1
|
Hellenbrand DJ, Lee JS, Mickelson EJ, Baer MC, Ott EL, Martinson NR, Ceelen MR, Hilger KH, Nielsen BE, Jacobs AN, Mishra RR, Hurley SA, Murphy WL, Hanna AS. Mineral coated microparticles delivering Interleukin-4, Interleukin-10, and Interleukin-13 reduce inflammation and improve function after spinal cord injury in a rat. Exp Neurol 2025; 386:115179. [PMID: 39914642 DOI: 10.1016/j.expneurol.2025.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
After spinal cord injury (SCI) there is excessive inflammation and extensive infiltration of immune cells that leads to additional neural damage. Interleukin (IL)-4, IL-10, and IL-13 are anti-inflammatories that have been shown to reduce several pro-inflammatory species, alter macrophage state, and provide neuroprotection. However, these anti-inflammatories have a short half-life, do not cross the blood-spinal cord barrier, and large systemic doses of ant-inflammatory cytokines can cause increased susceptibility to infections. In this study, we used mineral coated microparticles (MCMs) to bind, stabilize and deliver biologically active IL-4, IL-10, and IL-13 in a sustained manner directly to the injury site. Rats with a T10 SCI were given an intraspinal injection of cytokine-loaded MCMs 6 h post-injury. Testing of 27 cytokine/chemokine levels 24 h post-injury demonstrated that MCMs delivering IL-4, IL-10, and IL-13 significantly reduced inflammation (P < 0.0001). Rats treated with MCMs+(IL-4, IL-10, IL-13) had significantly higher Basso-Beattie-Bresnahan locomotor rating scores (P = 0.0021), Ladder Rung Test scores (P = 0.0021), and significantly longer latency threshold with the Hargreaves Test (P = 0.0123), compared to Injured Controls. Analyses of post-fixed spinal cords revealed significantly less spinal cord atrophy (P = 0.0344) in rats treated with MCMs+(IL-4, IL-10, IL-13), and diffusion tensor imaging tractography revealed significantly more tracts spanning the injury site (P = 0.0025) in rats treated with MCMs+(IL-4, IL-10, IL-13) compared to Injured Controls. In conclusion, MCMs delivering IL-4, IL-10, and IL-13 significantly reduced inflammation post-SCI, resulting in significantly less spinal cord damage and a significant improvement in hind limb function.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ethan J Mickelson
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Matthew C Baer
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emily L Ott
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Natalie R Martinson
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Matthew R Ceelen
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Keegan H Hilger
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Brooke E Nielsen
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Alison N Jacobs
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raveena R Mishra
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA; Forward BIO Institute, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Amgad S Hanna
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Xiao F, Qi J, Ma S, Sun L, Sun Y. Research Progress on the Role and Mechanism in the Change of Cardiac Structure and Function of Cardiac Fibrosis in the Elderly. Cardiol Rev 2025:00045415-990000000-00457. [PMID: 40167333 DOI: 10.1097/crd.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Heart failure is closely related to aging. Elderly patients with heart failure are often able to retain normal systolic function, manifested by left ventricular hypertrophy with decreased diastolic function. Relevant studies have shown that age-related cardiac fibrosis plays an important role in the pathogenesis of cardiac diastolic heart failure. Activation of fibroblasts in the heart, the acquisition of a pro-fibrotic phenotype, and age-dependent accumulation of collagen can lead to progressive increases in myocardial stiffness and impaired diastolic function. The renin-angiotensin-aldosterone system, reactive oxygen species, and angiotensin II are closely related to fibrotic remodeling of the heart in the elderly, and their pro-fibrotic effects may be mainly mediated by transforming growth factor β. In this review, we summarize the research progress of the role and mechanism of cardiac fibrosis in the structural and functional changes of the elderly.
Collapse
Affiliation(s)
- Fei Xiao
- From the Department of Cardiology, Zi-Bo Central Hospital, Zibo, China
| | - Jia Qi
- From the Department of Cardiology, Zi-Bo Central Hospital, Zibo, China
| | - Shanshan Ma
- Department of Geriatrics, Zi-Bo Central Hospital, Zibo, China
| | - Lei Sun
- Shinva Medical Instrument Co.Ltd, Zibo, China
| | - Yongchen Sun
- Department of Geriatrics, Zi-Bo Central Hospital, Zibo, China
| |
Collapse
|
3
|
Gajecki L, Lebedeva IV, Liao YR, Ambriz D, Carter LM, Kumpf M, Lovibond S, Hachey JS, Graham MS, Postow M, Lewis JS, Andrew DP, Baca M, Schöder H, Larson SM, Veach DR, Krebs S. IL13Rα2-Targeting Antibodies for Immuno-PET in Solid Malignancies. J Nucl Med 2025; 66:605-611. [PMID: 39978817 PMCID: PMC11960613 DOI: 10.2967/jnumed.124.268762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor frequently expressed in solid malignancies, such as glioblastoma and melanoma, with limited expression in healthy tissue, rendering it an ideal target for noninvasive and specific tumor delineation. In this study, we report the development of 5 novel IL13Rα2-targeted human monoclonal antibodies (mAbs) KLG-1-5; in subsequent in vitro and in vivo studies after radiolabeling with 89Zr, we evaluate their performance to identify a lead candidate. Methods: Five novel human anti-IL13Rα2 mAbs KLG-1-5 were developed and in vitro binding properties and target specificity assessed. In vivo 89Zr-immuno-PET using KLG-1-5 was conducted in a subcutaneous U-87 MG glioblastoma mouse model, and a mass dose titration study was conducted with lead candidate KLG-3. Ex vivo biodistribution results were used to derive prospective dosimetry of 177Lu-labeled KLG-3. Targeting with KLG-3 was also verified in an A-375 melanoma model using the optimized conditions determined in the U-87 MG xenograft model. Results: In vitro studies confirmed target specificity and pico- to low nanomolar binding affinity. Immuno-PET studies with KLG-1-5 in U-87 MG xenografts demonstrated continuously increasing tumoral uptake with maximal uptake at 144 h after tracer injection, clearance of the unbound tracer from the blood pool, and little uptake in any other normal tissues, leading to high-contrast images. KLG-3 provided the highest tumoral uptake and tumor-to-normal tissue ratios and was chosen as the lead candidate, and further dose optimization with this antibody led to tumoral uptake of 97 ± 6 maximum percent of injected dose per gram at 144 h after tracer injection. Ex vivo biodistribution-derived prospective dosimetry for 177Lu-labeled KLG-3 predicted a favorable therapeutic index, encouraging the development of IL13Rα2-targeted radioimmunotherapy. Of note, KLG-3 performed similarly well in a melanoma model, emphasizing the versatility of this antibody. Conclusion: Lead candidate anti-IL13Rα2 mAb KLG-3 validated highly specific target binding in human glioblastoma and melanoma models, resulting in high-contrast PET images with minimal accumulation in off-target healthy tissues. Prospective dosimetry of its 177Lu-labeled counterpart suggested therapeutic efficacy at relatively low injected activities, supporting further pursuit of KLG-3 in future translational radioimmunotherapy applications.
Collapse
Affiliation(s)
- Leah Gajecki
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irina V Lebedeva
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Yu-Rou Liao
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Daisy Ambriz
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melina Kumpf
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Lovibond
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin S Hachey
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Graduate School of Medicine Sciences, New York, New York
| | - Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - David P Andrew
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Manuel Baca
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Nuclear Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas; and
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Kwon S, Chung EJ, Kc S, White AO, Chung SI, Horton JA, Yun HS, Ahn H, Shankavaram U, Chung JY, Song JS, Citrin DE. Interleukin-13 Receptor Subunit Alpha 2 Induces Chemokine Expression and Macrophage Polarization to Promote Inflammation and Fibrosis. Int J Radiat Oncol Biol Phys 2025; 121:1258-1270. [PMID: 39672516 DOI: 10.1016/j.ijrobp.2024.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
PURPOSE Interleukin-13 (IL-13) is a known mediator of radiation-induced lung injury (RILI). IL-13Rα2 has an accepted role in antagonizing IL-13 signaling by acting as a decoy receptor. We sought to understand the role of IL-13Rα2 in the progression of RILI. METHODS AND MATERIALS Mice deficient in IL-13Rα2 (Ra2 KO) and wild-type (WT) mice were exposed to thoracic irradiation (IR) in 5 daily fractions of 6 Gy and followed for survival (n > 15 per group) and tissue collection (n > 5 per group). Collagen accumulation in the lung was evaluated with Masson's trichrome staining and hydroxyproline content. Gene expression was evaluated by RNA sequencing. Expression of IL-13Rα2 and macrophage markers in murine lung and human lung tissue (n = 63) was assessed with immunohistochemistry. The role of IL-13Rα2 in IL-13-mediated macrophage polarization was determined in primary macrophage cultures from Ra2 KO mice and after RNA silencing of a human monocyte cell line (THP-1). RESULTS Membrane-bound IL-13Rα2 expression in murine lung was increased after IR and localized to macrophages. Irradiated Ra2 KO mice exhibited reduced sensitivity to thoracic IR compared with WT mice as measured by median survival (19 vs. 21 weeks, P < .05), histology, hydroxyproline content, transforming growth factor-β expression, and macrophage accumulation. Gene sets linked to cytokine signaling and macrophage recruitment were enriched in irradiated WT compared with Ra2 KO lung tissue. IL-13-mediated expression of CCL2 and M2 markers was reduced in murine and human macrophages deficient in IL-13Rα2. Increased expression of in IL-13Rα2 and co-localization with CD163 was confirmed in irradiated fibrotic human lung. CONCLUSIONS IL-13Rα2 is predominantly expressed in macrophages within irradiated lung and plays a crucial role in CCL2 expression, macrophage polarization, and transforming growth factor-β expression in response to IL-13. These studies demonstrate an unexpected profibrotic role of IL-13Rα2 in RILI and suggest that strategies targeting IL-13Rα2 may ameliorate chronic inflammation and fibrosis.
Collapse
Affiliation(s)
- Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Santwana Kc
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Su I Chung
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Jason A Horton
- Department of Orthopedic Surgery, Upstate Medical University, Syracuse, New York
| | - Hong Shik Yun
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Heesu Ahn
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research; National Cancer Institute, National Institute of Health, Bethesda, Maryland.
| |
Collapse
|
5
|
Hashimoto T, Okuno S. The Big Four in the Pathogenesis and Pathophysiology of Prurigo Nodularis: Interplay among Type 2 Inflammation, Epidermal Hyperplasia, Dermal Fibrosis, and Itch from Neuroimmune Dysregulation. Clin Dermatol 2025:S0738-081X(25)00093-8. [PMID: 40118300 DOI: 10.1016/j.clindermatol.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Prurigo nodularis (PN) is a distinct inflammatory dermatosis. It is characterized by intensely pruritic, firm nodules, typically 1-2 cm in diameter, which usually develop on the extensor surfaces of the extremities. Histopathologically, the following characteristics are observed in PN lesions: (1) dermal cellular infiltrates composed of type 2 inflammation-associated immune cells with lesional overexpression of type 2 cytokines (including IL-4, IL-13, and IL-31); (2) dermal fibrosis; and (3) epidermal hyperplasia with hyperkeratosis. Additionally, functional and structural alterations of cutaneous sensory nerve fibers profoundly contribute to itch in cooperation with type 2 inflammation. This abnormal interaction is referred to as neuroimmune dysregulation. The scratching behavior induced by itching from neuroimmune dysregulation initiates the development of prurigo nodules. This distinctive pathogenic feature of "itch-first" in PN is distinct from "inflammation-first" in atopic dermatitis, another pruritic skin disease with type 2 inflammation. In atopic dermatitis, the skin initially exhibits type 2 inflammation, which is subsequently followed by itching. The interplay between the four elements, namely type 2 inflammation, epidermal hyperplasia, dermal fibrosis, and itch resulting from neuroimmune dysregulation, appears to be pivotal in the pathogenesis and pathophysiology of PN.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan.
| | - Satoshi Okuno
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
6
|
Ciambarella BT, Almeida GSD, Dias DF, Trentin PG, Oliveira Santos TPD, Teixeira Ferreira TP, Arantes ACSD, Azevedo RBD, Fernandes AJM, Martins MA, E Silva PMR. TNF-alpha mediates airway hyperreactivity in silicotic mice: Effect of thalidomide treatment. Eur J Pharmacol 2025; 990:177263. [PMID: 39793879 DOI: 10.1016/j.ejphar.2025.177263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Inhalation of crystalline silica particles causes silicosis, which is a severe inflammatory lung disease that is associated with granulomatous and fibrotic responses. We investigated whether silica-induced silicosis might promote airway hyperreactivity (AHR) and the role of TNF-α and thalidomide in this process. Mice received an intranasal instillation of silica particles (1.25, 5, and 10 mg/mouse) and given methacholine on days 2, 7, and 28 after provocation or 5-HT challenges on day 7 after provocation. AHR was assessed using invasive whole-body plethysmography. Lung-tissue samples were collected for TNF-α measurements and histological analyses. Thalidomide was given orally from days 21-27 after silica administration. We found that following aerosolised methacholine or 5-HT treatment, a state of AHR was induced with silica-particle amounts of 5 and 10 mg/mouse, but not 1.25 mg/mouse. The effect was apparent within 2 days and remained for at least 28 days. Silica-particle amounts of 5 and 10 mg/mouse also induced significant granuloma response correlating with the silica required to induce AHR. In addition, a parallel was also observed between the elevation of lung tissue levels of TNF-α and AHR. Notably, silica-induced granulomatous and AHR responses were abolished in TNFR1-/- mice compared to wild-type mice. Moreover, the blockade of ongoing TNF-α generation by thalidomide prevented both events. Our findings suggest that exposure of mice to silica particles leads to a granulomatous lung response marked by non-specific AHR induced by TNF-α. In addition, the results indicate that thalidomide can control silica-induced pathological features of the lungs by blocking TNF-α generation.
Collapse
|
7
|
Hopkins CM, Wilks BT, Morgan JR. TGF-β1 requires IL-13 to sustain collagen accumulation and increasing tissue strength and stiffness. Connect Tissue Res 2025; 66:107-120. [PMID: 40013741 DOI: 10.1080/03008207.2025.2469575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/27/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
AIMS Fibrosis is a multifactorial process characterized by the excessive accumulation of extracellular matrix (ECM), increased tissue stiffness, and decreased elasticity. This study examined how individual cytokines and a cytokine combination alter collagen production and biomechanics in a 3D in vitro model of the human ECM. METHODS Cultured human fibroblasts were seeded into a circular agarose trough molded in 24 well plates. The fibroblasts aggregated and formed a 3D ring-shaped tissue that synthesized de novo a collagen-rich human ECM complete with collagen fibrils. Unlike existing models, no macromolecular crowders were added, nor artificial scaffolds or exogenous ECM proteins. Rings were treated with TGF-β1, IL-13 or the combination of TGF-β1 and IL-13 for up to 3 weeks. Morphology, histology, collagen, DNA, fibril formation, gene expression and tensile properties of the rings were measured. RESULTS As the rings compacted, cellularity and total DNA decreased, whereas total collagen accumulated. TGF-β1 stimulated collagen accumulation and increased ring biomechanics at day 7, but these increases stalled and declined by day 21. When treated with IL-13, a cytokine exclusive to the immune system, there were no significant differences from control. However, when TGF-β1 was combined with IL-13, collagen levels and ring biomechanics increased over the entire three weeks to levels higher than TGF-β1 alone. Gene expression was differentially regulated by cytokine treatment over the entire three weeks suggesting that increased collagen accumulation was not due to upregulation of collagen gene expression. CONCLUSIONS These results suggest that TGF-β1 requires a second signal, such as IL-13, to sustain the long-term pathological increases in collagen accumulation and biomechanics that can compromise the function of fibrotic tissues.
Collapse
Affiliation(s)
- Caitlin M Hopkins
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Benjamin T Wilks
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Center for Alternatives to Animals in Testing, Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Ingram JL, McQuade VL, Weiss J, Womble JT, Ihrie MD, Zhao K, Francisco D, Theriot B, May K, Kim H, McCravy M, Sauler M, Lugogo NL, Sunday ME, Everitt J, Walker JKL, Tighe RM, Kraft M, Que LG. Leptin augments IL-13-induced airway eotaxins and submucosal eosinophilia in obesity-associated asthma. J Allergy Clin Immunol 2025; 155:819-833.e10. [PMID: 39581293 PMCID: PMC11875949 DOI: 10.1016/j.jaci.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Airway tissue eosinophilia can be an observed feature of obesity-associated type 2 (T2) asthma, but the processes mediating this inflammation are unknown. OBJECTIVE To investigate a process whereby leptin, an adipokine elevated in obesity, potentiates pulmonary eosinophilia and eotaxin production by airway fibroblasts in T2 asthma. METHODS We assessed associations between body mass index and airway eosinophilia as well as leptin and eotaxin production in 82 participants with asthma, 37 of whom exhibited obesity. Cultured human airway fibroblasts and mouse models of chronic allergic airway disease were used to evaluate leptin's effect on eotaxin production and lung eosinophilia. The role of IL-13 receptor alpha 2 (IL-13Rα2) in mediating these processes was examined using specific neutralizing antibodies in vitro. RESULTS In participants with T2 asthma and obesity, we observed that airway tissue eosinophilia did not associate with traditional T2 inflammation metrics such as peripheral and/or bronchoalveolar lavage fluid eosinophil counts or with fractional exhaled nitric oxide. Alternatively, we observed elevated bronchoalveolar lavage fluid leptin and eotaxin-1 levels. In airway fibroblasts from participants with asthma, leptin augmented IL-13-induced eotaxin-1 and eotaxin-3 production and IL13RA2 expression. In mice, elevated leptin promoted airway IL-13Rα2 and eotaxin production by lung fibroblasts and lung tissue eosinophilia following chronic house dust mite allergen exposure. Inhibition of IL-13Rα2 reduced combined leptin and IL-13-stimulated eotaxin secretion by human airway fibroblasts. CONCLUSIONS We identified a potential association explaining airway tissue eosinophil retention in obesity-associated T2 asthma through leptin-mediated enhancement of IL-13-induced eosinophil chemokine production by airway fibroblasts, a process requiring IL-13Rα2.
Collapse
Affiliation(s)
| | | | - Jasmine Weiss
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Jack T Womble
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Mark D Ihrie
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Karen Zhao
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Dave Francisco
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Katelynn May
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Haein Kim
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Matthew McCravy
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maor Sauler
- Department of Internal Medicine, Yale University, New Haven, Conn
| | - Njira L Lugogo
- Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - Mary E Sunday
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Jeffrey Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC
| | | | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Loretta G Que
- Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
9
|
Chandrakar P, Nelson CS, Podestà MA, Cavazzoni CB, Gempler M, Lee JM, Richardson S, Zhang H, Samarpita S, Ciofani M, Chatila T, Kuchroo VK, Sage PT. Progressively differentiated T FH13 cells are stabilized by JunB to mediate allergen germinal center responses. Nat Immunol 2025; 26:473-483. [PMID: 39891019 DOI: 10.1038/s41590-025-02077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Allergic diseases are common and affect a large proportion of the population. Interleukin-13 (IL-13)-expressing follicular helper T (TFH13) cells are a newly identified population of TFH cells that have been associated with high-affinity IgE responses. However, the origins, developmental signals, transcriptional programming and precise functions of TFH13 cells are unknown. Here, we examined the developmental signals for TFH13 cells and found a direct and progressive differentiation pathway marked by the production of IL-21. These two pathways differed in kinetics and extrinsic requirements. However, both pathways converged, forming transcriptionally similar TFH13 cells that express the transcription factor JunB as a critical stabilizing factor. Using an intersectional genetics-based TFH13-diphtheria toxin receptor model to perturb these cells, we found that TFH13 cells were essential to drive broad germinal center responses and allergen-specific IgG and IgE. Moreover, we found that IL-21 is a broad positive regulator of allergen germinal center B cells and synergizes with IL-13 produced by TFH13 cells to amplify allergic responses. Thus, TFH13 cells orchestrate multiple features of allergic inflammation.
Collapse
Affiliation(s)
- Pragya Chandrakar
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cody S Nelson
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Manuel A Podestà
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Unit of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia B Cavazzoni
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Gempler
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sierra Richardson
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hengcheng Zhang
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Snigdha Samarpita
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Ciofani
- Department of Integrative Immunology, Duke University Medical Center, Durham, NC, USA
| | - Talal Chatila
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammatory Diseases, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Peter T Sage
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Khalid Salah Al-Sheakly B, Saheb Sharif-Askari F, Saheb Sharif-Askari N, Zakri AM, Mdkhana B, Wed Abdelaziz Eladham M, Hundt JE, Hachim I, Halwani R. Intranasal dupilumab improves responsiveness to steroid in an asthma mouse model. Inflamm Res 2025; 74:43. [PMID: 39969581 DOI: 10.1007/s00011-024-01991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025] Open
Abstract
AIMS The study aimed to evaluate the efficacy of local intranasal delivery of dupilumab, a monoclonal antibody targeting IL-4Rα, in comparison to intraperitoneal delivery in a mouse model of steroid-hyporesponsive asthma, a condition characterized by limited therapeutic options. METHODS Dupilumab was administered via both intranasal and intraperitoneal routes to a mouse model of steroid-hyporesponsive asthma. The efficacy of the treatment was assessed through histological evaluations of inflammation and goblet cell metaplasia, analysis of immune cell infiltration in bronchoalveolar lavage fluid via cytospin, and measurement of total airway resistance using FlexiVent. Additionally, gene and protein expression related to steroid hypo-responsiveness and tissue remodeling were analyzed. RESULTS Intranasal administration of dupilumab significantly reduced inflammation and goblet cell metaplasia in the bronchial epithelium. It also led to a decrease in immune cell infiltration in bronchoalveolar lavage fluid and reduced total airway resistance. Furthermore, the intranasal dupilumab-treated group exhibited lower expression of genes and proteins associated with steroid hypo-responsiveness and tissue remodeling. CONCLUSIONS Our findings demonstrate that intranasal administration of dupilumab not only effectively reduces inflammation but also significantly reverses steroid hypo-responsiveness and tissue remodeling, outperforming systemic delivery. Thus, local intranasal administration of dupilumab offers superior therapeutic benefits in managing steroid-hyporesponsive asthma.
Collapse
Affiliation(s)
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel M Zakri
- Department of Plant Production, Faculty of Agriculture and Food Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Mdkhana
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562, Lübeck, Germany
| | - Ibrahim Hachim
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
11
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2025; 31:579-592. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
12
|
Bahram Yazdroudi F, Malek A. Reducing M2 macrophage in lung fibrosis by controlling anti-M1 agent. Sci Rep 2025; 15:4120. [PMID: 39900943 PMCID: PMC11791193 DOI: 10.1038/s41598-024-76561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/15/2024] [Indexed: 02/05/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive scarring and fibrosis due to the abnormal accumulation of extracellular matrix components, primarily collagen. This study aims to design and solve an optimal control problem to regulate M2 macrophage activity in IPF, thereby preventing fibrosis formation by controlling the anti-M1 agent. The research models the diffusion of M2 macrophages in inflamed tissue using a novel dynamical system with partial differential equation (PDE) constraints. The control problem is formulated to minimize fibrosis by regulating an anti-M1 agent. The study employs a two-step process of discretization followed by optimization, utilizing the Galerkin spectral method to transform the M2 diffusion PDE into an algebraic system of ordinary differential equations (ODEs). The optimal control problem is then solved using Pontryagin/s minimum principle, canonical Hamiltonian equations, and extended Riccati differential equations. The numerical simulations indicate that without control, M2 macrophage levels increase and stabilize, contributing to fibrosis. In contrast, the optimal control strategy effectively reduces M2 macrophages, preventing fibrosis formation within 120 days. The results highlight the potential of the proposed optimal control approach in modulating tissue repair processes and mitigating the progression of IPF. This study underscores the significance of targeting M2 macrophages and employing mathematical methods to develop innovative therapies for lung fibrosis.
Collapse
Affiliation(s)
- Fatemeh Bahram Yazdroudi
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alaeddin Malek
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Tian L, Song W, Wu J, Lan Y, Chen L. Diagnostic and predictive values of m5C‑associated genes in idiopathic pulmonary fibrosis. Mol Med Rep 2025; 31:53. [PMID: 39704195 DOI: 10.3892/mmr.2024.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/24/2024] [Indexed: 12/21/2024] Open
Abstract
In patients with idiopathic pulmonary fibrosis (IPF), the role of 5‑methylcytosine (m5C)‑associated genes in the pathogenesis and development of the disease remains unclear. The present study aimed to identify reliable diagnostic markers based on the expression of m5C‑associated genes for the early detection of IPF. Count data were obtained by screening the IPF genome‑wide assay in the Gene Expression Omnibus database, followed by a comparison of m5C gene expression in patients with IPF and controls. The GSE150910 and GSE173355 datasets yielded a total of 23 differentially expressed m5C‑associated genes, which were then investigated for their functions. A diagnostic model was built using eight m5C genes and validated with training sets and the GSE124685 dataset. IPF subtypes were identified based on expression of m5C‑related genes as well as clinical and immunological characteristics. Furthermore, a pulmonary fibrosis model was established in mice by administering bleomycin into the trachea. Lungs were harvested and analyzed using quantitative PCR to determine the expression of m5C‑related genes. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these genes were significantly enriched in 'base excision repair'. Immunoassay results revealed that 13 immune cell markers (naive, memory and B cell plasma, T cell CD4 naive, T cell CD4 memory resting, T cell follicular helper, T cell regulatory Tregs, NK cell resting, Monocyte, Macrophage M0, Mast cell activated, Eosinophil, and Neutrophil) were significantly associated with IPF. Patients with IPF had lower levels of resting memory CD4+ T cells, which were positively associated with Tet methylcytosine dioxygenase2 (TET2) and Thymine‑DNA glycosylase (TDG) but negatively correlated with NOP2/Sun RNA methyltransferase5 (NSUN5) expression. All samples were classified into based on the levels of the eight diagnostic m5C genes. Samples with high m5C scores are subtype 1, and those with low m5C scores are subtype 2. In subtype 2, male patients had lower levels of CD27 and CD70 but higher levels of CD274, CD86, Cytotoxic T‑lymphocyte‑associated protein4 and Hepatitis A virus cellular receptor2 (HAVCR2). When compared with normal mouse lung tissue samples, expression levels of NOP2/Sun RNA methyltransferase6 (NSUN6), Ubiquitin‑like with PHD and RING Finger Domains1, TDG and TET2 in lung fibrosis tissue samples were significantly higher, while expression levels of NSUN5, NTH‑like DNA glycosylase1, DNA (cytosine‑5‑)‑methyltransferase3 β and Methyl‑CpG binding domain protein 3) were lower. It is possible that m5C‑associated genes play an important role in the diagnosis and typing of IPF. These genes may facilitate investigation of the pathophysiology of IPF and identification of potential treatment targets.
Collapse
Affiliation(s)
- Lan Tian
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wanting Song
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jiabao Wu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yi Lan
- Department of General Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian 353000, P.R. China
| | - Limin Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
14
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
15
|
Tokura Y, Yunoki M, Kondo S, Otsuka M. What is "eczema"? J Dermatol 2025; 52:192-203. [PMID: 39301836 PMCID: PMC11807370 DOI: 10.1111/1346-8138.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Eczema is the most common category of inflammatory skin disorders as dermatologists see many patients with eczematous diseases in daily practice. It is characterized by the three major morphological features: multiple-pinpoint condition, polymorphism, and itch. To describe polymorphism, "eczema triangle" has been used in German/Japanese dermatology. The multiple pinpoints correspond to numerous tiny foci from which individual papules/vesicles arise. The polymorphism betrays composition of erythema, papule, seropapule, vesicle, pustule, scale, and crust, which are seen in acute eczema. Meanwhile, chronic eczema is represented by lichenification and hyperpigmentation, and possibly by hypopigmentation. In acute eczema, spongiosis is associated with overproduction of hyaluronic acid, secretion of self-protective galectin-7, and decreased expression of E-cadherin. In the upper dermis, Th1/Tc1 or Th2/Tc2, and additional Th17, Th22, and/or Tc22 infiltrate, depending on each eczematous disease. Innate lymphoid cells are also involved in the formation of eczema. In chronic eczema, periostin contributes to remodeling of inflammatory skin with dermal fibrosis, and epidermal melanogenesis and dermal pigment deposition result in hyperpigmentation. Finally, eczematous diseases are potentially associated with increased risk of comorbidities, including not only other allergic diseases but also coronary heart disease and mental problems such as depression. Although the original word for eczema is derived from old Greek "ekzein," eczema remains a major target of modern science and novel therapies.
Collapse
Affiliation(s)
- Yoshiki Tokura
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
- Allergic Disease Research CenterChutoen General Medical CenterKakegawaJapan
| | - Marina Yunoki
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| | - Shumpei Kondo
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| | - Masaki Otsuka
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| |
Collapse
|
16
|
Yoshida M, Arzili R, Nikolić MZ. Immune-epithelial cell interactions in lung development, homeostasis and disease. Int J Biochem Cell Biol 2025; 178:106703. [PMID: 39592067 DOI: 10.1016/j.biocel.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The importance of the crosstalk between lung epithelial and immune cells, which emerges from early development and lasts throughout life, is corroborated by a growing body of scientific evidence. This communication not only has a role in driving lung morphogenesis during development, but it is also required in adulthood for the maintenance of homeostasis and repair following infection or injury. Disruption of the intricate immune-epithelial crosstalk can lead to diseases such as COPD and IPF. In this review we summarise the current knowledge regarding the communication between various immune and epithelial cells in development, homeostasis, regeneration and disease, while identifying the current gaps in our knowledge required to facilitate the development of more effective therapies.
Collapse
Affiliation(s)
- Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK; Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK; University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
17
|
Emmert H, Rademacher F, Hübenthal M, Gläser R, Norsgaard H, Weidinger S, Harder J. Type 2 Cytokine-Dependent Skin Barrier Regulation in Personalized 2-Dimensional and 3-Dimensional Skin Models of Atopic Dermatitis: A Pilot Study. JID INNOVATIONS 2025; 5:100309. [PMID: 39385749 PMCID: PMC11460444 DOI: 10.1016/j.xjidi.2024.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 10/12/2024] Open
Abstract
Keratinocytes (KCs) from healthy donors stimulated with type 2 cytokines are often used to experimentally study atopic dermatitis (AD) inflammatory responses. Owing to potential intrinsic alterations, it seems favorable to use KCs from patients with AD. KCs isolated from hair follicles offer a noninvasive approach to investigate AD-derived KCs. To evaluate whether such AD-derived KCs are suitable to mimic AD inflammatory responses, we compared hair follicle-derived KCs from healthy donors with those from patients with AD in a type 2 cytokine environment. Stimulation of AD-derived KCs with IL-4 and IL-13 induced higher expression changes of AD-associated markers than that of healthy KCs. The combination of IL-4 and IL-13 generally induced highest expression changes, but IL-13 alone also induced significant changes of AD-specific markers. Similar to the 2-dimensional cultures, IL-4/IL-13 stimulation of 3-dimensional skin models generated with AD-derived KCs modulated the expression of several AD-relevant factors. Whole-transcriptome analysis revealed that IL-4 and IL-13 acted similarly on these 3-dimensional skin models. Histologically, IL-13 alone and in combination with IL-4 increased epidermal spongiosis, a histological hallmark of AD skin. Taken together, our pilot study suggests that hair follicle-derived KCs from patients with AD represent a useful model system to study AD-related inflammation in a personalized in vitro model.
Collapse
Affiliation(s)
- Hila Emmert
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Franziska Rademacher
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Hübenthal
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hanne Norsgaard
- Department of Translational Sciences, Research & Early Development, LEO Pharma, Ballerup, Denmark
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
18
|
Spagnolo P, Tonelli R, Mura M, Reisman W, Sotiropoulou V, Tzouvelekis A. Investigational gene expression inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2025; 34:61-80. [PMID: 39916340 DOI: 10.1080/13543784.2025.2462592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown cause that occurs primarily in older adults and is associated with poor quality of life and substantial healthcare utilization. IPF has a dismal prognosis. Indeed, first-line therapy, which includes nintedanib and pirfenidone, does not stop disease progression and is often associated with tolerability issues. Therefore, there remains a high medical need for more efficacious and better tolerated treatments. AREAS COVERED Gene therapy is a relatively unexplored field of research in IPF that has the potential to mitigate a range of profibrotic pathways by introducing genetic material into cells. Here, we summarize and critically discuss publications that have explored the safety and efficacy of gene therapy in experimentally-induced pulmonary fibrosis in animals, as clinical studies in humans have not been published yet. EXPERT OPINION The application of gene therapy in pulmonary fibrosis requires further investigation to address several technical and biological hurdles, improve vectors' design, drug delivery, and target selection, mitigate off-target effects and develop markers of gene penetration into target cells. Long-term clinical data are needed to bring gene therapy in IPF one step closer to practice.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - William Reisman
- Division of Respirology, Western University, London, Ontario, Canada
| | | | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
19
|
Du C, Ma C, Geng R, Wang X, Wang X, Yang J, Hu J. Bruceine A inhibits TGF-β1/Smad pathway in pulmonary fibrosis by blocking gal3/TGF-β1 interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156267. [PMID: 39615217 DOI: 10.1016/j.phymed.2024.156267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/13/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Bruceine A(BA) has many pharmacological activities and significantly inhibits fibrosis in keloid fibroblasts. However, the underlying mechanisms have not yet been fully elucidated. OBJECTIVE This study aimed to investigate the effects of BA on pulmonary fibrosis(PF) and explore its underlying mechanisms. METHODS PF models were constructed by BLM-induced C57BL/6 J mice, TGF-β1- induced MRC-5 and HFL-1 cells. Cell proliferation, MMP, apoptosis, and ROS levels were analyzed in vitro. In vivo, experiments were performed to evaluate the therapeutic effect of BA on PF by detecting respiratory function, histopathology, and collagen level. Fibro-associated, ECM, and EMT key proteins were used to assess the degree of PF. To predict the target of BA by molecular docking technology, and verified by DARTS, CETSA, MST,and SPR. Then overexpression gal3-lentivirus, GB1107 gal3 inhibitor, and BA addition were used to verify the TGF-β1/Smad pathway key protein by western blot. RESULTS We found that BA inhibited PF both in vitro and in vivo. The predicted and validated results showed that gal3 was the target of BA, and the binding site was Arg144, His158, and Trp181. Mechanistically, BA disrupts the interaction between gal3 and TGF-β1. BA reduced Smad2/3 and p-Smad2/3 protein content and inhibited TGF-β1/Smad pathway in the overexpressing gal3 HFL-1 cells. After adding GB1107, the inhibitory effect of BA on TGF-β1/Smad pathway disappeared. CONCLUSION This study is the first to demonstrate that BA can target gal3, interfere with the interaction between gal3 and TGF-β1 protein, inhibit the downstream TGF-β1/Smad pathway, and act as a "brake" to reverse the PF process. These findings provide a solid scientific basis for the clinical application of BA in the prevention and treatment of PF.
Collapse
Affiliation(s)
- Chao Du
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Chong Ma
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Ruoyu Geng
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Xiaomei Wang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Xinling Wang
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| | - Jianhua Yang
- Department of Pharmacy, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Clinical Drug Research, China.
| | - Junping Hu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China.
| |
Collapse
|
20
|
Ji Y, Li P, Ning T, Yang D, Shi H, Dong X, Zhu S, Li P, Zhang S. PANoptosis-related genes: Molecular insights into immune dysregulation in ulcerative colitis. J Gastroenterol Hepatol 2025; 40:177-191. [PMID: 39568189 DOI: 10.1111/jgh.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AND AIM Ulcerative colitis (UC) is a chronic inflammatory disease driven by immune dysregulation. PANoptosis, a novel form of programmed cell death, has been implicated in inflammatory diseases, but its specific role in UC remains unclear. This study aimed to identify PANoptosis-related genes (PRGs) that may contribute to immune dysregulation in UC. METHODS Using bioinformatics analysis of the GEO databases, we identified seven hub PRGs. Based on these genes, we developed a predictive model to differentiate UC patients from healthy controls, and evaluated its diagnostic performance using ROC curve analysis. We further conducted functional enrichment, GSVA, and immune infiltration analyses. Immunohistochemistry (IHC) was used to validate the expression of hub genes in UC patients. RESULTS The prediction model, based on the seven hub genes, exhibited diagnostic ability in discriminating UC patients from controls. Furthermore, these hub PRGs were found to be associated with immune cells, including dendritic cells, NK cells, macrophages, regulatory T cells (Tregs), and CD8+ T cells. They were also linked to key signaling pathways implicated in UC pathogenesis, such as IFNγ, TNFα, IL6-and JAK-STAT3, as well as hypoxia and apoptosis. Immunohistochemistry analysis validated the expression levels of hub PRGs in UC patients using paraffin sections of intestinal biopsy specimens. CONCLUSIONS This study identified PANoptosis-related genes with potential diagnostic value for UC and suggest that PANoptosis may contribute to the pathogenesis of UC by regulating specific immune cells and interacting with key signaling pathways. This highlights the potential importance of PANoptosis-related genes as therapeutic targets in UC management.
Collapse
Affiliation(s)
- Yuxiao Ji
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Deyi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Haiyun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Xueyu Dong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| |
Collapse
|
21
|
DeBerg HA, Fahning ML, Varkhande SR, Schlenker JD, Schmitt WP, Gupta A, Singh A, Gratz IK, Carlin JS, Campbell DJ, Morawski PA. T cells promote distinct transcriptional programs of cutaneous inflammatory disease in keratinocytes and dermal fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606077. [PMID: 39131334 PMCID: PMC11312529 DOI: 10.1101/2024.07.31.606077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
T cells and structural cells coordinate appropriate inflammatory responses and restoration of barrier integrity following insult. Dysfunctional T cells precipitate skin pathology occurring alongside altered structural cell frequencies and transcriptional states, but to what extent different T cells promote disease-associated changes remains unclear. We show that functionally diverse circulating and skin-resident CD4+CLA+ T cell populations promote distinct transcriptional outcomes in human keratinocytes and fibroblasts associated with inflamed or healthy tissue. We identify Th17 cell-induced genes in keratinocytes that are enriched in psoriasis patient skin and normalized by anti-IL-17 therapy. We also describe a CD103+ skin-resident T cell-induced transcriptional module enriched in healthy controls that is diminished during psoriasis and scleroderma and show that CD103+ T cell frequencies are altered during disease. Interrogating clinical data using immune-dependent transcriptional signatures defines the T cell subsets and genes distinguishing inflamed from healthy skin and allows investigation of heterogeneous patient responses to biologic therapy.
Collapse
Affiliation(s)
- Hannah A. DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mitch L. Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suraj R. Varkhande
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - James D. Schlenker
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - William P. Schmitt
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - Aayush Gupta
- Department of Dermatology, Leprology, and Venereology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
| | - Archana Singh
- Systems Biology Lab, CSIR – Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Iris K. Gratz
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Center for Tumor Biology and Immunology, University of Salzburg, Salzburg, Austria
| | - Jeffrey S. Carlin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
- Division of Rheumatology, Virginia Mason Medical Center, Seattle, WA, USA
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A. Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
22
|
Ren SH, Shao B, Wang HD, Zhang JY, Qin H, Sun CL, Zhu YL, Wang ZB, Lan X, Gao YC, Wang H. Oxymatrine attenuates chronic allograft rejection by modulating immune responses and inhibiting fibrosis. Eur J Pharmacol 2024; 985:177082. [PMID: 39486768 DOI: 10.1016/j.ejphar.2024.177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Chronic rejection (CR) is a significant obstacle to long-term allograft survival. Oxymatrine (OMT) is a prominent bioactive compound widely utilized in traditional Chinese medicine for the management of inflammatory disorders and it has considerable potential as a therapeutic candidate for the treatment of CR. METHODS Well-established major histocompatibility complex (MHC) class II mismatched B6 mice. C-H-2bm12-to-C57BL/6 mouse transplantation was used as a CR model. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and Masson's trichrome staining were used to assess pathological changes in the grafts, and the percentages of immune cells were determined by flow cytometry. The effects of OMT on the regulation of CD4+ T cell differentiation and cytokine secretion were verified in vitro. RESULTS OMT effectively alleviated pathological graft damage, characterized by chronic changes in intimal lesions, vasculopathy, and fibrosis and significantly prolonged cardiac allograft survival. OMT exerted its immunomodulatory effects by inhibiting T helper 1 (Th1) and T helper 17 (Th17) cell differentiation while promoting Treg differentiation both in vivo and in vitro. Further studies revealed that OMT inhibited the phosphorylation of mammalian target of rapamycin (mTOR), which is a potential mechanism underlying its immunosuppressive effects. OMT also inhibited the activation of B cells and the production of donor-specific antibody (DSA). In addition, OMT effectively alleviated chronic changes in fibrosis in cardiac allografts, and these changes may be related to the inhibition of the transforming growth factor-β (TGF-β)-Smad 2/3 pathway. CONCLUSIONS OMT attenuated CR by modulating the immune response and inhibiting graft fibrosis. Further in-depth investigations of OMT may provide valuable insights into the development of novel therapeutic strategies for CR inhibition.
Collapse
Affiliation(s)
- Shao-Hua Ren
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-Lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yong-Chang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
23
|
Lee YL, Heriyanto DS, Yuliani FS, Laiman V, Choridah L, Lee KY, Chang JH, Chung KF, Chang LT, Chang TY, Chen XY, Peng SW, Chuang KJ, Chuang HC. Eosinophilic inflammation: a key player in COPD pathogenesis and progression. Ann Med 2024; 56:2408466. [PMID: 39624959 PMCID: PMC11459840 DOI: 10.1080/07853890.2024.2408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) remains a significant public health challenge due to its high morbidity and mortality rates. Emerging research has identified eosinophilic inflammation as a crucial factor in the pathogenesis and exacerbation of COPD, warranting a detailed exploration of its underlying mechanisms and therapeutic implications. OBJECTIVE This review aims to elucidate the role of eosinophils in COPD, focusing on their contribution to airway remodeling, exacerbation frequency, and the inflammatory cascade. METHODS We conducted a comprehensive literature review of recent studies that discuss the pathophysiological role of eosinophils in COPD and the clinical outcomes associated with modulating eosinophilic activity. RESULTS Eosinophils contribute to COPD progression by releasing cytotoxic proteins and cytokines that intensify the inflammatory response and airway alterations. Targeting specific eosinophil-related cytokines with monoclonal antibodies or receptor antagonists may potentially reduce eosinophil counts, mitigate exacerbations, and improve patient outcomes. CONCLUSION Understanding eosinophilic involvement in COPD can facilitate the development of precision medicine approaches, offering more tailored and effective treatment options. Future research should continue to focus on the integration of eosinophil biomarkers in clinical practice to enhance therapeutic decisions and management strategies for COPD patients.
Collapse
Affiliation(s)
- Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fara Silvia Yuliani
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Vincent Laiman
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Lina Choridah
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Xiao-Yue Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Syue-Wei Peng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Karamikheirabad M, Zhang J, Ahn AR, Park HS, Park SH, Moon YJ, Kim KM, Jang KY. IL-13Rα2 Is Involved in Resistance to Doxorubicin and Survival of Osteosarcoma Patients. Pharmaceuticals (Basel) 2024; 17:1526. [PMID: 39598436 PMCID: PMC11597473 DOI: 10.3390/ph17111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Interleukin 13 receptor alpha 2 (IL-13Rα2) is a receptor with a high affinity for IL-13 and is involved in the progression of human cancers. However, studies on the role of IL-13Rα2 in osteosarcoma are limited. Therefore, this study aimed to investigate the expression and roles of IL-13Rα2 in the progression of osteosarcoma. METHODS This study evaluated the roles of IL-13Rα2 in osteosarcomas by evaluating tumor tissues from 37 human osteosarcomas and osteosarcoma cells. RESULTS Immunohistochemical positivity of IL-13Rα2 was an independent indicator of shorter overall survival and relapse-free survival of 37 osteosarcoma patients and 26 subpopulations of patients who received adjuvant chemotherapy with multivariate analysis. In U2OS and KHOS/NP osteosarcoma cells, overexpression of IL-13Rα2 significantly increased proliferation, migration, and invasion of cells, all of which decreased with knockdown of IL-13Rα2. Overexpression of IL-13Rα2 increased expression of TGF-β, snail, cyclin D1, and BCL2 but decreased BAX, and knockdown of IL-13Rα2 caused a decrease in expression of these molecules. In addition, both in vitro and in vivo, proliferation of osteosarcoma cells increased, and apoptosis decreased with overexpression of IL-13Rα2 under treatment with doxorubicin. Knockdown of IL-13Rα2 sensitized osteosarcoma cells to the cytotoxic effect of doxorubicin. CONCLUSIONS The results of this study suggest that the expression of IL13Rα2 might be used as a potential prognostic indicator in osteosarcoma patients. Furthermore, it is observed that IL13Rα2 influences the resistance to the chemotherapeutic agent doxorubicin. Therefore, a therapeutic trial targeting IL13Rα2 might be a new therapeutic strategy for osteosarcoma, especially those highly expressing IL13Rα2.
Collapse
Affiliation(s)
- Maryam Karamikheirabad
- Department of Pathology, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.K.); (J.Z.); (A.-R.A.); (H.S.P.)
| | - Junyue Zhang
- Department of Pathology, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.K.); (J.Z.); (A.-R.A.); (H.S.P.)
| | - Ae-Ri Ahn
- Department of Pathology, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.K.); (J.Z.); (A.-R.A.); (H.S.P.)
| | - Ho Sung Park
- Department of Pathology, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.K.); (J.Z.); (A.-R.A.); (H.S.P.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea;
| | - Young Jae Moon
- Department of Biochemistry and Molecular Biology, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Orthopedic Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Kyoung Min Kim
- Department of Pathology, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.K.); (J.Z.); (A.-R.A.); (H.S.P.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Medical School, Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.K.); (J.Z.); (A.-R.A.); (H.S.P.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
25
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024; 328:387-411. [PMID: 39158477 PMCID: PMC11659931 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
| | | | - Theodore S. Jardetzky
- Department of Structural BiologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
26
|
Wei J, Tang Y, Qin S, Ma X, Zhong W, Yang P, Deng Q, Ma J. Laggera alata Attenuates Inflammatory Response by Regulating Macrophage Polarization in Rheumatoid Arthritis Mice. Mol Biotechnol 2024; 66:1934-1941. [PMID: 37493934 DOI: 10.1007/s12033-023-00808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Rheumatoid arthritis (RA) is a type of joint injury, which can induce the activation of inflammatory factors and polarization of tissue macrophages. Total phenolics from Laggera alata (TPLA) has been reported to exhibit anti-inflammatory effect in various diseases. However, its specific function in RA is still unknown. Here, the protective properties of TPLA were studied in collagen-induced arthritis (CIA)-induced RA mice. RA mouse model was established through the CIA induction. Arthritis score, hind paw thickness, and the body weight of the RA mice were evaluated in each group. H&E staining was conducted in hind paw and joint tissues for histopathological staining. The distal femur was analyzed by microCT, and bone loss-related indicators were assessed. The expression of macrophage polarization markers was detected by immunofluorescence staining in RA mice. The serum levels of inflammatory markers were determined by enzyme-linked immunosorbent assay (ELISA). TPLA reduced the CIA-induced arthritis score and hind paw thickness in mice. The body weight of the CIA mouse was significantly increased by TPLA treatment. TPLA improved the CIA-induced histopathological changes in the hind paw and joint tissues from the mice. TPLA inhibited the bone loss and alleviated bone destruction in CIA mouse model. TPLA altered the macrophage phenotype from M1 macrophages into M2 in CIA mice. TPLA suppressed the levels of inflammatory markers both in the serum and joint tissues of the CIA mice. TPLA mitigated RA development by suppressing inflammatory reaction through the inhibition of M1 microphage polarization.
Collapse
Affiliation(s)
- Jiangcun Wei
- Zhuangyao Medicine Preparation Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Yunli Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Suhong Qin
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Building c03, Zhongmeng Industrial Park, No.5 Guangxin Road, Pumiao Town, Yongning District, Nanning, 530299, Guangxi, China
| | - Xiumei Ma
- Department of Paediatrics, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Wen Zhong
- Zhuangyao Medicine Preparation Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Peng Yang
- Department of Scientific Research, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Qingmei Deng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jiabao Ma
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Building c03, Zhongmeng Industrial Park, No.5 Guangxin Road, Pumiao Town, Yongning District, Nanning, 530299, Guangxi, China.
| |
Collapse
|
27
|
Li C, Abdurehim A, Zhao S, Sun Q, Xu J, Xie J, Zhang Y. Research on the potential mechanism of Deapioplatycodin D against pulmonary fibrosis based on bioinformatics and experimental verification. Eur J Pharmacol 2024; 974:176603. [PMID: 38679121 DOI: 10.1016/j.ejphar.2024.176603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a group of respiratory diseases that are extremely complex and challenging to treat. Due to its high mortality rate and short survival, it's often referred to as a "tumor-like disease" that poses a serious threat to human health. OBJECTIVE We aimed validate the potential of Deapioplatycodin D (DPD) to against PF and clarify the underlying mechanism of action of DPD for the treatment of PF based on bioinformatics and experimental verification. This finding provides a basis for the development of safe and effective therapeutic PF drugs based on DPD. METHODS We used LPS-induced early PF rats as a PF model to test the overall efficacy of DPD in vivo. Then, A variety of bioinformatics methods, such as WGCNA, LASSO algorithm and immune cell infiltration (ICI), were applied to analyze the gene microarray related to PF obtained from Gene Expression Omnibus (GEO) to obtained key targets of PF. Finally, an in vitro PF model was constructed based on BEAS-2B cells while incorporating rat lung tissues to validate the regulatory effects of DPD on critical genes. RESULTS DPD can effectively alleviate inflammatory and fibrotic markers in rat lungs. WGCNA analysis resulted in a total of six expression modules, with the brown module having the highest correlation with PF. Subsequently, seven genes were acquired by intersecting the genes in the brown module with DEGs. Five key genes were identified as potential biomarkers of PF by LASSO algorithm and validation dataset verification analysis. In the ICI analysis, infiltration of activated B cell, immature B cell and natural killer cells were found to be more crucial in PF. Ultimately, it was observed that DPD could modulate key genes to achieve anti-PF effects. CONCLUSION In short, these comprehensive analysis methods were employed to identify critical biomarkers closely related to PF, which helps to elucidate the pathogenesis and potential immunotherapy targets of PF. It also provides essential support for the potential of DPD against PF.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Shuang Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
28
|
Wang L, Cheng J, Huang J, Xiao T, Tang Z. The mechanism of IL-13 targeting IL-13Rα2 in regulating oral mucosal FBs through PI3K/AKT/mTOR. Oral Dis 2024; 30:3142-3154. [PMID: 37897109 DOI: 10.1111/odi.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE The objective of this investigation was to examine the presence of interleukin (IL)-13 and its receptor IL-13Rα2 in the tissues of oral submucous fibrosis (OSF), investigate their biological functions, and explore the underlying mechanisms involved in the development of OSF. MATERIALS AND METHODS The expression of IL-13 and IL-13Rα2 in the oral mucosa of patients with OSF and normal individuals was determined through immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Primary fibroblasts (FBs) were extracted through enzymatic digestion and then cultured. Immunofluorescence was employed to identify the FB cultures and the location of IL-13Rα2. The effects of IL-13/IL-13Rα2/PI3K/AKT/mTOR on the migration, proliferation, and secretion of fiber-related proteins of FBs were explored via the wound healing assay, CCK-8 assay, EDU assay, and RT-qPCR. The impact of IL-13Rα2 silencing and PI3K/AKT inhibition on the effect of IL-13 on FBs was analyzed by RT-qPCR and Western blotting. RESULTS IL-13 and IL-13Rα2 were highly expressed in OSF. Primary FBs were successfully extracted and cultured. IL-13Rα2 was found to be localized in myofibroblasts. IL-13 promoted the proliferation, migration, and secretion of fibril-associated proteins in FBs. The proliferation, migration, and secretion of fibril-associated proteins of FBs were decreased following IL-13Rα2 silencing and inhibition of the PI3K/AKT/mTOR pathway. CONCLUSION IL-13 may promote the proliferation, migration, and secretion of fiber-related proteins of FBs through the PI3K/AKT/mTOR pathway by targeting IL-13Rα2.
Collapse
Affiliation(s)
- Liping Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jingyi Cheng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Junhui Huang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ting Xiao
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
29
|
Zheng S, Liu Y. Progress in the Study of Fra-2 in Respiratory Diseases. Int J Mol Sci 2024; 25:7143. [PMID: 39000247 PMCID: PMC11240912 DOI: 10.3390/ijms25137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Fos-related antigen-2 (Fra-2) is a member of the activating protein-1 (AP-1) family of transcription factors. It is involved in controlling cell growth and differentiation by regulating the production of the extracellular matrix (ECM) and coordinating the balance of signals within and outside the cell. Fra-2 is not only closely related to bone development, metabolism, and immune system and eye development but also in the progression of respiratory conditions like lung tumors, asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). The increased expression and activation of Fra-2 in various lung diseases has been shown in several studies. However, the specific molecular mechanisms through which Fra-2 affects the development of respiratory diseases are not yet understood. The purpose of this research is to summarize and delineate advancements in the study of the involvement of transcription factor Fra-2 in disorders related to the respiratory system.
Collapse
Affiliation(s)
- Shuping Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
30
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
31
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Elder RT, Mishra RR, Marti TL, Omuro PM, Roddick RM, Lee JS, Murphy WL, Hanna AS. The secondary injury cascade after spinal cord injury: an analysis of local cytokine/chemokine regulation. Neural Regen Res 2024; 19:1308-1317. [PMID: 37905880 PMCID: PMC11467934 DOI: 10.4103/1673-5374.385849] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
After spinal cord injury, there is an extensive infiltration of immune cells, which exacerbates the injury and leads to further neural degeneration. Therefore, a major aim of current research involves targeting the immune response as a treatment for spinal cord injury. Although much research has been performed analyzing the complex inflammatory process following spinal cord injury, there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation. The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury, identify sexual dimorphisms in terms of cytokine levels, and determine local cytokines that significantly change based on the severity of spinal cord injury. Rats were inflicted with either a mild contusion, moderate contusion, severe contusion, or complete transection, 7 mm of spinal cord centered on the injury was harvested at varying times post-injury, and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay. Results demonstrated pro-inflammatory cytokines including tumor necrosis factor α, interleukin-1β, and interleukin-6 were all upregulated after spinal cord injury, but returned to uninjured levels within approximately 24 hours post-injury, while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury. In contrast, several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury. After spinal cord injury, tissue inhibitor of metalloproteinase-1, which specifically affects astrocytes involved in glial scar development, increased more than all other cytokines tested, reaching 26.9-fold higher than uninjured rats. After a mild injury, 11 cytokines demonstrated sexual dimorphisms; however, after a severe contusion only leptin levels were different between female and male rats. In conclusion, pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury, chemokines continue to recruit immune cells for days post-injury, while anti-inflammatory cytokines are downregulated by a week post-injury, and sexual dimorphisms observed after mild injury subsided with more severe injuries. Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury, which are essential for researchers developing treatments targeting secondary damage after spinal cord injury.
Collapse
Affiliation(s)
- Daniel J. Hellenbrand
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M. Quinn
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Zachariah J. Piper
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ryan T. Elder
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Raveena R. Mishra
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Taylor L. Marti
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Phoebe M. Omuro
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rylie M. Roddick
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Forward BIO Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
32
|
Leland P, Degheidy H, Lea A, Bauer SR, Puri RK, Joshi BH. Identification and characterisation of novel CAR-T cells to target IL13Rα2 positive human glioma in vitro and in vivo. Clin Transl Med 2024; 14:e1664. [PMID: 38685487 PMCID: PMC11058282 DOI: 10.1002/ctm2.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Previously, we discovered that human solid tumours, but not normal human tissues, preferentially overexpress interleukin-13Receptor alpha2, a high binding receptor for IL-13. To develop novel anti-cancer approaches, we constructed a chimeric antigen receptor construct using a high binding and codon optimised scFv-IL-13Rα2 fragment fused with CD3ζ and co-stimulatory cytoplasmic domains of CD28 and 4-1BB. METHODS We developed a scFv clone, designated 14-1, by biopanning the bound scFv phages using huIL-13Rα2Fc chimeric protein and compared its binding with our previously published clone 4-1. We performed bioinformatic analyses for complementary determining regions (CDR) framework and residue analyses of the light and heavy chains. This construct was packaged with helper plasmids to produce CAR-lentivirus and transduced human Jurkat T or activated T cells from peripheral blood mononuclear cells (PBMCs) to produce CAR-T cells and tested for their quality attributes in vitro and in vivo. Serum enzymes including body weight from non-tumour bearing mice were tested for assessing general toxicity of CAR-T cells. RESULTS The binding of 14-1 clone is to IL-13Rα2Fc-chimeric protein is ∼5 times higher than our previous clone 4-1. The 14-1-CAR-T cells grew exponentially in the presence of cytokines and maintained phenotype and biological attributes such as cell viability, potency, migration and T cell activation. Clone 14-1 migrated to IL-13Rα2Fc and cell free supernatants only from IL-13Rα2+ve confluent glioma tumour cells in a chemotaxis assay. scFv-IL-13Rα2-CAR-T cells specifically killed IL-13Rα2+ve but not IL-13Rα2-ve tumour cells in vitro and selectively caused significant release of IFN-γ only from IL-13Rα2+ve co-cultures. These CAR-T cells regressed IL-13Rα2+ve glioma xenografts in vivo without any general toxicity. In contrast, the IL-13Rα2 gene knocked-down U251 and U87 xenografts failed to respond to the CAR-T therapy. CONCLUSION Taken together, we conclude that the novel scFv-IL-13Rα2 CAR-T cell therapy may offer an effective therapeutic option after designing a careful pre-clinical and clinical study.
Collapse
Affiliation(s)
- Pamela Leland
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| | - Heba Degheidy
- Cellular and Tissue Therapy Branch, Office of Cellular Therapy & Human Tissues, Office of Therapeutic ProductsCenter for Biologics Evaluation and ResearchU.S. Food and Drug Administration, White OakSilver SpringMarylandUSA
| | - Ashley Lea
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| | - Steven R. Bauer
- Cellular and Tissue Therapy Branch, Office of Cellular Therapy & Human Tissues, Office of Therapeutic ProductsCenter for Biologics Evaluation and ResearchU.S. Food and Drug Administration, White OakSilver SpringMarylandUSA
- Wake Forest Institute for Regenerative MedicineWinston‐SalemNorth CarolinaUSA
| | - Raj K. Puri
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
- Iovance Biotherapeutics, Inc.FrederickMarylandUSA
| | - Bharat H. Joshi
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| |
Collapse
|
33
|
Yang B, Qiao Y, Yan D, Meng Q. Targeting Interactions between Fibroblasts and Macrophages to Treat Cardiac Fibrosis. Cells 2024; 13:764. [PMID: 38727300 PMCID: PMC11082988 DOI: 10.3390/cells13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/13/2024] Open
Abstract
Excessive extracellular matrix (ECM) deposition is a defining feature of cardiac fibrosis. Most notably, it is characterized by a significant change in the concentration and volume fraction of collagen I, a disproportionate deposition of collagen subtypes, and a disturbed ECM network arrangement, which directly affect the systolic and diastolic functions of the heart. Immune cells that reside within or infiltrate the myocardium, including macrophages, play important roles in fibroblast activation and consequent ECM remodeling. Through both direct and indirect connections to fibroblasts, monocyte-derived macrophages and resident cardiac macrophages play complex, bidirectional, regulatory roles in cardiac fibrosis. In this review, we discuss emerging interactions between fibroblasts and macrophages in physiology and pathologic conditions, providing insights for future research aimed at targeting macrophages to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Yang
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| | - Yan Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
| | - Qinghang Meng
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| |
Collapse
|
34
|
Dong Y, Johnson BA, Ruan L, Zeineldin M, Bi T, Liu AZ, Raychaudhuri S, Chiu I, Zhu J, Smith B, Zhao N, Searson P, Watanabe S, Donowitz M, Larman TC, Li R. Disruption of epithelium integrity by inflammation-associated fibroblasts through prostaglandin signaling. SCIENCE ADVANCES 2024; 10:eadj7666. [PMID: 38569041 PMCID: PMC10990275 DOI: 10.1126/sciadv.adj7666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Linhao Ruan
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tianhao Bi
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ian Chiu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Barbara Smith
- Microscope Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tatianna C. Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Manzanares-Guzmán A, Lugo-Fabres PH, Camacho-Villegas TA. vNARs as Neutralizing Intracellular Therapeutic Agents: Glioblastoma as a Target. Antibodies (Basel) 2024; 13:25. [PMID: 38534215 DOI: 10.3390/antib13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Glioblastoma is the most prevalent and fatal form of primary brain tumors. New targeted therapeutic strategies for this type of tumor are imperative given the dire prognosis for glioblastoma patients and the poor results of current multimodal therapy. Previously reported drawbacks of antibody-based therapeutics include the inability to translocate across the blood-brain barrier and reach intracellular targets due to their molecular weight. These disadvantages translate into poor target neutralization and cancer maintenance. Unlike conventional antibodies, vNARs can permeate tissues and recognize conformational or cryptic epitopes due to their stability, CDR3 amino acid sequence, and smaller molecular weight. Thus, vNARs represent a potential antibody format to use as intrabodies or soluble immunocarriers. This review comprehensively summarizes key intracellular pathways in glioblastoma cells that induce proliferation, progression, and cancer survival to determine a new potential targeted glioblastoma therapy based on previously reported vNARs. The results seek to support the next application of vNARs as single-domain antibody drug-conjugated therapies, which could overcome the disadvantages of conventional monoclonal antibodies and provide an innovative approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Pavel H Lugo-Fabres
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Tanya A Camacho-Villegas
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
37
|
Pezzolo E, Sechi A, Tartaglia J, Naldi L. A critical evaluation of suitability of tralokinumab for treatment of moderate-to-severe atopic dermatitis in adolescents and adults. Expert Rev Clin Immunol 2024; 20:255-266. [PMID: 37955186 DOI: 10.1080/1744666x.2023.2283585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic, intensely pruritic disease associated with significant patient burden. Recent advancements in AD pathogenesis have expanded its therapeutics pipeline. Tralokinumab is a fully human monoclonal antibody that binds specifically Interleukin (IL)-13, inhibiting the downstream IL-13 signaling. Phase 3 clinical trials and some real-world studies showed that tralokinumab, as monotherapy or in combination with topical corticosteroids, is efficacious and safe in adult patients with moderate-to-severe AD. Similar results were reported in a phase 3 trial in adolescents (aged ≥12 years). AREAS COVERED We review the role of IL-13 in AD and discuss the value of tralokinumab for treating moderate-to-severe AD, comparing efficacy and safety results derived from clinical trials and real-life data. EXPERT OPINION The role of IL-13 in AD supports a targeted therapeutic approach. Tralokinumab has proven efficacious and well-tolerated in a large proportion of patients confirming its value for treating moderate-to-severe AD from age 12 years onwards; it quickly improves itching and can maintain a high-level of response over time; it can be administered with flexible dosing schedules. Future studies will further clarify the role of IL-13 pathway and which patients would be best suited to tralokinumab, shifting AD treatment into an era of precision medicine.
Collapse
Affiliation(s)
- Elena Pezzolo
- Dermatology Unit, San Bortolo Hospital, Vicenza, Italy
- Centro Studi GISED (Italian Group for Epidemiologic Research in Dermatology) - FROM (Research Foundation of Ospedale Maggiore Bergamo), Padiglione Mazzoleni - Presidio Ospedaliero Matteo Rota, Bergamo, Italy
| | - Andrea Sechi
- Dermatology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Jacopo Tartaglia
- Dermatology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Luigi Naldi
- Dermatology Unit, San Bortolo Hospital, Vicenza, Italy
- Centro Studi GISED (Italian Group for Epidemiologic Research in Dermatology) - FROM (Research Foundation of Ospedale Maggiore Bergamo), Padiglione Mazzoleni - Presidio Ospedaliero Matteo Rota, Bergamo, Italy
| |
Collapse
|
38
|
Giraud J, Chalopin D, Ramel E, Boyer T, Zouine A, Derieppe MA, Larmonier N, Adotevi O, Le Bail B, Blanc JF, Laurent C, Chiche L, Derive M, Nikolski M, Saleh M. THBS1 + myeloid cells expand in SLD hepatocellular carcinoma and contribute to immunosuppression and unfavorable prognosis through TREM1. Cell Rep 2024; 43:113773. [PMID: 38350444 DOI: 10.1016/j.celrep.2024.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an inflammation-associated cancer arising from viral or non-viral etiologies including steatotic liver diseases (SLDs). Expansion of immunosuppressive myeloid cells is a hallmark of inflammation and cancer, but their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. Here, we present a high-resolution atlas of innate immune cells from patients with HCC that unravels an SLD-associated contexture characterized by influx of inflammatory and immunosuppressive myeloid cells, including a discrete population of THBS1+ regulatory myeloid (Mreg) cells expressing monocyte- and neutrophil-affiliated genes. THBS1+ Mreg cells expand in SLD-associated HCC, populate fibrotic lesions, and are associated with poor prognosis. THBS1+ Mreg cells are CD163+ but distinguished from macrophages by high expression of triggering receptor expressed on myeloid cells 1 (TREM1), which contributes to their immunosuppressive activity and promotes HCC tumor growth in vivo. Our data support myeloid subset-targeted immunotherapies to treat HCC.
Collapse
Affiliation(s)
- Julie Giraud
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Domitille Chalopin
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Eloïse Ramel
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Thomas Boyer
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Atika Zouine
- Bordeaux University, CNRS UMS3427, INSERM US05, Flow Cytometry Facility, TransBioMed Core, 33000 Bordeaux, France
| | | | - Nicolas Larmonier
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France
| | - Olivier Adotevi
- Université Bourgogne Franche-Comté, INSERM, UMR1098, 25000 Besançon, France
| | - Brigitte Le Bail
- Bordeaux University Hospital, Division of Pathology, Pellegrin Hospital, 33000 Bordeaux, France
| | - Jean-Frédéric Blanc
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Christophe Laurent
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | - Laurence Chiche
- University of Bordeaux Hospital, Division of Gastrohepatology and Oncology, Haut Leveque Hospital, 33604 Pessac, France
| | | | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France
| | - Maya Saleh
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France; Institut National de la Recherche Scientifique (INRS), Armand Frappier Health & Biotechnology (AFSB) Research Center, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
39
|
Olguín JE, Corano-Arredondo E, Hernández-Gómez V, Rivera-Montoya I, Rodríguez MA, Medina-Andrade I, Arendse B, Brombacher F, Terrazas LI. A Myeloid-Specific Lack of IL-4Rα Prevents the Development of Alternatively Activated Macrophages and Enhances Immunity to Experimental Cysticercosis. Pathogens 2024; 13:169. [PMID: 38392907 PMCID: PMC10893369 DOI: 10.3390/pathogens13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
To determine the role that the IL-4/IL13 receptor plays in the development of alternatively activated macrophages (AAM or M2) and their role in the regulation of immunity to the extraintestinal phase of the helminth parasite Taenia crassiceps, we followed the infection in a mouse strain lacking the IL-4Rα gene (IL-4Rα-/-) and in the macrophage/neutrophil-specific IL-4Rα-deficient mouse strain (LysMcreIL-4Rα-/lox or cre/LoxP). While 100% of T. crassiceps-infected IL-4Rα+/+ (WT) mice harbored large parasite loads, more than 50% of th eIL-4Rα-/- mice resolved the infection. Approximately 88% of the LysMcreIL-4Rα-/lox mice displayed a sterilizing immunity to the infection. The remaining few infected cre/LoxP mice displayed the lowest number of larvae in their peritoneal cavity. The inability of the WT mice to control the infection was associated with antigen-specific Th2-type responses with higher levels of IgG1, IL-4, IL-13, and total IgE, reduced NO production, and increased arginase activity. In contrast, IL-4Rα-/- semi-resistant mice showed a Th1/Th2 combined response. Furthermore, macrophages from the WT mice displayed higher transcripts for Arginase-1 and RELM-α, as well as increased expression of PD-L2 with robust suppressive activity over anti-CD3/CD28 stimulated T cells; all of these features are associated with the AAM or M2 macrophage phenotype. In contrast, both the IL-4Rα-/- and LysMcreIL-4Rα-/lox mice did not fully develop AAM or display suppressive activity over CD3/CD28 stimulated T cells, reducing PDL2 expression. Additionally, T-CD8+ but no T-CD4+ cells showed a suppressive phenotype with increased Tim-3 and PD1 expression in WT and IL-4Rα-/-, which were absent in T. crassiceps-infected LysMcreIL-4Rα-/lox mice. These findings demonstrate a critical role for the IL-4 signaling pathway in sustaining AAM and its suppressive activity during cysticercosis, suggesting a pivotal role for AAM in favoring susceptibility to T. crassiceps infection. Thus, the absence of these suppressor cells is one of the leading mechanisms to control experimental cysticercosis successfully.
Collapse
Affiliation(s)
- Jonadab E. Olguín
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Estado de México, Mexico; (J.E.O.)
| | - Edmundo Corano-Arredondo
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Estado de México, Mexico; (J.E.O.)
| | - Victoria Hernández-Gómez
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Estado de México, Mexico; (J.E.O.)
| | - Irma Rivera-Montoya
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Estado de México, Mexico
| | - Mario A. Rodríguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Estado de México, Mexico
| | - Itzel Medina-Andrade
- Center for Infectious Medicine (CIM), Department of Medicine, Hudinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Berenice Arendse
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Luis I. Terrazas
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Estado de México, Mexico; (J.E.O.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Estado de México, Mexico
| |
Collapse
|
40
|
Moll-Bernardes R, Ferreira JR, Sousa AS, Tortelly MB, Pimentel AL, Figueiredo ACBS, Schaustz EB, Secco JCP, Sales ARK, Terzi FVO, Xavier de Brito A, Sarmento RO, Noya-Rabelo MM, Fortier S, Matos E Silva FA, Vera N, Conde L, Cabral-Castro MJ, Albuquerque DC, Rosado de-Castro P, Camargo GC, Pinheiro MVT, Souza OF, Bozza FA, Luiz RR, Medei E. Impact of the immune profiles of hypertensive patients with and without obesity on COVID-19 severity. Int J Obes (Lond) 2024; 48:254-262. [PMID: 37932408 DOI: 10.1038/s41366-023-01407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Comorbidities such as obesity, hypertension, and diabetes are associated with COVID-19 development and severity, probably due to immune dysregulation; however, the mechanisms underlying these associations are not clear. The immune signatures of hypertensive patients with obesity with COVID-19 may provide new insight into the mechanisms of immune dysregulation and progression to severe disease in these patients. METHODS Hypertensive patients were selected prospectively from a multicenter registry of adults hospitalized with COVID-19 and stratified according to obesity (BMI ≥ 30 kg/m²). Clinical data including baseline characteristics, complications, treatment, and 46 immune markers were compared between groups. Logistic regression was performed to identify variables associated with the risk of COVID-19 progression in each group. RESULTS The sample comprised 213 patients (89 with and 124 without obesity). The clinical profiles of patients with and without obesity differed, suggesting potential interactions with COVID-19 severity. Relative to patients without obesity, patients with obesity were younger and fewer had cardiac disease and myocardial injury. Patients with obesity had higher EGF, GCSF, GMCSF, interleukin (IL)-1ra, IL-5, IL-7, IL-8, IL-15, IL-1β, MCP 1, and VEGF levels, total lymphocyte counts, and CD8+ CD38+ mean fluorescence intensity (MFI), and lower NK-NKG2A MFI and percentage of CD8+ CD38+ T cells. Significant correlations between cytokine and immune cell expression were observed in both groups. Five variables best predicted progression to severe COVID-19 in patients with obesity: diabetes, the EGF, IL-10, and IL-13 levels, and the percentage of CD8+ HLA-DR+ CD38+ cells. Three variables were predictive for patients without obesity: myocardial injury and the percentages of B lymphocytes and HLA-DR+ CD38+ cells. CONCLUSION Our findings suggest that clinical and immune variables and obesity interact synergistically to increase the COVID-19 progression risk. The immune signatures of hypertensive patients with and without obesity severe COVID-19 highlight differences in immune dysregulation mechanisms, with potential therapeutic applications.
Collapse
Affiliation(s)
| | - Juliana R Ferreira
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Andréa Silvestre Sousa
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana B Tortelly
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Adriana L Pimentel
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Ana Cristina B S Figueiredo
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | | | | | | | - Flavia V O Terzi
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | | | - Renée O Sarmento
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Internal Medicine Department, Rio de Janeiro Federal State University, Rio de Janeiro, Brazil
| | - Marcia M Noya-Rabelo
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
- Bahia School of Medicine and Public Health, Bahia, Brazil
| | - Sergio Fortier
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | | | - Narendra Vera
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Conde
- Bahia School of Medicine and Public Health, Bahia, Brazil
| | - Mauro Jorge Cabral-Castro
- Institute of Microbiology Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
- Department of Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Denilson C Albuquerque
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology Department, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | | | - Olga F Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Cardiology and Internal Medicine Department, Rede D'Or São Luiz, São Paulo, Brazil
| | - Fernando A Bozza
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ronir R Luiz
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute for Studies in Public Health-IESC, UFRJ, Rio de Janeiro, Brazil
| | - Emiliano Medei
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil.
- National Center for Structural Biology and Bioimaging, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Rampioni Vinciguerra GL, Capece M, Scafetta G, Rentsch S, Vecchione A, Lovat F, Croce CM. Role of Fra-2 in cancer. Cell Death Differ 2024; 31:136-149. [PMID: 38104183 PMCID: PMC10850073 DOI: 10.1038/s41418-023-01248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Marina Capece
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Sydney Rentsch
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
Xu W, Chao R, Xie X, Mao Y, Chen X, Chen X, Zhang S. IL13Rα2 as a crucial receptor for Chi3l1 in osteoclast differentiation and bone resorption through the MAPK/AKT pathway. Cell Commun Signal 2024; 22:81. [PMID: 38291404 PMCID: PMC10826115 DOI: 10.1186/s12964-023-01423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Previous research has revealed that the 18 glycoside hydrolase gene family (GH18) member Chitinase 3-like 1 (Chi3l1) can regulate osteoclast differentiation and bone resorption. However, its downstream receptors and molecular mechanisms during osteoclastogenesis have yet to be elucidated. METHODS Initially, we conducted a comprehensive investigation to evaluate the effects of recombinant Chi3l1 protein or Chi3l1 siRNA on osteoclast differentiation and the RANKL-induced MAPK/AKT signaling pathways. Moreover, we used immunofluorescence and immunoprecipitation assays to identify IL13Rα2 as the downstream receptor of Chi3l1. Subsequently, we investigated the impact of IL13Rα2 recombinant protein or IL13Rα2-siRNA on osteoclast differentiation and the associated signaling pathways. Finally, we performed in vivo experiments to examine the effect of recombinant IL13Rα2 protein in an LPS-induced mouse model of cranial osteolysis. RESULTS Our findings highlight that the administration of recombinant Chi3l1 protein increased the formation of osteoclasts and bolstered the expression of several osteoclast-specific genes (TRAP, NFATC1, CTR, CTSK, V-ATPase d2, and Dc-STAMP). Additionally, Chi3l1 significantly promoted the RANKL-induced MAPK (ERK/P38/JNK) and AKT pathway activation, whereas Chi3l1 silencing inhibited this process. Next, using immunofluorescence and co-immunoprecipitation assays, we identified IL13Rα2 as the binding partner of Chi3l1 during osteoclastogenesis. IL13Rα2 recombinant protein or IL13Rα2-siRNA also inhibited osteoclast differentiation, and IL13Rα2-siRNA attenuated the RANKL-induced activation of the MAPK (ERK/P38/JNK) and AKT pathways, similar to the effects observed upon silencing of Chi3l1. Moreover, the promoting effect of recombinant Chi3l1 protein on osteoclastogenesis and the activation of the MAPK and AKT pathways was reversed by IL13Rα2 siRNA. Finally, recombinant LI13Rα2 protein significantly attenuated the LPS-induced cranial osteolysis and the number of osteoclasts in vivo. CONCLUSIONS Our findings suggested that IL13Rα2 served as a crucial receptor for Chi3l1, enhancing RANKL-induced MAPK and AKT activation to promote osteoclast differentiation. These findings provide valuable insights into the molecular mechanisms of Chi3l1 in osteoclastogenesis, with potential therapeutic implications for osteoclast-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Rui Chao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Xinru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Xinwei Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| |
Collapse
|
43
|
Tiligada E, Gafarov D, Zaimi M, Vitte J, Levi-Schaffer F. Novel Immunopharmacological Drugs for the Treatment of Allergic Diseases. Annu Rev Pharmacol Toxicol 2024; 64:481-506. [PMID: 37722722 DOI: 10.1146/annurev-pharmtox-051623-091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Daria Gafarov
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joana Vitte
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM
- Montpellier, France
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
44
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
He B, Liang J, Qin Q, Zhang Y, Shi S, Cao J, Zhang Z, Bie Q, Zhao R, Wei L, Zhang B, Zhang B. IL-13/IL-13RA2 signaling promotes colorectal cancer stem cell tumorigenesis by inducing ubiquitinated degradation of p53. Genes Dis 2024; 11:495-508. [PMID: 37588218 PMCID: PMC10425805 DOI: 10.1016/j.gendis.2023.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 08/18/2023] Open
Abstract
Cancer stem cells (CSCs) are considered tumor-initiating cells and the main drivers of disease progression. Targeting these rare cancer cells, however, remains challenging with respect to therapeutic benefit. Here, we report the up-regulation of IL-13RA2 expression in colorectal cancer (CRC) tissues and spheroid cells. The expression of IL-13RA2 was positively correlated with canonical stemness markers in CRC. We further demonstrated that the level of IL-13 was up-regulated in the serum of CRC patients. Biologically, recombinant IL-13 (rIL-13) stimulation promoted the sphere formation, proliferation, and migration of CRC cells in vitro and enhanced tumorigenesis in vivo. This phenotype could be reversed by knocking down IL-13RA2. Mechanistically, IL-13 activated autophagy by inducing LC3I/LC3II transformation in CRC-CSCs, which was crucial for the biological functions of IL-13. We further demonstrated that IL-13RA2 acted as a modular link of the E3 ligase UBE3C and the substrate p53 protein, enhancing the interaction of UBE3C and p53, thereby inducing the K48-linked ubiquitination of p53. In conclusion, the IL-13/IL-13RA2 signaling cascade promotes CRC-CSC self-renewal and tumorigenesis by inducing p53 ubiquitination, adding an important layer to the connection between IL-13 and p53, which can be translated into novel targeted therapies.
Collapse
Affiliation(s)
- Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Qianqian Qin
- Department of Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Yuqin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Shuo Shi
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Jinghe Cao
- Department of Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Zhixin Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Li Wei
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Baogui Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
46
|
Cates WT, Denbeigh JM, Salvagno RT, Kakar S, van Wijnen AJ, Eaton C. Inflammatory Markers Involved in the Pathogenesis of Dupuytren's Contracture. Crit Rev Eukaryot Gene Expr 2024; 34:1-35. [PMID: 38912961 DOI: 10.1615/critreveukaryotgeneexpr.2024052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dupuytren's disease is a common fibroproliferative disease that can result in debilitating hand deformities. Partial correction and return of deformity are common with surgical or clinical treatments at present. While current treatments are limited to local procedures for relatively late effects of the disease, the pathophysiology of this connective tissue disorder is associated with both local and systemic processes (e.g., fibrosis, inflammation). Hence, a better understanding of the systemic circulation of Dupuytren related cytokines and growth factors may provide important insights into disease progression. In addition, systemic biomarker analysis could yield new concepts for treatments of Dupuytren that attenuate circulatory factors (e.g., anti-inflammatory agents, neutralizing antibodies). Progress in the development of any disease modifying biologic treatment for Dupuytren has been hampered by the lack of clinically useful biomarkers. The characterization of nonsurgical Dupuytren biomarkers will permit disease staging from diagnostic and prognostic perspectives, as well as allows evaluation of biologic responses to treatment. Identification of such markers may transcend their use in Dupuytren treatment, because fibrotic biological processes fundamental to Dupuytren are relevant to fibrosis in many other connective tissues and organs with collagen-based tissue compartments. There is a wide range of potential Dupuytren biomarker categories that could be informative, including disease determinants linked to genetics, collagen metabolism, as well as immunity and inflammation (e.g., cytokines, chemokines). This narrative review provides a broad overview of previous studies and emphasizes the importance of inflammatory mediators as candidate circulating biomarkers for monitoring Dupuytren's disease.
Collapse
Affiliation(s)
- William T Cates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
47
|
Li Q, Li Y, Wu F, Li J, Li Z, Qin X, Wei S, Chen C. IL-13 neutralization attenuates carotid artery intimal hyperplasia and increases endothelial cell migration via modulating the JAK-1/STAT-3 signaling pathway. Cell Adh Migr 2023; 17:1-10. [PMID: 37814455 PMCID: PMC10566387 DOI: 10.1080/19336918.2023.2265158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
The aim of this study was to investigate how the concentration of interleukin-13 (IL-13) affects the regulation of endothelial cell migration after injury. The incubation of recombinant human interleukin-13 (rhIL-13) strongly increased the content of reactive oxygen species (ROS) in HUVECs via the JAK-1/STAT-3/NOX-4 signaling pathway. Antagonizing the high intracellular ROS that was induced by rhIL-13 promoted the migration of HUVECs. Furthermore, IL-13 neutralization not only inhibited intimal hyperplasia, but also promoted the migration of endothelial cells (ECs) after injury. The results suggest that IL-13 inhibition is a potential means of stimulating endothelial cells recovery after injury. Therefore, the attenuation of IL-13 activation may have therapeutic value for vascular disease.
Collapse
Affiliation(s)
- Qi Li
- The Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, P. R. China
| | - Yue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Fengjiao Wu
- The Biotherapy Center, Tumor Hospital of Harbin Medical University, Harbin, P. R. China
| | - Jingyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhongsha Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaoling Qin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Simeng Wei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
48
|
Lu HY, Wang MY, Zhu SX, Ju HM, Xu SQ, Qiao Y, Wei SJ, Su ZL. ILC2 influence the differentiation of alveolar type II epithelial cells in bronchopulmonary dysplasia mice. J Leukoc Biol 2023; 114:604-614. [PMID: 37647586 DOI: 10.1093/jleuko/qiad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Bronchopulmonary dysplasia, a common complication of premature infants, is mainly characterized by blocked alveolarization. Proverbially, the injury of alveolar type II epithelial cells is regarded as the pathologic basis of occurrence and development of bronchopulmonary dysplasia. In the case of alveolar epithelial damage, alveolar type II epithelial cells can also differentiate to alveolar type I epithelial cells as progenitor cells. During bronchopulmonary dysplasia, the differentiation of alveolar type II epithelial cells becomes abnormal. Group 2 innate lymphoid cells can produce type 2 cytokines in response to a variety of stimuli, including the epithelial cytokines IL-25, IL-33, and thymic stromal lymphopoietin. Previous studies have shown that group 2 innate lymphoid cells can inhibit the alveolarization process of bronchopulmonary dysplasia by secreting IL-13. However, whether group 2 innate lymphoid cells can affect the differentiation of alveolar type II epithelial cells in the pathologic process of bronchopulmonary dysplasia remains unclear. In this study, we have shown that IL-13 secreted by group 2 innate lymphoid cells increased during bronchopulmonary dysplasia, which was related to the release of large amounts of IL-33 by impaired alveolar type II epithelial cells. This led to abnormal differentiation of alveolar type II epithelial cells, reduced differentiation to alveolar type I epithelial cells, and increased transdifferentiation to mesenchymal cells through the epithelial-mesenchymal transition. Taken together, our study provides a complementary understanding of the development of bronchopulmonary dysplasia and highlights a novel immune mechanism in the pathogenesis of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Shao-Xuan Zhu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Hui-Min Ju
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Su-Qing Xu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Yu Qiao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Shan-Jie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute for medical Immunology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| |
Collapse
|
49
|
Bartolomé RA, Martín-Regalado Á, Pintado-Berninches L, Robles J, Ramírez-González MÁ, Boukich I, Sanchez-Gómez P, Balyasnikova IV, Casal JI. Schnurri-3 drives tumor growth and invasion in cancer cells expressing interleukin-13 receptor alpha 2. Cell Death Dis 2023; 14:742. [PMID: 37963919 PMCID: PMC10645886 DOI: 10.1038/s41419-023-06255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Interleukin 13 receptor alpha 2 (IL13Rα2) is a relevant therapeutic target in glioblastoma (GBM) and other tumors associated with tumor growth and invasion. In a previous study, we demonstrated that protein tyrosine phosphatase 1B (PTP1B) is a key mediator of the IL-13/IL13Rα2 signaling pathway. PTP1B regulates cancer cell invasion through Src activation. However, PTP1B/Src downstream signaling mechanisms that modulate the invasion process remain unclear. In the present research, we have characterized the PTP1B interactome and the PTP1B-associated phosphoproteome after IL-13 treatment, in different cellular contexts, using proteomic strategies. PTP1B was associated with proteins involved in signal transduction, vesicle transport, and with multiple proteins from the NF-κB signaling pathway, including Tenascin-C (TNC). PTP1B participated with NF-κB in TNC-mediated proliferation and invasion. Analysis of the phosphorylation patterns obtained after PTP1B activation with IL-13 showed increased phosphorylation of the transcription factor Schnurri-3 (SHN3), a reported competitor of NF-κB. SHN3 silencing caused a potent inhibition in cell invasion and proliferation, associated with a down-regulation of the Wnt/β-catenin pathway, an extensive decline of MMP9 expression and the subsequent inhibition of tumor growth and metastasis in mouse models. Regarding clinical value, high expression of SHN3 was associated with poor survival in GBM, showing a significant correlation with the classical and mesenchymal subtypes. In CRC, SHN3 expression showed a preferential association with the mesenchymal subtypes CMS4 and CRIS-B. Moreover, SHN3 expression strongly correlated with IL13Rα2 and MMP9-associated poor prognosis in different cancers. In conclusion, we have uncovered the participation of SNH3 in the IL-13/IL13Rα2/PTP1B pathway to promote tumor growth and invasion. These findings support a potential therapeutic value for SHN3.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángela Martín-Regalado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura Pintado-Berninches
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Universidad Autónoma de Madrid. Cantoblanco, Madrid, Spain
| | - Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Protein Alternatives SL. Tres Cantos, Madrid, Spain
| | | | - Issam Boukich
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Protein Alternatives SL. Tres Cantos, Madrid, Spain
| | - Pilar Sanchez-Gómez
- Unidad Funcional de Investigación en Enfermedades Crónicas. Instituto de Salud Carlos III, Madrid, Spain
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
50
|
Scott TE, Lewis CV, Zhu M, Wang C, Samuel CS, Drummond GR, Kemp-Harper BK. IL-4 and IL-13 induce equivalent expression of traditional M2 markers and modulation of reactive oxygen species in human macrophages. Sci Rep 2023; 13:19589. [PMID: 37949903 PMCID: PMC10638413 DOI: 10.1038/s41598-023-46237-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
In cardiovascular disease, pathological and protective roles are reported for the Th2 cytokines IL-4 and IL-13, respectively. We hypothesised that differential effects on macrophage function are responsible. Type I and II receptor subunit (IL-2Rγ, IL-4Rα and IL-13Rα1) and M2 marker (MRC-1, CCL18, CCL22) expression was assessed via RT-qPCR in IL-4- and IL-13-treated human primary macrophages. Downstream signalling was evaluated via STAT1, STAT3 and STAT6 inhibitors, and IL-4- and IL-13-induced reactive oxygen species (ROS) generation assessed. IL-4 and IL-13 exhibited equivalent potency and efficacy for M2 marker induction, which was attenuated by STAT3 inhibition. Both cytokines enhanced PDBu-stimulated superoxide generation however this effect was 17% greater with IL-4 treatment. Type I IL-4 receptor expression was increased on M1-like macrophages but did not lead to a differing ability of these cytokines to modulate M1-like macrophage superoxide production. Overall, this study did not identify major differences in the ability of IL-4 and IL-13 to modulate macrophage function, suggesting that the opposing roles of these cytokines in cardiovascular disease are likely to be via actions on other cell types. Future studies should directly compare IL-4 and IL-13 in vivo to more thoroughly investigate the therapeutic validity of selective targeting of these cytokines.
Collapse
Affiliation(s)
- Tara E Scott
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Caitlin V Lewis
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mingyu Zhu
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|