1
|
Alanazi H, Zhang Y, Fatunbi J, Luu T, Kwak-Kim J. The impact of reproductive hormones on T cell immunity; normal and assisted reproductive cycles. J Reprod Immunol 2024; 165:104295. [PMID: 39053203 DOI: 10.1016/j.jri.2024.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
During pregnancy, a unique immune milieu is established systemically and locally at the maternal-fetal interface. While preparing for embryonic implantation, endometrial effectors significantly change their proportions and function, which are synchronized with hormonal changes. During assisted reproductive technology cycles, various cytokines, chemokines, and immune factors dynamically change with the altered receptor expressions on the immune effectors. Thus, the hormonal regulation of immune effectors is critical to maintaining the immune milieu. In this review, hormonal effects on T cell subsets are reviewed. Sex hormones affect T cell ontogeny and development, consequently affecting their functions. Like other T cell subsets, CD4+ T helper (Th) cells are modulated by estrogen, where low estrogen concentration promotes Th1-driven cell-mediated immunity in the uterus and in vitro by enhancing IFN-γ production, while a high estrogen level decreases it. The abundance and differentiation of T regulatory (Treg) cells are controlled by estrogen, inducing Treg expansion. Conversely, progesterone maintains immune homeostasis by balancing Th1/Th2 and Th17/Treg immunity, leading to maternal-fetal tolerance. Therefore, the understanding of the hormonal impact on various T cell subsets during the reproductive cycles is critical to improving reproductive outcomes in women with recurrent pregnancy losses, repeated implantation failures, and undergoing assisted reproductive cycles.
Collapse
Affiliation(s)
- Hallah Alanazi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; IVF and Reproductive Endocrinology Department, Women's Health Hospital, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Yuan Zhang
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Department of Reproductive Medicine, Jiangsu Province Hospital, Guangzhou Road 300, Nanjing, Jiangsu 210029, China
| | - Joy Fatunbi
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Than Luu
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynaecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA.
| |
Collapse
|
2
|
Elliott Williams M, Hardnett FP, Sheth AN, Wein AN, Li ZRT, Radzio-Basu J, Dinh C, Haddad LB, Collins EMB, Ofotokun I, Antia R, Scharer CD, Garcia-Lerma JG, Kohlmeier JE, Swaims-Kohlmeier A. The menstrual cycle regulates migratory CD4 T-cell surveillance in the female reproductive tract via CCR5 signaling. Mucosal Immunol 2024; 17:41-53. [PMID: 37866719 PMCID: PMC10990418 DOI: 10.1016/j.mucimm.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.
Collapse
Affiliation(s)
- M Elliott Williams
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Felica P Hardnett
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anandi N Sheth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zheng-Rong Tiger Li
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica Radzio-Basu
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chuong Dinh
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa B Haddad
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth M B Collins
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Igho Ofotokun
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Gerardo Garcia-Lerma
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alison Swaims-Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA; Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Xu Y, Li W, Shi M, Xu X, Guo D, Liu Z, Chen L, Zhong X, Cao W. Systemic treatment with GnRH agonist produces antidepressant-like effects in LPS induced depression male mouse model. Neuropharmacology 2023; 233:109560. [PMID: 37094770 DOI: 10.1016/j.neuropharm.2023.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is at the head of the neuroendocrine reproductive axis. However, the non-reproductive functions of GnRH expressed in various tissues, including hippocampus, are still not known. Here, we unveil a previously unknown effect of GnRH, which mediates depression-like behaviors through the modulation of microglia function during immune challenge. Specifically, we found that either systemic treatment with GnRH agonist or over-expression of endogenous hippocampal GnRH via viral tool abolished the depression-like behavior after LPS challenges in mice. And the anti-depressant of GnRH was dependent on the hippocampal GnRHR signaling, since antagonizing GnRHR by drug treatment or by hippocampal GnRHR knockdown could block the antidepressant-effect of GnRH agonist. Interestingly, we found that the peripheral GnRH treatment prevented the microglia activation mediated inflammation in the hippocampus of mice. In light of the research findings presented here, we propose that, at least in the hippocampus, GnRH appears to act on GnRHR to regulate higher order non-reproductive functions associated with the microglia mediated neuroinflammation. These findings also provide insights into the function and cross-talk of GnRH, a known neuropeptide hormone, in neuro-immune response.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Li
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mengmeng Shi
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaofan Xu
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dongmin Guo
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenghai Liu
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Levite M. Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides. Neural Regen Res 2022; 18:1165-1178. [PMID: 36453390 PMCID: PMC9838142 DOI: 10.4103/1673-5374.357903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection. T cells decrease secondary neuronal degeneration, increase neuronal survival after central nervous system (CNS) injury, and limit CNS inflammation and damage upon injury and infection. Second, while pathogenic T cells contribute to CNS disorders, recent studies, mostly in animal models, show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in several neuroinflammatory and neurodegenerative diseases. These include Multiple Sclerosis (MS), Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), stroke, CNS trauma, chronic pain, and others. Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective, neuroregenerative and immunomodulatory effects. Third, normal beneficial T cells are abnormal, impaired, and dysfunctional in aging and multiple neurological diseases. Different T cell impairments are evident in aging, brain tumors (mainly Glioblastoma), severe viral infections (including COVID-19), chronic stress, major depression, schizophrenia, Parkinson's disease, Alzheimer's disease, ALS, MS, stroke, and other neuro-pathologies. The main detrimental mechanisms that impair T cell function are activation-induced cell death, exhaustion, senescence, and impaired T cell stemness. Fourth, several physiological neurotransmitters and neuropeptides induce by themselves multiple direct, potent, beneficial, and therapeutically-relevant effects on normal human T cells, via their receptors in T cells. This scientific field is called "Nerve-Driven Immunity". The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naïve normal human T cells are: dopamine, glutamate, GnRH-II, neuropeptide Y, calcitonin gene-related peptide, and somatostatin. Fifth, "Personalized Adoptive Neuro-Immunotherapy". This is a novel unique cellular immunotherapy, based on the "Nerve-Driven Immunity" findings, which was recently designed and patented for safe and repeated rejuvenation, activation, and improvement of impaired and dysfunctional T cells of any person in need, by ex vivo exposure of the person's T cells to neurotransmitters and neuropeptides. Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis, and subsequent ex vivo → in vivo personalized adoptive therapy, tailored according to the diagnosis. The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans, pending validation of safety and efficacy in clinical trials, especially in brain tumors, chronic infectious diseases, and aging, in which T cells are exhausted and/or senescent and dysfunctional.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Campus Ein Karem, Jerusalem, Israel,Institute of Gene Therapy, The Hadassah University Hospital-Ein Karem, Jerusalem, Israel,Correspondence to: Mia Levite, or .
| |
Collapse
|
5
|
McCombe PA. The role of sex and pregnancy in multiple sclerosis: what do we know and what should we do? Expert Rev Neurother 2022; 22:377-392. [PMID: 35354378 DOI: 10.1080/14737175.2022.2060079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is more prevalent in women than in men. The sex of the patient, and pregnancy, are reported to be associated with the clinical features of MS. The mechanism of this is unclear. AREAS COVERED This review summarizes data about sex differences in MS and the role of pregnancy. Possible mechanisms for the effects of sex and pregnancy are summarized, and practical suggestions for addressing these issues are provided. EXPERT OPINION There is considerable interdependence of the variables that are associated with MS. Men have a worse outcome of MS, and this could be due to the same factors that lead to greater incidence of neurodegenerative disease in men. The possible role of parity on the long-term outcome of MS is of interest. Future studies that look at the mechanisms of the effects of the sex of the patient on the outcome of MS are required. However, there are some actions that can be taken without further research. We can concentrate on public health measures that address the modifiable risk factors for MS and ensure that disease is controlled in women who intend to become pregnant and use appropriate disease modifying agents during pregnancy.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Australia
| |
Collapse
|
6
|
Levite M, Safadi R, Milgrom Y, Massarwa M, Galun E. Neurotransmitters and Neuropeptides decrease PD-1 in T cells of healthy subjects and patients with hepatocellular carcinoma (HCC), and increase their proliferation and eradication of HCC cells. Neuropeptides 2021; 89:102159. [PMID: 34293596 DOI: 10.1016/j.npep.2021.102159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/29/2023]
Abstract
T cells of aged people, and of patients with either cancer or severe infections (including COVID-19), are often exhausted, senescent and dysfunctional, leading to increased susceptibilities, complications and mortality. Neurotransmitters and Neuropeptides bind their receptors in T cells, and induce multiple beneficial T cell functions. Yet, T cells of different people vary in the expression levels of Neurotransmitter and Neuropeptide receptors, and in the magnitude of the corresponding effects. Therefore, we performed an individual-based study on T cells of 3 healthy subjects, and 3 Hepatocellular Carcinoma (HCC) patients. HCC usually develops due to chronic inflammation. The inflamed liver induces reduction and inhibition of CD4+ T cells and Natural Killer (NK) cells. Immune-based therapies for HCC are urgently needed. We tested if selected Neurotransmitters and Neuropeptides decrease the key checkpoint protein PD-1 in human T cells, and increase proliferation and killing of HCC cells. First, we confirmed human T cells express all dopamine receptors (DRs), and glutamate receptors (GluRs): AMPA-GluR3, NMDA-R and mGluR. Second, we discovered that either Dopamine, Glutamate, GnRH-II, Neuropeptide Y and/or CGRP (10nM), as well as DR and GluR agonists, induced the following effects: 1. Decreased significantly both %PD-1+ T cells and PD-1 expression level per cell (up to 60% decrease, within 1 h only); 2. Increased significantly the number of T cells that proliferated in the presence of HCC cells (up to 7 fold increase), 3. Increased significantly T cell killing of HCC cells (up to 2 fold increase). 4. Few non-conventional combinations of Neurotransmitters and Neuropeptides had surprising synergistic beneficial effects. We conclude that Dopamine, Glutamate, GnRH-II, Neuropeptide Y and CGRP, alone or in combinations, can decrease % PD-1+ T cells and PD-1 expression per cell, in T cells of both healthy subjects and HCC patients, and increase their proliferation in response to HCC cells and killing of HCC cells. Yet, testing T cells of many more cancer patients is absolutely needed. Based on these findings and previous ones, we designed a novel "Personalized Adoptive Neuro-Immunotherapy", calling for validation of safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; Institute of Gene Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel.
| | - Rifaat Safadi
- The Liver Unit, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| | - Yael Milgrom
- The Liver Unit, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| | - Muhammad Massarwa
- The Liver Unit, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| | - Eithan Galun
- Institute of Gene Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
8
|
Levite M. T Cells Plead for Rejuvenation and Amplification; With the Brain's Neurotransmitters and Neuropeptides We Can Make It Happen. Front Immunol 2021; 12:617658. [PMID: 33868232 PMCID: PMC8044969 DOI: 10.3389/fimmu.2021.617658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
T cells are essential for eradicating microorganisms and cancer and for tissue repair, have a pro-cognitive role in the brain, and limit Central Nervous System (CNS) inflammation and damage upon injury and infection. However, in aging, chronic infections, acute SARS-CoV-2 infection, cancer, chronic stress, depression and major injury/trauma, T cells are often scarce, exhausted, senescent, impaired/biased and dysfunctional. People with impaired/dysfunctional T cells are at high risk of infections, cancer, other diseases, and eventually mortality, and become multi-level burden on other people, organizations and societies. It is suggested that “Nerve-Driven Immunity” and “Personalized Adoptive Neuro-Immunotherapy” may overcome this problem. Natural Neurotransmitters and Neuropeptides: Glutamate, Dopamine, GnRH-II, CGRP, Neuropeptide Y, Somatostatin and others, bind their well-characterized receptors expressed on the cell surface of naïve/resting T cells and induce multiple direct, beneficial, and therapeutically relevant effects. These Neurotransmitters and Neuropeptides can induce/increase: gene expression, cytokine secretion, integrin-mediated adhesion, chemotactic migration, extravasation, proliferation, and killing of cancer. Moreover, we recently found that some of these Neurotransmitters and Neuropeptides also induce rapid and profound decrease of PD-1 in human T cells. By inducing these beneficial effects in naïve/resting T cells at different times after binding their receptors (i.e. NOT by single effect/mechanism/pathway), these Neurotransmitters and Neuropeptides by themselves can activate, rejuvenate, and improve T cells. “Personalized Adaptive Neuro-Immunotherapy” is a novel method for rejuvenating and improving T cells safely and potently by Neurotransmitters and Neuropeptides, consisting of personalized diagnostic and therapeutic protocols. The patient’s scarce and/or dysfunctional T cells are activated ex vivo once by pre-selected Neurotransmitters and/or Neuropeptides, tested, and re-inoculated to the patient’s body. Neuro-Immunotherapy can be actionable and repeated whenever needed, and allows other treatments. This adoptive Neuro-Immunotherapy calls for testing its safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel.,Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
9
|
Dolid A, Gomes LC, Mergulhão FJ, Reches M. Combining chemistry and topography to fight biofilm formation: Fabrication of micropatterned surfaces with a peptide-based coating. Colloids Surf B Biointerfaces 2020; 196:111365. [DOI: 10.1016/j.colsurfb.2020.111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
10
|
Díaz-Galindo C, Calderón-Vallejo D, Hernández-Jasso I, Cervantes-García D, Martínez-Díaz D, Ibarra-Martínez D, Muñoz-Ortega M, Quintanar JL. Gonadotropin-Releasing Hormone Receptor Expression in Human Spinal Cord. Neurochem Res 2020; 46:165-170. [PMID: 33206314 DOI: 10.1007/s11064-020-03178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 11/27/2022]
Abstract
The expression of the gonadotrophin-releasing hormone receptor expression on pituitary gonadotrophs in humans is well characterized. In nervous system they have also been found in hippocampi and cerebral cortex. However, gonadotrophin-releasing hormone receptor expression in human spinal cord has not been reported. This study was to analyze the gonadotrophin-releasing hormone receptor expression in human spinal cord by immunohistochemistry, mRNAs by reverse transcriptase polymerase chain reaction, cDNA cloning and Western blot. The results show immunoreactive material to gonadotrophin-releasing hormone receptor in motoneurons of the spinal cord. Further, the study revealed that spinal cord expressed the gonadotrophin-releasing hormone receptor mRNA. The amplicon sequence corresponds to 100% of identity to GenBank. In Western blot, a band of 37 kDa were found in extracts of spinal cord and placenta as a control. In conclusion, human spinal cord expresses gonadotrophin-releasing hormone receptor analyzed through immunohistochemistry, the expression of its mRNA, cloning its cDNA and Western blot analysis. The presence of gonadotrophin-releasing hormone receptor in the spinal cord suggests the possibility of an extrapituitary functional role independent of reproductive system.
Collapse
Affiliation(s)
- Carmen Díaz-Galindo
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
| | - Denisse Calderón-Vallejo
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
- Department of Morphology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Irma Hernández-Jasso
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Diego Martínez-Díaz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico
| | - David Ibarra-Martínez
- Department of Morphology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Martín Muñoz-Ortega
- Department of Chemistry, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - J Luis Quintanar
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, CP 20131, Aguascalientes, AGS, Mexico.
| |
Collapse
|
11
|
Magrone T, Jirillo E, Magrone M, Russo MA, Romita P, Massari F, Foti C. Red Grape Polyphenol Oral Administration Improves Immune Response in Women Affected by Nickel-Mediated Allergic Contact Dermatitis. Endocr Metab Immune Disord Drug Targets 2020; 21:374-384. [PMID: 32167433 DOI: 10.2174/1871530320666200313152648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Our previous findings demonstrated that in vitro supplementation of polyphenols, extracted from seeds of red grape (Nero di Troia cultivar), to peripheral lymphomonocytes from patients affected by allergic contact dermatitis (ACD) to nickel (Ni) could reduce the release of proinflammatory cytokines and nitric oxide (NO), while increasing the levels of interleukin (IL)-10, an anti-inflammatory cytokine. OBJECTIVE To assess whether an intervention with oral administration of polyphenols leads to a reduction of peripheral biomarkers in ACD patients. METHODS At T0, 25 patients affected by ACD to Ni were orally administered with 300 mg polyphenols prodie extracted from seeds of red grape (Nero di Troia cultivar) (NATUR-OX®) for 3 months (T1). The other 25 patients affected by ACD to Ni received placebo only for the same period of time. Serum biomarkers were analyzed at T0 and T1. In both groups, seven dropouts were recorded. RESULTS At T1 in comparison to T0, in treated patients, values of interferon-γ, IL-4, IL-17, pentraxin 3 and NO decreased, while IL-10 levels increased when compared with T0 values. Conversely, in placebo- treated patients, no modifications of biomarkers were evaluated at T1. CONCLUSION Present laboratory data rely on the anti-oxidant, anti-inflammatory and anti-allergic properties of polyphenols.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Paolo Romita
- Department of Biomedical Sciences and Human Oncology, University of Bari, School of Medicine, University of Bari, Bari, Italy
| | - Francesco Massari
- Department of Biomedical Sciences and Human Oncology, University of Bari, School of Medicine, University of Bari, Bari, Italy
| | - Caterina Foti
- Department of Biomedical Sciences and Human Oncology, University of Bari, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
12
|
Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput Struct Biotechnol J 2020; 18:843-851. [PMID: 32322366 PMCID: PMC7160382 DOI: 10.1016/j.csbj.2020.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023] Open
Abstract
In recent decades, neuropeptides have been found to play a major role in communication along the gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous systems, where they facilitate the crosstalk between the nervous systems and other major body systems. In addition to being critical to communication from the brain in the nervous systems, neuropeptides actively regulate immune functions in the gut in both direct and indirect ways, allowing for communication between the immune and nervous systems. In this mini review, we discuss the role of several neuropeptides, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH) and phoenixin (PNX), in the gut-brain axis and summarize their functions in immunity and stress. We choose these neuropeptides to highlight the diversity of peptide communication in the gut-brain axis.
Collapse
Key Words
- ACTH, adrenocorticotrophic hormone
- Antimicrobial peptides
- CGRP, calcitonin gene-related peptide
- CNS, central nervous system
- CRH, corticotropin-releasing hormone
- CRLR, calcitonin receptor like receptor
- Gut-brain axis
- HPA axis, hypothalamic–pituitary–adrenal axis
- Hypothalamic–pituitary–adrenal axis
- Immunity
- LPS, lipopolysaccharides
- NPY, neuropeptide Y
- Neuropeptide
- PACAP, pituitary adenylate cyclase-activating polypeptide
- PNX, phoenixin
- RAMP1, receptor activity-modifying protein1
- SP, substance P
- Stress
- TRPV1, transient receptor potential vanilloid receptor-1
- VIP, vasoactive intestinal peptide
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Corresponding author at: School of Pharmacy & Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
13
|
Takeuchi T, Tanaka Y, Higashitani C, Iwai M, Komatsu K, Akazawa R, Lademacher C. A phase 2a, randomized, double-blind, placebo-controlled trial of the efficacy and safety of the oral gonadotropin-releasing hormone antagonist, ASP1707, in postmenopausal female patients with rheumatoid arthritis taking methotrexate. Mod Rheumatol 2020; 31:53-60. [PMID: 32075475 DOI: 10.1080/14397595.2020.1733214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Many patients with rheumatoid arthritis (RA) are not able to achieve long-term disease remission. This phase 2a study (NCT02884635) evaluated the efficacy, safety, pharmacokinetics, and pharmacodynamics of the novel, oral, gonadotropin-releasing hormone antagonist, ASP1707, in combination with methotrexate (MTX) for treatment of RA. METHODS Postmenopausal women with RA who had been receiving MTX for ≥90 days were randomized to ASP1707 30 mg twice daily or placebo for 12 weeks. The primary endpoint was the American College of Rheumatology 20% improvement criteria (ACR20) response rate at week 12. Secondary endpoints included: ACR20, ACR50, and ACR70 response rates; disease activity score (DAS)28-CRP; DAS28-ESR; Tender or Swollen Joint Counts; and remission rates. RESULTS Of 105 patients screened, 72 were randomized to ASP1707 30 mg twice daily (n = 37) or placebo (n = 35). ASP1707 did not improve ACR20, ACR50, or ACR70 response rates at any time point and did not improve any secondary efficacy endpoint. Plasma luteinizing hormone (LH) concentration decreased >90% in >90% of patients receiving ASP1707, with a rapid decrease to <1 IU/L at week 1 that remained stable throughout the treatment. CONCLUSION In the current study, ASP1707 did not demonstrate a clinical benefit.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Megumi Iwai
- Clinical Pharmacology and Exploratory Development, Astellas Pharma, Inc., Tokyo, Japan
| | - Kanji Komatsu
- Clinical Pharmacology, Astellas Pharma, Inc., Tokyo, Japan
| | - Rio Akazawa
- Data Science, Astellas Pharma, Inc., Tokyo, Japan
| | | |
Collapse
|
14
|
Dolid A, Reches M. The effect of end‐group substitution on surface self‐assembly of peptides. J Pept Sci 2019; 25:e3212. [DOI: 10.1002/psc.3212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Alona Dolid
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem Israel
| | - Meital Reches
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
15
|
McCombe PA. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J Clin Med 2018; 7:jcm7120494. [PMID: 30486504 PMCID: PMC6306813 DOI: 10.3390/jcm7120494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
The role of pregnancy in multiple sclerosis (MS) is of importance because many patients with MS are young women in the childbearing age who require information to inform their reproductive decisions. Pregnancy is now well-known to be associated with fewer relapses of MS and reduced activity of autoimmune encephalomyelitis (EAE). However, in women with multiple sclerosis, this benefit is not always sufficient to protect against a rebound of disease activity if disease-modulating therapy is ceased for pregnancy. There is concern that use of assisted reproductive therapies can be associated with relapses of MS, but more data are required. It is thought that the beneficial effects of pregnancy are due to the pregnancy-associated changes in the maternal immune system. There is some evidence of this in human studies and studies of EAE. There is also evidence that having been pregnant leads to better long-term outcome of MS. The mechanism for this is not fully understood but it could result from epigenetic changes resulting from pregnancy or parenthood. Further studies of the mechanisms of the beneficial effects of pregnancy could provide information that might be used to produce new therapies.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Brisbane, QLD 4029, Australia.
| |
Collapse
|
16
|
Lajkó E, Spring S, Hegedüs R, Biri-Kovács B, Ingebrandt S, Mező G, Kőhidai L. Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids. Beilstein J Org Chem 2018; 14:2495-2509. [PMID: 30344773 PMCID: PMC6178282 DOI: 10.3762/bjoc.14.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH-III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRH-III(Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a “second drug” proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Sarah Spring
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary.,Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Rózsa Hegedüs
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Sven Ingebrandt
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482 Zweibrücken, Germany
| | - Gábor Mező
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.,Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - László Kőhidai
- Department Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| |
Collapse
|
17
|
Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018; 86:3-17. [PMID: 29223677 DOI: 10.1016/j.metabol.2017.11.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.
Collapse
Affiliation(s)
- Athina Kaprara
- Unit of Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece.
| | | |
Collapse
|
18
|
Desaulniers AT, Cederberg RA, Lents CA, White BR. Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals. Front Endocrinol (Lausanne) 2017; 8:269. [PMID: 29312140 PMCID: PMC5732264 DOI: 10.3389/fendo.2017.00269] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implantation, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored.
Collapse
Affiliation(s)
- Amy T. Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca A. Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Brett R. White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Brett R. White,
| |
Collapse
|
19
|
Discovery of new small molecules inhibiting 67 kDa laminin receptor interaction with laminin and cancer cell invasion. Oncotarget 2016; 6:18116-33. [PMID: 26062445 PMCID: PMC4627239 DOI: 10.18632/oncotarget.4016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/18/2015] [Indexed: 01/23/2023] Open
Abstract
The 67 kDa laminin receptor (67LR) is a non-integrin receptor for laminin (LM) that derives from a 37 kDa precursor (37LRP). 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potential. We used structure-based virtual screening (SB-VS) to search for 67LR inhibitory small molecules, by focusing on a 37LRP sequence, the peptide G, able to specifically bind LM. Forty-six compounds were identified and tested on HEK-293 cells transfected with 37LRP/67LR (LR-293 cells). One compound, NSC47924, selectively inhibited LR-293 cell adhesion to LM with IC50 and Ki values of 19.35 and 2.45 μmol/L. NSC47924 engaged residues W176 and L173 of peptide G, critical for specific LM binding. Indeed, NSC47924 inhibited in vitro binding of recombinant 37LRP to both LM and its YIGSR fragment. NSC47924 also impaired LR-293 cell migration to LM and cell invasion. A subsequent hierarchical similarity search with NSC47924 led to the identification of additional four compounds inhibiting LR-293 cell binding to LM: NSC47923, NSC48478, NSC48861, and NSC48869, with IC50 values of 1.99, 1.76, 3.4, and 4.0 μmol/L, respectively, and able to block in vitro cancer cell invasion. These compounds are promising scaffolds for future drug design and discovery efforts in cancer progression.
Collapse
|
20
|
Poulsen CB, Mortensen MB, Koechling W, Sørensen CB, Bentzon JF. Differences in Hypercholesterolemia and Atherogenesis Induced by Common Androgen Deprivation Therapies in Male Mice. J Am Heart Assoc 2016; 5:e002800. [PMID: 26908406 PMCID: PMC4802473 DOI: 10.1161/jaha.115.002800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/13/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Treatment of prostate cancer often involves androgen deprivation therapy (ADT) by gonadotropin-releasing hormone (GnRH) receptor agonists, GnRH receptor antagonists, or orchiectomy. ADT may increase the rate of cardiovascular disease events, but recent clinical studies suggested that not all means of ADT carry the same risk, raising the possibility of non-testosterone-mediated effects of different forms of ADT on atherosclerosis. Here we compared effects of ADT on atherosclerosis in intact and orchiectomized Apoe-deficient mice. METHODS AND RESULTS Chow-fed Apoe-deficient mice were allocated to orchiectomy and/or monthly injections with the GnRH receptor agonist leuprolide or the GnRH receptor antagonist degarelix. Atherosclerosis was quantified at 26 weeks of age in the aortic arch by en face examination and in the aortic root by histology. In intact Apoe-deficient mice, all types of ADT reduced testosterone production to castration levels. Although hypercholesterolemia was accentuated in leuprolide-treated mice, the amount and composition of atherosclerosis was not different between the different types of ADT. In orchiectomized Apoe-deficient mice, leuprolide, but not degarelix, augmented hypercholesterolemia, changed body, thymus, and spleen weights, and increased atherosclerosis in the aortic root. No direct effects of the drugs were detectable on cytokine secretion from murine bone marrow-derived macrophages or on splenocyte proliferation. CONCLUSIONS No differences in the development of atherosclerosis were detected among groups of intact Apoe-deficient mice treated with different types of ADT. A pro-atherogenic, possibly cholesterol-mediated, effect of leuprolide was seen in orchiectomized mice that might be relevant for understanding the potential cardiovascular risk associated with GnRH agonist-based ADT.
Collapse
Affiliation(s)
- Christian Bo Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Bødtker Mortensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Wolfgang Koechling
- Non-Clinical Development, Ferring Pharmaceuticals A/S, Copenhagen, Denmark
| | - Charlotte Brandt Sørensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Fog Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Kåss A, Hollan I, Fagerland MW, Gulseth HC, Torjesen PA, Førre ØT. Rapid Anti-Inflammatory Effects of Gonadotropin-Releasing Hormone Antagonism in Rheumatoid Arthritis Patients with High Gonadotropin Levels in the AGRA Trial. PLoS One 2015; 10:e0139439. [PMID: 26460564 PMCID: PMC4603957 DOI: 10.1371/journal.pone.0139439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/25/2015] [Indexed: 11/21/2022] Open
Abstract
Objectives Gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins, which appear to be proinflammatory, undergo profound secretory changes during events associated with rheumatoid arthritis (RA) onset, flares, or improvement e.g. menopausal transition, postpartum, or pregnancy. Potential anti-inflammatory effects of GnRH-antagonists may be most pronounced in patients with high GnRH and gonadotropin levels. Therefore, we investigated the efficacy and safety of a GnRH-antagonist, cetrorelix, in RA patients with high gonadotropin levels. Methods We report intention-to-treat post hoc analyses among patients with high gonadotropin levels (N = 53), i.e. gonadotropin levels>median, from our proof-of-concept, double-blind AGRA-study (N = 99). Patients with active longstanding RA, randomized to subcutaneous cetrorelix (5mg days1–2; 3mg days 3–5) or placebo, were followed through day 15. Only predefined primary and secondary endpoints were analyzed. Results The primary endpoint, Disease Activity Score of 28-joint counts with C-reactive protein (DAS28-CRP), improved with cetrorelix compared with placebo by day 5 (-1.0 vs. -0.4, P = 0∙010). By day 5, more patients on cetrorelix achieved at least a 20% improvement in the American College of Rheumatology scale (44% vs. 19%, P = 0.049), DAS28-CRP≤3.2 (24% vs. 0%, P = 0.012), and European League against Rheumatism ‘Good-responses’ (19% vs. 0%, P = 0.026). Tumor necrosis factor-α, interleukin-1β, interleukin-10, and CRP decreased with cetrorelix (P = 0.045, P = 0.034, P = 0.020 and P = 0.042 respectively) compared with placebo by day 15. Adverse event rates were similar between groups. Conclusions GnRH-antagonism produced rapid anti-inflammatory effects in RA patients with high gonadotropin levels. GnRH should be investigated further in RA. Trial Registration ClinicalTrials.gov NCT00667758
Collapse
Affiliation(s)
- Anita Kåss
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Rheumatology, Betanien Hospital, Skien, Norway
- * E-mail:
| | - Ivana Hollan
- Department of Rheumatology, Lillehammer Hospital for Rheumatic Diseases, Lillehammer, Norway
| | | | | | | | - Øystein Torleiv Førre
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
DiGiacomo V, Meruelo D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev Camb Philos Soc 2015; 91:288-310. [PMID: 25630983 DOI: 10.1111/brv.12170] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
The 37/67-kDa laminin receptor (LAMR/RPSA) was originally identified as a 67-kDa binding protein for laminin, an extracellular matrix glycoprotein that provides cellular adhesion to the basement membrane. LAMR has evolutionary origins, however, as a 37-kDa RPS2 family ribosomal component. Expressed in all domains of life, RPS2 proteins have been shown to have remarkably diverse physiological roles that vary across species. Contributing to laminin binding, ribosome biogenesis, cytoskeletal organization, and nuclear functions, this protein governs critical cellular processes including growth, survival, migration, protein synthesis, development, and differentiation. Unsurprisingly given its purview, LAMR has been associated with metastatic cancer, neurodegenerative disease and developmental abnormalities. Functioning in a receptor capacity, this protein also confers susceptibility to bacterial and viral infection. LAMR is clearly a molecule of consequence in human disease, directly mediating pathological events that make it a prime target for therapeutic interventions. Despite decades of research, there are still a large number of open questions regarding the cellular biology of LAMR, the nature of its ability to bind laminin, the function of its intrinsically disordered C-terminal region and its conversion from 37 to 67 kDa. This review attempts to convey an in-depth description of the complexity surrounding this multifaceted protein across functional, structural and pathological aspects.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A
| | - Daniel Meruelo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A.,NYU Cancer Institute, 550 First Avenue, New York, NY 10016, U.S.A.,NYU Gene Therapy Center, 550 First Avenue, New York, NY 10016, U.S.A
| |
Collapse
|
23
|
Towards Neuroimmunotherapy for Cancer: the Neurotransmitters Glutamate, Dopamine and GnRH-II augment substantially the ability of T cells of few Head and Neck cancer patients to perform spontaneous migration, chemotactic migration and migration towards the autologous tumor, and also elevate markedly the expression of CD3zeta and CD3epsilon TCR-associated chains. J Neural Transm (Vienna) 2014; 121:1007-27. [DOI: 10.1007/s00702-014-1242-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/06/2014] [Indexed: 01/01/2023]
|
24
|
Park S, Han JM, Cheon J, Hwang JI, Seong JY. Apoptotic death of prostate cancer cells by a gonadotropin-releasing hormone-II antagonist. PLoS One 2014; 9:e99723. [PMID: 24926857 PMCID: PMC4057422 DOI: 10.1371/journal.pone.0099723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/18/2014] [Indexed: 01/11/2023] Open
Abstract
Gonadotropin-releasing hormone-I (GnRH-I) has attracted strong attention as a hormonal therapeutic tool, particularly for androgen-dependent prostate cancer patients. However, the androgen-independency of the cancer in advanced stages has spurred researchers to look for new medical treatments. In previous reports, we developed the GnRH-II antagonist Trp-1 to inhibit proliferation and stimulate the autophagic death of various prostate cancer cells, including androgen-independent cells. We further screened many GnRH-II antagonists to identify molecules with higher efficiency. Here, we investigated the effect of SN09-2 on the growth of PC3 prostate cancer cells. SN09-2 reduced the growth of prostate cancer cells but had no effect on cells derived from other tissues. Compared with Trp-1, SN09-2 conspicuously inhibited prostate cancer cell growth, even at low concentrations. SN09-2-induced PC3 cell growth inhibition was associated with decreased membrane potential in mitochondria where the antagonist was accumulated, and increased mitochondrial and cytosolic reactive oxygen species. SN09-2 induced lactate dehydrogenase release into the media and annexin V-staining on the PC3 cell surface, suggesting that the antagonist stimulated prostate cancer cell death by activating apoptotic signaling pathways. Furthermore, cytochrome c release from mitochondria to the cytosol and caspase-3 activation occurred in a concentration- and time-dependent manner. SN09-2 also inhibited the growth of PC3 cells xenotransplanted into nude mice. These results demonstrate that SN09-2 directly induces mitochondrial dysfunction and the consequent ROS generation, leading to not only growth inhibition but also apoptosis of prostate cancer cells.
Collapse
Affiliation(s)
- Sumi Park
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Ji Man Han
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Jun Cheon
- Department of Urology, School of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail: (J-IH); (JYS)
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail: (J-IH); (JYS)
| |
Collapse
|
25
|
Effects of neonatal surgical castration and immunocastration in male pigs on blood T lymphocytes and health markers. Animal 2014; 8:836-43. [DOI: 10.1017/s1751731114000445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Kåss AS, Førre OT, Fagerland MW, Gulseth HC, Torjesen PA, Hollan I. Short-term treatment with a gonadotropin-releasing hormone antagonist, cetrorelix, in rheumatoid arthritis (AGRA): a randomized, double-blind, placebo-controlled study. Scand J Rheumatol 2013; 43:22-7. [PMID: 24182325 PMCID: PMC3913106 DOI: 10.3109/03009742.2013.825007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Objectives Gonadotropin-releasing hormone (GnRH) stimulates immune responses; therefore, antagonizing GnRH with cetrorelix may have anti-inflammatory effects. The aim of this study was to assess short-term cetrorelix therapy in rheumatoid arthritis (RA) patients. Method In this proof-of-concept, randomized, double-blind study involving 99 patients with active, long-standing RA, 48 patients received subcutaneous cetrorelix (5 mg/day on days 1 and 2; 3 mg/day on days 3–5) and 51 received placebo. The primary end-point was the change in the 28-joint Disease Activity Score based on C-reactive protein (DAS28-CRP) by day 5, when the greatest GnRH suppression was anticipated. Secondary end-points included the change in tumour necrosis factor (TNF)-α, and achievement of American College of Rheumatology (ACR) responses and DAS28-CRP < 2.6 by day 5. Patients were followed up on days 10 and 15. Results By day 5, DAS28-CRP was non-significantly reduced by 0.82 in the cetrorelix group compared to a 0.57 reduction in the placebo group (p = 0.091), TNF-α (log pg/mL) was significantly reduced in the cetrorelix group compared with the placebo group [0.55, 95% confidence interval (CI) 0.08–1.01, p = 0.023], and more patients on cetrorelix achieved ACR20 responses (40% vs. 18%, p = 0.015) and DAS28-CRP < 2.6 (13% vs. 0%, p = 0.009). Inflammatory markers increased towards baseline levels after withdrawal of treatment. Rates of adverse events were similar in both groups. Conclusions Although there was no significant difference in the primary end-point between groups, antagonizing GnRH led to significant improvements in key secondary end-points. Thus, GnRH antagonists may have rapid anti-inflammatory effects in RA, already occurring within 5 days. The data suggest a novel mode of action for TNF-α inhibition in RA, and potentially in other autoimmune diseases.
Collapse
Affiliation(s)
- A S Kåss
- Department of Rheumatology, Betanien Hospital , Skien , Norway
| | | | | | | | | | | |
Collapse
|
27
|
Quintanar JL, Guzmán-Soto I. Hypothalamic neurohormones and immune responses. Front Integr Neurosci 2013; 7:56. [PMID: 23964208 PMCID: PMC3741963 DOI: 10.3389/fnint.2013.00056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/16/2013] [Indexed: 01/19/2023] Open
Abstract
The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.
Collapse
Affiliation(s)
- J Luis Quintanar
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes Aguascalientes, México
| | | |
Collapse
|
28
|
Su S, Fang F, Liu Y, Li Y, Ren C, Zhang Y, Zhang X. The compensatory expression of reproductive hormone receptors in the thymus of the male rat following active immunization against GnRH. Gen Comp Endocrinol 2013; 185:57-66. [PMID: 23395683 DOI: 10.1016/j.ygcen.2013.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 11/15/2022]
Abstract
To determine whether hormone-receptor signaling pathways in the thymus are altered by active immunization against gonadotrophin-releasing hormone I (GnRH), 3-week-old Sprague-Dawley male rats received GnRH-tandem-OVA peptides (200 μg/ml), and the effects were compared to a control group. Serum testosterone, LH and FSH concentrations were markedly reduced, with severe testicular atrophy, compared to controls, demonstrating effective blockade of the pituitary-gonadal axis. The reduction in LH and FSH concentrations in the thymus of immunized animals was lower than that observed in the serum, where a significant difference (P<0.001) in concentration was observed between both groups. Concentrations of GnRH were increased in the thymus of immunized rats. In thymic tissue, GnRHR, FSHR and LHR demonstrated stronger immunostaining, and AR weaker staining, in the immunized group compared to controls. Reproductive hormone receptor mRNA expression was consistent with protein variations in the immunized thymus. Compared to controls, GnRHR gene levels were significantly increased (P<0.05), however, AR mRNA expression were greatly decreased with immune week-age (P<0.05). Both FSHR and LHR mRNA expression levels were significantly higher in the treated group than in controls in the first three samples (P<0.05). When GnRHR was blocked by an antagonist in thymocytes, all reproductive hormone receptor gene expressions were significantly increased (P<0.001). In summary, these findings suggest that active immunization against GnRH can up-regulate GnRH receptor and gonadotropin receptor signaling, by stimulating thymic autocrine and paracrine function, whereas the androgen receptor is down-regulated due to a lack of testosterone secretion in the thymus.
Collapse
Affiliation(s)
- Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 of Changjiang West Road, Hefei, Anhui 230036, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Lajkó E, Szabó I, Andódy K, Pungor A, Mező G, Kőhidai L. Investigation on chemotactic drug targeting (chemotaxis and adhesion) inducer effect of GnRH-III derivatives in Tetrahymena and human leukemia cell line. J Pept Sci 2012. [PMID: 23208929 DOI: 10.1002/psc.2472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GnRH-III has been shown to exert a cytotoxic effect on the GnRH-R positive tumor cells. The chemotactic drug targeting (CDT) represents a new way for drug delivery approach based on selective chemoattractant guided targeting. The major goal of the present work was to develop and investigate various GnRH-III derivatives as potential targeting moieties for CDT. The cell physiological effects (chemotaxis, adhesion, and signaling) induced by three native GnRHs (hGnRH-I, cGnRH-II, and lGnRH-III) and nine GnRH-III derivatives were evaluated in two model cells (Tetrahymena pyriformis and Mono Mac 6 human monocytes). According to our results, the native GnRH-III elicited the highest chemoattractant and adhesion inducer activities of all synthesized peptides in micromolar concentrations in monocytes. With respect to chemoattraction, dimeric derivatives linked by a disulfide bridge ([GnRH-III(C)](2) ) proved to be efficient in both model cells; furthermore, acetylation of the linker region ([GnRH-III(Ac-C)](2) ) could slightly improve the chemotactic and adhesion effects in monocytes. The length of the peptide and the type of N-terminal amino acid could also determine the chemotactic and adhesion modulation potency of each fragment. The application of the chemoattractant GnRH-III derivatives was accompanied by a significant activation of phosphatidylinositol 3-kinase in both model cells. In summary, our work on low-level differentiated model cells of tumors has proved that GnRH-III and some of its synthetic derivatives are promising candidates to be applied in CDT: these compounds might act both as carrier, delivery unit, and antitumor agents.
Collapse
Affiliation(s)
- Eszter Lajkó
- Department of Genetics Cell and Immunobiology, Semmelweis University, Nagyvárad tér. 4, H-1089, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
Formisano P, Ragno P, Pesapane A, Alfano D, Alberobello AT, Rea VEA, Giusto R, Rossi FW, Beguinot F, Rossi G, Montuori N. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis. J Cell Mol Med 2012; 16:1435-46. [PMID: 21895963 PMCID: PMC3823213 DOI: 10.1111/j.1582-4934.2011.01411.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization.
Collapse
Affiliation(s)
- Pietro Formisano
- Department of Cellular and Molecular Biology and Pathology, Federico II University, Naples, taly
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Correale J, Farez MF, Ysrraelit MC. Increase in multiple sclerosis activity after assisted reproduction technology. Ann Neurol 2012; 72:682-94. [DOI: 10.1002/ana.23745] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022]
|
32
|
Abstract
Multiple sclerosis (MS) is more common in females than males and frequently affects women during their reproductive years. Thus, issues surrounding pregnancy and reproduction are of concern to women with MS. This review documents studies that shed light on reproductive issues in women with MS. The available literature was searched for papers relating to pregnancy and MS. Pregnancy is protective in MS in the short term, perhaps due to modulation of the immune system in pregnancy. It also possible that changes in the brain in pregnancy could protect against the effects of inflammation. The long-term effects of pregnancy also seem to be beneficial to MS, perhaps due to long-term epigenetic changes or possibly due to the effects of fetal microchimerism. Obstetric outcomes in women with MS are similar to those in the general population. In addition, there have been no reports of severe fetal abnormalities in babies exposed to first-line MS therapies. There is no good evidence that breast-feeding is protective in MS. There is no evidence that oral contraceptive pill use predisposes to MS, nor influences the clinical course of MS. After menopause, there is possible deterioration of MS, but it’s difficult to disentangle this from the effects of aging and the natural progressive history of MS. The strong biological effect of pregnancy on MS deserves further study, so that these mechanisms can possibly be replicated as therapies for MS.
Collapse
|
33
|
Miyake S. Mind over cytokines: Crosstalk and regulation between the neuroendocrine and immune systems. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1759-1961.2011.00023.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Greer JM, McCombe PA. Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J Neuroimmunol 2011; 234:7-18. [PMID: 21474189 DOI: 10.1016/j.jneuroim.2011.03.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/05/2011] [Accepted: 03/07/2011] [Indexed: 01/14/2023]
Abstract
Multiple sclerosis (MS) is more prevalent in females than males, and this female predominance is increasing as time goes by. Additionally, gender appears to play critical roles in development, progression and treatment of MS, and is therefore an aspect that should always be considered in the design and interpretation of research and clinical trials for MS. In this review, factors that could potentially explain the gender-biased observations in MS are discussed. These include sex-specific differences between the male and female immune systems and nervous systems, genetic and epigenetic or environmental-related effects, the effects of gonadal hormones, and materno-fetal interactions.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospital, Brisbane, 4029, Australia.
| | | |
Collapse
|
35
|
Tachibana H. Green tea polyphenol sensing. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:66-80. [PMID: 21422740 PMCID: PMC3066547 DOI: 10.2183/pjab.87.66] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/12/2010] [Indexed: 05/24/2023]
Abstract
Green tea polyphenols have emerged over the past two decades as an important dietary factor for health promotion. There is considerable evidence that tea polyphenols, in particular (-)-epigallocatechin-3-gallate (EGCG) inhibit carcinogenesis. However, the mechanisms for the cancer-preventive activity of EGCG are not completely characterized and many features remain to be elucidated. Recently we have identified a cell-surface EGCG receptor and the relating molecules that confer EGCG responsiveness to many cancer cells at physiological concentrations. Here, we review some of the reported mechanisms for the cancer chemopreventive action of EGCG and provide an overview of several molecules that sense and manage the physiological functions of EGCG.
Collapse
Affiliation(s)
- Hirofumi Tachibana
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
36
|
Abstract
Cell migration is required for a wide variety of processes from bacteria seeking for food to correct patterning of neuronal networks. The ability to sense external cues is critical for cells to get directions and reach their goals. So far, studies on chemotaxis have mainly focused their attention on individual cells and therefore available tools are designed to monitor cell behavior at the single cell level. However, as collective cell migration is now widely accepted as a main mode of cell migration from development to cancer, the question of how chemotaxis is achieved has also to be asked on a bigger scale. Here, we present two chemotaxis assays suitable for single cells, cell sheets, and cell explants. Using a simple combination of heparin-coated beads and high vacuum silicone grease, these techniques can be adapted to a wide variety of culture conditions. They allow time-lapse study, high-resolution microscopy, and can be set up at no extra cost.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
37
|
Poon SL, Klausen C, Hammond GL, Leung PCK. 37-kDa laminin receptor precursor mediates GnRH-II-induced MMP-2 expression and invasiveness in ovarian cancer cells. Mol Endocrinol 2010; 25:327-38. [PMID: 21193558 DOI: 10.1210/me.2010-0334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH-II enhances ovarian cancer cell invasion in an autocrine manner. We have now found that GnRH-II increases 37-kDa laminin receptor precursor (LRP) production in GnRH receptor (GnRHR)-positive OVCAR-3 and CaOV-3 ovarian cancer cells, while small interfering RNA (siRNA)-mediated depletion of GnRH-II or GnRHR mRNA abrogates this. The invasiveness of ovarian cancer cells is also reduced >85% by siRNA-mediated knockdown of LRP levels and >50% by pretreatment of Matrigel with a synthetic peptide that blocks interactions between laminin and the 67-kDa nonintegrin laminin receptor which comprises two LRP subunits. Conversely, overexpressing LRP in CaOV-3 cells increases their invasiveness 5-fold, while overexpressing LRP with a nonfunctional laminin-binding site does not. Depletion of LRP by siRNA treatment reduces CaOV-3 cell attachment to laminin-coated plates by ∼80% but only reduces their binding to Matrigel by ∼20%. Thus, while LRP influences CaOV-3 cell adhesion to laminin, LRP must act in other ways to enhance invasion. Matrix metalloproteinases (MMPs) are key mediators of invasion, and LRP siRNA treatment of OVCAR-3 and CaOV-3 cells inhibits MMP-2 but not MMP-9 mRNA levels. Overexpressing LRP in these cells increases MMP-2 production specifically, while a laminin-binding deficient LRP does not. Importantly, LRP siRNA treatment abolishes GnRH-II-induced MMP-2 production, and invasion in OVCAR-3 and CaOV-3 cells, which was also seen after MMP-2 siRNA treatment. These results suggest that GnRH-II-induced LRP expression increases the amount of the 67-kDa nonintegrin laminin receptor, which appears to interact with laminin in the extracellular matrix to promote MMP-2 expression and enhance ovarian cancer cell invasion.
Collapse
Affiliation(s)
- Song Ling Poon
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
38
|
Debruyne F, Tzvetkov M, Altarac S, Geavlete PA. Dose-ranging study of the luteinizing hormone-releasing hormone receptor antagonist cetrorelix pamoate in the treatment of patients with symptomatic benign prostatic hyperplasia. Urology 2010; 76:927-33. [PMID: 20932411 DOI: 10.1016/j.urology.2009.09.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/24/2009] [Accepted: 09/01/2009] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To compare the efficacy of 4 dosage regimens of cetrorelix pamoate, a sustained release formulation that allows for more convenient dosing, in patients with symptomatic benign prostatic hyperplasia (BPH). Repeated dosing with cetrorelix acetate was shown to be active in the treatment of BPH symptoms. METHODS Double-blind, randomized, multicenter study was undertaken among patients with International Prostate Symptom Score (IPSS) ≥ 13. After a single-blind placebo run-in phase of 4 weeks, treatment was administered at 2-week intervals as follows: 30 + 30 mg, 30 + 30 + 30 mg, 60 + 30, 60 + 60 mg cetrorelix pamoate, or matching placebo. Patients were followed-up for 28 weeks after randomization. RESULTS A statistically significant overall difference was found with respect to the primary variable, the IPSS (P ≤ .001). Optimal results, a 4-point improvement in IPSS in excess of the changes observed in the placebo group, were achieved with a starting dose of 60 mg cetrorelix pamoate followed by a dose of 30 mg 2 weeks later. In all dosage groups, the symptomatic improvement was paralleled by an increase in uroflow. There was a marked dissociation between only moderate and transient testosterone suppression and the persisting effects on BPH signs and symptoms. Tolerability was good at all cetrorelix dosages. CONCLUSIONS Intramuscular injections of 60 and 30 mg of cetrorelix pamoate within 2 weeks provide rapid symptomatic improvements of BPH that are sustained for the following 6 months.
Collapse
Affiliation(s)
- Frans Debruyne
- Department of Urology, Academic Hospital Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Lazúrová I, Angelovičová J, Petríková J, Čalfová A, Oetterová M, Švajdler M. A case of polymyositis and vasculitis induced by ovulation induction therapy with gonadotropin-releasing hormone. Clin Rheumatol 2010; 29:1327-30. [DOI: 10.1007/s10067-010-1426-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 03/02/2010] [Indexed: 11/25/2022]
|
40
|
Abstract
BACKGROUND Histological evidence of pervasive inflammatory infiltrate has been noted in both benign prostatic hyperplasia/hypertrophy (BPH) and prostate cancer (PCa). Cytokines known to attract particular leukocyte subsets are secreted from prostatic stroma consequent to aging and also from malignant prostate epithelium. Therefore, we hypothesized that leukocytes associated with either acute or chronic inflammation attracted to the prostate consequent to aging or tumorigenesis may promote the abnormal cellular proliferation associated with BPH and PCa. METHODS An in vitro system designed to mimic the human prostatic microenvironment incorporating prostatic stroma (primary and immortalized prostate stromal fibroblasts), epithelium (N15C6, BPH-1, LNCaP, and PC3 cells), and inflammatory infiltrate (HL-60 cells, HH, and Molt-3 T-lymphocytes) was developed. Modified Boyden chamber assays were used to test the ability of prostate stromal and epithelial cells to attract leukocytes and to test the effect of leukocytes on prostate cellular proliferation. Antibody arrays were used to identify leukocyte-secreted cytokines mediating prostate cellular proliferation. RESULTS Leukocytic cells migrated towards both prostate stromal and epithelial cells. CD4+ T-lymphocytes promoted the proliferation of both transformed and non-transformed prostate epithelial cell lines tested, whereas CD8+ T-lymphocytes as well as dHL-60M macrophagic and dHL-60N neutrophilic cells selectively promoted the proliferation of PCa cells. CONCLUSIONS The results of these studies show that inflammatory cells can be attracted to the prostate tissue microenvironment and can selectively promote the proliferation of non-transformed or transformed prostate epithelial cells, and are consistent with differential role(s) for inflammatory infiltrate in the etiologies of benign and malignant proliferative disease in the prostate.
Collapse
Affiliation(s)
| | - Lesa A. Begley
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Nirit Mor-Vaknin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - David M. Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jill A. Macoska
- Department of Urology, University of Michigan, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Correspondence to: Jill A. Macoska, PhD, Department of Urology, University of Michigan, 6217 CCGC, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0944.
| |
Collapse
|
41
|
Wang L, Cao H, Jiang N, Zhang N, Zhang J, Hou R, Chen C, Wang Y, Li X, Li D, Ji Q. Differential expression of gonadotropin-releasing hormone (GnRH) in pancreas during rat pregnancy. Endocrine 2009; 36:538-45. [PMID: 19856133 DOI: 10.1007/s12020-009-9264-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
Abstract
Many studies have shown that there is a relationship between gonadotropin-releasing hormone (GnRH) and glucose metabolism, but little is known about the effects of GnRH on the pancreas. Our experiment investigated the effect of GnRH on pancreatic islet cell in Sprague-Dawley (SD) rats fed with high-cholesterol diet before and during pregnancy. We found that although high-cholesterol diet led to no significant difference of GnRH mRNA levels in pancreas in nonpregnant rats, it led to a marked increase of those in pregnant rats. Furthermore, in rats fed with standard laboratory chow, no significant differences were apparent in GnRH mRNA levels before and during gestation; however, when fed with high-cholesterol diet, the GnRH mRNA levels increased significantly in pregnant rats. As results indicated both diets could lead to increase of PG mRNA in pancreas of pregnant rats. It is also demonstrated that the GnRH mRNA levels are positively associated with PG mRNA levels. Moreover, our data showed a significant increase in fasting insulin level in the Gestation group compared with Control. Such changes were contrary to the changes of GnRH level in the pancreas. This may imply that GnRH influences hormones secretion in the pancreas by autocrine and paracrine effects on islet cells.
Collapse
Affiliation(s)
- Li Wang
- Department of Endocrinology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ganor Y, Grinberg I, Ganor Y, Grinberg I, Reis A, Cooper I, Goldstein RS, Levite M. Human T-leukemia and T-lymphoma express glutamate receptor AMPA GluR3, and the neurotransmitter glutamate elevates the cancer-related matrix-metalloproteinases inducer CD147/EMMPRIN, MMP-9 secretion and engraftment of T-leukemiain vivo. Leuk Lymphoma 2009; 50:985-97. [DOI: 10.1080/10428190902878448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Skinner DC, Albertson AJ, Navratil A, Smith A, Mignot M, Talbott H, Scanlan-Blake N. Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis. J Neuroendocrinol 2009; 21:282-92. [PMID: 19187469 PMCID: PMC2669307 DOI: 10.1111/j.1365-2826.2009.01842.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotrophins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.
Collapse
Affiliation(s)
- D C Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Debruyne F, Gres AA, Arustamov DL. Reply to Tomasz Drewa and Piotr Chlosta's Letter to the Editor re: Frans Debruyne, Arkadij A. Gres, Dmitrii L. Arustamov. Placebo-Controlled Dose-Ranging Phase 2 Study of Subcutaneously Administered LHRH Antagonist Cetrorelix in Patients with Symptomatic Benign Prostatic Hyperplasia. Eur Urol 2008;54:170–80. Eur Urol 2009. [DOI: 10.1016/j.eururo.2008.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Kim DK, Yang JS, Maiti K, Hwang JI, Kim K, Seen D, Ahn Y, Lee C, Kang BC, Kwon HB, Cheon J, Seong JY. A Gonadotropin-Releasing Hormone-II Antagonist Induces Autophagy of Prostate Cancer Cells. Cancer Res 2009; 69:923-31. [DOI: 10.1158/0008-5472.can-08-2115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Cheung LWT, Wong AST. Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 2008; 275:5479-95. [PMID: 18959738 DOI: 10.1111/j.1742-4658.2008.06677.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in locally produced, extrapituitary GnRH. GnRH receptor (GnRHR) was found to be expressed in normal human reproductive tissues (e.g. breast, endometrium, ovary, and prostate) and tumors derived from these tissues. Numerous studies have provided evidence for a role of GnRH in cell proliferation. More recently, we and others have reported a novel role for GnRH in other aspects of tumor progression, such as metastasis and angiogenesis. The multiple actions of GnRH could be linked to the divergence of signaling pathways that are activated by GnRHR. Recent observations also demonstrate cross-talk between GnRHR and growth factor receptors. Intriguingly, the classical G(alphaq)-11-phospholipase C signal transduction pathway, known to function in pituitary gonadotropes, is not involved in GnRH actions at nonpituitary targets. Herein, we review the key findings on the role of GnRH in the control of tumor growth, progression, and dissemination. The emerging role of GnRHR in actin cytoskeleton remodeling (small Rho GTPases), expression and/or activity of adhesion molecules (integrins), proteolytic enzymes (matrix metalloproteinases) and angiogenic factors is explored. The signal transduction mechanisms of GnRHR in mediating these activities is described. Finally, we discuss how a common GnRHR may mediate different, even opposite, responses to GnRH in the same tissue/cell type and whether an additional receptor(s) for GnRH exists.
Collapse
|
47
|
Schottelius M, Berger S, Poethko T, Schwaiger M, Wester HJ. Development of Novel68Ga- and18F-Labeled GnRH-I Analogues with High GnRHR-Targeting Efficiency. Bioconjug Chem 2008; 19:1256-68. [DOI: 10.1021/bc800058k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margret Schottelius
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Sebastian Berger
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Thorsten Poethko
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Hans-Jürgen Wester
- Nuklearmedizinische Klinik and Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| |
Collapse
|
48
|
In Human Leukemia Cells Ephrin-B–Induced Invasive Activity Is Supported by Lck and Is Associated with Reassembling of Lipid Raft Signaling Complexes. Mol Cancer Res 2008; 6:291-305. [DOI: 10.1158/1541-7786.mcr-07-0047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Luteinizing Hormone-Releasing Hormone I (LHRH-I) and Its Metabolite in Peripheral Tissues. Exp Biol Med (Maywood) 2008; 233:123-30. [DOI: 10.3181/0707-mr-201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Luteinizing hormone-releasing hormone (LHRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotropin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of many structural variants with a variety of roles in both the brain and peripheral tissues. Enormous interest has been focused on LHRH-I and LHRH-II and their cognate receptors as targets for designing therapies to treat cancers of the reproductive system. LHRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15) that cleaves the hormone at the fifth and sixth bond of the decapeptide (Tyr5-Gly6) to form LHRH-( 1 – 5 ). We have previously reported that the autoregulation of LHRH gene expression can also be mediated by its processed peptide, LHRH-( 1 – 5 ). Furthermore, LHRH-( 1 – 5 ) has also been shown to be involved in cell proliferation. This review will focus on the possible roles of LHRH and its processed peptide, LHRH-( 1 – 5 ), in non-hypothalamic tissues.
Collapse
|
50
|
Millar RP, Pawson AJ, Morgan K, Rissman EF, Lu ZL. Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Front Neuroendocrinol 2008; 29:17-35. [PMID: 17976709 PMCID: PMC2667102 DOI: 10.1016/j.yfrne.2007.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/27/2022]
Abstract
Geoffrey Wingfield Harris' demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the G(q) signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention.
Collapse
Affiliation(s)
- Robert P Millar
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | |
Collapse
|