzzese D, Maniscalco GT, Centonze D, Buttari F, Lanzillo R, Perna F, Zuccarelli B, Mottola M, Cassano S, Galgani M, Solito E, De Rosa V. Reduced Annexin A1 Expression Associates with Disease Severity and Inflammation in Multiple Sclerosis Patients. THE JOURNAL OF IMMUNOLOGY 2019; 203:1753-1765. [PMID: 31462505 DOI: 10.4049/jimmunol.1801683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
Chronic neuroinflammation is a key pathological hallmark of multiple sclerosis (MS) that suggests that resolution of inflammation by specialized proresolving molecules is dysregulated in the disease. Annexin A1 (ANXA1) is a protein induced by glucocorticoids that facilitates resolution of inflammation through several mechanisms that include an inhibition of leukocyte recruitment and activation. In this study, we investigated the ability of ANXA1 to influence T cell effector function in relapsing/remitting MS (RRMS), an autoimmune disease sustained by proinflammatory Th1/Th17 cells. Circulating expression levels of ANXA1 in naive-to-treatment RRMS subjects inversely correlated with disease score and progression. At the cellular level, there was an impaired ANXA1 production by CD4+CD25- conventional T and CD4+RORγt+ T (Th17) cells from RRMS subjects that associated with an increased migratory capacity in an in vitro model of blood brain barrier. Mechanistically, ANXA1 impaired monocyte maturation secondarily to STAT3 hyperactivation and potently reduced T cell activation, proliferation, and glycolysis. Together, these findings identify impaired disease resolution pathways in RRMS caused by dysregulated ANXA1 expression that could represent new potential therapeutic targets in RRMS.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Elisa Maggioli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Rodrigo Azevedo Loiola
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Madeeha Hamid Sheikh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Gaetano Calì
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Dario Bruzzese
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli," 80131 Naples, Italy
| | - Diego Centonze
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Buttari
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy
| | - Roberta Lanzillo
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy
| | - Bruno Zuccarelli
- Unità Operativa Complessa di Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno, Centro Traumatologico Ortopedico, 80131 Naples, Italy; and
| | - Maria Mottola
- Unità Operativa Complessa di Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno, Centro Traumatologico Ortopedico, 80131 Naples, Italy; and
| | - Silvana Cassano
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Mario Galgani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Egle Solito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," 80131 Naples, Italy; .,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, United Kingdom
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; .,Unità di NeuroImmunologia, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
21
|
Wang J, Li J, Qiu H, Zeng L, Zheng H, Rong X, Jiang Z, Gu X, Gu X, Chu M. Association between miRNA-196a2 rs11614913 T>C polymorphism and Kawasaki disease susceptibility in southern Chinese children. J Clin Lab Anal 2019; 33:e22925. [PMID: 31131489 PMCID: PMC6757130 DOI: 10.1002/jcla.22925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background miRNAs play important roles in a variety of diseases. Thus, the association between miRNA‐196a2 rs11614913 T>C polymorphism and Kawasaki disease susceptibility is still unknown. Methods We included 532 children with Kawasaki disease and 623 healthy children from South China, and their DNA was extracted for genotyping by TaqMan methodology. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of association. Results No significant associations were observed between the miRNA‐196a2 rs11614913 T>C polymorphisms and Kawasaki disease risk (TC vs TT: adjusted OR = 1.04, 95% CI = 0.79‐1.37; CC vs TT: adjusted OR = 0.87, 95% CI = 0.63‐1.21; dominant model: adjusted OR = 0.99, 95% CI = 0.76‐1.27; and recessive model: adjusted OR = 0.85, 95% CI = 0.64‐1.13). There was also no significant correlation found in stratified analyses. Conclusion This study suggests that miRNA‐196a2 rs11614913 T>C may not be associated with Kawasaki disease susceptibility in a southern Chinese population. Larger, multicenter studies are needed to confirm our conclusions.
Collapse
Affiliation(s)
- Jinxin Wang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiawen Li
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huixian Qiu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lanlan Zeng
- Department of Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hao Zheng
- Department of Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xing Rong
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhiyong Jiang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xueping Gu
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Clinical Biological Resource Bank and Clinical Lab, Department of Blood Transfusion, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Maoping Chu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Purvis GSD, Solito E, Thiemermann C. Annexin-A1: Therapeutic Potential in Microvascular Disease. Front Immunol 2019; 10:938. [PMID: 31114582 PMCID: PMC6502989 DOI: 10.3389/fimmu.2019.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Annexin-A1 (ANXA1) was first discovered in the early 1980's as a protein, which mediates (some of the) anti-inflammatory effects of glucocorticoids. Subsequently, the role of ANXA1 in inflammation has been extensively studied. The biology of ANXA1 is complex and it has many different roles in both health and disease. Its effects as a potent endogenous anti-inflammatory mediator are well-described in both acute and chronic inflammation and its role in activating the pro-resolution phase receptor, FPR2, has been described and is now being exploited for therapeutic benefit. In the present mini review, we will endeavor to give an overview of ANXA1 biology in relation to inflammation and functions that mediate pro-resolution that are independent of glucocorticoid induction. We will focus on the role of ANXA1 in diseases with a large inflammatory component focusing on diabetes and microvascular disease. Finally, we will explore the possibility of exploiting ANXA1 as a novel therapeutic target in diabetes and the treatment of microvascular disease.
Collapse
Affiliation(s)
- Gareth S D Purvis
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Shao G, Zhou H, Zhang Q, Jin Y, Fu C. Advancements of Annexin A1 in inflammation and tumorigenesis. Onco Targets Ther 2019; 12:3245-3254. [PMID: 31118675 PMCID: PMC6500875 DOI: 10.2147/ott.s202271] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Annexin A1 is a Ca2+-dependent phospholipid binding protein involved in a variety of pathophysiological processes. Accumulated evidence has indicated that Annexin A1 has important functions in cell proliferation, apoptosis, differentiation, metastasis, and inflammatory response. Moreover, the abnormal expression of Annexin A1 is closely related to the occurrence and development of tumors. In this review article, we focus on the structure and function of Annexin A1 protein, especially the recent evidence of Annexin A1 in the pathophysiological role of inflammatory and cancer. This summary will be very important for further investigation of the pathophysiological role of Annexin A1 and for the development of novel therapeutics of inflammatory and cancer based on targeting Annexin A1 protein.
Collapse
Affiliation(s)
- Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hanwei Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 311201, People's Republic of China
| | - Qiyu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
24
|
Feehan KT, Gilroy DW. Is Resolution the End of Inflammation? Trends Mol Med 2019; 25:198-214. [DOI: 10.1016/j.molmed.2019.01.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
|
25
|
Raabe CA, Gröper J, Rescher U. Biased perspectives on formyl peptide receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:305-316. [DOI: 10.1016/j.bbamcr.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
|
26
|
Di Paola R, Fusco R, Gugliandolo E, D'Amico R, Cordaro M, Impellizzeri D, Perretti M, Cuzzocrea S. Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol Res 2019; 141:591-601. [PMID: 30711419 DOI: 10.1016/j.phrs.2019.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease is characterised by intricate immune cell interactions with tissue cells and such cross-talks can become deregulated. The formyl peptide receptor 1 (Fpr1) is expressed by both immune and stromal cells including epithelial cells. We evaluated the development of the physiopathology of the DNBS induced colitis in Fpr1 KO mice on the C57BL/6 genetic background compared to C57BL/6 genetic background animals. We have assessed both macroscopic and histological markers of the diseased, together with the immunohistochemical and molecular changes. DNBS-treated Fpr1 KO mice showed a i) reduction in weight loss, ii) lower extent of colon injury and iii) an increase in MPO activity. Molecular analyses indicated that in absence of Fpr1 there was reduced NF-κB translocation into the nucleus, cytokines levels, FOXP3 and GATA3, CD4, CD8 and CD45 expression as well as a dysregulation of TGF-β signalling. In addition, the colon of DNBS-injected Fpr1 KO mice displayed a lower degree of expression of Bax and higher expression of Bcl-2 compared correspondent WT mice. Finally, intravital microscopy investigation of the microcirculation post-DNBS instillation revealed a lower degree of neutrophil-endothelial cell rolling and adhesion - mediated by P-selectin and ICAM-1 - in Fpr1 KO mice. All the main outcome in the study have a P-value, statistical significance of evidence, less than 0.05. We provide evidence for an important pathogenic role of mouse Fpr1 in experimental colitis, an outcome effected through modulation of immune cell recruitment together with a modulation of local cellular activation and survival.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
27
|
Ampomah PB, Kong WT, Zharkova O, Chua SCJH, Perumal Samy R, Lim LHK. Annexins in Influenza Virus Replication and Pathogenesis. Front Pharmacol 2018; 9:1282. [PMID: 30498445 PMCID: PMC6249340 DOI: 10.3389/fphar.2018.01282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022] Open
Abstract
Influenza A viruses (IAVs) are important human respiratory pathogens which cause seasonal or periodic endemic infections. IAV can result in severe or fatal clinical complications including pneumonia and respiratory distress syndrome. Treatment of IAV infections is complicated because the virus can evade host immunity through antigenic drifts and antigenic shifts, to establish infections making new treatment options desirable. Annexins (ANXs) are a family of calcium and phospholipid binding proteins with immunomodulatory roles in viral infections, lung injury, and inflammation. A current understanding of the role of ANXs in modulating IAV infection and host responses will enable the future development of more effective antiviral therapies. This review presents a comprehensive understanding of the advances made in the field of ANXs, in particular, ANXA1 and IAV research and highlights the importance of ANXs as a suitable target for IAV therapy.
Collapse
Affiliation(s)
- Patrick Baah Ampomah
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wan Ting Kong
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olga Zharkova
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonja C. J. H. Chua
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - R. Perumal Samy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lina H. K. Lim
- Department of Physiology, NUS Immunology Program, Centre for Life Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Tumor associated macrophages and angiogenesis dual-recognizable nanoparticles for enhanced cancer chemotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:651-659. [DOI: 10.1016/j.nano.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022]
|
29
|
Gobbetti T, Cooray SN. Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature. Biol Chem 2017; 397:981-93. [PMID: 27447237 DOI: 10.1515/hsz-2016-0200] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Abstract
Inflammation is essential to protect the host from exogenous and endogenous dangers that ultimately lead to tissue injury. The consequent tissue repair is intimately associated with the fate of the inflammatory response. Restoration of tissue homeostasis is achieved through a balance between pro-inflammatory and anti-inflammatory/pro-resolving mediators. In chronic inflammatory diseases such balance is compromised, resulting in persistent inflammation and impaired healing. During the last two decades the glucocorticoid-regulated protein Annexin A1 (AnxA1) has emerged as a potent pro-resolving mediator acting on several facets of the innate immune system. Here, we review the therapeutic effects of AnxA1 on tissue healing and repairing together with the molecular targets responsible for these complex biological properties.
Collapse
|
30
|
Simeoli R, Mattace Raso G, Pirozzi C, Lama A, Santoro A, Russo R, Montero‐Melendez T, Berni Canani R, Calignano A, Perretti M, Meli R. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol 2017; 174:1484-1496. [PMID: 27684049 PMCID: PMC5429328 DOI: 10.1111/bph.13637] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/04/2016] [Accepted: 09/16/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Butyrate has shown benefits in inflammatory bowel diseases. However, it is not often administered orally because of its rancid smell and unpleasant taste. The efficacy of a more palatable butyrate-releasing derivative, N-(1-carbamoyl-2-phenylethyl) butyramide (FBA), was evaluated in a mouse model of colitis induced by dextran sodium sulphate (DSS). EXPERIMENTAL APPROACH Male 10 week-old BALB/c mice received DSS (2.5%) in drinking water (for 5 days) followed by DSS-free water for 7 days (DSS group). Oral FBA administration (42.5 mg·kg-1 ) was started 7 days before DSS as preventive (P-FBA), or 2 days after DSS as therapeutic (T-FBA); both treatments lasted 19 days. One DSS-untreated group received only tap water (CON). KEY RESULTS FBA treatments reduced colitis symptoms and colon damage. P-FBA and T-FBA significantly decreased polymorphonuclear cell infiltration score compared with the DSS group. FBA reversed the imbalance between pro- and anti-inflammatory cytokines (reducing inducible NOS protein expression, CCL2 and IL-6 transcripts in colon and increasing TGFβ and IL-10). Morever, P-FBA and T-FBA limited neutrophil recruitment (by expression and localization of the neutrophil granule protease Ly-6G), restored deficiency of the butyrate transporter and improved intestinal epithelial integrity, preventing tight-junction impairment (zonulin-1 and occludin). FBA, similar to its parental compound sodium butyrate, inhibited histone deacetylase-9 and restored H3 histone acetylation, exerting an anti-inflammatory effect through NF-κB inhibition and the up-regulation of PPARγ. CONCLUSIONS AND IMPLICATIONS FBA reduces inflammatory intestinal damage in mice indicating its potential as a postbiotic derivative without the problems associated with the oral administration of sodium butyrate. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Raffaele Simeoli
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
- Centre for Biochemical PharmacologyThe William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUK
| | | | - Claudio Pirozzi
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Adriano Lama
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Anna Santoro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Roberto Russo
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Trinidad Montero‐Melendez
- Centre for Biochemical PharmacologyThe William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUK
| | - Roberto Berni Canani
- Department of Translational Medicine–Pediatric Section and European Laboratory for the Investigation of Food Induced DiseasesUniversity of Naples Federico IINaplesItaly
| | | | - Mauro Perretti
- Centre for Biochemical PharmacologyThe William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of LondonLondonUK
| | - Rosaria Meli
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
31
|
Preclinical evaluation of the urokinase receptor-derived peptide UPARANT as an anti-inflammatory drug. Inflamm Res 2017; 66:701-709. [PMID: 28456844 DOI: 10.1007/s00011-017-1051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Inflammation plays a key role in the pathogenesis of several chronic diseases. The urokinase plasminogen activator receptor (uPAR) exerts a plethora of functions in both physiological and pathological processes, including inflammation. OBJECTIVE AND DESIGN In this study, we evaluated the anti-inflammatory effect of a novel peptide ligand of uPAR, UPARANT, in different animal models of inflammation. SUBJECTS AND TREATMENT Rats and mice were divided in different groups (n = 5) for single or repeated administration of vehicle (9% DMSO in 0.9% NaCl), UPARANT (6, 12 and 24 mg/kg) or dexamethasone (2 mg/kg). Animals were subjected to carrageenan-induced paw oedema or zymosan-induced peritonitis. METHODS UPARANT effects were tested on: (1) the carrageenan-induced paw oedema volume, (2) the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and the nitrite/nitrate (NOx) levels in the paw exudates, (3) cells recruitment into the peritoneal cavity after zymosan injection and (4) NOx levels in the peritoneal lavage. RESULTS UPARANT (12 and 24 mg/kg) reduced inflammation in both experimental paradigms. Analysis of pro-inflammatory enzymes revealed that administration of UPARANT reduced iNOS, COX2 and NO over-production. CONCLUSIONS Our study provides a solid evidence that UPARANT reduces the severity of inflammation in diverse animal models, thus representing a novel anti-inflammatory drug with potential advantages with respect to the typical steroidal agents.
Collapse
|
32
|
Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 2017; 129:2896-2907. [PMID: 28320709 DOI: 10.1182/blood-2016-09-742825] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/14/2017] [Indexed: 12/15/2022] Open
Abstract
Inflammation resolution is an active process that functions to restore tissue homeostasis. The participation of the plasminogen (Plg)/plasmin (Pla) system in the productive phase of inflammation is well known, but its involvement in the resolution phase remains unclear. Therefore, we aimed to investigate the potential role of Plg/Pla in key events during the resolution of acute inflammation and its underlying mechanisms. Plg/Pla injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that were primarily macrophages of anti-inflammatory (M2 [F4/80high Gr1- CD11bhigh]) and proresolving (Mres [F4/80med CD11blow]) phenotypes, without changing the number of macrophages with a proinflammatory profile (M1 [F4/80low Gr1+ CD11bmed]). Pleural injection of Plg/Pla also increased M2 markers (CD206 and arginase-1) and secretory products (transforming growth factor β and interleukin-6) and decreased the expression of inducible nitric oxide synthase (M1 marker). During the resolving phase of lipopolysaccharide (LPS)-induced inflammation when resolving macrophages predominate, we found increased Plg expression and Pla activity, further supporting a link between the Plg/Pla system and key cellular events in resolution. Indeed, Plg or Pla given at the peak of inflammation promoted resolution by decreasing neutrophil numbers and increasing neutrophil apoptosis and efferocytosis in a serine-protease inhibitor-sensitive manner. Next, we confirmed the ability of Plg/Pla to both promote efferocytosis and override the prosurvival effect of LPS via annexin A1. These findings suggest that Plg and Pla regulate several key steps in inflammation resolution, namely, neutrophil apoptosis, macrophage reprogramming, and efferocytosis, which have a major impact on the establishment of an efficient resolution process.
Collapse
|
33
|
The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med 2016; 5:jcm5120118. [PMID: 27999328 PMCID: PMC5184791 DOI: 10.3390/jcm5120118] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are characterised by aberrant immunological responses leading to chronic inflammation without tissue regeneration. These two diseases are considered distinct entities, and there is some evidence that neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation. When these processes are not tightly regulated, they can trigger positive feedback amplification loops that promote neutrophil activation, leading to significant tissue damage and evolution toward chronic disease. Defective chemotaxis, as observed in Crohn’s disease, can also contribute to the disease through impaired microbe elimination. In addition, through NET production, neutrophils may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of neutrophils has been studied in different animal models of IBD for many years, their contribution to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve our understanding of their mode of action in these particular conditions in order to provide new therapeutic avenues for IBD.
Collapse
|
34
|
de Jong R, Leoni G, Drechsler M, Soehnlein O. The advantageous role of annexin A1 in cardiovascular disease. Cell Adh Migr 2016; 11:261-274. [PMID: 27860536 DOI: 10.1080/19336918.2016.1259059] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inflammatory response protects the human body against infection and injury. However, uncontrolled and unresolved inflammation can lead to tissue damage and chronic inflammatory diseases. Therefore, active resolution of inflammation is essential to restore tissue homeostasis. This review focuses on the pro-resolving molecule annexin A1 (ANXA1) and its derived peptides. Mechanisms instructed by ANXA1 are multidisciplinary and affect leukocytes as well as endothelial cells and tissue resident cells like macrophages and mast cells. ANXA1 has an outstanding role in limiting leukocyte recruitment and different aspects of ANXA1 as modulator of the leukocyte adhesion cascade are discussed here. Additionally, this review details the therapeutic relevance of ANXA1 and its derived peptides in cardiovascular diseases since atherosclerosis stands out as a chronic inflammatory disease with impaired resolution and continuous leukocyte recruitment.
Collapse
Affiliation(s)
- Renske de Jong
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands
| | - Giovanna Leoni
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands
| | - Maik Drechsler
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands.,c DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance , Munich , Germany
| | - Oliver Soehnlein
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands.,c DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance , Munich , Germany
| |
Collapse
|
35
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016. [PMID: 27199985 DOI: 10.3389/fimmu.2016.00.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology."
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
36
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016; 7:160. [PMID: 27199985 PMCID: PMC4845539 DOI: 10.3389/fimmu.2016.00160] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.”
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
37
|
The role of neutrophils in inflammation resolution. Semin Immunol 2016; 28:137-45. [DOI: 10.1016/j.smim.2016.03.007] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/29/2023]
|
38
|
Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell Death Differ 2016; 23:1243-56. [PMID: 26943321 PMCID: PMC4946891 DOI: 10.1038/cdd.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/29/2015] [Accepted: 02/02/2016] [Indexed: 01/17/2023] Open
Abstract
The influenza virus infects millions of people each year and can result in severe complications. Understanding virus recognition and host responses to influenza infection will enable future development of more effective anti-viral therapies. Previous research has revealed diverse yet important roles for the annexin family of proteins in modulating the course of influenza A virus (IAV) infection. However, the role of Annexin-A1 (ANXA1) in IAV infection has not been addressed. Here, we show that ANXA1 deficient mice exhibit a survival advantage, and lower viral titers after infection. This was accompanied with enhanced inflammatory cell infiltration during IAV infection. ANXA1 expression is increased during influenza infection clinically, in vivo and in vitro. The presence of ANXA1 enhances viral replication, influences virus binding, and enhances endosomal trafficking of the virus to the nucleus. ANXA1 colocalizes with early and late endosomes near the nucleus, and enhances nuclear accumulation of viral nucleoprotein. In addition, ANXA1 enhances IAV-mediated apoptosis. Overall, our study demonstrates that ANXA1 plays an important role in influenza virus replication and propagation through various mechanisms and that we predict that the regulation of ANXA1 expression during IAV infection may be a viral strategy to enhance its infectivity.
Collapse
|
39
|
Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance. J Immunol Res 2016; 2016:8239258. [PMID: 26885535 PMCID: PMC4738713 DOI: 10.1155/2016/8239258] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases.
Collapse
|
40
|
Yang H, Lau WB, Lau B, Xuan Y, Zhou S, Zhao L, Luo Z, Lin Q, Ren N, Zhao X, Wei Y. A mass spectrometric insight into the origins of benign gynecological disorders. MASS SPECTROMETRY REVIEWS 2015; 36:450-470. [PMID: 26633258 DOI: 10.1002/mas.21484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 11/06/2015] [Indexed: 02/05/2023]
Abstract
Applications of mass spectrometry (MS) are rapidly expanding and encompass molecular and cellular biology. MS aids in the analysis of in vivo global molecular alterations, identifying potential biomarkers which may improve diagnosis and treatment of various pathologies. MS has added new dimensionality to medical research. Pioneering gynecologists now study molecular mechanisms underlying female reproductive pathology with MS-based tools. Although benign gynecologic disorders including endometriosis, adenomyosis, leiomyoma, and polycystic ovarian syndrome (PCOS) carry low mortality rates, they cause significant physical, mental, and social detriments. Additionally, some benign disorders are unfortunately associated with malignancies. MS-based technology can detect malignant changes in formerly benign proteomes and metabolomes with distinct advantages of speed, sensitivity, and specificity. We present the use of MS in proteomics and metabolomics, and summarize the current understanding of the molecular pathways concerning female reproductive anatomy. Highlight discoveries of novel protein and metabolite biomarkers via MS-based technology, we underscore the clinical application of these techniques in the diagnosis and management of benign gynecological disorders. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:450-470, 2017.
Collapse
Affiliation(s)
- Huiliang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, 19107
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Stanford, CA, 94305
| | - Yu Xuan
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Linjie Zhao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhongyue Luo
- College of Biological Sciences, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qiao Lin
- College of Biological Sciences, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ning Ren
- College of Biological Sciences, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
41
|
Nair S, Arora S, Lim JY, Lee LH, Lim LH. The regulation of TNFα production after heat and endotoxin stimulation is dependent on Annexin-A1 and HSP70. Cell Stress Chaperones 2015; 20:583-93. [PMID: 25753354 PMCID: PMC4463914 DOI: 10.1007/s12192-015-0580-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022] Open
Abstract
Febrile temperatures can induce stress responses which protect cells from damage and can reduce inflammation during infections and sepsis. However, the mechanisms behind the protective functions of heat in response to the bacterial endotoxin LPS are unclear. We have recently shown that Annexin-1 (ANXA1)-deficient macrophages exhibited higher TNFα levels after LPS stimulation. Moreover, we have previously reported that ANXA1 can function as a stress protein. Therefore in this study, we determined if ANXA1 is involved in the protective effects of heat on cytokine levels in macrophages after heat and LPS. Exposure of macrophages to 42 °C for 1 h prior to LPS results in an inhibition of TNFα production, which was not evident in ANXA1(-/-) macrophages. We show that this regulation involves primarily MYD88-independent pathways. ANXA1 regulates TNFα mRNA stability after heat and LPS, and this is dependent on endogenous ANXA1 expression and not exogenously secreted factors. Further mechanistic studies revealed the possible involvement of the heat shock protein HSP70 and JNK in the heat and inflammatory stress response regulated by ANXA1. This study shows that ANXA1, an immunomodulatory protein, is critical in the heat stress response induced after heat and endotoxin stimulation.
Collapse
Affiliation(s)
- Sunitha Nair
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Suruchi Arora
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Jyue Yuan Lim
- />Singapore Immunology Network (SigN), 8A Biomedical Grove, Immunos, Singapore, 138648 Singapore
| | - Lay Hoon Lee
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Lina H.K. Lim
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| |
Collapse
|
42
|
Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D, Chiasson R, Kuriakose G, Perretti M, Farokzhad O, Tabas I. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med 2015; 7:275ra20. [PMID: 25695999 PMCID: PMC4397585 DOI: 10.1126/scitranslmed.aaa1065] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2-26 (Ac2-26). Collagen IV (Col IV)-targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr(-/-) mice. When administered to mice with preexisting lesions, Col IV-Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefano Spolitu
- Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | - Jaclyn Milton
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Devram Ghorpade
- Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | - Raymond Chiasson
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George Kuriakose
- Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Charterhouse Square, London EC1M 6BQ, UK
| | - Omid Farokzhad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ira Tabas
- Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
43
|
Drechsler M, de Jong R, Rossaint J, Viola JR, Leoni G, Wang JM, Grommes J, Hinkel R, Kupatt C, Weber C, Döring Y, Zarbock A, Soehnlein O. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ Res 2014; 116:827-35. [PMID: 25520364 DOI: 10.1161/circresaha.116.305825] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Chemokine-controlled arterial leukocyte recruitment is a crucial process in atherosclerosis. Formyl peptide receptor 2 (FPR2) is a chemoattractant receptor that recognizes proinflammatory and proresolving ligands. The contribution of FPR2 and its proresolving ligand annexin A1 to atherosclerotic lesion formation is largely undefined. OBJECTIVE Because of the ambivalence of FPR2 ligands, we here investigate the role of FPR2 and its resolving ligand annexin A1 in atherogenesis. METHODS AND RESULTS Deletion of FPR2 or its ligand annexin A1 enhances atherosclerotic lesion formation, arterial myeloid cell adhesion, and recruitment. Mechanistically, we identify annexin A1 as an endogenous inhibitor of integrin activation evoked by the chemokines CCL5, CCL2, and CXCL1. Specifically, the annexin A1 fragment Ac2-26 counteracts conformational activation and clustering of integrins on myeloid cells evoked by CCL5, CCL2, and CXCL1 through inhibiting activation of the small GTPase Rap1. In vivo administration of Ac2-26 largely diminishes arterial recruitment of myeloid cells in a FPR2-dependent fashion. This effect is also observed in the presence of selective antagonists to CCR5, CCR2, or CXCR2, whereas Ac2-26 was without effect when all 3 chemokine receptors were antagonized simultaneously. Finally, repeated treatment with Ac2-26 reduces atherosclerotic lesion sizes and lesional macrophage accumulation. CONCLUSIONS Instructing the annexin A1-FPR2 axis harbors a novel approach to target arterial leukocyte recruitment. With the ability of Ac2-26 to counteract integrin activation exerted by various chemokines, delivery of Ac2-26 may be superior in inhibition of arterial leukocyte recruitment when compared with blocking individual chemokine receptors.
Collapse
Affiliation(s)
- Maik Drechsler
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Renske de Jong
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Jan Rossaint
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Joana R Viola
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Giovanna Leoni
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Ji Ming Wang
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Jochen Grommes
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Rabea Hinkel
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Christian Kupatt
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Alexander Zarbock
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.).
| |
Collapse
|
44
|
Belvedere R, Bizzarro V, Popolo A, Dal Piaz F, Vasaturo M, Picardi P, Parente L, Petrella A. Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells. BMC Cancer 2014; 14:961. [PMID: 25510623 PMCID: PMC4301448 DOI: 10.1186/1471-2407-14-961] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Annexin A1 (ANXA1), a 37 kDa multifunctional protein, is over-expressed in tissues from patients of pancreatic carcinoma (PC) where the protein seems to be associated with malignant transformation and poor prognosis. METHODS The expression and localization of ANXA1 in MIA PaCa-2, PANC-1, BxPC-3 and CAPAN-2 cells were detected by Western Blotting and Immunofluorescence assay. Expression and activation of Formyl Peptide Receptors (FPRs) were shown through flow cytometry/PCR and FURA assay, respectively. To investigate the role of ANXA1 in PC cell migration and invasion, we performed in vitro wound-healing and matrigel invasion assays. RESULTS In all the analyzed PC cell lines, a huge expression and a variable localization of ANXA1 in sub-cellular compartments were observed. We confirmed the less aggressive phenotype of BxPC-3 and CAPAN-2 compared with PANC-1 and MIA PaCa-2 cells, through the evaluation of Epithelial-Mesenchymal Transition (EMT) markers. Then, we tested MIA PaCa-2 and PANC-1 cell migration and invasiveness rate which was inhibited by specific ANXA1 siRNAs. Both the cell lines expressed FPR-1 and -2. Ac2-26, an ANXA1 mimetic peptide, induced intracellular calcium release, consistent with FPR activation, and significantly increased cell migration/invasion rate. Interestingly, in MIA PaCa-2 cells we found a cleaved form of ANXA1 (33 kDa) that localizes at cellular membranes and is secreted outside the cells, as confirmed by MS analysis. The importance of the secreted form of ANXA1 in cellular motility was confirmed by the administration of ANXA1 blocking antibody that inhibited migration and invasion rate in MIA PaCa-2 but not in PANC-1 cells that lack the 33 kDa ANXA1 form and show a lower degree of invasiveness. Finally, the treatment of PANC-1 cells with MIA PaCa-2 supernatants significantly increased the migration rate of these cells. CONCLUSION This study provides new insights on the role of ANXA1 protein in PC progression. Our findings suggest that ANXA1 protein could regulate metastasis by favouring cell migration/invasion intracellularly, as cytoskeleton remodelling factor, and extracellularly like FPR ligand.
Collapse
Affiliation(s)
- Raffaella Belvedere
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Valentina Bizzarro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Michele Vasaturo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Paola Picardi
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Luca Parente
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| |
Collapse
|
45
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
46
|
Burgmaier M, Schutters K, Willems B, van der Vorst EPC, Kusters D, Chatrou M, Norling L, Biessen EAL, Cleutjens J, Perretti M, Schurgers LJ, Reutelingsperger CPM. AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE(-/-) mice. J Cell Mol Med 2014; 18:2117-24. [PMID: 25214012 PMCID: PMC4244025 DOI: 10.1111/jcmm.12374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022] Open
Abstract
Annexin A5 (AnxA5) exerts anti-inflammatory, anticoagulant and anti-apoptotic effects through binding cell surface expressed phosphatidylserine. The actions of AnxA5 on atherosclerosis are incompletely understood. We investigated effects of exogenous AnxA5 on plaque morphology and phenotype of advanced atherosclerotic lesions in apoE−/− mice. Advanced atherosclerotic lesions were induced in 12 weeks old Western type diet fed apoE−/− mice using a collar placement around the carotid artery. After 5 weeks mice were injected either with AnxA5 (n = 8) or vehicle for another 4 weeks. AnxA5 reduced plaque macrophage content both in the intima (59% reduction, P < 0.05) and media (73% reduction, P < 0.01) of advanced atherosclerotic lesions of the carotid artery. These findings corroborated with advanced lesions of the aortic arch, where a 67% reduction in plaque macrophage content was observed with AnxA5 compared to controls (P < 0.01). AnxA5 did not change lesion extension, plaque apoptosis, collagen content, smooth muscle cell content or acellular plaque composition after 4 weeks of treatment as determined by immunohistochemistry in advanced carotid lesions. In vitro, AnxA5 exhibited anti-inflammatory effects in macrophages and a flow chamber based assay demonstrated that AnxA5 significantly inhibited capture, rolling, adhesion as well as transmigration of peripheral blood mononuclear cells on a TNF-α-activated endothelial cell layer. In conclusion, short-term treatment with AnxA5 reduces plaque inflammation of advanced lesions in apoE−/− mice likely through interfering with recruitment and activation of monocytes to the inflamed lesion site. Suppressing chronic inflammation by targeting exposed phosphatidylserine may become a viable strategy to treat patients suffering from advanced atherosclerosis.
Collapse
Affiliation(s)
- Mathias Burgmaier
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany; Department of Biochemistry, Maastricht University, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res 2014; 114:1867-79. [PMID: 24902971 PMCID: PMC4078767 DOI: 10.1161/circresaha.114.302699] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Inflammation contributes to many of the characteristics of plaques implicated in the pathogenesis of acute coronary syndromes. Moreover, inflammatory pathways not only regulate the properties of plaques that precipitate acute coronary syndromes but also modulate the clinical consequences of the thrombotic complications of atherosclerosis. This synthesis will provide an update on the fundamental mechanisms of inflammatory responses that govern acute coronary syndromes and also highlight the ongoing balance between proinflammatory mechanisms and endogenous pathways that can promote the resolution of inflammation. An appreciation of the countervailing mechanisms that modulate inflammation in relation to acute coronary syndromes enriches our fundamental understanding of the pathophysiology of this important manifestation of atherosclerosis. In addition, these insights provide glimpses into potential novel therapeutic interventions to forestall this ultimate complication of the disease.
Collapse
Affiliation(s)
- Peter Libby
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.).
| | - Ira Tabas
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.)
| | - Gabrielle Fredman
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.)
| | - Edward A Fisher
- From the Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.); Department of Medicine, Columbia University Medical Center, New York, NY (I.T.); and Division of Cardiology, Department of Medicine, New York University School of Medicine (E.A.F.)
| |
Collapse
|
48
|
Qin C, Buxton KD, Pepe S, Cao AH, Venardos K, Love JE, Kaye DM, Yang YH, Morand EF, Ritchie RH. Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1(2-26). Br J Pharmacol 2014; 168:238-52. [PMID: 22924634 DOI: 10.1111/j.1476-5381.2012.02176.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/19/2012] [Accepted: 07/26/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Annexin-A1 (ANX-A1) is an endogenous, glucocorticoid-regulated anti-inflammatory protein. The N-terminal-derived peptide Ac-ANX-A1(2-26) preserves cardiomyocyte viability, but the impact of ANX-A1-peptides on cardiac contractility is unknown. We now test the hypothesis that ANX-A1 preserves post-ischaemic recovery of left ventricular (LV) function. EXPERIMENTAL APPROACH Ac-ANX-A1(2-26) was administered on reperfusion, to adult rat cardiomyocytes as well as hearts isolated from rats, wild-type mice and mice deficient in endogenous ANX-A1 (ANX-A1(-/-)). Myocardial viability and recovery of LV function were determined. KEY RESULTS Ischaemia-reperfusion markedly impaired both cardiomyocyte viability and recovery of LV function by 60%. Treatment with exogenous Ac-ANX-A1(2-26) at the onset of reperfusion prevented cardiomyocyte injury and significantly improved recovery of LV function, in both intact rat and wild-type mouse hearts. Ac-ANX-A1(2-26) cardioprotection was abolished by either formyl peptide receptor (FPR)-nonselective or FPR1-selective antagonists, Boc2 and cyclosporin H, but was relatively insensitive to the FPR2-selective antagonist QuinC7. ANX-A1-induced cardioprotection was associated with increased phosphorylation of the cell survival kinase Akt. ANX-A1(-/-) exaggerated impairment of post-ischaemic recovery of LV function, in addition to selective LV FPR1 down-regulation. CONCLUSIONS AND IMPLICATIONS These data represent the first evidence that ANX-A1 affects myocardial function. Our findings suggest ANX-A1 is an endogenous regulator of post-ischaemic recovery of LV function. Furthermore, the ANX-A1-derived peptide Ac-ANX-A1(2-26) on reperfusion rescues LV function, probably via activation of FPR1. ANX-A1-based therapies may thus represent a novel clinical approach for the prevention and treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Geary LA, Nash KA, Adisetiyo H, Liang M, Liao CP, Jeong JH, Zandi E, Roy-Burman P. CAF-secreted annexin A1 induces prostate cancer cells to gain stem cell-like features. Mol Cancer Res 2014; 12:607-21. [PMID: 24464914 DOI: 10.1158/1541-7786.mcr-13-0469] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Annexin A1 (AnxA1), a phospholipid-binding protein and regulator of glucocorticoid-induced inflammatory signaling, has implications in cancer. Here, a role for AnxA1 in prostate adenocarcinoma was determined using primary cultures and a tumor cell line (cE1), all derived from the conditional Pten deletion mouse model of prostate cancer. AnxA1 secretion by prostate-derived cancer-associated fibroblasts (CAF) was significantly higher than by normal prostate fibroblasts (NPF). Prostate tumor cells were sorted to enrich for epithelial subpopulations based on nonhematopoietic lineage, high SCA-1, and high or medium levels of CD49f. Compared with controls, AnxA1 enhanced stem cell-like properties in high- and medium-expression subpopulations of sorted cE1 and primary cells, in vitro, through formation of greater number of spheroids with increased complexity, and in vivo, through generation of more, larger, and histologically complex glandular structures, along with increased expression of p63, a basal/progenitor marker. The differentiated medium-expression subpopulations from cE1 and primary cells were most susceptible to gain stem cell-like properties as shown by increased spheroid and glandular formation. Further supporting this increased plasticity, AnxA1 was shown to regulate epithelial-to-mesenchymal transition in cE1 cells. These results suggest that CAF-secreted AnxA1 contributes to tumor stem cell dynamics via two separate but complementary pathways: induction of a dedifferentiation process leading to generation of stem-like cells from a subpopulation of cancer epithelial cells and stimulation of proliferation and differentiation of the cancer stem-like cells. IMPLICATIONS AnxA1 participates in a paradigm in which malignant prostate epithelial cells that are not cancer stem cells are induced to gain cancer stem cell-like properties.
Collapse
Affiliation(s)
- Lauren A Geary
- Department of Pathology, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, HMR 210B, Los Angeles, CA 90033.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sena A, Grishina I, Thai A, Goulart L, Macal M, Fenton A, Li J, Prindiville T, Oliani SM, Dandekar S, Goulart L, Sankaran-Walters S. Dysregulation of anti-inflammatory annexin A1 expression in progressive Crohns Disease. PLoS One 2013; 8:e76969. [PMID: 24130820 PMCID: PMC3794972 DOI: 10.1371/journal.pone.0076969] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Background Development of inflammatory bowel disease (IBD) involves the interplay of environmental and genetic factors with the host immune system. Mechanisms contributing to immune dysregulation in IBD are not fully defined. Development of novel therapeutic strategies is focused on controlling aberrant immune response in IBD. Current IBD therapy utilizes a combination of immunomodulators and biologics to suppress pro-inflammatory effectors of IBD. However, the role of immunomodulatory factors such as annexin A1 (ANXA1) is not well understood. The goal of this study was to examine the association between ANXA1 and IBD, and the effects of anti-TNF-α, Infliximab (IFX), therapy on ANXA1 expression. Methods ANXA1 and TNF-α transcript levels in PBMC were measured by RT PCR. Clinical follow up included the administration of serial ibdQs. ANXA1 expression in the gut mucosa was measured by IHC. Plasma ANXA1 levels were measured by ELISA. Results We found that the reduction in ANXA1 protein levels in plasma coincided with a decrease in the ANXA1 mRNA expression in peripheral blood of IBD patients. ANXA1 expression is upregulated during IFX therapy in patients with a successful intervention but not in clinical non-responders. The IFX therapy also modified the cellular immune activation in the peripheral blood of IBD patients. Decreased expression of ANXA1 was detected in the colonic mucosa of IBD patients with incomplete resolution of inflammation during continuous therapy, which correlated with increased levels of TNF-α transcripts. Gut mucosal epithelial barrier disruption was evident by increased plasma bacterial 16S levels. Conclusion Loss of ANXA1 expression may support inflammation during IBD and can serve as a biomarker of disease progression. Changes in ANXA1 levels may be predictive of therapeutic efficacy.
Collapse
Affiliation(s)
- Angela Sena
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Nanobiotechnology Laboratory, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Irina Grishina
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Anne Thai
- UCDHS: Division of Hepatology and Gastroenterology, University of California Davis, Davis, California, United States of America
| | - Larissa Goulart
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Monica Macal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Anne Fenton
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Jay Li
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Thomas Prindiville
- UCDHS: Division of Hepatology and Gastroenterology, University of California Davis, Davis, California, United States of America
| | - Sonia Maria Oliani
- Department of Biology, Sao Paulo State University, UNESP, Sao José do Rio Preto, SP, Brazil
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Luiz Goulart
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Nanobiotechnology Laboratory, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|