1
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Osmond MJ, Dabertrand F, Quillinan N, Su EJ, Lawrence DA, Marr DW, Neeves KB. Harnessing micrometer-scale tPA beads for high plasmin generation and accelerated fibrinolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.621942. [PMID: 39574757 PMCID: PMC11580863 DOI: 10.1101/2024.11.06.621942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Rapid restoration of blood flow is critical in treating acute ischemic stroke. Current fibrinolytic therapies using tissue plasminogen activator (tPA) are limited by low recanalization rates and risks of off-target bleeding. Here, we present a strategy using tPA immobilized on micrometer-scale beads to enhance local plasmin generation. We synthesized tPA-functionalized beads of varying sizes (0.1 μm and 1.0 μm) and evaluated their efficacy. In vitro assays demonstrated that 1.0 μm tPA-beads generated higher plasmin generation compared to free tPA and 0.1 μm beads, overcoming antiplasmin inhibition and promoting a self-propagating wave of fibrinolysis. In a murine model of acute ischemic stroke, intravenous administration of 1.0 μm tPA-beads at doses nearly two orders of magnitude lower than the standard free tPA dose led to rapid and near-complete thrombus removal within minutes. This approach addresses kinetic and transport limitations of current therapies and may reduce the risk of hemorrhagic complications.
Collapse
Affiliation(s)
- Matthew J. Osmond
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus
- Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines
| | - Keith B. Neeves
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus
- Departmet of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus
- Hemophilia and Thrombosis Center, University of Colorado Anschutz Medical Campus
| |
Collapse
|
3
|
Nilsson I, Su EJ, Fredriksson L, Sahlgren BH, Bagoly Z, Moessinger C, Stefanitsch C, Ning FC, Zeitelhofer M, Muhl L, Lawrence ALE, Scotney PD, Lu L, Samén E, Ho H, Keep RF, Medcalf RL, Lawrence DA, Eriksson U. Thrombolysis exacerbates cerebrovascular injury after ischemic stroke via a VEGF-B dependent effect on adipose lipolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617532. [PMID: 39416206 PMCID: PMC11483068 DOI: 10.1101/2024.10.11.617532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebrovascular injuries leading to edema and hemorrhage after ischemic stroke are common. The mechanisms underlying these events and how they are connected to known risk factors for poor outcome, like obesity and diabetes, is relatively unknown. Herein we demonstrate that increased adipose tissue lipolysis is a dominating risk factor for the development of a compromised cerebrovasculature in ischemic stroke. Reducing adipose lipolysis by VEGF-B antagonism improved vascular integrity by reducing ectopic cerebrovascular lipid deposition. Thrombolytic therapy in ischemic stroke using tissue plasminogen activator (tPA) leads to increased risk of hemorrhagic complications, substantially limiting the use of thrombolytic therapy. We provide evidence that thrombolysis with tPA promotes adipose tissue lipolysis, leading to a rise in plasma fatty acids and lipid accumulation in the ischemic cerebrovasculature after stroke. VEGF-B blockade improved the efficacy and safety of thrombolysis suggesting the potential use of anti-VEGF-B therapy to extend the therapeutic window for stroke management.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
- Lead contact: (I.N.)
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- These authors contributed equally
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zsuzsa Bagoly
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, Department of Laboratory Medicine, Division of Clinical Laboratory Sciences, Faculty of Medicine, University of Debrecen, Hungary
| | - Christine Moessinger
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lisa E. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Li Lu
- Karolinska Experimental Research and Imaging Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Heidi Ho
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Hudák L, Kovács KB, Bagoly Z, Szegedi I, Bencs V, Lóczi L, Orbán-Kálmándi R, Péter-Pakó H, Fülesdi Z, Busi B, Nagy A, Perjési-Kiss B, Oláh L, Csiba L. Clinicopathological Observations in Acute Stroke Patients Treated with Intravenous Thrombolysis. J Clin Med 2024; 13:6012. [PMID: 39408072 PMCID: PMC11478137 DOI: 10.3390/jcm13196012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Ischemic stroke is a leading cause of mortality worldwide, and intravenous thrombolysis, while improving functional outcomes, still leaves a significant mortality rate. This study aimed to investigate the clinical and pathological data of thrombolysed stroke patients who subsequently died and underwent autopsy, focusing on hemorrhagic transformation (HT). Methods: Over a 10-year period, 1426 acute ischemic stroke patients received thrombolysis at our center, with an in-hospital mortality rate of 11.7%. Autopsies were performed on 98 of the 167 deceased patients. Results: HT was found in 47% of these cases, only less than half occurring within a day of thrombolysis. Significant independent predictors of HT included higher lactate dehydrogenase (LD) levels and higher INR values at admission. HT directly caused death in 30% of cases, often through herniation, while other complications (pulmonary embolism, pneumonia) were also common. Conclusions: These findings highlight the importance of postmortem investigations to accurately determine the incidence of HT and contributing factors. Our data indicate that in the vast majority of HT cases, the role of contributing factors other than rt-PA may be important. Of the routinely assessed clinical and laboratory parameters at admission, only LD and INR were found to be independent predictors of HT in the autopsied studied cohort.
Collapse
Affiliation(s)
- Lilla Hudák
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kitti Bernadett Kovács
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsa Bagoly
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, 4032 Debrecen, Hungary
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Hungarian Research Network (HUN-REN-DE) Cerebrovascular Research Group, 4032 Debrecen, Hungary
| | - István Szegedi
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, 4032 Debrecen, Hungary
| | - Viktor Bencs
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Linda Lóczi
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, 4032 Debrecen, Hungary
- Hungarian Research Network (HUN-REN-DE) Cerebrovascular Research Group, 4032 Debrecen, Hungary
| | - Rita Orbán-Kálmándi
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, 4032 Debrecen, Hungary
- Hungarian Research Network (HUN-REN-DE) Cerebrovascular Research Group, 4032 Debrecen, Hungary
| | - Henrietta Péter-Pakó
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, 4032 Debrecen, Hungary
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsófia Fülesdi
- Department of Radiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Blanka Busi
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Nagy
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, 4032 Debrecen, Hungary
- Department of Health Informatics, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Beáta Perjési-Kiss
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Oláh
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Hungarian Research Network (HUN-REN-DE) Cerebrovascular Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Brenna S, Glatzel M, Magnus T, Puig B, Galliciotti G. Neuroserpin and Extracellular Vesicles in Ischemic Stroke: Partners in Neuroprotection? Aging Dis 2024; 15:2191-2204. [PMID: 39191396 PMCID: PMC11346402 DOI: 10.14336/ad.2024.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 08/29/2024] Open
Abstract
Ischemic stroke represents a significant global health challenge, often resulting in death or long-term disability, particularly among the elderly, where advancing age stands as the most unmodifiable risk factor. Arising from the blockage of a brain-feeding artery, the only therapies available to date aim at removing the blood clot to restore cerebral blood flow and rescue neuronal cells from death. The prevailing treatment approach involves thrombolysis by administration of recombinant tissue plasminogen activator (tPA), albeit with a critical time constraint. Timely intervention is imperative, given that delayed thrombolysis increases tPA leakage into the brain parenchyma, causing harmful effects. Strategies to preserve tPA's vascular benefits while shielding brain cells from its toxicity have been explored. Notably, administering neuroserpin (Ns), a brain-specific tPA inhibitor, represents one such approach. Following ischemic stroke, Ns levels rise and correlate with favorable post-stroke outcomes. Studies in rodent models of focal cerebral ischemia have demonstrated the beneficial effects of Ns administration. Ns treatment maintains blood-brain barrier (BBB) integrity, reducing stroke volume. Conversely, Ns-deficient animals exhibit larger stroke injury, increased BBB permeability and enhanced microglia activation. Furthermore, Ns administration extends the therapeutic window for tPA intervention, underscoring its potential in stroke management. Remarkably, our investigation reveals the presence of Ns within extracellular vesicles (EVs), small membrane-surrounded particles released by all cells and critical for intercellular communication. EVs influence disease outcome following stroke through cargo transfer between cells. Clarifying the role of EVs containing NS could open up urgently needed novel therapeutic approaches to improve post-ischemic stroke outcome.
Collapse
Affiliation(s)
- Santra Brenna
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Berta Puig
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Banei F, Aliaghaei A, Meftahi GH. The effect of chronic administration of oxycodone on the behavioral functions and histopathology in the cerebellum and striatum of adult male rats. 3 Biotech 2024; 14:225. [PMID: 39247457 PMCID: PMC11379841 DOI: 10.1007/s13205-024-04062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Oxycodone is widely used for pain management and acts via binding to mu- and kappa opioid receptors. It was shown that extended oxycodone usage can result from the demyelination and degeneration of neurons through the stress response, which triggers apoptotic signaling pathways. The striatum and cerebellum are recognized as significant contributors to addiction; however, there is no report on the effect of oxycodone on the cerebellum and striatum and motor coordination. We treated rats daily with oxycodone at 15 mg/kg doses for thirty days. Motor performance and electromyography activity were then evaluated. Stereological methods were performed to assess the number of neurons in the cerebellum and striatum as well as immunohistochemistry for microgliosis and astrogliosis. Furthermore, the Sholl analysis method was utilized to evaluate the cellular structure of both microglia and astrocytes. Results of the rotarod test for motor coordination show no significant (P < 0.05) difference between the oxycodone subjects and those in the control group. In addition, open-field assessments indicated that the application of oxycodone did not alter the amount of distance covered (as an indicator of locomotion) or time spent in the central area (as an indicator of anxiety) (P < 0.001). The electromyography (EMG) test result showed that oxycodone caused a delay in the reaction of the muscular nerves (P < 0.001). Data and results from our experiment revealed that administering oxycodone did not affect astrogliosis and the number of neurons in the cerebellum and striatum (P < 0.05). In contrast, it altered neuromuscular function. In addition, oxycodone administration activated microglia in the cerebellum and striatum. In conclusion, we encourage more research on the adverse effects of oxycodone on the brain.
Collapse
Affiliation(s)
- Farzin Banei
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Present Address: Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Huang T, Guo Y, Xie W, Yin J, Zhang Y, Chen W, Huang D, Li P. Brain border-derived CXCL2 + neutrophils drive NET formation and impair vascular reperfusion following ischemic stroke. CNS Neurosci Ther 2024; 30:e14916. [PMID: 39135337 PMCID: PMC11319398 DOI: 10.1111/cns.14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The brain border compartments harbor a diverse population of immune cells and serve as invasion sites for leukocyte influx into the brain following CNS injury. However, how brain-border myeloid cells affect stroke pathology remains poorly characterized. METHODS AND RESULTS Here, we showed that ischemic stroke-induced expansion of CXCL2+ neutrophils, which exhibit highly proinflammatory features. We tracked CXCL2+ neutrophils in vivo by utilizing a photoconvertible Kik-GR mouse (fluorescent proteins Kikume Green Red, Kik-GR) and found that brain-infiltrating CXCL2+ neutrophils following ischemic stroke were mainly derived from the brain border rather than the periphery. We demonstrated that CXCL2 neutralization inhibited the formation and releasing of neutrophil extracellular traps (NETs) from in vitro cultured primary neutrophils. Furthermore, CXCL2-neutralizing antibody treatment reduced brain infarcts and improved vascular reperfusion at day 3 postischemic stroke. CONCLUSIONS Collectively, brain border-derived CXCL2+ neutrophil expansion may impair vascular reperfusion by releasing NETs following ischemic stroke.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Wanqing Xie
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Jiemin Yin
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Yueman Zhang
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Weijie Chen
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Zhang P, Cheng J, Liu C, Li W, Wang Y, Zhang N, Wu J, Zhang X, Liu C, Hou Y. Hypersensitive MR Angiography for Diagnosis of Ischemic Stroke and Reperfusion Subarachnoid Hemorrhage. Anal Chem 2024; 96:11742-11750. [PMID: 38980807 DOI: 10.1021/acs.analchem.4c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Stroke is an acute injury of the central nervous system caused by the disorders of cerebral blood circulation, which has become one of the major causes of disability and death. Hemorrhage, particularly subarachnoid hemorrhage (SAH), is one of the poorest prognostic factors in stroke, which is related to the thrombolytic therapy, and has been considered very dangerous. In this context, the MR angiography with high sensitivity and resolution has been developed based on biocompatible paramagnetic ultrasmall NaGdF4 nanoprobes. Owing to the appropriate hydrodynamic diameter, the nanoprobe can be confined inside the blood vessels and it only extravasates at the vascular injury site when the bleeding occurs. Relying on this property, the three-dimensional (3D) anatomic structures of artery occlusion of stroke rat can be precisely visualized; reperfusion-related SAH has been successfully visualized and identified. Benefiting from the long blood half-life of the nanoprobe, the observation window of MR angiography can last for the whole period of reperfusion, thereby monitoring the probable SAH in real time during thrombolytic therapy. More importantly, through reconstruction of multiparametric MRI, the arterial occlusion, cerebral ischemic region, and SAH can be simultaneously visualized in vivo in a 3D manner for the first time. Therefore, the current study provides a novel approach for both noninvasive 3D vascular visualization and hemorrhage alert, which possesses great prospects for clinical translation.
Collapse
Affiliation(s)
- Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junwei Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuang Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenyue Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqing Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jin Wu
- Physical Examination Center, The Second Department of Health and Medical Care, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xinyu Zhang
- Physical Examination Center, The Second Department of Health and Medical Care, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Yepes M. Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 550:21-29. [PMID: 38964373 DOI: 10.1016/j.neuroscience.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 07/06/2024]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
10
|
Bernard M, Menet R, Lecordier S, ElAli A. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions. Cell Mol Life Sci 2024; 81:225. [PMID: 38769116 PMCID: PMC11106055 DOI: 10.1007/s00018-024-05244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)β controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRβ is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.
Collapse
Affiliation(s)
- Maxime Bernard
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Romain Menet
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Sarah Lecordier
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ayman ElAli
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
11
|
Zhang H, Shang J, Li W, Gao D, Zhang J. Increased Expression of VCAM1 on Brain Endothelial Cells Drives Blood-Brain Barrier Impairment Following Chronic Cerebral Hypoperfusion. ACS Chem Neurosci 2024; 15:2028-2041. [PMID: 38710594 PMCID: PMC11099957 DOI: 10.1021/acschemneuro.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic cerebral hypoperfusion (CCH)-triggered blood-brain barrier (BBB) dysfunction is a core pathological change occurring in vascular dementia (VD). Despite the recent advances in the exploration of the structural basis of BBB impairment and the routes of entry of harmful compounds after a BBB leakage, the molecular mechanisms inducing BBB impairment remain largely unknown in terms of VD. Here, we employed a CCH-induced VD model and discovered increased vascular cell adhesion molecule 1 (VCAM1) expression on the brain endothelial cells (ECs). The expression of VCAM1 was directly correlated with the severity of BBB impairment. Moreover, the VCAM1 expression was associated with different regional white matter lesions. Furthermore, a compound that could block VCAM1 activation, K-7174, was also found to alleviate BBB leakage and protect the white matter integrity, whereas pharmacological manipulation of the BBB leakage did not affect the VCAM1 expression. Thus, our results demonstrated that VCAM1 is an important regulator that leads to BBB dysfunction following CCH. Blocking VCAM1-mediated BBB impairment may thus offer a new strategy to treat CCH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Huiwen Zhang
- Department
of Neurology, Zhengzhou University People’s
Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Junkui Shang
- Department
of Neurology, Zhengzhou University People’s
Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Wei Li
- Department
of Neurology, Zhengzhou University People’s
Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Dandan Gao
- Department
of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430072, China
| | - Jiewen Zhang
- Department
of Neurology, Zhengzhou University People’s
Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
12
|
Protzmann J, Jung F, Jakobsson L, Fredriksson L. Analysis of ischemic stroke-mediated effects on blood-brain barrier properties along the arteriovenous axis assessed by intravital two-photon imaging. Fluids Barriers CNS 2024; 21:35. [PMID: 38622710 PMCID: PMC11017501 DOI: 10.1186/s12987-024-00537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Early breach of the blood-brain barrier (BBB) and consequently extravasation of blood-borne substances into the brain parenchyma is a common hallmark of ischemic stroke. Although BBB breakdown is associated with an increased risk of cerebral hemorrhage and poor clinical prognosis, the cause and mechanism of this process are largely unknown. The aim of this study was to establish an imaging and analysis protocol which enables investigation of the dynamics of BBB breach in relation to hemodynamic properties along the arteriovenous axis. Using longitudinal intravital two-photon imaging following photothrombotic induction of ischemic stroke through a cranial window, we were able to study the response of the cerebral vasculature to ischemia, from the early critical hours to the days/weeks after the infarct. We demonstrate that disruption of the BBB and hemodynamic parameters, including perturbed blood flow, can be studied at single-vessel resolution in the three-dimensional space as early as 30 min after vessel occlusion. Further, we show that this protocol permits longitudinal studies on the response of individual blood vessels to ischemia over time, thus enabling detection of (maladaptive) vascular remodeling such as intussusception, angiogenic sprouting and entanglement of vessel networks. Taken together, this in vivo two-photon imaging and analysis protocol will be useful in future studies investigating the molecular and cellular mechanisms, and the spatial contribution, of BBB breach to disease progression which might ultimately aid the development of new and more precise treatment strategies for ischemic stroke.
Collapse
Affiliation(s)
- Jil Protzmann
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165
| | - Felix Jung
- Department of Neuroscience , Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165.
| |
Collapse
|
13
|
Liu L, Ma Z, Han Q, Meng W, Wang H, Guan X, Shi Q. Myricetin Oligomer Triggers Multi-Receptor Mediated Penetration and Autophagic Restoration of Blood-Brain Barrier for Ischemic Stroke Treatment. ACS NANO 2024; 18:9895-9916. [PMID: 38533773 DOI: 10.1021/acsnano.3c09532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR). Moreover, it exhibits BBB restoration capacity by regulating the expression of tight junctions (TJs) through the activation of protective autophagy. The myricetin oligomers scaffold not only acts as targeting moiety but is the prominent active entity that inherits all diverse pharmacological activities of myricetin. The suppression of oxidative damage, M1 microglia activation, and inflammatory factors makes it a multitasking nanoagent with a single component as the scaffold, targeting domain and curative components.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
14
|
Marta-Enguita J, Navarro-Oviedo M, Machado FJDM, Bermejo R, Aymerich N, Herrera M, Zandio B, Pagola J, Juega J, Marta-Moreno J, Rodriguez JA, Páramo JA, Roncal C, Muñoz R, Orbe J. Role of factor XIII in ischemic stroke: a key molecule promoting thrombus stabilization and resistance to lysis. J Thromb Haemost 2024; 22:1080-1093. [PMID: 38160727 DOI: 10.1016/j.jtha.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Active coagulation factor XIII (FXIII) catalyzing crosslinking of fibrin and other hemostatic factors plays a key role in clot stability and lysis. OBJECTIVES To evaluate the effect of FXIII inhibition in a mouse model of ischemic stroke (IS) and the role of activated FXIII (FXIIIa) in clot formation and lysis in patients with IS. METHODS A ferric chloride IS murine model was performed before and after administration of a FXIIIa inhibitor (FXIIIinh). Thromboelastometry in human and mice blood was used to evaluate thrombus stiffness and lysis with FXIIIinh. FXIIIa-dependent fibrin crosslinking and lysis with fibrinolytic drugs (tissue plasminogen activator and tenecteplase) were studied on fibrin plates and on thrombi and clotted plasma of patients with IS. Finally, circulating and thrombus FXIIIa were measured in 85 patients with IS. RESULTS FXIIIinh administration before stroke induction reduced infarct size, α2-antiplasmin (α2AP) crosslinking, and local microthrombosis, improving motor coordination and fibrinolysis without intracranial bleeds (24 hours). Interestingly, FXIII blockade after stroke also reduced brain damage and neurologic deficit. Thromboelastometry in human/mice blood with FXIIIinh showed delayed clot formation, reduced clot firmness, and shortened tissue plasminogen activator lysis time. FXIIIa fibrin crosslinking increased fibrin density and lysis resistance, which increased further after α2AP addition. FXIIIinh enhanced ex vivo lysis in stroke thrombi and fibrin plates. In patients with IS, thrombus FXIII and α2AP were associated with inflammatory and hemostatic components, and plasma FXIIIa correlated with thrombus α2AP and fibrin. CONCLUSION Our results suggest a key role of FXIIIa in thrombus stabilization, α2AP crosslinking, and lysis resistance, with a protective effect of FXIIIinh in an IS experimental model.
Collapse
Affiliation(s)
- Juan Marta-Enguita
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain. https://twitter.com/jmartaen
| | - Manuel Navarro-Oviedo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Florencio J D M Machado
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario Navarra, Pamplona, Spain
| | - Nuria Aymerich
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Herrera
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Zandio
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jorge Pagola
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Jesús Juega
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Neurology Department, Hospital Universitario Miguel Servet, IIS-Aragon, Zaragoza, Spain
| | - Jose-Antonio Rodriguez
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Jose-Antonio Páramo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain; Hematology Department, Clinica Universidad Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Roberto Muñoz
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josune Orbe
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
15
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
16
|
Yepes M. Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 542:69-80. [PMID: 37574107 DOI: 10.1016/j.neuroscience.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
17
|
He Q, Wang Y, Fang C, Feng Z, Yin M, Huang J, Ma Y, Mo Z. Advancing stroke therapy: A deep dive into early phase of ischemic stroke and recanalization. CNS Neurosci Ther 2024; 30:e14634. [PMID: 38379112 PMCID: PMC10879038 DOI: 10.1111/cns.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, Stroke CenterThe First Hospital of Jilin UniversityJilinChina
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Yueqing Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Cheng Fang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Ziying Feng
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Meifang Yin
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Juyang Huang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yinzhong Ma
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| |
Collapse
|
18
|
Yang R, Wang X, Liu H, Chen J, Tan C, Chen H, Wang X. Egr-1 is a key regulator of the blood-brain barrier damage induced by meningitic Escherichia coli. Cell Commun Signal 2024; 22:44. [PMID: 38233877 PMCID: PMC10795328 DOI: 10.1186/s12964-024-01488-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Bacterial meningitis remains a leading cause of infection-related mortality worldwide. Although Escherichia coli (E. coli) is the most common etiology of neonatal meningitis, the underlying mechanisms governing bacterial blood-brain barrier (BBB) disruption during infection remain elusive. We observed that infection of human brain microvascular endothelial cells with meningitic E. coli triggers the activation of early growth response 1 (Egr-1), a host transcriptional activator. Through integrated chromatin immunoprecipitation sequencing and transcriptome analysis, we identified Egr-1 as a crucial regulator for maintaining BBB integrity. Mechanistically, Egr-1 induced cytoskeletal changes and downregulated tight junction protein expression by directly targeting VEGFA, PDGFB, and ANGPTL4, resulting in increased BBB permeability. Meanwhile, Egr-1 also served as a master regulator in the initiation of neuroinflammatory response during meningitic E. coli infection. Our findings support an Egr-1-dependent mechanism of BBB disruption by meningitic E. coli, highlighting a promising therapeutic target for bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hulin Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiaqi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
19
|
Liu M, Jiao X, Li R, Li J, Wang L, Wang L, Wang Y, Lv C, Huang D, Wei R, Wang L, Ji X, Guo X. Effects of acetazolamide combined with remote ischemic preconditioning on risk of acute mountain sickness: a randomized clinical trial. BMC Med 2024; 22:4. [PMID: 38166913 PMCID: PMC10762951 DOI: 10.1186/s12916-023-03209-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND We aimed to determine whether and how the combination of acetazolamide and remote ischemic preconditioning (RIPC) reduced the incidence and severity of acute mountain sickness (AMS). METHODS This is a prospective, randomized, open-label, blinded endpoint (PROBE) study involving 250 healthy volunteers. Participants were randomized (1:1:1:1:1) to following five groups: Ripc (RIPC twice daily, 6 days), Rapid-Ripc (RIPC four times daily, 3 days), Acetazolamide (twice daily, 2 days), Combined (Acetazolamide plus Rapid-Ripc), and Control group. After interventions, participants entered a normobaric hypoxic chamber (equivalent to 4000 m) and stayed for 6 h. The primary outcomes included the incidence and severity of AMS, and SpO2 after hypoxic exposure. Secondary outcomes included systolic and diastolic blood pressure, and heart rate after hypoxic exposure. The mechanisms of the combined regime were investigated through exploratory outcomes, including analysis of venous blood gas, complete blood count, human cytokine antibody array, ELISA validation for PDGF-AB, and detection of PDGF gene polymorphisms. RESULTS The combination of acetazolamide and RIPC exhibited powerful efficacy in preventing AMS, reducing the incidence of AMS from 26.0 to 6.0% (Combined vs Control: RR 0.23, 95% CI 0.07-0.70, P = 0.006), without significantly increasing the incidence of adverse reactions. Combined group also showed the lowest AMS score (0.92 ± 1.10). Mechanistically, acetazolamide induced a mild metabolic acidosis (pH 7.30 ~ 7.31; HCO3- 18.1 ~ 20.8 mmol/L) and improved SpO2 (89 ~ 91%) following hypoxic exposure. Additionally, thirty differentially expressed proteins (DEPs) related to immune-inflammatory process were identified after hypoxia, among which PDGF-AB was involved. Further validation of PDGF-AB in all individuals showed that both acetazolamide and RIPC downregulated PDGF-AB before hypoxic exposure, suggesting a possible protective mechanism. Furthermore, genetic analyses demonstrated that individuals carrying the PDGFA rs2070958 C allele, rs9690350 G allele, or rs1800814 G allele did not display a decrease in PDGF-AB levels after interventions, and were associated with a higher risk of AMS. CONCLUSIONS The combination of acetazolamide and RIPC exerts a powerful anti-hypoxic effect and represents an innovative and promising strategy for rapid ascent to high altitudes. Acetazolamide improves oxygen saturation. RIPC further aids acetazolamide, which synergistically regulates PDGF-AB, potentially involved in the pathogenesis of AMS. TRIAL REGISTRATION ClinicalTrials.gov NCT05023941.
Collapse
Affiliation(s)
- Moqi Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xueqiao Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Rui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jialu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Lu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Liyan Wang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Yishu Wang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Chunmei Lv
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Dan Huang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Ran Wei
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Liming Wang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xiuhai Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
20
|
Shang J, Li W, Zhang H, Wang W, Liu N, Gao D, Wang F, Yan X, Gao C, Sun R, Zhang H, Ma K, Shao F, Zhang J. C-kit controls blood-brain barrier permeability by regulating caveolae-mediated transcytosis after chronic cerebral hypoperfusion. Biomed Pharmacother 2024; 170:115778. [PMID: 38141279 DOI: 10.1016/j.biopha.2023.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/25/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction plays a pivotal role in the pathology of chronic cerebral hypoperfusion (CCH)-related neurodegenerative diseases. Continuous endothelial cells (EC) that line the blood vessels of the brain are important components of the BBB to strictly control the flow of substances and maintain the homeostatic environment of the brain. However, the molecular mechanisms from the perspective of EC-induced BBB dysfunction after CCH are largely unknown. In this study, the BBB function was assessed using immunostaining and transmission electron microscopy. The EC dysfunction profile was screened by using EC enrichment followed by RNA sequencing. After identified the key EC dysfunction factor, C-kit, we used the C-kit inhibition drug (imatinib) and C-kit down-regulation method (AAV-BR1-C-kit shRNA) to verify the role of C-kit on BBB integrity and EC transcytosis after CCH. Furthermore, we also activated C-kit with stem cell factor (SCF) to observe the effects of C-kit on BBB following CCH. We explored that macromolecular proteins entered the brain mainly through EC transcytosis after CCH and caused neuronal loss. Additionally, we identified receptor tyrosine kinase C-kit as a key EC dysfunction molecule. Furthermore, the pharmacological inhibition of C-kit with imatinib counteracted BBB leakage by reducing caveolae-mediated transcytosis. Moreover, treatment with AAV-BR1-C-kit shRNA, which targets brain EC to inhibit C-kit expression, also ameliorated BBB leakage by reducing caveolae-mediated transcytosis. Furthermore, the SCF increased the permeability of the BBB by actively increasing caveolae-mediated transcytosis. This study provides evidence that C-kit is a key BBB permeability regulator through caveolae-mediated transcytosis in EC after CCH.
Collapse
Affiliation(s)
- Junkui Shang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Huiwen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wan Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ning Liu
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430072, China
| | - Fengyu Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Xi Yan
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Chenhao Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Haohan Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Kai Ma
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Fengmin Shao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, China.
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
21
|
Liu Q, Shi K, Wang Y, Shi FD. Neurovascular Inflammation and Complications of Thrombolysis Therapy in Stroke. Stroke 2023; 54:2688-2697. [PMID: 37675612 DOI: 10.1161/strokeaha.123.044123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Intravenous thrombolysis via tPA (tissue-type plasminogen activator) is the only approved pharmacological treatment for acute ischemic stroke, but its benefits are limited by hemorrhagic transformation. Emerging evidence reveals that tPA swiftly mobilizes immune cells which extravasate into the brain parenchyma via the cerebral vasculature, augmenting neurovascular inflammation, and tissue injury. In this review, we summarize the pronounced alterations of immune cells induced by tPA in patients with stroke and experimental stroke models. We argue that neuroinflammation, triggered by ischemia-induced cell death and exacerbated by tPA, compromises neurovascular integrity and the microcirculation, leading to hemorrhagic transformation. Finally, we discuss current and future approaches to attenuate thrombolysis-associated hemorrhagic transformation via uncoupling immune cells from the neurovascular unit.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
| | - Kaibin Shi
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Yongjun Wang
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, China (Q.L., F.-D.S.)
- Department of Neurology, National Clinical Research Center for Neurological Diseases of China, Beijing Tiantan Hospital, Capital Medical University (K.S., Y.W., F.-D.S.)
| |
Collapse
|
22
|
Kovács KB, Bencs V, Hudák L, Oláh L, Csiba L. Hemorrhagic Transformation of Ischemic Strokes. Int J Mol Sci 2023; 24:14067. [PMID: 37762370 PMCID: PMC10531605 DOI: 10.3390/ijms241814067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke, resulting from insufficient blood supply to the brain, is among the leading causes of death and disability worldwide. A potentially severe complication of the disease itself or its treatment aiming to restore optimal blood flow is hemorrhagic transformation (HT) increasing morbidity and mortality. Detailed summaries can be found in the literature on the pathophysiological background of hemorrhagic transformation, the potential clinical risk factors increasing its chance, and the different biomarkers expected to help in its prediction and clinical outcome. Clinicopathological studies also contribute to the improvement in our knowledge of hemorrhagic transformation. We summarized the clinical risk factors of the hemorrhagic transformation of ischemic strokes in terms of risk reduction and collected the most promising biomarkers in the field. Also, auxiliary treatment options in reperfusion therapies have been reviewed and collected. We highlighted that the optimal timing of revascularization treatment for carefully selected patients and the individualized management of underlying diseases and comorbidities are pivotal. Another important conclusion is that a more intense clinical follow-up including serial cranial CTs for selected patients can be recommended, as clinicopathological investigations have shown HT to be much more common than clinically suspected.
Collapse
Affiliation(s)
| | | | | | | | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.B.K.); (V.B.); (L.H.); (L.O.)
| |
Collapse
|
23
|
Lam T, Medcalf RL, Cloud GC, Myles PS, Keragala CB. Tranexamic acid for haemostasis and beyond: does dose matter? Thromb J 2023; 21:94. [PMID: 37700271 PMCID: PMC10496216 DOI: 10.1186/s12959-023-00540-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Tranexamic acid (TXA) is a widely used antifibrinolytic agent that has been used since the 1960's to reduce blood loss in various conditions. TXA is a lysine analogue that competes for the lysine binding sites in plasminogen and tissue-type plasminogen activator impairing its interaction with the exposed lysine residues on the fibrin surface. The presence of TXA therefore, impairs the plasminogen and tPA engagement and subsequent plasmin generation on the fibrin surface, protecting fibrin clot from proteolytic degradation. However, critical lysine binding sites for plasmin(ogen) also exist on other proteins and on various cell-surface receptors allowing plasmin to exert potent effects on other targets that are unrelated to classical fibrinolysis, notably in relation to immunity and inflammation. Indeed, TXA was reported to significantly reduce post-surgical infection rates in patients after cardiac surgery unrelated to its haemostatic effects. This has provided an impetus to consider TXA in other indications beyond inhibition of fibrinolysis. While there is extensive literature on the optimal dosage of TXA to reduce bleeding rates and transfusion needs, it remains to be determined if these dosages also apply to blocking the non-canonical effects of plasmin.
Collapse
Affiliation(s)
- Tammy Lam
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Geoffrey C Cloud
- Department of Clinical Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Paul S Myles
- Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne VIC, Australia
- Department of Anaesthesiology and Perioperative Medicine, Monash University, Melbourne VIC, Australia
| | - Charithani B Keragala
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia.
| |
Collapse
|
24
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Kumar VS. Parainfectious cerebral vasculopathy complicating bacterial meningitis: Acute-short lived vasospasm followed by delayed-long lasting vasculitis. Brain Circ 2023; 9:135-147. [PMID: 38020954 PMCID: PMC10679625 DOI: 10.4103/bc.bc_95_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 12/01/2023] Open
Abstract
Bacterial meningitis is a serious, life-threatening infection of the meninges. Several radiological studies highlight prominent structural alterations occurring in the cerebral vasculature, leading to significant cerebrovascular consequences during bacterial meningitis. Beginning with reflexive arterial vasospasm , cerebrovascular disease during bacterial meningitis proceeds through a orderly sequence of arterial vasculitis with inflammatory cell infiltration, medial smooth muscle migration and proliferation, medial necrosis, adventitial fibrosis and eventual intimal stenosis. As such, this review focuses on changes occurring within cerebral arteries during disease progression, highlighting the various structural modifications occurring in the arterial vessels that contribute to disturbances in cerebral hemodynamics and, ultimately, cerebrovascular consequences during bacterial meningitis.
Collapse
Affiliation(s)
- Vivig Shantha Kumar
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
26
|
Abstract
Stroke is a leading cause of morbidity and mortality worldwide; a serious complication of ischemic stroke is hemorrhagic transformation. Current treatment of acute ischemic stroke includes endovascular thrombectomy and thrombolytic therapy. Both of these treatment options are linked with increased risks of hemorrhagic conversion. The diagnosis and timely management of patients with hemorrhagic conversion is critically important to patient outcomes. This review aims to discuss hemorrhagic conversion of acute ischemic stroke including discussion of the pathophysiology, review of risk factors, imaging considerations, and treatment of patients with hemorrhagic conversion.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Division of Neurocritical Care and Emergency Neurology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Khalil S, Kanapathipillai M. Exosome-Coated tPA/Catalase Nanoformulation for Thrombolytic Therapy. Bioengineering (Basel) 2023; 10:bioengineering10020177. [PMID: 36829671 PMCID: PMC9952084 DOI: 10.3390/bioengineering10020177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Current tissue plasminogen-based therapeutic strategies for stroke suffer from systemic side effects and poor efficacy. Hence, novel drug delivery methods are needed to overcome these shortcomings. Exosome-based drug formulations have been shown to have superior therapeutic outcomes compared to conventional systemic drug delivery approaches. In this paper, we report exosome surface-coated tissue plasminogen activator (tPA)/catalase nanoformulations with improved thrombolytic efficacy compared to free tPA, which also reduce side effects. The results showed that the tPA exosome formulations retained tPA activity, improved tPA stability, exhibited significant fibrinolysis, and showed no significant toxicity effects. Further, when combined with antioxidant enzyme catalase, the formulation was able to inhibit hydrogen peroxide-mediated oxidative stress and toxicity. Hence, exosome-based tPA/catalase nanoformulations could have the potential to offer a safer and effective thrombolytic therapy.
Collapse
|
28
|
Li Y, Sun Z, Zhu H, Sun Y, Shteyman DB, Markx S, Leong KW, Xu B, Fu BM. Inhibition of Abl Kinase by Imatinib Can Rescue the Compromised Barrier Function of 22q11.2DS Patient-iPSC-Derived Blood-Brain Barriers. Cells 2023; 12:422. [PMID: 36766762 PMCID: PMC9913366 DOI: 10.3390/cells12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
We have previously established that the integrity of the induced blood-brain barrier (iBBB) formed by brain microvascular endothelial cells derived from the iPSC of 22q11.2 DS (22q11.2 Deletion Syndrome, also called DiGeorge Syndrome) patients is compromised. We tested the possibility that the haploinsufficiency of CRKL, a gene within the 22q11.2 DS deletion region, contributes to the deficit. The CRKL is a major substrate of the Abl tyrosine kinase, and the Abl/CRKL signaling pathway is critical for endothelial barrier functions. Imatinib, an FDA-approved drug, inhibits Abl kinase and has been used to treat various disorders involving vascular leakages. To test if imatinib can restore the compromised iBBB, we treated the patient's iBBB with imatinib. After treatment, both trans-endothelial electrical resistance and solute permeability returned to comparable levels of the control iBBB. Correspondingly, changes in tight junctions and endothelial glycocalyx of the iBBB were also restored. Western blotting showed that imatinib increased the level of active forms of the CRKL protein. A transcriptome study revealed that imatinib up-regulated genes in the signaling pathways responsible for the protein modification process and down-regulated those for cell cycling. The KEGG pathway analysis further suggested that imatinib improved the gene expression of the CRKL signaling pathway and tight junctions, which agrees with our expectations and the observations at protein levels. Our results indicate that the 22q11.2DS iBBB is at least partially caused by the haploinsufficiency of CRKL, which can be rescued by imatinib via its effects on the Abl/CRKL signaling pathway. Our findings uncover a novel disease mechanism associated with 22q11.2DS.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | - Zhixiong Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Huixiang Zhu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Yan Sun
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - David B. Shteyman
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
29
|
Konijnenberg LSF, Luiken TTJ, Veltien A, Uthman L, Kuster CTA, Rodwell L, de Waard GA, Kea-Te Lindert M, Akiva A, Thijssen DHJ, Nijveldt R, van Royen N. Imatinib attenuates reperfusion injury in a rat model of acute myocardial infarction. Basic Res Cardiol 2023; 118:2. [PMID: 36639597 PMCID: PMC9839396 DOI: 10.1007/s00395-022-00974-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Following an acute myocardial infarction, reperfusion of an occluded coronary artery is often accompanied by microvascular injury, leading to worse long-term prognosis. Experimental studies have revealed the potential of tyrosine-kinase inhibitor imatinib to reduce vascular leakage in various organs. Here, we examined the potential of imatinib to attenuate microvascular injury in a rat model of myocardial reperfusion injury. Isolated male Wistar rat hearts (n = 20) in a Langendorff system and male Wistar rats (n = 37) in an in vivo model were randomly assigned to imatinib or placebo and subjected to ischaemia and reperfusion. Evans-blue/Thioflavin-S/TTC staining and Cardiac Magnetic Resonance Imaging were performed to assess the extent of reperfusion injury. Subsequently, in vivo hearts were perfused ex vivo with a vascular leakage tracer and fluorescence and electron microscopy were performed. In isolated rat hearts, imatinib reduced global infarct size, improved end-diastolic pressure, and improved rate pressure product recovery compared to placebo. In vivo, imatinib reduced no-reflow and infarct size with no difference between imatinib and placebo for global cardiac function. In addition, imatinib showed lower vascular resistance, higher coronary flow, and less microvascular leakage in the affected myocardium. At the ultrastructural level, imatinib showed higher preserved microvascular integrity compared to placebo. We provide evidence that low-dose imatinib can reduce microvascular injury and accompanying myocardial infarct size in a rat model of acute myocardial infarction. These data warrant future work to examine the potential of imatinib to reduce reperfusion injury in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Lara S F Konijnenberg
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Tom T J Luiken
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laween Uthman
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carolien T A Kuster
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Laura Rodwell
- Department of Epidemiology and Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guus A de Waard
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Mariska Kea-Te Lindert
- Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anat Akiva
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
He Q, Ma Y, Fang C, Deng Z, Wang F, Qu Y, Yin M, Zhao R, Zhang D, Guo F, Yang Y, Chang J, Guo ZN. Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol Res 2023; 187:106641. [PMID: 36587812 DOI: 10.1016/j.phrs.2022.106641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Treatment of acute ischemic stroke with the recombinant tissue plasminogen activator (rtPA) is associated with increased blood-brain barrier (BBB) disruption and hemorrhagic transformation. Remote ischemic conditioning (RIC) has demonstrated neuroprotective effects against acute ischemic stroke. However, whether and how RIC regulates rtPA-associated BBB disruption remains unclear. Here, a rodent model of thromboembolic stroke followed by rtPA thrombolysis at different time points was performed with or without RIC. Brain infarction, neurological outcomes, BBB permeability, and intracerebral hemorrhage were assessed. The platelet-derived growth factor CC (PDGF-CC)/PDGFRα pathway in the brain tissue, PDGF-CC levels in the skeletal muscle and peripheral blood were also measured. Furthermore, impact of RIC on serum PDGF-CC levels were measured in healthy subjects and AIS patients. Our results showed that RIC substantially reduced BBB injury, intracerebral hemorrhage, cerebral infarction, and neurological deficits after stroke, even when rtPA was administrated in a delayed therapeutic time window. Mechanistically, RIC significantly decreased PDGFRα activation in ischemic brain tissue and reduced blood PDGF-CC levels, which partially resulted from PDGF-CC reduction in the skeletal muscle of RIC-applied hindlimbs and platelets. Intravenous or intraventricular recombinant PDGF-CC supplementation abolished RIC protective effects on BBB integrity. Moreover, similar changes of PDGF-CC in serum by RIC were also observed in healthy humans and acute ischemic stroke patients. Together, our study demonstrates that RIC can attenuate rtPA-aggravated BBB disruption after ischemic stroke via reducing the PDGF-CC/PDGFRα pathway and thus supports RIC as a potential approach for BBB disruption prevention or treatment following thrombolysis.
Collapse
Affiliation(s)
- Qianyan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Zijun Deng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Meifang Yin
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Dianhui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fuyou Guo
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
31
|
Escudero-Martínez I, Thorén M, Matusevicius M, Cooray C, Zini A, Roffe C, Toni D, Tsivgoulis G, Ringleb P, Wahlgren N, Ahmed N. Association of cholesterol levels with hemorrhagic transformation and cerebral edema after reperfusion therapies. Eur Stroke J 2022; 8:294-300. [PMID: 37021184 PMCID: PMC10069196 DOI: 10.1177/23969873221148229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
Background: The association between cholesterol levels and cerebral edema (CED) or hemorrhagic transformation (HT) as an expressions of blood-brain barrier (BBB) dysfunction after ischemic stroke is not well established. The aim of this study is to determine the association of total cholesterol (TC) levels with the incidence of HT and CED after reperfusion therapies. Methods: We analyzed SITS Thrombolysis and Thrombectomy Registry data from January 2011 to December 2017. We identified patients with data on TC levels at baseline. TC values were categorized in three groups (reference group ⩾200 mg/dl). The two primary outcomes were any parenchymal hemorrhage (PH) and moderate to severe CED on follow up imaging. Secondary outcomes included death and functional independence (mRS 0–2) at 3 months. Multivariable logistic regression analysis adjusted for baseline factors including statin pretreatment was used to assess the association between TC levels and outcomes. Results: Of 35,314 patients with available information on TC levels at baseline, 3372 (9.5%) presented with TC levels ⩽130 mg/dl, 8203 (23.2%) with TC 130–200 mg/dl and 23,739 (67.3%) with TC ⩾ 200 mg/dl. In the adjusted analyses, TC level as continuous variable was inversely associated with moderate to severe CED (OR 0.99, 95% CI 0.99–1.00, p = 0.025) and as categorical variable lower TC levels were associated with a higher risk of moderate to severe CED (aOR 1.24, 95% CI 1.10–1.40, p = 0.003). TC levels were not associated with any PH, functional independence, and mortality at 3 months. Conclusions: Our findings indicate an independent association between low levels of TC and higher odds of moderate/severe CED. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Irene Escudero-Martínez
- Department of Neurology, Hospital Universitari i Poltècnic La Fe, Valencia, Spain
- Neurovascular Research Laboratory, Instituto de Biomedicina de Sevilla-IBiS, Sevilla, Spain
| | - Magnus Thorén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Danderyd Hospital, Stockholm, Sweden
| | - Marius Matusevicius
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Charith Cooray
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Zini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, Bologna, Italy
| | - Christine Roffe
- Stroke Research in Stoke, Faculty of Medicine & Health Sciences, Keele University, Staffordshire, UK
| | - Danilo Toni
- Neurology Department, University La Sapienza Rome, Rome, Italy
| | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Peter Ringleb
- Neurology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Wahlgren
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Niaz Ahmed
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Qiu L, Cai Y, Geng Y, Yao X, Wang L, Cao H, Zhang X, Wu Q, Kong D, Ding D, Shi Y, Wang Y, Wu J. Mesenchymal stem cell-derived extracellular vesicles attenuate tPA-induced blood-brain barrier disruption in murine ischemic stroke models. Acta Biomater 2022; 154:424-442. [PMID: 36367475 DOI: 10.1016/j.actbio.2022.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage following blood-brain barrier (BBB) disruption resulting from thrombolysis of ischemic stroke with tissue plasminogen activator (tPA) remains a critical clinical problem. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are promising nanotherapeutic agents that have the potential to repair the BBB after ischemic stroke; however, whether they can attenuate BBB disruption and hemorrhagic transformation after tPA thrombolysis is largely unknown. Here, we observed that MSC-EVs efficiently passed through the BBB and selectively accumulated in injured brain regions in ischemic stroke model mice in real time using aggregation-induced emission luminogens (AIEgens), which exhibit better tracking ability than the commercially available tracer DiR. Moreover, tPA administration promoted the homing of MSC-EVs to the ischemic brain and increased the uptake of MSC-EVs by astrocytes. Furthermore, the accumulated MSC-EVs attenuated the tPA-induced disruption of BBB integrity and alleviated hemorrhage by inhibiting astrocyte activation and inflammation. Mechanistically, miR-125b-5p delivered by MSC-EVs played an indispensable role in maintaining BBB integrity by targeting Toll-like receptor 4 (TLR4) and inhibiting nuclear transcription factor-kappaB (NF-κB) signaling in astrocytes. This study provides a noninvasive method for real-time tracking of MSC-EVs in the ischemic brain after tPA treatment and highlights the potential of MSC-EVs as thrombolytic adjuvants for ischemic stroke. STATEMENT OF SIGNIFICANCE: Although tPA thrombolysis is the most effective pharmaceutical strategy for acute ischemic stroke, its clinical application and therapeutic efficacy are challenged by tPA-induced BBB disruption and hemorrhagic transformation. Our study demonstrated that MSC-EVs can act as an attractive thrombolytic adjuvant to repair the BBB and improve thrombolysis in a mouse ischemic stroke model. Notably, by labeling MSC-EVs with AIEgens, we achieved accurate real-time imaging of MSC-EVs in the ischemic brain and therapeutic visualization. MSC-EVs inhibit astrocyte activation and associated inflammation through miR-125b-5p/TLR4/NF-κB pathway. Consequently, we revealed that MSC-EVs combined with tPA thrombolysis may be a promising approach for the treatment of ischemic stroke in clinical setting.
Collapse
Affiliation(s)
- Lina Qiu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Yanqin Geng
- Nankai University School of Medicine, Tianjin 300071, China
| | - Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Lanxing Wang
- Nankai University School of Medicine, Tianjin 300071, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Qiaoli Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Dan Ding
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
| | - Yang Shi
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China.
| | - Yuebing Wang
- Nankai University School of Medicine, Tianjin 300071, China; Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China.
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
33
|
Mao B, Wang M, Wan S. Platelet derived growth factor and its receptor in intracerebral hemorrhage. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:634-639. [PMID: 36581581 PMCID: PMC10264983 DOI: 10.3724/zdxbyxb-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/10/2022] [Indexed: 12/02/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and highly disabling or fatal neurological disorder in adults. Recent studies have suggested that the platelet derived growth factor (PDGF) signaling pathway plays an important role in the development of ICH. PDGF is involved in vascular remodeling and can be used as a biomarker of cerebral amyloid angiopathy which is one of the major causes of ICH. PDGF and its receptors are involved in the mechanism of the secondary injury after ICH by affecting the integrity of the blood-brain barrier and inflammatory response. PDGF and its receptors may also participate in the mechanism of repair after ICH by promoting angiogenesis. This article reviews the latest research progress on the involvement of PDGF signaling pathway in the pathophysiology of intracerebral hemorrhage, and introduces the relevant antagonists using PDGFR as the therapeutic target, to provide information for the development of therapeutic options for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Baojie Mao
- 1. The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 2. Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Ming Wang
- 2. Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Shu Wan
- 2. Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| |
Collapse
|
34
|
Lagging C, Klasson S, Pedersen A, Nilsson S, Jood K, Stanne TM, Jern C. Investigation of 91 proteins implicated in neurobiological processes identifies multiple candidate plasma biomarkers of stroke outcome. Sci Rep 2022; 12:20080. [PMID: 36418382 PMCID: PMC9684578 DOI: 10.1038/s41598-022-23288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
The inter-individual variation in stroke outcomes is large and protein studies could point to potential underlying biological mechanisms. We measured plasma levels of 91 neurobiological proteins in 209 cases included in the Sahlgrenska Academy Study on Ischemic Stroke using a Proximity Extension Assay, and blood was sampled in the acute phase and at 3-month and 7-year follow-ups. Levels were also determined once in 209 controls. Acute stroke severity and neurological outcome were evaluated by the National Institutes of Health Stroke Scale. In linear regression models corrected for age, sex, and sampling day, acute phase levels of 37 proteins were associated with acute stroke severity, and 47 with 3-month and/or 7-year outcome at false discovery rate < 0.05. Three-month levels of 8 proteins were associated with 7-year outcome, of which the associations for BCAN and Nr-CAM were independent also of acute stroke severity. Most proteins followed a trajectory with lower levels in the acute phase compared to the 3-month follow-up and the control sampling point. Conclusively, we identified multiple candidate plasma biomarkers of stroke severity and neurological outcome meriting further investigation. This study adds novel information, as most of the reported proteins have not been previously investigated in a stroke cohort.
Collapse
Affiliation(s)
- Cecilia Lagging
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Sofia Klasson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Annie Pedersen
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Staffan Nilsson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Division of Applied Mathematics and Statistics, Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Katarina Jood
- grid.8761.80000 0000 9919 9582Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Tara M. Stanne
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Christina Jern
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
35
|
Ma Y, Chen Z, He Q, Guo ZN, Yang Y, Liu F, Li F, Luo Q, Chang J. Spatiotemporal lipidomics reveals key features of brain lipid dynamic changes after cerebral ischemia and reperfusion therapy. Pharmacol Res 2022; 185:106482. [DOI: 10.1016/j.phrs.2022.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
36
|
Cen J, Zhang R, Zhao T, Zhang X, Zhang C, Cui J, Zhao K, Duan S, Guo Y. A Water-Soluble Quercetin Conjugate with Triple Targeting Exerts Neuron-Protective Effect on Cerebral Ischemia by Mitophagy Activation. Adv Healthc Mater 2022; 11:e2200817. [PMID: 36071574 DOI: 10.1002/adhm.202200817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Indexed: 01/28/2023]
Abstract
The existing treatments for ischemic stroke cannot meet the clinical needs so far. Quercetin (QT) is an effective apoptosis inhibitor and antioxidant flavonoid, but its water solubility is poor and has no targeting. In this study, QT is modified with hyaluronic acid (HA) to form a water-soluble conjugate HA-QT, which can specifically bind to CD44 receptors and response to hyaluronidase. Next, a novel delivery system SS31-HA-QT is prepared by further modification with SS31, a polypeptide capable of penetrating the blood-brain barrier (BBB) and indiscriminately targeting mitochondria. Meanwhile, IR780, a near-infrared dye, is conjugated onto HA-QT and SS31-HA-QT to form diagnosis tools to trace HA-QT and SS31-HA-QT. In vitro and in vivo results shows that SS31 can four-fold increase the drug penetration into BBB without any toxicity. The highly expressed CD44 and hyaluronidase in ischemic area ensured the targeted delivery of QT to the ischemic region. Importantly, the mitochondrial targeting of damaged neurons is also achieved by SS31. Further studies confirmed that SS31-HA-QT exerted neuron-protection by activating mitophagy, and its mechanism involved Akt/mTOR related TFEB and HIF-1α activation. Hence, SS31-HA-QT shall be a promising neuroprotective drug due to its high water-solubility, superior triple-targeted neuroprotective ability, low toxicity, and high efficiency.
Collapse
Affiliation(s)
- Juan Cen
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Runfang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tingkui Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cui
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Keqing Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shaofeng Duan
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Henan International Joint Laboratory of Chinese Medicine Efficacy, Henan University, Kaifeng, 475004, China
| | - Yuqi Guo
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Engineering Research Center for Gynecological Oncology Nanomedicine of Henan Province, Zhengzhou, 450003, China
| |
Collapse
|
37
|
Su EJ, Lawrence DA. Diabetes and the treatment of ischemic stroke. J Diabetes Complications 2022; 36:108318. [PMID: 36228562 DOI: 10.1016/j.jdiacomp.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022]
Abstract
This white paper examines the current challenges for treating ischemic stroke in diabetic patients. The need for a greater understanding of the mechanisms that underlie the relationship between diabetes and the cerebral vascular responses to ischemia is discussed. The critical need to improve the efficacy and safety of thrombolysis is addressed, as is the need for a better characterization the off-target actions of tPA, the only currently approved thrombolytic for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Lépine M, Douceau S, Devienne G, Prunotto P, Lenoir S, Regnauld C, Pouettre E, Piquet J, Lebouvier L, Hommet Y, Maubert E, Agin V, Lambolez B, Cauli B, Ali C, Vivien D. Parvalbumin interneuron-derived tissue-type plasminogen activator shapes perineuronal net structure. BMC Biol 2022; 20:218. [PMID: 36199089 PMCID: PMC9535866 DOI: 10.1186/s12915-022-01419-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Perineuronal nets (PNNs) are specialized extracellular matrix structures mainly found around fast-spiking parvalbumin (FS-PV) interneurons. In the adult, their degradation alters FS-PV-driven functions, such as brain plasticity and memory, and altered PNN structures have been found in neurodevelopmental and central nervous system disorders such as Alzheimer’s disease, leading to interest in identifying targets able to modify or participate in PNN metabolism. The serine protease tissue-type plasminogen activator (tPA) plays multifaceted roles in brain pathophysiology. However, its cellular expression profile in the brain remains unclear and a possible role in matrix plasticity through PNN remodeling has never been investigated. Result By combining a GFP reporter approach, immunohistology, electrophysiology, and single-cell RT-PCR, we discovered that cortical FS-PV interneurons are a source of tPA in vivo. We found that mice specifically lacking tPA in FS-PV interneurons display denser PNNs in the somatosensory cortex, suggesting a role for tPA from FS-PV interneurons in PNN remodeling. In vitro analyses in primary cultures of mouse interneurons also showed that tPA converts plasminogen into active plasmin, which in turn, directly degrades aggrecan, a major structural chondroitin sulfate proteoglycan (CSPG) in PNNs. Conclusions We demonstrate that tPA released from FS-PV interneurons in the central nervous system reduces PNN density through CSPG degradation. The discovery of this tPA-dependent PNN remodeling opens interesting insights into the control of brain plasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01419-8.
Collapse
Affiliation(s)
- Matthieu Lépine
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Sara Douceau
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Gabrielle Devienne
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Paul Prunotto
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Sophie Lenoir
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Caroline Regnauld
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Elsa Pouettre
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Juliette Piquet
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Laurent Lebouvier
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Eric Maubert
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Véronique Agin
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Bruno Cauli
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université UM119, CNRS UMR8246, INSERM U1130, 75005, Paris, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen Normandie, Cyceron, Bd Becquerel, BP 5229-14074, 14000, Caen, France.
| | - Denis Vivien
- Department of clinical research, CHU de Caen Normandie, Caen, France
| |
Collapse
|
39
|
Chen S, Sun Y, Li F, Zhang X, Hu X, Zhao X, Li Y, Li H, Zhang J, Liu W, Zheng GQ, Jin X. Modulation of α7nAchR by Melatonin Alleviates Ischemia and Reperfusion-Compromised Integrity of Blood-Brain Barrier Through Inhibiting HMGB1-Mediated Microglia Activation and CRTC1-Mediated Neuronal Loss. Cell Mol Neurobiol 2022; 42:2407-2422. [PMID: 34196879 DOI: 10.1007/s10571-021-01122-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The only food and drug administration (FDA)-approved drug currently available for the treatment of acute ischemic stroke is tissue plasminogen activator (tPA), yet the therapeutic benefits of this drug are partially outweighed by the increased risk of hemorrhagic transformation (HT). Analysis of the NIH trial has shown that cigarette smoking protected tPA-treated patients from HT; however, the underlying mechanism is not clear. Nicotinic acetylcholine receptors (nAChR) has shown anti-inflammatory effect and modulation nAChR could be a strategy to reduce ischemia/reperfusion-induced blood-brain barrier (BBB) damage. Since melatonin could regulate the expression of α7nAchR and melatonin's neuroprotective effect against ischemic injury is mediated via α7nAChR modulation, here, we aim to test the hypothesis that melatonin reduces ischemia and reperfusion (I/R)-induced BBB damage through modulation of α7nACh receptor (α7nAChR). Mice were subjected to 1.5 h ischemia and 24 h reperfusion and at the onset of reperfusion, mice received intraperitoneal administration (i.p.) of either drug or saline. Mice were randomly assigned into five groups: Saline; α7nAChR agonist PNU282987; Melatonin; Melatonin+Methyllycaconitine (MLA, α7nAChR antagonist), and MLA group. BBB permeability was assessed by detecting the extravasation of Evan's blue and IgG. Our results showed that I/R significantly increased BBB permeability accompanied by occludin degradation, microglia activation, and high mobility group box 1 (HMGB1) release from the neuron. In addition, I/R significantly induced neuronal loss accompanied by the decrease of CREB-regulated transcriptional coactivator 1 (CRTC1) and p-CREB expression. Melatonin treatment significantly inhibited the above changes through modulating α7nAChR. Taken together, these results demonstrate that melatonin provides a protective effect on ischemia/reperfusion-induced BBB damage, at least in part, depending on the modulation of α7nAChR.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinyu Zhang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaoyan Hu
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xiaoyun Zhao
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yixuan Li
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Hui Li
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jianliang Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100054, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xinchun Jin
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
40
|
Torrente D, Su EJ, Fredriksson L, Warnock M, Bushart D, Mann KM, Emal CD, Lawrence DA. Compartmentalized Actions of the Plasminogen Activator Inhibitors, PAI-1 and Nsp, in Ischemic Stroke. Transl Stroke Res 2022; 13:801-815. [PMID: 35122213 PMCID: PMC9349468 DOI: 10.1007/s12975-022-00992-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
Tissue plasminogen activator (tPA) is a multifunctional protease. In blood tPA is best understood for its role in fibrinolysis, whereas in the brain tPA is reported to regulate blood-brain barrier (BBB) function and to promote neurodegeneration. Thrombolytic tPA is used for the treatment of ischemic stroke. However, its use is associated with an increased risk of hemorrhagic transformation. In blood the primary regulator of tPA activity is plasminogen activator inhibitor 1 (PAI-1), whereas in the brain, its primary inhibitor is thought to be neuroserpin (Nsp). In this study, we compare the effects of PAI-1 and Nsp deficiency in a mouse model of ischemic stroke and show that tPA has both beneficial and harmful effects that are differentially regulated by PAI-1 and Nsp. Following ischemic stroke Nsp deficiency in mice leads to larger strokes, increased BBB permeability, and increased spontaneous intracerebral hemorrhage. In contrast, PAI-1 deficiency results in smaller infarcts and increased cerebral blood flow recovery. Mechanistically, our data suggests that these differences are largely due to the compartmentalized action of PAI-1 and Nsp, with Nsp deficiency enhancing tPA activity in the CNS which increases BBB permeability and worsens stroke outcomes, while PAI-1 deficiency enhances fibrinolysis and improves recovery. Finally, we show that treatment with a combination therapy that enhances endogenous fibrinolysis by inhibiting PAI-1 with MDI-2268 and reduces BBB permeability by inhibiting tPA-mediated PDGFRα signaling with imatinib significantly reduces infarct size compared to vehicle-treated mice and to mice with either treatment alone.
Collapse
Affiliation(s)
- Daniel Torrente
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Enming Joseph Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Linda Fredriksson
- Biomedicum, Karolinska Institute, Solnavägen 9, Quarter 6D, 17165, Solna, Sweden
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - David Bushart
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
- Current affiliation: Ohio State University College of Medicine, Columbus, OH, USA
| | - Kris M Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Daniel A Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
41
|
Zhang F, Niu M, Guo K, Ma Y, Fu Q, Liu Y, Feng Z, Mi W, Wang L. The immunometabolite S-2-hydroxyglutarate exacerbates perioperative ischemic brain injury and cognitive dysfunction by enhancing CD8 + T lymphocyte-mediated neurotoxicity. J Neuroinflammation 2022; 19:176. [PMID: 35799259 PMCID: PMC9264651 DOI: 10.1186/s12974-022-02537-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Metabolic dysregulation and disruption of immune homeostasis have been widely associated with perioperative complications including perioperative ischemic stroke. Although immunometabolite S-2-hydroxyglutarate (S-2HG) is an emerging regulator of immune cells and thus triggers the immune response, it is unclear whether and how S-2HG elicits perioperative ischemic brain injury and exacerbates post-stroke cognitive dysfunction. Methods Perioperative ischemic stroke was induced by transient middle cerebral artery occlusion for 60 min in C57BL/6 mice 1 day after ileocecal resection. CD8+ T lymphocyte activation and invasion of the cerebrovascular compartment were measured using flow cytometry. Untargeted metabolomic profiling was performed to detect metabolic changes in sorted CD8+ T lymphocytes after ischemia. CD8+ T lymphocytes were transfected with lentivirus ex vivo to mobilize cell proliferation and differentiation before being transferred into recombination activating gene 1 (Rag1−/−) stroke mice. Results The perioperative stroke mice exhibit more severe cerebral ischemic injury and neurological dysfunction than the stroke-only mice. CD8+ T lymphocyte invasion of brain parenchyma and neurotoxicity augment cerebral ischemic injury in the perioperative stroke mice. CD8+ T lymphocyte depletion reverses exacerbated immune-mediated cerebral ischemic brain injury in perioperative stroke mice. Perioperative ischemic stroke triggers aberrant metabolic alterations in peripheral CD8+ T cells, in which S-2HG is more abundant. S-2HG alters CD8+ T lymphocyte proliferation and differentiation ex vivo and modulates the immune-mediated ischemic brain injury and post-stroke cognitive dysfunction by enhancing CD8+ T lymphocyte-mediated neurotoxicity. Conclusion Our study establishes that S-2HG signaling-mediated activation and neurotoxicity of CD8+ T lymphocytes might exacerbate perioperative ischemic brain injury and may represent a promising immunotherapy target in perioperative ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02537-4.
Collapse
Affiliation(s)
- Faqiang Zhang
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Mu Niu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, 221002, China
| | - Kaikai Guo
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiang Fu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zeguo Feng
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
42
|
Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 2022; 79:372. [PMID: 35726097 PMCID: PMC9209386 DOI: 10.1007/s00018-022-04403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Dynamic brain activity requires timely communications between the brain parenchyma and circulating blood. Brain-blood communication is facilitated by intricate networks of brain vasculature, which display striking heterogeneity in structure and function. This vascular cell heterogeneity in the brain is fundamental to mediating diverse brain functions and has long been recognized. However, the molecular basis of this biological phenomenon has only recently begun to be elucidated. Over the past century, various animal species and in vitro systems have contributed to the accumulation of our fundamental and phylogenetic knowledge about brain vasculature, collectively advancing this research field. Historically, dye tracer and microscopic observations have provided valuable insights into the anatomical and functional properties of vasculature across the brain, and these techniques remain an important approach. Additionally, recent advances in molecular genetics and omics technologies have revealed significant molecular heterogeneity within brain endothelial and perivascular cell types. The combination of these conventional and modern approaches has enabled us to identify phenotypic differences between healthy and abnormal conditions at the single-cell level. Accordingly, our understanding of brain vascular cell states during physiological, pathological, and aging processes has rapidly expanded. In this review, we summarize major historical advances and current knowledge on blood endothelial cell heterogeneity in the brain, and discuss important unsolved questions in the field.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Luke D Buck
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Keerti P Vajrala
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.,Kansas City University College of Osteopathic Medicine, Kansas City, MO 64106, USA
| | - Rachael E Quick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Olivia A Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
43
|
The Role of Fibrinolytic System in Health and Disease. Int J Mol Sci 2022; 23:ijms23095262. [PMID: 35563651 PMCID: PMC9101224 DOI: 10.3390/ijms23095262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
The fibrinolytic system is composed of the protease plasmin, its precursor plasminogen and their respective activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), counteracted by their inhibitors, plasminogen activator inhibitor type 1 (PAI-1), plasminogen activator inhibitor type 2 (PAI-2), protein C inhibitor (PCI), thrombin activable fibrinolysis inhibitor (TAFI), protease nexin 1 (PN-1) and neuroserpin. The action of plasmin is counteracted by α2-antiplasmin, α2-macroglobulin, TAFI, and other serine protease inhibitors (antithrombin and α2-antitrypsin) and PN-1 (protease nexin 1). These components are essential regulators of many physiologic processes. They are also involved in the pathogenesis of many disorders. Recent advancements in our understanding of these processes enable the opportunity of drug development in treating many of these disorders.
Collapse
|
44
|
Perkins M, Girard BM, Campbell SE, Hennig GW, Vizzard MA. Imatinib Mesylate Reduces Neurotrophic Factors and pERK and pAKT Expression in Urinary Bladder of Female Mice With Cyclophosphamide-Induced Cystitis. Front Syst Neurosci 2022; 16:884260. [PMID: 35528149 PMCID: PMC9072830 DOI: 10.3389/fnsys.2022.884260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 01/28/2023] Open
Abstract
Imatinib mesylate is a tyrosine kinase inhibitor that inhibits platelet-derived growth factor receptor (PDGFR)-α, -β, stem cell factor receptor (c-KIT), and BCR-ABL. PDGFRα is expressed in a subset of interstitial cells in the lamina propria (LP) and detrusor muscle of the urinary bladder. PDGFRα + interstitial cells may contribute to bladder dysfunction conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) or overactive bladder (OAB). We have previously demonstrated that imatinib prevention via oral gavage or treatment via intravesical infusion improves urinary bladder function in mice with acute (4 hour, h) cyclophosphamide (CYP)-induced cystitis. Here, we investigate potential underlying mechanisms mediating the bladder functional improvement by imatinib using a prevention or treatment experimental design. Using qRT-PCR and ELISAs, we examined inflammatory mediators (NGF, VEGF, BDNF, CCL2, IL-6) previously shown to affect bladder function in CYP-induced cystitis. We also examined the distribution of phosphorylated (p) ERK and pAKT expression in the LP with immunohistochemistry. Imatinib prevention significantly (0.0001 ≤ p ≤ 0.05) reduced expression for all mediators examined except NGF, whereas imatinib treatment was without effect. Imatinib prevention and treatment significantly (0.0001 ≤ p ≤ 0.05) reduced pERK and pAKT expression in the upper LP (U. LP) and deeper LP (D. LP) in female mice with 4 h CYP-induced cystitis. Although we have previously demonstrated that imatinib prevention or treatment improves bladder function in mice with cystitis, the current studies suggest that reductions in inflammatory mediators contribute to prevention benefits of imatinib but not the treatment benefits of imatinib. Differential effects of imatinib prevention or treatment on inflammatory mediators may be influenced by the route and frequency of imatinib administration and may also suggest other mechanisms (e.g., changes in transepithelial resistance of the urothelium) through which imatinib may affect urinary bladder function following CYP-induced cystitis.
Collapse
Affiliation(s)
- Megan Perkins
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Beatrice M. Girard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Susan E. Campbell
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Grant W. Hennig
- Department of Pharmacology, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Margaret A. Vizzard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
45
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
46
|
Jin J, Ba MA, Wai CH, Mohanty S, Sahu PK, Pattnaik R, Pirpamer L, Fischer M, Heiland S, Lanzer M, Frischknecht F, Mueller AK, Pfeil J, Majhi M, Cyrklaff M, Wassmer SC, Bendszus M, Hoffmann A. Transcellular blood-brain barrier disruption in malaria-induced reversible brain edema. Life Sci Alliance 2022; 5:5/6/e202201402. [PMID: 35260473 PMCID: PMC8905774 DOI: 10.26508/lsa.202201402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
We present how reversible edema can reliably be induced in experimental cerebral malaria and show that it is associated with transcellular blood–brain barrier disruption and delayed microhemorrhages. Brain swelling occurs in cerebral malaria (CM) and may either reverse or result in fatal outcome. It is currently unknown how brain swelling in CM reverses, as brain swelling at the acute stage is difficult to study in humans and animal models with reliable induction of reversible edema are not known. In this study, we show that reversible brain swelling in experimental murine CM can be induced reliably after single vaccination with radiation-attenuated sporozoites as proven by in vivo high-field magnetic resonance imaging. Our results provide evidence that brain swelling results from transcellular blood–brain barrier disruption (BBBD), as revealed by electron microscopy. This mechanism enables reversal of brain swelling but does not prevent persistent focal brain damage, evidenced by microhemorrhages, in areas of most severe BBBD. In adult CM patients magnetic resonance imaging demonstrate microhemorrhages in more than one third of patients with reversible edema, emphasizing similarities of the experimental model and human disease. Our data suggest that targeting transcellular BBBD may represent a promising adjunct therapeutic approach to reduce edema and may improve neurological outcome.
Collapse
Affiliation(s)
- Jessica Jin
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Mame Aida Ba
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Chi Ho Wai
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, India
| | - Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, India
| | | | - Lukas Pirpamer
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Lanzer
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Friedrich Frischknecht
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Johannes Pfeil
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany.,Center for Childhood and Adolescent Medicine, General Pediatrics, University Hospital, Heidelberg, Germany
| | - Megharay Majhi
- Department of Radiology, Ispat General Hospital, Rourkela, India
| | - Marek Cyrklaff
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany .,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Liu Y, Yang Q, Fu H, Wang J, Yuan S, Li X, Xie P, Hu Z, Liu Q. Müller glia-derived exosomal miR-9-3p promotes angiogenesis by restricting sphingosine-1-phosphate receptor S1P 1 in diabetic retinopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:491-504. [PMID: 35036060 PMCID: PMC8728524 DOI: 10.1016/j.omtn.2021.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy is a heterogeneous retinal degenerative disease with the microvascular dysfunction being recognized as a hallmark of the advanced stage. In this study, we demonstrated that exosomes collected from the vitreous humor of proliferative diabetic retinopathy patients promoted proliferation, migration and tube formation ability of primary human retinal endothelial cells via its elevated miR-9-3p expression level. Müller glia cells were further recognized as the sole source of the aberrantly expressed miR-9-3p, and both in vitro and in vivo experiments validated that Müller glia-derived exosomes aggravate vascular dysfunction under high glucose. Mechanistically, exosomal miRNA-9-3p was transferred to retinal endothelial cells and bound to the sphingosine-1-phosphate receptor S1P1 coding sequence, which subsequently activated VEGFR2 phosphorylation and internalization in the presence or absence of exogenous VEGF-A. We successfully orchestrated the dynamic crosstalk between retinal Müller glia cells and endothelial cells in pathological condition, which may provide a novel biomarker or promising therapeutic agents for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haixin Fu
- Department of Ophthalmology, The Huai'an Hospital of Huai'an City, Huai'an 223200, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinsheng Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
48
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
49
|
Fukuta T, Oku N, Kogure K. Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke. Pharmaceutics 2022; 14:pharmaceutics14020361. [PMID: 35214092 PMCID: PMC8877231 DOI: 10.3390/pharmaceutics14020361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Naoto Oku
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| |
Collapse
|
50
|
Chen X, Wang J, Ge L, Lu G, Wan H, Jiang Y, Yao Z, Deng G, Zhang X. A fibrin targeted molecular imaging evaluation of microvascular no-reflow in acute ischemic stroke. Brain Behav 2022; 12:e2474. [PMID: 35025138 PMCID: PMC8865146 DOI: 10.1002/brb3.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To investigate the relationship between fibrin deposition and "no-reflow" within microcirculation after thrombolysis in acute ischemic stroke (AIS). MATERIALS AND METHODS Experiments were approved by the institutional animal care and use committee. An experimental AIS model was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO) via the photothrombotic method. Mice were randomly assigned to non-thrombolytic or thrombolytic treated groups (n = 12 per group). The modified Neurological Severity Score and Fast Beam Balance Test were performed by a researcher blinded to the treatment method. MRI was utilized to evaluate all of the mice. An FXIIIa-targeted probe was applied to detect fibrin deposition in acute ischemic brain regions by fluorescence imaging. Necrosis and pathological changes of brain tissue were estimated via Hematoxylin and eosin staining while fibrin deposition was observed by immunohistochemistry. RESULTS Thrombolytic therapy improved AIS clinical symptoms. The infarct area of non-thrombolytic treated mice was significantly greater than that of the thrombolytic treated mice (p < .0001). Fluorescent imaging indicated fibrin deposition in ischemic brain tissue in both groups, with less fibrin in non-thrombolytic treated mice than thrombolytic treated mice, though the difference was not significant. Brain cells with abnormal morphology, necrosis, and liquefication were observed in the infarcted area for both groups. Clotted red blood cells (RBCs) and fibrin build-up in capillaries were found near the ischemic area in both non-thrombolytic and thrombolytic treated groups of mice. CONCLUSION Fibrin deposition and stacked RBCs contribute to microcirculation no-reflow in AIS after thrombolytic therapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Ge
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailin Wan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeqing Jiang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Deng
- Department of Intervention and Vascular Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaolong Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|