1
|
Jin Y, Cheng IT, So H, Li M, Cheuk Fung Yip T, Wong CK, Tam LS. Utility of multi-biomarker panel on discriminating disease activity in patients with psoriatic arthritis. Int Immunopharmacol 2024; 143:113279. [PMID: 39357210 DOI: 10.1016/j.intimp.2024.113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE To investigate the correlation of serum protein biomarkers and disease activity in patients with PsA. METHODS 176 patients fulfilled the CASPAR (ClASsification criteria for Psoriatic ARthritis) were recruited in this cross-sectional study. The level of 48 protein biomarkers, cartilage and bone turn-over markers were assessed. The patients were randomly divided into a derivation-cohort and a validation-cohort at a ratio of 7:3. Patients were further categorized based on their disease activity states using cDAPSA (remission/low disease activity and moderate/high disease activity). Least absolute shrinkage and selection operator (LASSO) was used to select biomarkers which were associated with moderate/high disease activity in the derivation cohort. Receiver operating characteristic (ROC) curve, GiViTI calibration belt were used to assess the performance of the model in both cohorts. RESULTS The cohort [age: 55.5 (44.0-62.75) years, male: 80 (45.5 %)] had moderate disease activity [DAPSA: 15.9 (8.3-26.9); PASI: 3.2 (0.5-6.8)]. 101 PsA patients (57.4 %) had clinical DAPSA moderate/high disease activity. Biomarker levels associated with moderate/high disease activity included SAA (Serum amyloid A), IL-8 (Interleukin 8), IP10 (Interferon gamma-induced protein 10)/CXCL10, M-CSF (Macrophage colony-stimulating factor), SCGF-β (Stem cell growth factor), SDF-1α (Stromal cell-derived factor 1α)/CXCL12. The model's equation including the 6 biomarker levels was applied to the validation-cohort. The area under the ROC curve (AUC) for discriminating moderate/high disease activity was 0.802 and 0.835 for the derivation-and-validation-cohorts, respectively. The multi-biomarkers panel model had higher-AUC when compared with that of C-reactive protein (CRP) (AUC = 0.727, p = 0.022). The P-values of calibration charts in the two sets were 0.902 and 0.123. CONCLUSIONS The multi-biomarkers panel demonstrated the ability to discriminate patients with moderate/high disease activity from those with low disease activity/remission.
Collapse
Affiliation(s)
- Yingzhao Jin
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Isaac T Cheng
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho So
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Martin Li
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Terry Cheuk Fung Yip
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
2
|
Xie Q, Shen Y, Yang Y, Liang J, Wu T, Hu C, Wang Y, Tao H. Identification of XD23 as a potent inhibitor of osteosarcoma via downregulation of DKK1 and activation of the WNT/β-catenin pathway. iScience 2024; 27:110758. [PMID: 39280613 PMCID: PMC11402217 DOI: 10.1016/j.isci.2024.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/13/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Osteosarcoma, the most prevalent malignant bone tumor, is notorious for its aggressive growth and invasiveness. The highly mutable genome of osteosarcoma has made identifying a key oncogene challenging, hindering the development of targeted treatments. Our study validates the effectiveness of XD23, an anti-cancer agent we previously identified, in curbing osteosarcoma proliferation, metastasis, EMT differentiation, and bone destruction and promoting osteosarcoma apoptosis. It further elucidated that XD23 thwarts osteosarcoma by suppressing DKK1 expression, which in turn activates the WNT-β/Catenin pathway. This research presents the concrete evidence of DKK1's involvement in osteosarcoma development, offering a foundation for the development of DKK1 inhibitors as novel treatments for this disease.
Collapse
Affiliation(s)
- Qian Xie
- Department of Orthopedics, Shenzhen University General Hospital, Shenzhen 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yanni Shen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yipei Yang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tailin Wu
- Department of Orthopedics, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huiren Tao
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
3
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Adami G, Orsolini G, Rossini M, Fratucello A, Fassio A, Viapiana O, Fracassi E, Bixio R, Gatti D. Effects of tofacitinib on bone turnover markers and bone modulators in patients with rheumatoid arthritis. BMC Rheumatol 2024; 8:40. [PMID: 39256771 PMCID: PMC11385515 DOI: 10.1186/s41927-024-00414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is characterized by bone loss. It is unclear whether JAK inhibitors can attenuate bone loss in RA by modulating bone metabolism. The main objective of our study is to investigate the effects of tofacitinib on serum levels of bone turnover markers and modulators. Secondary objectives were to assess changes in bone mineral density (BMD), metacarpal index, bone erosions. METHODS We conducted a prospective observational study on patients with active RA failure to bDMARDs or tsDMARDs initiating treatment with tofacitinib. We measured at baseline and after 1, 2, 3, 6, 9 and 12 months: serum bone turnover markers (CTX, P1nP, B-ALP), bone modulators (Dkk-1, sclerostin, vitamin D, PTH, OPG and RANKL), BMD and radiographic parameters (Sharp van der Heijde score [SvdH], bone health index [BHI] and metacarpal index [MCI]). RESULTS 30 patients were enrolled in the study of whom 21 completed the study through month 12. Tofacitinib was clinically effective by suppressing DAS28-CRP. Glucocorticoids daily dose significantly decreased from baseline. We found a negative correlation between pre-study cumulative and daily dose of glucocorticoids and baseline B-ALP serum levels (r -0.592, p 0.012). Sclerostin serum levels increased significantly during the study period, while P1nP and B-ALP (markers of bone formation) decreased significantly. BMD levels, BHI, MCI and SvdH score did not change. CONCLUSION Treatment with tofacitinib was associated with a significant increase in sclerostin serum levels and a parallel decrease in markers of bone formation. However, no significant bone loss was observed.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy.
| | - Giovanni Orsolini
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy
| | - Maurizio Rossini
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy
| | - Anna Fratucello
- Research Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy
| | - Ombretta Viapiana
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy
| | - Elena Fracassi
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy
| | - Riccardo Bixio
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy
| | - Davide Gatti
- Rheumatology Unit, University of Verona, Pz Scuro 10, Verona, 37134, +0458124049, Italy
| |
Collapse
|
5
|
Braun J, Sieper J, Märker-Hermann E. Looking back on 51 years of the Carol Nachman Prize in Rheumatology-significance for the field of spondyloarthritis research. Z Rheumatol 2024; 83:563-574. [PMID: 38864856 PMCID: PMC11442482 DOI: 10.1007/s00393-024-01496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 06/13/2024]
Abstract
The city and casino of Wiesbaden, capital of the German state Hessen, have endowed the Carol Nachman Prize to promote research work in the field of rheumatology since 1972. The prize, endowed with 37,500 €, is the second highest medical award in Germany and serves to promote clinical, therapeutic, and experimental research work in the field of rheumatology. In June 2022, the 50-year anniversary was celebrated. In the symposium preceding the award ceremony, an overview was given on the significance of spondyloarthritis for the work of the awardees in the past 30 years. This overview has now been put together to inform the interested community of the work performed, including the opinion of the awardees regarding what they consider to be their most important contribution.
Collapse
Affiliation(s)
- Jürgen Braun
- Rheumatologisches Versorgungszentrum Steglitz, Schloßstr. 110, 12163, Berlin, Germany.
| | - Joachim Sieper
- Rheumatologie am Campus Benjamin Franklin, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Zhu S, Zhou J, Xie Z. The balance between helper T 17 and regulatory T cells in osteoimmunology and relevant research progress on bone tissue engineering. Immun Inflamm Dis 2024; 12:e70011. [PMID: 39264247 PMCID: PMC11391570 DOI: 10.1002/iid3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Bone regeneration is a well-regulated dynamic process, of which the prominent role of the immune system on bone homeostasis is more and more revealed by recent research. Before fully activation of the bone remodeling cells, the immune system needs to clean up the microenvironment in facilitating the bone repair initiation. Furthermore, this microenvironment must be maintained properly by various mechanisms over the entire bone regeneration process. OBJECTIVE This review aims to summarize the role of the T-helper 17/Regulatory T cell (Th17/Treg) balance in bone cell remodeling and discuss the relevant progress in bone tissue engineering. RESULTS The role of the immune response in the early stages of bone regeneration is crucial, especially the impact of the Th17/Treg balance on osteoclasts, mesenchymal stem cells (MSCs), and osteoblasts activity. By virtue of these knowledge advancements, innovative approaches in bone tissue engineering, such as nano-structures, hydrogel, and exosomes, are designed to influence the Th17/Treg balance and thereby augment bone repair and regeneration. CONCLUSION Targeting the Th17/Treg balance is a promising innovative strategy for developing new treatments to enhance bone regeneration, thus offering potential breakthroughs in bone injury clinics.
Collapse
Affiliation(s)
- Shuyu Zhu
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Jing Zhou
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Zhigang Xie
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| |
Collapse
|
7
|
Lin L, Huang Z, Li W, Liu X, Li X, Gao S, Chen J, Yang C, Min X, Yang H, Gong Q, Wei Y, Tu S, Rao X, Zhang Z, Dong L, Zhong J. Mid1 promotes synovitis in rheumatoid arthritis via ubiquitin-dependent post-translational modification. Pharmacol Res 2024; 205:107224. [PMID: 38777113 DOI: 10.1016/j.phrs.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES To explore the role of Midline-1 (Mid1) in synovial activation. METHODS NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS An increase in Mid1, an E3 ubiquitin ligase, was observed in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 defect on arthritis. CONCLUSION Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.
Collapse
Affiliation(s)
- Liman Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiwen Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjuan Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Chenxi Yang
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
González-Fernández C, González P, Maqueda A, Pérez V, Rodríguez FJ. Enhancing motor functional recovery in spinal cord injury through pharmacological inhibition of Dickkopf-1 with BHQ880 antibody. Biomed Pharmacother 2024; 176:116792. [PMID: 38795645 DOI: 10.1016/j.biopha.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Mounting experimental evidence has underscored the remarkable role played by the Wnt family of proteins in the spinal cord functioning and therapeutic potential in spinal cord injury (SCI). We aim to provide a therapeutic prospect associated with the modulation of canonical Wnt signaling, examining the spatio-temporal expression pattern of Dickkopf-1 (Dkk1) and its neutralization after SCI. We employ an intraparenchymal injection of the clinically validated Dkk1-blocking antibody, BHQ880, to elucidate its effects in SCI. METHODS A rat model of contusion SCI was used. Histological analyses were performed, wherein Dkk1 protein was sought, and ELISA analyses were employed for Dkk1 detection in cerebrospinal fluid and serum. To ascertain the BHQ880 therapeutic effect, rats were subjected to SCI and then injected with the antibody in the lesion epicenter 24 hours post-injury (hpi). Subsequent evaluation of motor functional recovery extended up to 56 days post-injury (dpi). qRT-PCR and histological analyses were conducted. RESULTS We demonstrate the presence of Dkk1 in the healthy rat spinal cord, with pronounced alterations observed following injury, primarily concentrated in the epicenter regions. Notably, a significative upregulation of Dkk1 was detected at 24 hpi, peaking at 3 dpi and remaining elevated until 42 dpi. Moreover, we revealed that early administration of BHQ880 considerably improved motor functional recovery, promoted preservation of myelinated tissue, and reduced astroglial and microglia/macrophage reactivity. Furthermore, there was a decrease in the acute expression of different inflammatory genes. CONCLUSIONS Collectively, our findings highlight the therapeutic potential of BHQ880 treatment in the context of SCI.
Collapse
Affiliation(s)
- Carlos González-Fernández
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| | - Pau González
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| |
Collapse
|
9
|
Okamoto K. Crosstalk between bone and the immune system. J Bone Miner Metab 2024; 42:470-480. [PMID: 39060500 DOI: 10.1007/s00774-024-01539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Bone functions not only as a critical element of the musculoskeletal system but also serves as the primary lymphoid organ harboring hematopoietic stem cells (HSCs) and immune progenitor cells. The interdisciplinary field of osteoimmunology has illuminated the dynamic interactions between the skeletal and immune systems, vital for the maintenance of skeletal tissue homeostasis and the pathogenesis of immune and skeletal diseases. Aberrant immune activation stimulates bone cells such as osteoclasts and osteoblasts, disturbing the bone remodeling and leading to skeletal disorders as seen in autoimmune diseases like rheumatoid arthritis. On the other hand, intricate multicellular network within the bone marrow creates a specialized microenvironment essential for the maintenance and differentiation of HSCs and the progeny. Dysregulation of immune-bone crosstalk in the bone marrow environment can trigger tumorigenesis and exacerbated inflammation. A comprehensive deciphering of the complex "immune-bone crosstalk" leads to a deeper understanding of the pathogenesis of immune diseases as well as skeletal diseases, and might provide insight into potential therapeutic approaches.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
10
|
Bhadouria N, Holguin N. Osteoporosis treatments for intervertebral disc degeneration and back pain: a perspective. JBMR Plus 2024; 8:ziae048. [PMID: 38706880 PMCID: PMC11066806 DOI: 10.1093/jbmrpl/ziae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 05/07/2024] Open
Abstract
Low back pain derived from intervertebral disc (IVD) degeneration is a debilitating spinal condition that, despite its prevalence, does not have any intermediary guidelines for pharmacological treatment between palliative care and invasive surgery. The development of treatments for the IVD is complicated by the variety of resident cell types needed to maintain the regionally distinct structural properties of the IVD that permit the safe, complex motions of the spine. Osteoporosis of the spine increases the risk of vertebral bone fracture that can increase the incidence of back pain. Fortunately, there are a variety of pharmacological treatments for osteoporosis that target osteoblasts, osteoclasts and/or osteocytes to build bone and prevent vertebral fracture. Of particular note, clinical and preclinical studies suggest that commonly prescribed osteoporosis drugs like bisphosphonates, intermittent parathyroid hormone, anti-sclerostin antibody, selective estrogen receptor modulators and anti-receptor activator of nuclear factor-kappa B ligand inhibitor denosumab may also relieve back pain. Here, we cite clinical and preclinical studies and include unpublished data to support the argument that a subset of these therapeutics for osteoporosis may alleviate low back pain by also targeting the IVD.
Collapse
Affiliation(s)
- Neharika Bhadouria
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nilsson Holguin
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
11
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
12
|
Xu P, Cao Y, Zhang S, Liu X, Zhang M, Zhang C. The predictive value of serum Dickkopf-1, Dickkopf-3 level to coronary artery disease and acute coronary syndrome. Int J Cardiol 2024; 403:131887. [PMID: 38382851 DOI: 10.1016/j.ijcard.2024.131887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Previous studies have already confirmed the association between Dickkopf (Dkk) protein and the occurrence and progression of atherosclerosis. However, there is limited clinical evidence regarding the serum levels of Dickkopf-1 (Dkk1) and Dickkopf-3 (Dkk3) in relation to atherosclerotic cardiovascular disease (ASCVD), particularly acute coronary syndrome (ACS). MATERIALS AND METHODS A total of 88 healthy volunteers and 280 patients with coronary artery disease (CAD) undergoing coronary angiography for angina between October 2021 and October 2022, including 96 cases of stable angina (SA), 96 of unstable angina (UA) and 88 of acute myocardial infarction (AMI) were included finally. The serum concentrations of Dkk1 and Dkk3 were measured using electrochemiluminescence of Meso Scale Discovery. The predictive value of single or combined application of serum Dkk1 and Dkk3 in CAD and ACS were evaluated. RESULTS The serum levels of Dkk1 were significantly higher in the SA group, UA group, and AMI group compared to the control group. Multivariable logistic regression analysis demonstrated that elevated serum Dkk1 levels were independent predictive factors for increased risk of CAD and ACS (OR = 1.027, 95%CI = 1.019-1.034, p < 0.001; OR = 1.045, 95%CI = 1.028-1.053, p < 0.001, respectively). Receiver operating characteristic curve (ROC) analysis showed that the optimal cutoff value of serum Dkk1 for predicting ACS was 205 ng/dl, with a sensitivity of 82.6% and specificity of 96.6%. The area under the curve (AUC) was 0.930 (95%CI: 0.899-0.961, p < 0.001). Regarding Dkk3, serum Dkk3 levels were elevated in CAD patients compared to the healthy control group, and significantly higher in ACS patients compared to SA patients. Serum Dkk3 was significantly associated with increased risk of CAD and ACS (OR = 1.131, 95%CI = 1.091-1.173, p < 0.001; OR = 1.201, 95%CI = 1.134-1.271, p < 0.001, respectively). ROC curve analysis showed that the optimal cutoff value of serum Dkk3 for predicting ACS was 50.82 ng/ml, with a sensitivity of 85.9% and specificity of 87.5%. The AUC was 0.925 (95%CI: 0.894-0.956, p < 0.001). When serum Dkk1 and Dkk3 are combined as predictive factors for ACS, the AUC was 0.975. CONCLUSION Serum levels of Dkk1 and Dkk3 are significantly associated with an increased risk of CAD and ACS, and they possess predictive value for CAD and ACS. The combination of serum Dkk1 and Dkk3 is a superior predictive factor for CAD and ACS.
Collapse
Affiliation(s)
- Panpan Xu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoling Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
13
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
14
|
Gupta N, Kanwar N, Arora A, Khatri K, Kanwal A. The interplay of rheumatoid arthritis and osteoporosis: exploring the pathogenesis and pharmacological approaches. Clin Rheumatol 2024; 43:1421-1433. [PMID: 38499817 DOI: 10.1007/s10067-024-06932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Rheumatoid arthritis (RA) and osteoporosis are two chronic disorders that are often seen together. RA is an autoimmune disorder that causes pain and inflammation in the joints, while osteoporosis is a disorder in which the bones become weak and fragile. Risk factors for bone loss in RA include disease activity, longer disease duration, erosive disease, autoantibody positivity, and joint damage leading to impaired physical activity. Recent research has shown that there is a complex interplay between immune cells, cytokines, and bone remodeling processes in both RA and osteoporosis. The bone remodeling process is regulated by cytokines and immune system signaling pathways, with osteoclasts activated through the RANK/RANKL/OPG pathway and the Wnt/DKK1/sclerostin pathway. Understanding these mechanisms can aid in developing targeted therapies for treatment of osteoporosis in RA patients. Current pharmacological approaches include anti-osteoporotic drugs such as bisphosphonates, denosumab, teriparatide, abaloparatide, raloxifene, and romosozumab. Conventional disease-modifying antirheumatic drugs such as methotrexate and biologicals including TNF inhibitors, IL-6 inhibitors, rituximab, and abatacept lower disease activity in RA and can improve bone metabolism by reducing inflammation but have limited impact on bone mineral density. This review will shed light on the relationship between osteoporosis and rheumatoid arthritis as well as the various factors that influence the onset of osteoporosis in RA patients. We also explore several treatment approaches to effectively managing osteoporosis in RA patients.
Collapse
Affiliation(s)
- Nikhil Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Navjot Kanwar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Anchal Arora
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Kavin Khatri
- Department of Orthopedics, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India.
| | - Abhinav Kanwal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India.
| |
Collapse
|
15
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints. Nat Commun 2024; 15:3225. [PMID: 38622181 PMCID: PMC11018862 DOI: 10.1038/s41467-024-47633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. Recent clinical trials of the nerve growth factor (NGF) inhibitors in OA patients have suggested adverse effects of NGF inhibition on joint structure. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression in mice. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study suggests a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
16
|
Henning P, Kassem A, Westerlund A, Lundberg P, Engdahl C, Lionikaite V, Wikström P, Wu J, Li L, Lindholm C, de Souza PPC, Movérare-Skrtic S, Lerner UH. Toll-like receptor-2 induced inflammation causes local bone formation and activates canonical Wnt signaling. Front Immunol 2024; 15:1383113. [PMID: 38646530 PMCID: PMC11026618 DOI: 10.3389/fimmu.2024.1383113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.
Collapse
Affiliation(s)
- Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ali Kassem
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Anna Westerlund
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Lundberg
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Cecilia Engdahl
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Section of Pathology, Umeå University, Umeå, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lei Li
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Catharina Lindholm
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pedro P. C. de Souza
- Innovation in Biomaterials Laboratory, Federal University of Goiás, Goiania, Brazil
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulf H. Lerner
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Khoswanto C, Dewi IK. The role of Wnt signaling on Tooth Extraction Wound Healing: Narrative review. Saudi Dent J 2024; 36:516-520. [PMID: 38690381 PMCID: PMC11056418 DOI: 10.1016/j.sdentj.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 05/02/2024] Open
Abstract
Compared to an incisional skin or mucosal wound, a tooth extraction wound results in far more soft tissue loss. A blood clot instantly fills the gap left by the extracted tooth. An embryonic type of bone forms during the healing of extraction wounds, and mature bone only later replaces it. Osteocytes in embryonic bone, also known as coarse fibrillar bone or immature bone, differ from those in adult bone in terms of number, size, and irregular arrangement. This immature bone is more radiolucent than mature bone due to the higher cell density and the smaller volume of calcified intercellular material. The Wnt gene family contains genes that encode secreted signaling proteins that have good promise for promoting bone regeneration. However, we still have a limited understanding the interplay of the molecular elements of the Wnt pathway in signal transduction, from ligand detection on the cell surface to transcription of target genes in the nucleus. We discuss the function of Wnt signaling molecules in this review, in tissue repair following tooth extraction and present recent results about these molecules. Conclusions: Wnt signaling activity helps to hasten bone regeneration while bone healing is slowed down by mutations in LRP5/6 or β-catenin.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University Surabaya, Indonesia
| | | |
Collapse
|
18
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
19
|
Zhao D, Wu L, Hong M, Zheng S, Wu X, Ye H, Chen F, Zhang D, Liu X, Meng X, Chen X, Chen S, Zhu J, Li J. DKK-1 and Its Influences on Bone Destruction: A Comparative Study in Collagen-Induced Arthritis Mice and Rheumatoid Arthritis Patients. Inflammation 2024; 47:129-144. [PMID: 37688661 DOI: 10.1007/s10753-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Dickkopf-1 (DKK-1) has been considered a master regulator of bone remodeling. As precursors of osteoclasts (OCs), myeloid-derived suppressor cells (MDSCs) were previously shown to participate in the process of bone destruction in rheumatoid arthritis (RA). However, the role of DKK-1 and MDSCs in RA is not yet fully understood. We investigated the relevance between the level of DKK-1 and the expression of MDSCs in different tissues and joint destruction in RA patients and collagen-induced arthritis (CIA) mouse models. Furthermore, the CIA mice were administered recombinant DKK-1 protein. The arthritis scores, bone destruction, and the percentage of MDSCs in the peripheral blood and spleen were monitored. In vitro, the differentiation of MDSCs into OCs was intervened with recombinant protein and inhibitor of DKK-1. The number of OCs differentiated and the protein expression of the Wnt/β-catenin signaling pathway were explored. The level of DKK-1 positively correlates with the frequency of MDSCs and bone erosion in RA patients and CIA mice. Strikingly, recombinant DKK-1 intervention significantly exacerbated arthritis scores and bone destruction, increasing the percentage of MDSCs in the peripheral blood and spleen in CIA mice. In vitro experiments showed that recombinant DKK-1 promoted the differentiation of MDSCs into OCs, reducing the expression of β-catenin and TCF4 and increasing the expression of CyclinD1. In contrast, the DKK-1 inhibitor had the opposite effect. Our findings highlight that DKK-1 promoted MDSCs expansion in RA and enhanced the differentiation of MDSCs into OCs via targeting the Wnt/β-catenin pathway, aggravating the bone destruction in RA.
Collapse
Affiliation(s)
- Di Zhao
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mukeng Hong
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songyuan Zheng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xianghui Wu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixin Ye
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Feilong Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dingding Zhang
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinhang Liu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiangyun Meng
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyun Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Mauro D, Forte G, Poddubnyy D, Ciccia F. The Role of Early Treatment in the Management of Axial Spondyloarthritis: Challenges and Opportunities. Rheumatol Ther 2024; 11:19-34. [PMID: 38108992 PMCID: PMC10796311 DOI: 10.1007/s40744-023-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic, inflammatory rheumatic disease that primarily affects the axial skeleton, often inflicting severe pain, diminished mobility, and a compromised quality of life. The advent of Assessment of SpondyloArthritis international Society (ASAS) classification criteria for spondyloarthritis (SpA) have enabled the classification of patients with axSpA in the non-radiographic stage but poorly perform if mistakenly used for diagnostic purposes. Despite notable progress in early diagnosis facilitated by referral strategies and extensive magnetic resonance imaging (MRI) utilization, diagnostic delays persist as a concerning issue. This underscores the urgency to narrow the diagnostic gap and highlights the critical role of early diagnosis in mitigating the long-term structural damage associated with this condition. Research into the impact of non-steroidal anti-inflammatory drugs (NSAIDs) and biologic disease-modifying antirheumatic drugs (bDMARDs) on inflammatory symptoms and radiographic progression has been extensive. A compelling body of evidence suggests that early intervention leads to superior disease outcomes. However, most of these studies have centered on patients with established diseases rather than those in the early stages. Consequently, findings from studies on early pharmacological intervention remain inconclusive, and the potential for modifying the disease trajectory is still debatable. Without precise data from clinical trials, insights from basic science regarding the pathogenic mechanisms might point toward potential targets that warrant early intervention in the disease process. This review underscores the urgency of early diagnosis and intervention in axSpA, highlighting ongoing research gaps and the need for further exploration to improve patient outcomes.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, Division of Rheumatology, Università della Campania L. Vanvitelli, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giulio Forte
- Department of Precision Medicine, Division of Rheumatology, Università della Campania L. Vanvitelli, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epidemiology Unit, German Rheumatism Research Centre, Berlin, Germany
| | - Francesco Ciccia
- Department of Precision Medicine, Division of Rheumatology, Università della Campania L. Vanvitelli, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
21
|
Anestino TA, Queiroz-Junior CM, Cruz AMF, Souza DG, Madeira MFM. The impact of arthritogenic viruses in oral tissues. J Appl Microbiol 2024; 135:lxae029. [PMID: 38323434 DOI: 10.1093/jambio/lxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1β, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.
Collapse
Affiliation(s)
- Thales Augusto Anestino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Amanda Medeiros Frota Cruz
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Mila Fernandes Moreira Madeira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
- Department of Oral Biology, Biomedical Research Institute, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
22
|
Sabooniha F. Psoriasis, bone and bowel: a comprehensive review and new insights. EXPLORATION OF MUSCULOSKELETAL DISEASES 2024; 2:1-19. [DOI: https:/doi.org/10.37349/emd.2024.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 01/25/2024]
Abstract
Psoriasis is a chronic immune-mediated disorder affecting about 2% of the population worldwide which is associated with significant morbidity. The disease usually presents as raised, well-demarcated erythematous plaques with adherent silvery scales. Psoriasis can appear at any age but it has two peaks occurring at 15–20 and 55–60 years of age. It affects males and females equally. Despite the multitude of investigations about psoriasis and even development of drugs with satisfactory results, its pathogenesis is not fully understood yet and its course is unpredictable. Various environmental triggers, e.g., obesity, stress and drugs may induce disease in genetically susceptible patients. Although psoriasis was considered primarily as a disease of the skin, more investigations have been revealed its systemic nature. Psoriatic arthritis (PsA) may complicate up to one-third of cases of psoriasis vulgaris (PV). Also, the association between psoriasis and a variety of other immune-mediated disorders such as inflammatory bowel disease (IBD) and celiac disease (CD) has been confirmed in various studies. Moreover, a growing body of evidences indicates that psoriasis shares some common histological and phenotypical properties with the spectrum of osteoimmunological diseases such as Paget’s disease of bone (PDB). Thus, exploring the common molecular and genetic mechanisms underlying psoriasis and related disorders is of paramount importance for better elucidating disease pathogenesis and designing more targeted treatments.
Collapse
|
23
|
Hilliquin S, Zhukouskaya V, Fogel O, Cherifi C, Ibrahim K, Slimani L, Cornelis FMF, Storms L, Hens A, Briot K, Lories R, Chaussain C, Miceli-Richard C, Bardet C. The sacroiliac joint: An original and highly sensitive tool to highlight altered bone phenotype in murine models of skeletal disorders. Bone 2024; 178:116931. [PMID: 37839664 DOI: 10.1016/j.bone.2023.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Bone disorders may affect the skeleton in different ways, some bones being very impaired and others less severely. In translational studies using murine models of human skeletal diseases, the bone phenotype is mainly evaluated at the distal femur or proximal tibia. The sacroiliac joint (SIJ), which connects the spine to the pelvis, is involved in the balanced transfer of mechanical energy from the lumbar spine to the lower extremities. Because of its role in biomechanical stress, the SIJ is a region of particular interest in various bone diseases. Here we aimed to characterize the SIJ in several murine models to develop a highly reliable tool for studying skeletal disorders. We performed a 12-month in vivo micro-computed tomography (micro-CT) follow-up to characterize the SIJ in wild-type (WT) C57BL/J6 mice and compared the bone microarchitecture of the SIJ and the distal femur at 3 months by micro-CT and histology. To test the sensitivity of our methodology, the SIJ and distal femur were evaluated at 3 and 6 months, in 2 murine models of skeletal disorder, X-linked hypophosphatemia (Hyp mice) and HLA-B27 transgenic mice and compared to WT mice. A multimodal analysis was performed, using a combination of microCT and histological analysis. With the Hyp model, the SIJ displayed more bone microarchitecture alterations than the distal femur. Hyp mice showed a significant reduction in trabecular bone at both the distal femur and sacral slope as compared with WT mice, with a significant positive correlation between trabecular bone parameters of the distal femur and sacral side of the SIJ. Furthermore, trabecular bone parameters (Bone Volume/Total Volume (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), trabecular pattern factor (Tb.Pf)) were significantly increased compared to femoral parameters at the SIJ. The sacral articular cortical bone, which is indicative of osteoarticular lesions, was altered in Hyp mice. Interestingly, in accordance to previous studies, HLA-B27 transgenic mice did not show any osteoarticular lesions as compared with WT mice. Cortical bone parameters (thickness, porosity), as well as scoring performed with double blinding, did not show difference between the 2 genotypes. The characterization and evaluation of the SIJ surface appears very sensitive to emphasize alterations of bone and joint. The SIJ may represent a valuable tool to investigate both bone and local osteoarticular alterations in murine models of skeletal disorders and might be a relevant site for assessing the response to treatment of chronic bone diseases.
Collapse
Affiliation(s)
- Stéphane Hilliquin
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France; Department of Rheumatology, Cochin Hospital, Université Paris Cité, Paris, France
| | - Volha Zhukouskaya
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France; Centre de référence des maladies rares du métabolisme du calcium et du phosphate, Plateforme d'expertise maladies rares Paris Saclay, filière OSCAR, EndoRare and BOND ERN, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Olivier Fogel
- Department of Rheumatology, Cochin Hospital, Université Paris Cité, Paris, France
| | - Chahrazad Cherifi
- Laboratoire Gly-CREET, Université Paris-Est Créteil Val de Marne (UPEC) Faculté des sciences et technologies, France
| | - Karim Ibrahim
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France
| | - Lotfi Slimani
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France
| | - Frederique M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Lies Storms
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ann Hens
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Karine Briot
- Department of Rheumatology, Cochin Hospital, Université Paris Cité, Paris, France; Centre de référence des maladies rares du métabolisme du calcium et du phosphate, Plateforme d'expertise maladies rares Paris Saclay, filière OSCAR, EndoRare and BOND ERN, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Rik Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Division of Rhumatology, University Hospitals Leuven, Leuven, Belgium
| | - Catherine Chaussain
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France; Centre de référence des maladies rares du métabolisme du calcium et du phosphate, Plateforme d'expertise maladies rares Paris Saclay, filière OSCAR, EndoRare and BOND ERN, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; AP-HP Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN, 75018 Paris, France
| | | | - Claire Bardet
- Université Paris Cité, Institut des maladies musculo-squelettiques, Laboratory Orofacial Pathologies, Imaging and Biotherapies URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), Montrouge, France.
| |
Collapse
|
24
|
Mathew A, Bhagavaldas MC, Biswas R, Biswas L. Genetic risk factors in ankylosing spondylitis: Insights into etiology and disease pathogenesis. Int J Rheum Dis 2024; 27:e15023. [PMID: 38151980 DOI: 10.1111/1756-185x.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Ashlin Mathew
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Raja Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
25
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve Growth Factor Receptor Limits Inflammation to Promote Remodeling and Repair of Osteoarthritic Joints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572937. [PMID: 38187570 PMCID: PMC10769345 DOI: 10.1101/2023.12.21.572937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. The need for relieving OA pain is paramount but inadequately addressed, partly due to limited understandings of how pain signaling regulates non-neural tissues. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study uncovers a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| |
Collapse
|
26
|
Wang Q, Liu Y, Wu J, Chen S, Hu T, Liu Y, Li X, Li X, Wu Y, Yu J, Zeng T, Luo Y, Hu X, Tan LM. Potential significance of changes in serum levels of IL-17, TNF-α and DKK-1 in the progression of the rheumatoid arthritis. Autoimmunity 2023; 56:2276068. [PMID: 37909152 DOI: 10.1080/08916934.2023.2276068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
To detect the value of serum interleukin-17 (IL-17), tumour necrosis factor-α (TNF-α), and Dickkopf-1 (DKK-1) in rheumatoid arthritis (RA) at different disease stages. 141 RA patients were randomly obtained and diagnosed in a large tertiary first-class hospital in Jiangxi Province from November 2021 to January 2022. RA was divided into 38 low activity and remission phase (low remission patients), 72 moderate activity patients, 41 high activity patients, according to the disease activity score 28 (DAS28) of RA and 70 healthy controls. IL-17 and TNF-α in serum detected by flow cytometry; DKK-1by ELISA; rheumatoid factor (RF) and C-reactive protein (CRP) by rate scattering turbidimetry; erythrocyte sedimentation rate (ESR) by Widmanstat method; anti-cyclic citrullinated polypeptide antibody (Anti-CCP) by chemiluminescence. The changes among the groups were statistically analysed and evaluated their diagnostic value. ①Anti-CCP, CRP, and ESR levels in the moderate-to-high activity group were higher than controls, while IL-17, TNF-α, and DKK-1levels higher than low remission group, moderate activity group and controls (p < 0.05). ②IL-17, TNF-α and DKK-1 were positively correlated with RA disease activity, with the correlations of IL-17, TNF-α and DKK-1 all over 0.5 (p < 0.05). ③The ROC curve showed that among all indices the AUC of DKK-1 was the largest, 0. 922, and has the highest sensitivity and negative predictive value for RA, 0.965 and 0.953, respectively. The specificity and positive predictive value of TNF-α is highest, 0.918 and 0.921, respectively, combined them had the highest predictive value in moderate-to-high activity RA, with AUC of 0.968, and had the highest sensitivity of 0.965. The IL-17, TNF-α and DKK-1 levels were elevated in RA and positively correlated with disease activity, involved in the Wnt signalling pathway of inflammatory and joint destructive effects, combining them to monitor the RA disease process and biologically treat the cytokines in the pathogenesis of RA were valuable.
Collapse
Affiliation(s)
- Qunxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yanzhao Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Jiazhen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Simei Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Tingting Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yuhan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xu Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xiaohang Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Yang Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Jianlin Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Tingting Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yi Luo
- The Second Affiliated Hospital of Jiangxi, University of Chinese Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoyan Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| | - Li-Ming Tan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province's Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
27
|
Lu T, Forgetta V, Zhou S, Richards JB, Greenwood CM. Identifying Rare Genetic Determinants for Improved Polygenic Risk Prediction of Bone Mineral Density and Fracture Risk. J Bone Miner Res 2023; 38:1771-1781. [PMID: 37830501 DOI: 10.1002/jbmr.4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Osteoporosis and fractures severely impact the elderly population. Polygenic risk scores for bone mineral density have demonstrated potential clinical utility. However, the value of rare genetic determinants in risk prediction has not been assessed. With whole-exome sequencing data from 436,824 UK Biobank participants, we assigned White British ancestry individuals into a training data set (n = 317,434) and a test data set (n = 74,825). In the training data set, we developed a common variant-based polygenic risk score for heel ultrasound speed of sound (SOS). Next, we performed burden testing to identify genes harboring rare determinants of bone mineral density, targeting influential rare variants with predicted high deleteriousness. We constructed a genetic risk score, called ggSOS, to incorporate influential rare variants in significant gene burden masks into the common variant-based polygenic risk score. We assessed the predictive performance of ggSOS in the White British test data set, as well as in populations of non-White British European (n = 18,885), African (n = 7165), East Asian (n = 2236), South Asian (n = 9829), and other admixed (n = 1481) ancestries. Twelve genes in pivotal regulatory pathways of bone homeostasis harbored influential rare variants associated with SOS (p < 5.5 × 10-7 ), including AHNAK, BMP5, CYP19A1, FAM20A, FBXW5, KDM5B, KREMEN1, LGR4, LRP5, SMAD6, SOST, and WNT1. Among 4013 (5.4%) individuals in the test data set carrying these variants, a one standard deviation decrease in ggSOS was associated with 1.35-fold (95% confidence interval [CI] 1.16-1.57) increased hazard of major osteoporotic fracture. However, compared with a common variant-based polygenic risk score (C-index = 0.641), ggSOS had only marginally improved prediction accuracy in identifying at-risk individuals (C-index = 0.644), with overlapping confidence intervals. Similarly, ggSOS did not demonstrate substantially improved predictive performance in non-European ancestry populations. In summary, modeling the effects of rare genetic determinants may assist polygenic prediction of fracture risk among carriers of influential rare variants. Nonetheless, improved clinical utility is not guaranteed for population-level risk screening. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Sirui Zhou
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 5 Prime Sciences Inc., Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Celia Mt Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Biedroń G, Czepiel M, Siedlar M, Korkosz M. Serum concentration of dickkopf-related protein 1 (DKK1) in psoriatic arthritis in the context of bone remodelling. Rheumatol Int 2023; 43:2175-2183. [PMID: 37750896 PMCID: PMC10587027 DOI: 10.1007/s00296-023-05452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease, characterised by the pathological occurrence of two opposite phenomena-osteoresorption and osteogenesis. Dickkopf-related protein 1 (DKK1) which inhibits the Wingless protein (Wnt) signalling pathway has been shown to be a master regulator of bone remodeling in inflammatory rheumatic diseases. However, the exact relationship between DKK1 serum level and bone remodelling is not clear. The goal of this study is to review state-of-the-art knowledge on the association of serum DKK1 with a bone remodelling in PsA. The MEDLINE-PubMed, EMBASE, Scopus, Web of Science and DOAJ databases were searched for appropriate papers. The English terms: 'DKK1', 'Dickkopf-1' 'Dickkopf related protein 1', 'psoriatic arthritis' and 'PsA' were used for search purposes. Eight original articles and two reviews were identified up to August 2023. In four out of 8 discussed studies DKK1 serum level was higher in PsA patients than in healthy controls [Dalbeth, p < 0.01; Diani, p < 0.001; Chung, p < 0.01; Abd el Hamid, p < 0.001)], it was comparable in another (Daousiss, p = 0.430) and was lower in two (Fassio2017, p < 0.05; Fassio2019, p < 0.05). In one study, the comparative groups included patients with axial spondyloarthritis, where DKK1 serum levels were lower in PsA groups [Jadon, peripheral PsA, p = 0.01]. The true relative serum concentration of DKK1 in PsA, as well as its influence on osteogenesis and osteoresorption, is still equivocal. Further studies on this matter with consistent and stringent methodology are warranted.
Collapse
Affiliation(s)
- Grzegorz Biedroń
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Jakubowskiego 2, Krakow, Poland
| | - Marcin Czepiel
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Jakubowskiego 2, Krakow, Poland
| |
Collapse
|
29
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
30
|
Adami G, Fassio A, Rossini M, Benini C, Bixio R, Rotta D, Viapiana O, Gatti D. Machine learning to characterize bone biomarkers profile in rheumatoid arthritis. Front Immunol 2023; 14:1291727. [PMID: 38022514 PMCID: PMC10665911 DOI: 10.3389/fimmu.2023.1291727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Bone metabolism is disrupted in rheumatoid arthritis (RA); however, the bone metabolic signature of RA is poorly known. The objective of the study is to further characterize the bone metabolic profile of RA and compare it to psoriatic arthritis (PsA), systemic sclerosis (SSc) and healthy controls. Methods We did a cross-sectional case-control study on consecutively enrolled patients and age-matched controls. We collected clinical characteristics, serum biomarkers related to bone metabolism and Bone Mineral Density (BMD). A multiple correlation analysis using Spearman's rank correlation coefficient was conducted within the RA patient group to investigate associations between biomarker levels and clinical variables. Machine learning (ML) models and Principal Component Analysis (PCA) was performed to evaluate the ability of bone biomarker profiles to differentiate RA patients from controls. Results We found significantly lower BMD in RA patients compared to PsA, and Systemic Sclerosis SSc groups. RA patients exhibited higher Dkk1, sclerostin and lower P1nP and B-ALP levels compared to controls. No significant differences in CTX levels were noted. Correlation analysis revealed associations between bone biomarkers and clinical variables. PCA and ML highlighted distinct biomarker patterns in RA which can effectively discriminated bone biomarkers profile in RA from controls. Conclusion Our study helped uncover the distinct bone profile in RA, including changes in bone density and unique biomarker patterns. These findings enhance our comprehension of the intricate links between inflammation, bone dynamics, and RA activity, offering potential insights for diagnostic and therapeutic advancements in managing bone involvement in this challenging condition.
Collapse
|
31
|
Zhou T, Wang X, Kong J, Yu L, Xie H, Wang F, Xu S, Shuai Z, Zhou Q, Pan F. PRICKLE1 gene methylation and abnormal transcription in Chinese patients with ankylosing spondylitis. Immunobiology 2023; 228:152742. [PMID: 37742487 DOI: 10.1016/j.imbio.2023.152742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a common inflammatory arthritis without a reliable biomarker. The role of methylation and mRNA expression of PRICKLE1 promoter in the pathogenesis of ankylosing spondylitis remains unclear. METHODS A two-stage case-control design was used to detect the characteristics of methyl group and transcriptome of PRICKLE1 gene in Ankylosing spondylitis. The methylation degree of PRICKLE1 gene promoter region was tested by phosphate-sequencing, and further analyzed whether there was significant difference in methylation level of PRICKLE1 gene. The expression levels of PRICKLE1 mRNA in 50 AS patients and 50 healthy controls were detected by real-time quantitative PCR (RT-qPCR). RESULTS Compared with healthy control group, the intensity of methylation in 4 ponds of PRICKLE1 in patients with Ankylosing spondylitis was low, and the mRNA levels were overexpressed (P = 0.017). ROC results showed that the sensitivity of PRICKLE1 was 68.67% and specificity was 71.43%. CONCLUSION There is a significant change in the concentration of serum PRICKLE1 mRNAin patients with Ankylosing spondylitis, and the degree of gene methylation is significantly reduced, suggesting that PRICKLE1 gene maybe involved in the pathogenesis of Ankylosing spondylitis, which may be useful for predicting the occurrence of AS and finding new early screening indicators.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiangping Kong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Huimin Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Feier Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shenqian Xu
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Zongwen Shuai
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, No. 678#, Furong Road, 230601 Hefei, Anhui Province, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
32
|
Adami G, Orsolini G, Rossini M, Pedrollo E, Fratucello A, Fassio A, Viapiana O, Milleri S, Fracassi E, Bixio R, Gatti D. Changes in bone turnover markers and bone modulators during abatacept treatment. Sci Rep 2023; 13:17183. [PMID: 37821541 PMCID: PMC10567677 DOI: 10.1038/s41598-023-44374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
Rheumatoid arthritis (RA) causes bone loss, only partly related to inflammation. The impact of RA treatments on bone metabolism and their ability to mitigate bone loss remains uncertain. The primary goal of our study was to examine the influence of abatacept on serum levels of markers and regulators involved in bone turnover. Secondary objectives included evaluating changes in bone mineral density (BMD), bone health parameters, erosions, and exploring potential correlations among these parameters. We conducted a prospective observational study on patients with active seropositive RA failure to biological disease modifying anti-rheumatic drugs initiating treatment with abatacept. We measured at baseline and after 1, 2, 3, 6, 9 and 12 months: serum bone turnover markers (CTX, P1nP, B-ALP), bone modulators (Dkk-1, sclerostin, vitamin D, PTH, OPG and RANKL), BMD and radiographic parameters (modified Sharp van der Heijde score [mSvdH], bone health index [BHI] and metacarpal index [MCI]). Disease activity and glucocorticoid intake was monitored. 33 patients were enrolled in the study. We found a significant increase in markers of bone formation (B-ALP and P1nP) from baseline to M6 and M12. PTH increased significantly at M6 but not at M12. All other bone markers and modulators did not change. We found a significant decrease in BHI and MCI from baseline to M12 (median difference - 0.17 95% CI - 0.42 to - 0.10, p 0.001 and - 0.09 95% CI - 0.23 to - 0.07, respectively). BMD at femoral neck transitorily decreased at M6 (mean difference - 0.019 g/cm2 95% CI - 0.036 to - 0.001 p 0.04). BMD at total hip, lumbar spine and mSvdH score did not change significantly. P1nP delta at M12 correlated with delta mSvdH. Treatment with abatacept was associated with a significant increase in bone formation markers. The secondary and transient increase in PTH serum levels may be responsible of the transitory bone loss.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy.
| | - Giovanni Orsolini
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| | - Elisa Pedrollo
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| | - Anna Fratucello
- Research Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| | - Ombretta Viapiana
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| | - Stefano Milleri
- Centro Ricerche Cliniche (CRC), Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Elena Fracassi
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| | - Riccardo Bixio
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Pz Scuro 10, 37134, Verona, Italy
| |
Collapse
|
33
|
Orsini F, Crotti C, Cincinelli G, Di Taranto R, Amati A, Ferrito M, Varenna M, Caporali R. Bone Involvement in Rheumatoid Arthritis and Spondyloartritis: An Updated Review. BIOLOGY 2023; 12:1320. [PMID: 37887030 PMCID: PMC10604370 DOI: 10.3390/biology12101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Several rheumatologic diseases are primarily distinguished by their involvement of bone tissue, which not only serves as a mere target of the condition but often plays a pivotal role in its pathogenesis. This scenario is particularly prominent in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Given the immunological and systemic nature of these diseases, in this review, we report an overview of the pathogenic mechanisms underlying specific bone involvement, focusing on the complex interactions that occur between bone tissue's own cells and the molecular and cellular actors of the immune system, a recent and fascinating field of interest defined as osteoimmunology. Specifically, we comprehensively elaborate on the distinct pathogenic mechanisms of bone erosion seen in both rheumatoid arthritis and spondyloarthritis, as well as the characteristic process of aberrant bone formation observed in spondyloarthritis. Lastly, chronic inflammatory arthritis leads to systemic bone involvement, resulting in systemic bone loss and consequent osteoporosis, along with increased skeletal fragility.
Collapse
Affiliation(s)
- Francesco Orsini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Chiara Crotti
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Gilberto Cincinelli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Raffaele Di Taranto
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Andrea Amati
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Matteo Ferrito
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy (A.A.)
- Department of Rheumatology and Medical Sciences, ASST G.Pini-CTO, 20122 Milan, Italy
| |
Collapse
|
34
|
Fassio A, Atzeni F, Rossini M, D’Amico V, Cantatore F, Chimenti MS, Crotti C, Frediani B, Giusti A, Peluso G, Rovera G, Scolieri P, Raimondo V, Gatti D. Osteoimmunology of Spondyloarthritis. Int J Mol Sci 2023; 24:14924. [PMID: 37834372 PMCID: PMC10573470 DOI: 10.3390/ijms241914924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The mechanisms underlying the development of bone damage in the context of spondyloarthritis (SpA) are not completely understood. To date, a considerable amount of evidence indicates that several developmental pathways are crucially involved in osteoimmunology. The present review explores the biological mechanisms underlying the relationship between inflammatory dysregulation, structural progression, and osteoporosis in this diverse family of conditions. We summarize the current knowledge of bone biology and balance and the foundations of bone regulation, including bone morphogenetic protein, the Wnt pathway, and Hedgehog signaling, as well as the role of cytokines in the development of bone damage in SpA. Other areas surveyed include the pathobiology of bone damage and systemic bone loss (osteoporosis) in SpA and the effects of pharmacological treatment on focal bone damage. Lastly, we present data relative to a survey of bone metabolic assessment in SpA from Italian bone specialist rheumatology centers. The results confirm that most of the attention to bone health is given to postmenopausal subjects and that the aspect of metabolic bone health may still be underrepresented. In our opinion, it may be the time for a call to action to increase the interest in and focus on the diagnosis and management of SpA.
Collapse
Affiliation(s)
- Angelo Fassio
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | - Fabiola Atzeni
- Unità Operativa Complessa di Reumatologia Azienda Ospedaliero Universitaria Policlinico “G. Martino” di Messina, 35128 Messina, Italy; (F.A.); (V.D.)
| | - Maurizio Rossini
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | - Valeria D’Amico
- Unità Operativa Complessa di Reumatologia Azienda Ospedaliero Universitaria Policlinico “G. Martino” di Messina, 35128 Messina, Italy; (F.A.); (V.D.)
| | - Francesco Cantatore
- Unità Operativa Complessa di Reumatologia Universitaria, Polic. “Riuniti” di Foggia, 71122 Foggia, Italy;
| | - Maria Sole Chimenti
- Dipartimento di Medicina dei Sistemi, Reumatologia, Allergologia e Immunologia Clinica Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Chiara Crotti
- UOC Osteoporosi e Malattie Metaboliche dell’Osso Dipartimento di Reumatologia e Scienze Mediche ASST-G. Pini-CTO, 20122 Milan, Italy;
| | - Bruno Frediani
- Department of Medical, Surgical and Neuroscience Sciences, Rheumatology University of Siena, 53100 Siena, Italy;
| | - Andrea Giusti
- SSD Malattie Reumatologiche e del Metabolismo Osseo, Dipartimento delle Specialità Mediche, ASL3, 16132 Genova, Italy;
| | - Giusy Peluso
- UOC di Reumatologia-Fondazione Policlinico Universitario Agostino Gemelli-IRCSS, 00168 Rome, Italy;
| | - Guido Rovera
- Ospedale S. Andrea, Divisione Reumatologia, 13100 Vercelli, Italy;
| | - Palma Scolieri
- Ambulatorio di Reumatologia Ospedale Nuovo Regina Margherita ASL ROMA1, 00153 Rome, Italy;
| | | | - Davide Gatti
- Dipartimento di Medicina, Università di Verona, 37124 Verona, Italy; (M.R.); (D.G.)
| | | |
Collapse
|
35
|
Komagamine M, Komatsu N, Ling R, Okamoto K, Tianshu S, Matsuda K, Takeuchi T, Kaneko Y, Takayanagi H. Effect of JAK inhibitors on the three forms of bone damage in autoimmune arthritis: joint erosion, periarticular osteopenia, and systemic bone loss. Inflamm Regen 2023; 43:44. [PMID: 37726797 PMCID: PMC10507845 DOI: 10.1186/s41232-023-00293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The types of bone damage in rheumatoid arthritis (RA) include joint erosion, periarticular osteoporosis, and systemic osteoporosis. Janus kinase (JAK) inhibitors ameliorate inflammation and joint erosion in RA, but their effect on the three types of bone loss have not been reportedly explored in depth. We aimed to clarify how JAK inhibitors influence the various types of bone loss in arthritis by modulating osteoclastic bone resorption and/or osteoblastic bone formation. METHODS Collagen-induced arthritis (CIA) mice were treated with a JAK inhibitor after the onset of arthritis. Micro-computed tomography (μCT) and histological analyses (bone morphometric analyses) on the erosive calcaneocuboid joint, periarticular bone (distal femur or proximal tibia), and vertebrae were performed. The effect of four different JAK inhibitors on osteoclastogenesis under various conditions was examined in vitro. RESULTS The JAK inhibitor ameliorated joint erosion, periarticular osteopenia and systemic bone loss. It reduced the osteoclast number in all the three types of bone damage. The JAK inhibitor enhanced osteoblastic bone formation in the calcaneus distal to inflammatory synovium in the calcaneocuboid joints, periarticular region of the tibia and vertebrae, but not the inflamed calcaneocuboid joint. All the JAK inhibitors suppressed osteoclastogenesis in vitro to a similar extent in the presence of osteoblastic cells. Most of the JAK inhibitors abrogated the suppressive effect of Th1 cells on osteoclastogenesis by inhibiting IFN-γ signaling in osteoclast precursor cells, while a JAK inhibitor did not affect this effect due to less ability to inhibit IFN-γ signaling. CONCLUSIONS The JAK inhibitor suppressed joint erosion mainly by inhibiting osteoclastogenesis, while it ameliorated periarticular osteopenia and systemic bone loss by both inhibiting osteoclastogenesis and promoting osteoblastogenesis. These results indicate that the effect of JAK inhibitors on osteoclastogenesis and osteoblastogenesis depends on the bone damage type and the affected bone area. In vitro studies suggest that while JAK inhibitors inhibit osteoclastic bone resorption, their effects on osteoclastogenesis in inflammatory environments vary depending on the cytokine milieu, JAK selectivity and cytokine signaling specificity. The findings reported here should contribute to the strategic use of antirheumatic drugs against structural damages in RA.
Collapse
Affiliation(s)
- Masatsugu Komagamine
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Rui Ling
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shi Tianshu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Matsuda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Saitama Medical University, Saitama, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
Dell'Accio F, De Bari C. Towards disease modification in osteoarthritis. Osteoarthritis Cartilage 2023; 31:1154-1155. [PMID: 37196976 DOI: 10.1016/j.joca.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
In December 2022, Gerwin et al published in Nature Medicine that the C-terminal portion of angiopoietin-like 3, called LNA043, has chondroprotective and cartilage-regenerative properties. Molecular data from an experimental medicine phase I study suggested potential efficacy in humans. Here, we respond to and complement a commentary from Vincent and Conaghan and discuss unresolved issues and the potential of this molecule as a disease-modifying osteoarthritis drug.
Collapse
Affiliation(s)
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, UK.
| |
Collapse
|
37
|
Takeda R, Matsumoto T, Omata Y, Inui H, Taketomi S, Nagase Y, Nishikawa T, Oka H, Tanaka S. Changes in knee joint destruction patterns among patients with rheumatoid arthritis undergoing total knee arthroplasty in recent decades. Clin Rheumatol 2023; 42:2341-2352. [PMID: 37222908 PMCID: PMC10412667 DOI: 10.1007/s10067-023-06620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES This study aimed to investigate the trend of joint destruction patterns on knee radiographs of patients with rheumatoid arthritis (RA) undergoing total knee arthroplasty (TKA) over the past 16 years. METHOD Medial joint space, lateral joint space, medial spur area, lateral spur area (L-spur), and femoro-tibial angle were obtained from 831 preoperative knee radiographs of patients with RA who underwent TKA between 2006 and 2021 using software capable of automatic measurements. Non-hierarchical clustering was performed based on these five parameters. Trends in the five individual radiographic parameters and the ratio of each cluster were investigated during the target period. Moreover, clinical data from 244 cases were compared among clusters to identify factors associated with this trend. RESULTS All parameters, except for L-spur, showed significant increasing trends from 2006 to 2021. The radiographs were clustered into groups according to the characteristic pattern of radiographic findings: cluster 1 (conventional RA type), with bicompartmental joint space narrowing (JSN), less spur formation, and valgus alignment; cluster 2 (osteoarthritis type), with medial JSN, medial osteophytes, and varus alignment; and cluster 3 (less destructive type), with mild bicompartmental JSN, less spur formation, and valgus alignment. The ratio of cluster 1 showed a significantly decreasing trend contrary to the significantly increasing trend in clusters 2 and 3. The DAS28-CRP of cluster 3 was higher than those of clusters 1 and 2. CONCLUSIONS Radiographs of TKA recipients with RA are increasingly presenting osteoarthritic features in recent decades. Key Points • Using automated measurement software, morphological parameters were measured from radiographs of 831 patients with rheumatoid arthritis who had undergone TKA in the past 16 years. • Cluster analysis based on the radiographic parameters revealed that the radiographs of patients with end-stage knee arthritis requiring total knee arthroplasty were classified into three groups. • In patients with rheumatoid arthritis who have undergone total knee arthroplasty in the past 16 years, the proportion of clusters with features of osteoarthritis and difficult-to-treat rheumatoid arthritis has increased, while the proportion of conventional rheumatoid arthritis has decreased.
Collapse
Affiliation(s)
- Ryutaro Takeda
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takumi Matsumoto
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yasunori Omata
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Inui
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shuji Taketomi
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuichi Nagase
- Department of Rheumatic Surgery, Tokyo Metropolitan Tama Medical Center, 2-8-29 Musashidai, Fuchu-city, Tokyo, 183-8524, Japan
| | - Takuji Nishikawa
- Department of Rheumatology, Tokyo Metropolitan Bokutoh Hospital, 4-23-15 Koutoubashi, Sumida-ku, Tokyo, Japan
| | - Hiroyuki Oka
- Department of Clinical Motor System Medicine, 22nd Century Medical and Research Center, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
38
|
Fang X, Chen C, Wang ZX, Zhao Y, Jiang LQ, Fang Y, Zhang RD, Pan HF, Tao SS. Serum DKK-1 level in ankylosing spondylitis: insights from meta-analysis and Mendelian randomization. Front Immunol 2023; 14:1193357. [PMID: 37503346 PMCID: PMC10368999 DOI: 10.3389/fimmu.2023.1193357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Objective The purpose of this study was to precisely evaluate the serum Dickkopf-1 (DKK-1) level in patients with ankylosing spondylitis (AS) relative to that in normal controls and to test the causal relationship between DKK-1 and the risk of AS. Methods Embase, PubMed, Web of Science, WANFANG DATA, VIP, and China National Knowledge Infrastructure (CNKI) were comprehensively searched until July 2022 for pertinent studies. The pooled standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated by the fixed or random-effect model. In Mendelian randomization (MR) analysis on the causal relationship between serum DKK-1 level and AS risk, the inverse variance weighting method (IVW), MR-Egger regression, weighted median method, and weighted pattern method were applied. Sensitivity analyses, including the horizontal pleiotropy test, heterogeneity test, and leave-one-out test, were also performed. Results The meta-analysis of 40 studies containing 2,371 AS patients and 1,633 healthy controls showed that there was no significant difference in DKK-1 serum level between AS patients and normal controls (pooled SMD=0.207, 95% CI =-0.418-0.832, P=0.516). The subgroup analysis of the CRP ≤ 10 mg/L group showed that AS patients had higher serum DKK-1 concentration than the healthy controls (SMD=2.267, 95% CI = 0.102-4.432, P=0.040). Similarly, MR analysis also demonstrated no significant association between DKK-1 serum level and AS (IVW OR=0.999, 95% CI = 0.989-1.008, P=0.800). All sensitivity analyses revealed consistent results. Conclusions There was no significant change in serum DKK-1 concentration between AS patients and healthy controls. In addition, no causal relationship exists between serum DKK-1 levels and AS risk.
Collapse
Affiliation(s)
- Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Xin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
39
|
Ureña NM, de Oliveira CP, Guterres SS, Pohlmann AR, da Costa OTF, Boechat AL. The Anti-Arthritic Activity of Diclofenac Lipid-Core Nanocapsules: Stereological Analysis Showing More Protection of Deep Joint Components. Molecules 2023; 28:5219. [PMID: 37446881 DOI: 10.3390/molecules28135219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Diclofenac is the most prescribed nonsteroidal anti-inflammatory drug worldwide and is used to relieve pain and inflammation in inflammatory arthritis. Diclofenac is associated with serious adverse effects, even in regular-dose regimens. Drug delivery systems can overcome this issue by reducing adverse effects and optimizing their efficacy. This study evaluated the activity of lipid-core nanocapsules loaded with diclofenac (DIC-LNCs) in an experimental model of adjuvant-induced arthritis. The diclofenac nanoformulation was obtained via self-assembly. A stereological analysis approach was applied for the morphological quantification of the volume, density, and cellular profile count of the metatarsophalangeal joints of rats. Proinflammatory cytokines and biochemical profiles were also obtained. Our results showed that the diclofenac nanocapsule DIC-LNCs were able to reduce arthritis compared with the control group and the DIC group. DIC-LNCs efficiently reduced proinflammatory cytokines, C-reactive protein, and xanthine oxidase levels. Additionally, DIC-LNCs reduced the loss of synoviocytes and chondrocytes compared with the DIC (p < 0.05) and control groups (p < 0.05). These data suggest that DIC-LNCs have anti-arthritic activity and preserve joint components, making them promising for clinical use.
Collapse
Affiliation(s)
- Nathalie Marte Ureña
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| | - Catiúscia Padilha de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Oscar Tadeu Ferreira da Costa
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
- Laboratório de Morfologia Quantitativa, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| | - Antonio Luiz Boechat
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
- Laboratório de Terapias Inovadoras, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil
| |
Collapse
|
40
|
Wu CY, Yang HY, Lai JH. Potential therapeutic targets beyond cytokines and Janus kinases for autoimmune arthritis. Biochem Pharmacol 2023; 213:115622. [PMID: 37230194 DOI: 10.1016/j.bcp.2023.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Synovial inflammation and destruction of articular cartilage and bone are hallmarks of autoimmune arthritis. Although current efforts to inhibit proinflammatory cytokines (biologics) or block Janus kinases (JAK) appear to be promising in many patients with autoimmune arthritis, adequate disease control is still lacking in a significant proportion of autoimmune arthritis patients. The possible adverse events from taking biologics and JAK inhibitors, such as infection, remain a major concern. Recent advances showing the effects of a loss of balance between regulatory T cells and T helper-17 cells as well as how the imbalance between osteoblastic and osteoclastic activities of bone cells exaggerates joint inflammation, bony destruction and systemic osteoporosis highlight an interesting area to explore in the search for better therapeutics. The recognition of the heterogenicity of synovial fibroblasts in osteoclastogenesis and their crosstalk with immune and bone cells provides an opportunity for identifying novel therapeutic targets for autoimmune arthritis. In this commentary, we comprehensively review the current knowledge regarding the interactions among heterogenic synovial fibroblasts, bone cells and immune cells and how they contribute to the immunopathogenesis of autoimmune arthritis, as well as the search for novel therapeutic targets not targeted by current biologics and JAK inhibitors.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
41
|
Esawy MM, Ebaid AM, Abd-Elhameed A, Thagfan FA, Mubaraki MA, Alazzouni AS, Dkhil MA, Shabana MA. Assessment of Circulating lncRNA H19 in Ankylosing Spondylitis Patients and Its Correlation with Disease Activity. J Pers Med 2023; 13:914. [PMID: 37373903 DOI: 10.3390/jpm13060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that results in severe pain and stiffness in the joints. The causes and pathophysiology of AS are still largely unknown. The lncRNA H19 plays key roles in the pathogenesis of AS by mediating inflammatory progression by acting in the axis of IL-17A/IL-23. The aims of this study were determining the role of lncRNA H19 in AS and assessing its clinical correlation. A case-control study was conducted and qRT-PCR was utilized to measure H19 expression. Comparing AS cases to healthy controls, it was found that H19 expression was significantly upregulated. For AS prediction, H19 demonstrated a 81.1% sensitivity, 100% specificity, and 90.6% diagnostic accuracy at a lncRNA H19 expression value of 1.41. lncRNA H19 had a significantly positive correlation with AS activity, MRI results, and inflammatory markers. lncRNA H19 seemed to be an independent predictor of AS (adjusted OR of 211 (95% CI: 4.7-939; p = 0.025)). After 3 months of clinical follow-up, seventeen patients (32.1%) showed minimal clinical improvement and fifteen patients (28.3%) showed major improvement. AS activity scores were significantly decreased in patients with high H19 expression. A significantly elevated lncRNA H19 expression was observed in AS cases compared with that in healthy controls. These results suggest that upregulation of lncRNA H19 expression may be involved in the pathogenesis of AS. The expression of the lncRNA H19 is related to the duration and activity of the disease. LncRNA H19 expression seems to be an independent predictor of AS.
Collapse
Affiliation(s)
- Marwa M Esawy
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany M Ebaid
- Rheumatology and Rehabilitation Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amir Abd-Elhameed
- Internal Medicine Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Felwa A Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed S Alazzouni
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
| | - Marwa A Shabana
- Clinical Pathology Department, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
42
|
Messina OD, Vidal M, Adami G, Vidal LF, Clark P, Torres JAM, Lems W, Zerbini C, Arguissain C, Reginster JY, Lane NE. Chronic arthritides and bone structure: focus on rheumatoid arthritis-an update. Aging Clin Exp Res 2023:10.1007/s40520-023-02432-9. [PMID: 37222927 DOI: 10.1007/s40520-023-02432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Normal bone remodeling depends of a balance between bone forming cells, osteoblasts and bone resorbing cells, the osteoclasts. In chronic arthritides and some inflammatory and autoimmune diseases such as rheumatoid arthritis, there is a great constellation of cytokines produced by pannus that impair bone formation and stimulate bone resorption by inducing osteoclast differentiation and inhibiting osteoblast maturation. Patients with chronic inflammation have multiple causes that lead to low bone mineral density, osteoporosis and a high risk of fracture including circulating cytokines, impaired mobility, chronic administration of glucocorticoids, low vitamin D levels and post-menopausal status in women, among others. Biologic agents and other therapeutic measures to reach prompt remission might ameliorate these deleterious effects. In many cases, bone acting agents need to be added to conventional treatment to reduce the risk of fractures and to preserve articular integrity and independency for daily living activities. A limited number of studies related to fractures in chronic arthritides were published, and future investigation is needed to determine the risk of fractures and the protective effects of different treatments to reduce this risk.
Collapse
Affiliation(s)
- Osvaldo Daniel Messina
- Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina
- International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
| | - Maritza Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru.
| | - Giovanni Adami
- Rheumatology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Luis Fernando Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru
- Regional Advisory Council for Latin America - International Osteoporosis Foundation (IOF), Lima, Peru
| | - Patricia Clark
- International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
- Chief of Clinical Epidemiology Unit-Hospital Federico Gomez School of Medicine UNAM, Mexico City, Mexico
| | | | - William Lems
- Department of Rheumatology, Amsterdam UMC, Location VU University Medical Centre Amsterdam, Amsterdam, North-Holland, The Netherlands
| | | | - Constanza Arguissain
- Collaborating Centre WHO, Investigaciones Reumatológicas y Osteológicas (IRO), Buenos Aires, Argentina
| | - Jean-Yves Reginster
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Centre for Public Health, Aspects of Musculoskeletal Health and Ageing, University of Liege, Liege, Belgium
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
43
|
Prati C, Lequerre T, Le Goff B, Cortet B, Toumi H, Tournadre A, Marotte H, Lespessailles E. Novel insights into the anatomy and histopathology of the sacroiliac joint and correlations with imaging signs of sacroiliitis in case of axial spondyloarthritis. Front Physiol 2023; 14:1182902. [PMID: 37250138 PMCID: PMC10213906 DOI: 10.3389/fphys.2023.1182902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
For a better understanding of the pathophysiology of spondyloarthropathy (SpA), a detailed anatomical description of the sacroiliac joint is required because sacroiliitis is the earliest and most common sign of SpA and an essential feature for the diagnosis of ankylosing spondylitis. Beyond the anatomy, the histopathology of sacroiliac entheses and immunological mechanisms involved in sacroiliitis are crucial for a better understanding of disease causation. In this narrative review, we discuss the core anatomical, histological, and immunohistological observations involved in the development of sacroiliitis, focusing particularly on imaging-based information associated with sacroiliitis. Finally, we try to answer the question of whether at the sacroiliac joint, enthesitis precedes synovitis and subchondral bone changes in SpA.
Collapse
Affiliation(s)
- Clément Prati
- Department of Rheumatology, Besançon University Hospital, PEPITE EA4267, University of Franche-Comté, Besançon, France
| | - Thierry Lequerre
- Department of Rheumatology, Rouen University Hospital, Inserm 1234, CIC/CRB 1404, Rouen, France
| | - Benoît Le Goff
- Department of Rheumatology—CHU de Nantes, Nantes, France
| | - Bernard Cortet
- Department of Rheumatology, MABLAB ULR 4490, CHU Lille, University Lille, Lille, France
| | - Hechmi Toumi
- Department of Rheumatology, Translational Medicine Research Platform, PRIMMO, University Hospital Center of Orleans, Orleans, France
| | - Anne Tournadre
- Department of Rheumatology, CHU Clermont-Ferrand, UNH UMR1019 INRAE–Université Clermont Auvergne, Clermont-Ferrand, France
| | - Hubert Marotte
- Department of Rheumatology, University Hospital of Saint Etienne, INSERM, SAINBIOSE U1059, Saint-Etienne, France
| | - Eric Lespessailles
- Department of Rheumatology, Translational Medicine Research Platform, PRIMMO, University Hospital Center of Orleans, Orleans, France
| |
Collapse
|
44
|
Stavre Z, Kim JM, Yang YS, Nündel K, Chaugule S, Sato T, Park K, Gao G, Gravallese E, Shim JH. Schnurri-3 inhibition suppresses bone and joint damage in models of rheumatoid arthritis. Proc Natl Acad Sci U S A 2023; 120:e2218019120. [PMID: 37141171 PMCID: PMC10175794 DOI: 10.1073/pnas.2218019120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/10/2023] [Indexed: 05/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to systemic and articular bone loss by activating bone resorption and suppressing bone formation. Despite current therapeutic agents, inflammation-induced bone loss in RA continues to be a significant clinical problem due to joint deformity and lack of articular and systemic bone repair. Here, we identify the suppressor of bone formation, Schnurri-3 (SHN3), as a potential target to prevent bone loss in RA. SHN3 expression in osteoblast-lineage cells is induced by proinflammatory cytokines. Germline deletion or conditional deletion of Shn3 in osteoblasts limits articular bone erosion and systemic bone loss in mouse models of RA. Similarly, silencing of SHN3 expression in these RA models using systemic delivery of a bone-targeting recombinant adenoassociated virus protects against inflammation-induced bone loss. In osteoblasts, TNF activates SHN3 via ERK MAPK-mediated phosphorylation and, in turn, phosphorylated SHN3 inhibits WNT/β-catenin signaling and up-regulates RANKL expression. Accordingly, knock-in of a mutation in Shn3 that fails to bind ERK MAPK promotes bone formation in mice overexpressing human TNF due to augmented WNT/β-catenin signaling. Remarkably, Shn3-deficient osteoblasts are not only resistant to TNF-induced suppression of osteogenesis, but also down-regulate osteoclast development. Collectively, these findings demonstrate SHN3 inhibition as a promising approach to limit bone loss and promote bone repair in RA.
Collapse
Affiliation(s)
- Zheni Stavre
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jung-Min Kim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Kerstin Nündel
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Sachin Chaugule
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Tadatoshi Sato
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA01605
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01605
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01605
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01605
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01605
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Ellen M. Gravallese
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA01605
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA01605
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA01605
| |
Collapse
|
45
|
Berni M, Brancato AM, Torriani C, Bina V, Annunziata S, Cornella E, Trucchi M, Jannelli E, Mosconi M, Gastaldi G, Caliogna L, Grassi FA, Pasta G. The Role of Low-Level Laser Therapy in Bone Healing: Systematic Review. Int J Mol Sci 2023; 24:ijms24087094. [PMID: 37108257 PMCID: PMC10139216 DOI: 10.3390/ijms24087094] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Low-level laser therapy (LLLT) is a treatment that is increasingly used in orthopedics practices. In vivo and in vitro studies have shown that low-level laser therapy (LLLT) promotes angiogenesis, fracture healing and osteogenic differentiation of stem cells. However, the underlying mechanisms during bone formation remain largely unknown. Factors such as wavelength, energy density, irradiation and frequency of LLLT can influence the cellular mechanisms. Moreover, the effects of LLLT are different according to cell types treated. This review aims to summarize the current knowledge of the molecular pathways activated by LLLT and its effects on the bone healing process. A better understanding of the cellular mechanisms activated by LLLT can improve its clinical application.
Collapse
Affiliation(s)
- Micaela Berni
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Camilla Torriani
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Elena Cornella
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Michelangelo Trucchi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Eugenio Jannelli
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
46
|
Pinto Tasende JA, Fernandez-Moreno M, Vazquez-Mosquera ME, Fernandez-Lopez JC, Oreiro-Villar N, De Toro Santos FJ, Blanco-García FJ. Increased synovial immunohistochemistry reactivity of TGF-β1 in erosive peripheral psoriatic arthritis. BMC Musculoskelet Disord 2023; 24:246. [PMID: 36997896 PMCID: PMC10061727 DOI: 10.1186/s12891-023-06339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Immune and non-immune cells contribute to the pathology of chronic arthritis, and they can contribute to tissue remodeling and repair as well as disease pathogenesis. The present research aimed to analyze inflammation and bone destruction/regeneration biomarkers in patients with psoriatic arthritis (PsA), rheumatoid arthritis (RA), osteoarthritis (OA), and ankylosing spondylitis (AS). METHODS Samples were obtained from the inflamed knee of patients with knee arthritis who had been referred for undergoing arthroscopies. The synovial membrane was processed for pathological description, IHC analysis, and quantification of mRNA expression ratio by qRT-PCR. Serum levels of TGF-β1, IL-23, IL-6, IL-17 A, IL-22, Dkk1, Sclerostin, BMP2, BMP4, Wnt1, and Wnt5a were measured by ELISA. All these data were analyzed and compared with the demographic, clinical, blood tests, and radiological characteristics of the patients. RESULTS The synovial membrane samples were obtained from 42 patients for IHC, extraction, and purification of RNA for synovial mRNA expression analysis, and serum for measuring protein levels from 38 patients. IHC reactivity for TGF-β1 in the synovial tissue was higher in patients with psoriatic arthritis (p 0.036) and was positively correlated with IL-17 A (r = 0.389, p = 0.012), and Dkk1 (r = 0.388, p = 0.012). Gene expression of the IL-17 A was higher in PsA patients (p = 0.018) and was positively correlated with Dkk1 (r = 0.424, p = 0.022) and negatively correlated with BMP2 (r = -0.396, p = 0.033) and BMP4 (r = -0.472, p = 0.010). It was observed that IHC reactivity for TGF-β1 was higher in patients with erosive PsA (p = 0.024). CONCLUSIONS The IHC reactivity of TGF-β1 in synovial tissue was higher in patients with erosive psoriatic arthritis, and TGF-β1 was in relation to higher levels of gene expression of IL-17 A and Dkk1.
Collapse
Affiliation(s)
- Jose A Pinto Tasende
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, 84 Xubias de Arriba Road, 15006, A Coruña, Spain.
| | - M Fernandez-Moreno
- INIBIC, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | | | - J C Fernandez-Lopez
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, 84 Xubias de Arriba Road, 15006, A Coruña, Spain
| | - N Oreiro-Villar
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, 84 Xubias de Arriba Road, 15006, A Coruña, Spain
| | - F J De Toro Santos
- Department of Rheumatology, Complexo Hospitalario Universitario de A Coruña, Universidade de A Coruña, A Coruña, Spain
| | - F J Blanco-García
- Department of Rheumatology-INIBIC, Complexo Hospitalario Universitario de A Coruña, Universidade de A Coruña, A Coruña, Spain
| |
Collapse
|
47
|
Han Y, Yang H, Hua Z, Nie S, Xu S, Zhou C, Chen F, Li M, Yu Q, Sun Y, Wei Y, Wang X. Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune Dysfunctions. Cells 2023; 12:cells12070972. [PMID: 37048045 PMCID: PMC10093245 DOI: 10.3390/cells12070972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Ankylosing spondylitis (AS) is clinically characterized by bone fusion that is induced by the pathological formation of extra bone. Unfortunately, the fundamental mechanism and related therapies remain unclear. The loss of SHP-2 (encoded by Ptpn11) in CD4-Cre;Ptpn11f/f mice resulted in the induction of AS-like pathological characteristics, including spontaneous cartilage and bone lesions, kyphosis, and arthritis. Hence, this mouse was utilized as an AS model in this study. As one of the basic physical fields, the magnetic field (MF) has been proven to be an effective treatment method for articular cartilage degeneration. In this study, the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on an AS-like mouse model were investigated. The RMF treatment (2 h/d, 0.2 T, 4 Hz) was performed on AS mice from two months after birth until the day before sampling. The murine specimens were subjected to transcriptomics, immunomics, and metabolomics analyses, combined with molecular and pathological experiments. The results demonstrated that the mitigation of inflammatory deterioration resulted in an increase in functional osteogenesis and a decrease in dysfunctional osteolysis due to the maintenance of bone homeostasis via the RANKL/RANK/OPG signaling pathway. Additionally, by regulating the ratio of CD4+ and CD8+ T-cells, RMF treatment rebalanced the immune microenvironment in skeletal tissue. It has been observed that RMF interventions have the potential to alleviate AS, including by decreasing pathogenicity and preventing disease initiation. Consequently, RMF, as a moderately physical therapeutic strategy, could be considered to alleviate the degradation of cartilage and bone tissue in AS and as a potential option to halt the progression of AS.
Collapse
Affiliation(s)
- Yu Han
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Hua Yang
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhongke Hua
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Shenglan Nie
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Shuling Xu
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Cai Zhou
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Fengyi Chen
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Mengqing Li
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Qinyao Yu
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yunpeng Wei
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| | - Xiaomei Wang
- Magnetobiology Group, Department of Physiology, Shenzhen University Health Science Center, Xili Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
48
|
Werner J, Boonekamp KE, Zhan T, Boutros M. The Roles of Secreted Wnt Ligands in Cancer. Int J Mol Sci 2023; 24:5349. [PMID: 36982422 PMCID: PMC10049518 DOI: 10.3390/ijms24065349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Wnt ligands are secreted signaling proteins that display a wide range of biological effects. They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and genetic alterations in various Wnt signaling components, which result in ligand-independent or ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis, and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.
Collapse
Affiliation(s)
- Johannes Werner
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kim E. Boonekamp
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Mannheim University Hospital, Heidelberg University, D-68167 Mannheim, Germany;
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| |
Collapse
|
49
|
Matsuda K, Shiba N, Hiraoka K. New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24065173. [PMID: 36982247 PMCID: PMC10049180 DOI: 10.3390/ijms24065173] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA), one of the most common autoimmune diseases, is characterized by multiple-joint synovitis with subsequent destruction of bone and cartilage. The excessive autoimmune responses cause an imbalance in bone metabolism, promoting bone resorption and inhibiting bone formation. Preliminary studies have revealed that receptor activator of NF-κB ligand (RANKL)-mediated osteoclast induction is an important component of bone destruction in RA. Synovial fibroblasts are the crucial producers of RANKL in the RA synovium; novel analytical techniques, primarily, single-cell RNA sequencing, have confirmed that synovial fibroblasts include heterogeneous subsets of both pro-inflammatory and tissue-destructive cell types. The heterogeneity of immune cells in the RA synovium and the interaction of synovial fibroblasts with immune cells have recently received considerable attention. The current review focused on the latest findings regarding the crosstalk between synovial fibroblasts and immune cells, and the pivotal role played by synovial fibroblasts in joint destruction in RA.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
50
|
Özdemirel AE, Güven SC, Doğancı A, Sarı Sürmeli Z, Özyuvalı A, Kurt M, Rüstemova D, Hassan S, Yalçın Sayın AP, Tutkak H, Ataman Ş. Anti-tumor necrosis factor alpha treatment does not influence serum levels of the markers associated with radiographic progression in ankylosing spondylitis. Arch Rheumatol 2023; 38:148-155. [PMID: 37235120 PMCID: PMC10208618 DOI: 10.46497/archrheumatol.2023.9974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES The study aimed to determine the levels of change of the markers related to radiographic progression, such as Dickkopf-1 (DKK-1), sclerostin (SOST), bone morphogenetic protein (BMP)-2 and -4, and interleukin (IL)-17 and -23, in ankylosing spondyloarthritis (AS) during anti-tumor necrosis factor alpha (TNF-α) treatment. PATIENTS AND METHODS Fifty-three anti-TNF-α naïve AS patients (34 males, 19 females; median: 38 years; range, 20 to 52 years) refractory to conventional treatments meeting the modified New York criteria or Assessment of SpondyloArthritis International Society classification criteria were enrolled to this cross-sectional, controlled study between October 2015 and January 2017. Fifty healthy volunteers (35 males, 15 females; median: 36 years; range, 18 to 55 years) with similar age and sex characteristics were recruited. Serum DKK-1, BMP-2, BMP-4, SOST, IL-17, and IL-23 levels were measured in both groups. The serum levels of the markers were measured again after about two years (mean follow-up duration of 21.7±6.4 months) in AS patients who started anti-TNF-α treatment. Demographic, clinical characteristics, and laboratory parameters were recorded. The disease activity at the time of inclusion was assessed through the Bath Ankylosing Spondylitis Disease Activity Index. RESULTS Serum DKK-1, SOST, IL-17, and IL-23 levels in the AS group before anti-TNF-a treatment were significantly higher compared to the control group (p<0.01 for DKK-1, p<0.001 for others). There was no difference regarding serum BMP-4 levels, whereas BMP-2 levels were significantly higher in the control group (p<0.01). Forty (75.47%) AS patients had serum marker levels measured after anti-TNF-α treatment. No significant change was observed in the serum levels of these 40 patients measured 21.7±6.4 months after the initiation of anti-TNF-α treatment (p>0.05 for all). CONCLUSION In AS patients, there was no change in DKK-1/SOST, BMP, and IL-17/23 cascade with anti-TNF-α treatment. This finding may suggest that these pathways act independently of each other, and their local effects are not influenced by systemic inflammation.
Collapse
Affiliation(s)
| | - Serdar Can Güven
- Department of Rheumatology, Ankara City Hospital, Ankara, Türkiye
| | - Alper Doğancı
- Department of Physical and Rehabilitation Medicine, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| | | | - Ayla Özyuvalı
- Department of Physical and Rehabilitation Medicine, HFM Beyazpınar Physical Medicine And Rehabilitation Centre, Ankara, Türkiye
| | - Mehmet Kurt
- Department of Physical and Rehabilitation Medicine, Dr. Ergun Özdemir Görele State Hospital, Giresun, Türkiye
| | - Diana Rüstemova
- Department of Physical and Rehabilitation Medicine, Can Private Hospital, Manisa, Türkiye
| | - Selin Hassan
- Department of Physical and Rehabilitation Medicine, Başkent University Medical School, Ankara, Türkiye
| | | | - Hüseyin Tutkak
- Department of Immunology and Allergy, Ankara University Medical School, Ankara, Türkiye
| | - Şebnem Ataman
- Department of Rheumatology, Ankara University Medical School, Ankara, Türkiye
| |
Collapse
|